Hybrid RANS/LES Turbulence Model Applied to a Transitional Unsteady Boundary Layer on Wind Turbine Airfoil

dc.contributor.authorZhang, Dien
dc.contributor.authorCadel, Daniel R.en
dc.contributor.authorPaterson, Eric G.en
dc.contributor.authorLowe, K. Todden
dc.contributor.departmentAerospace and Ocean Engineeringen
dc.date.accessioned2019-07-25T19:22:30Zen
dc.date.available2019-07-25T19:22:30Zen
dc.date.issued2019-07-11en
dc.date.updated2019-07-25T16:58:18Zen
dc.description.abstractA hybrid Reynolds-averaged Navier Stokes/large-eddy simulation (RANS/LES) turbulence model integrated with a transition formulation is developed and tested on a surrogate model problem through a joint experimental and computational fluid dynamic approach. The model problem consists of a circular cylinder for generating coherent unsteadiness and a downstream airfoil in the cylinder wake. The cylinder flow is subcritical, with a Reynolds number of 64,000 based upon the cylinder diameter. The quantitative dynamics of vortex shedding and Reynolds stresses in the cylinder near wake are well captured, owing to the turbulence-resolving large eddy simulation mode that was activated in the wake. The hybrid model switched between RANS and LES modes outside the boundary layers, as expected. According to the experimental and simulation results, the airfoil encountered local flow angle variations up to &plusmn;50&deg;. Further analysis through a phase-averaging technique found phase lags in the airfoil boundary layer along the chordwise locations, and both the phase-averaged and mean velocity profiles collapsed into the Law-of-the-wall in the range of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>&lt;</mo> <msup> <mi>y</mi> <mo>+</mo> </msup> <mo>&lt;</mo> <mn>50</mn> </mrow> </semantics> </math> </inline-formula>. The features of high blade-loading fluctuations due to unsteadiness and transitional boundary layers are of interest in the aerodynamic studies of full-scale wind turbine blades, making the current model problem a comprehensive benchmark case for future model development and validation.en
dc.description.versionPublished versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationZhang, D.; Cadel, D.R.; Paterson, E.G.; Lowe, K.T. Hybrid RANS/LES Turbulence Model Applied to a Transitional Unsteady Boundary Layer on Wind Turbine Airfoil. Fluids 2019, 4, 128.en
dc.identifier.doihttps://doi.org/10.3390/fluids4030128en
dc.identifier.urihttp://hdl.handle.net/10919/91992en
dc.language.isoenen
dc.publisherMDPIen
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectTurbulenceen
dc.subjecttransitionen
dc.subjectaerodynamicsen
dc.subjectModelingen
dc.titleHybrid RANS/LES Turbulence Model Applied to a Transitional Unsteady Boundary Layer on Wind Turbine Airfoilen
dc.title.serialFluidsen
dc.typeArticle - Refereeden
dc.type.dcmitypeTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fluids-04-00128.pdf
Size:
15.8 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: