Applications of gauged linear sigma models

TR Number

Date

2019-05-17

Journal Title

Journal ISSN

Volume Title

Publisher

Virginia Tech

Abstract

This thesis is devoted to a study of applications of gauged linear sigma models. First, by constructing (0,2) analogues of Hori-Vafa mirrors, we have given and checked proposals for (0,2) mirrors to projective spaces, toric del Pezzo and Hirzebruch surfaces with tangent bundle deformations, checking not only correlation functions but also e.g. that mirrors to del Pezzos are related by blowdowns in the fashion one would expect. Also, we applied the recent proposal for mirrors of non-Abelian (2,2) supersymmetric two-dimensional gauge theories to examples of two-dimensional A-twisted gauge theories with exceptional gauge groups G_2 and E_8. We explicitly computed the proposed mirror Landau-Ginzburg orbifold and derived the Coulomb ring relations (the analogue of quantum cohomology ring relations). We also studied pure gauge theories, and provided evidence (at the level of these topologicalfield-theory-type computations) that each pure gauge theory (with simply-connected gauge group) flows in the IR to a free theory of as many twisted chiral multiplets as the rank of the gauge group. Last, we have constructed hybrid Landau-Ginzburg models that RG flow to a new family of non-compact Calabi-Yau threefolds, constructed as fiber products of genus g curves and noncompact Kahler threefolds. We only considered curves given as branched double covers of P^1. Our construction utilizes nonperturbative constructions of the genus g curves, and so provides a new set of exotic UV theories that should RG flow to sigma models on Calabi-Yau manifolds, in which the Calabi-Yau is not realized simply as the critical locus of a superpotential.

Description

Keywords

Heterotic compactification, Mirror symmetry, Gauged linear sigma model, Topological field theory, Superconformal field theory

Citation