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ABSTRACT (academic) 

Power systems have evolved significantly during the last two decades with the advent of 

Distributed Energy Resources (DERs) like solar PV. Traditionally, large power plants were 

considered as the sole source of energy in the power systems. However, DERs connected 

to the transmission and the distribution systems are creating a paradigm shift from a 

centralized generation to a distributed one. Though the variable power output from these 

DERs poses challenges to the reliable operation of the grid, it also presents opportunities 

to design control and coordination approaches to improve system efficiency and 

operational reliability. Moreover, building new transmission lines to meet ever-increasing 

load demand is not always viable. Thus, the industry is leaning towards developing non-

wires alternatives. Considering the existing limitations of the transmission system, line 

congestions, and logistic/economic constraints associated with its capacity expansion, 

leveraging DERs to supply distribution system loads is attractive and thus capturing the 

attention of researchers and the electric power industry. 

The primary objective of this dissertation is to develop a framework that enables DERs to 

supply local area load by co-simulating the power system and transactive system 

representations of the network. To realize this objective, a novel distributed optimization 

and game theory-based network representation is developed that optimally computes the 

power output of the Home Microgrids/DER aggregators. Moreover, the optimum 

operational schedules of the DERs within these Home Microgrids/DER aggregators are 

also computed. The novel electrical-transactive co-simulation ensures that the solution is 

optimum in the context of power systems i.e. power flow constraints are not violated while 

the payoffs are maximized for the Home Microgrids/DER aggregators. The transactive 

mechanism involves two-way iterative signaling. The signaling is modeled as an infinite 



strategy, multiplayer, non-cooperative game, and a novel theory is developed for the game 

model.  

The dissertation also introduces a novel concept of ranking the Home Microgrids/DER 

aggregators according to their historic performance, thus leading to fairness, higher 

participation, and transparency. Significant advantages offered by the framework include 

consumption of local generation, transmission upgrade deferral, mitigation of line 

congestions in peak periods, and reduced transmission systems losses.
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GENERAL AUDIENCE ABSTRACT 

In past, electricity was primarily produced by the large fossil fuel-based and nuclear power 

plants, usually located farther away from the populated areas where the bulk of the 

electricity consumption occurs. The electricity from the power plants is carried by the 

transmission lines to the populated areas where it is distributed to end-users via a 

distribution network. However, during the last two decades, issues like global warming and 

depleting fossil fuels have led to the development and increased adoption of renewable 

energy resources like solar photovoltaics (PV), wind turbines, etc. These resources are 

commonly known as Distributed Energy Resources (DERs), and they are connected to both 

the transmission and the distribution systems. Initially, they were mainly used to supply 

the load within the facility in which they are installed. However, the electric load (demand) 

continues to grow while adding new fossil fuel-based plants and transmission lines are 

becoming logistically/economically challenging. Thus, researchers are working on 

developing techniques that can enable DERs to supply the loads in the distribution system 

to which they are connected. 

This dissertation develops a method to use DERs for load support in the distribution 

systems. Specifically, the buildings that house the DERs can use the energy generated by 

the DERs to supply the local load (building load), and once the total generation exceeds 

the load demand, the building can inject the power into the distribution system to support 

the local area load. The proposed framework considers the electric network constraints like 

limits of lines supplying the power and limits of the transformers. The proposed work also 

develops a new method to maximize the benefit (in terms of profit) for the DER owners. 

A ranking system is introduced for the DER owners that enhances the transparency and 

fairness of the process. 



 

The key benefits offered by the proposed work include reduced losses in the transmission 

system, more energy consumed closer to the point of generation, and avoidance of 

transmission line and large central generation additions.  
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Chapter 1: Introduction 

1.1.Electricity Demand, Renewable Adoption, and Associated Challenges 

Electricity demand is steadily growing, driven by increasing population, economic growth, and 

rising urbanization. The U.S. Energy Information Administration (EIA) projects an annual growth 

rate of 1 % in U.S. electricity demand [1] through 2050 as shown in Figure 1. On a global scale, 

the International Energy Agency (IEA) projects an annual electricity demand growth rate of 2.1 % 

to 2040 [2]. It projects a strong demand increase in developing economies due to industrialization, 

urbanization, and rising incomes, as shown in Figure 2. In advanced economies, increasing demand 

is offset to a certain extent by government incentives to adopt green energy and energy efficiency 

improvements. Thus, per capita electricity consumption is increasing every year since global 

electricity demand continues to increase faster than the world population [3].  

 

Figure 1. U.S. Annual Electricity demand growth rate projected till 2050 [1] 

Traditionally, increasing electricity demand has been addressed by building new generation 

capacity. However, building new power plants to meet peak demand is highly inefficient. This is 
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highly relevant in the scenario when peak demand increases faster than the base demand. In such 

a scenario, a bulk of generation capacity remains idle during non-peak hours of a day. Building 

new generation facilities also requires expansion of the existing transmission capacity. However, 

building new transmission lines is logistically, economically, and environmentally non-viable in 

many cases. Moreover, authorities around the globe discourage building new fossil fuel-based 

plants in an attempt to reduce the carbon footprint and adverse environmental impacts. This has 

led to increased adoption of renewable energy resources in the last two decades. 

 

Figure 2. Global Electricity demand increase till 2040 as projected by the International Energy 

Agency (IEA) [2] 

In 2019, the U.S. EIA projected that renewable generation will account for roughly half of the 

global electricity generation by 2050 [4].  Solar energy is expected to dominate the renewable 

energy space followed by wind energy. Figure 3 shows the U.S. projected renewable electricity 

generation until 2050. Such growth is enabled by clean energy programs and targets set forth by 
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authorities. One such initiative is the U.S. Department of Energy’s Sunshot program that aims to 

significantly reduce the Levelized Cost of Energy (LCOE) of solar energy [5]. Many states around 

the U.S. offer incentives for adopting renewable energy and developing enabling technologies, 

such as advanced inverters. The states of California and Hawaii have been the leaders within the 

U.S. in this regard. Around the globe, countries such as Germany, United Kingdom, China, India, 

Denmark, and Australia are leading a future towards clean energy. 

The increasing penetrations of renewables and their grid integration pose several challenges to the 

grid operation. Due to the inherently variable nature of renewable generation resources like solar 

and wind, ensuring supply-demand balance in the short and long term is not straightforward. 

Significant reserves must be online to handle the intermittent nature of renewable generation [6], 

[7]. Though fast ramping resources like battery energy storage can be deployed to dampen this 

issue, storage penetrations are not sufficient to tackle this problem alone. Using traditional 

operational reserves to offset the variability of renewables is highly inefficient since keeping 

conventional generation online to provide reserves defeats the purpose of adopting renewables i.e. 

reduced carbon footprint. Moreover, it is economically non-viable to use the bulk of conventional 

generation to provide reserves.  
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Figure 3. U.S. projected renewable generation projected by EIA [1] 

Thus, traditional supply-side management techniques are not sufficient and novel 

control/coordination schemes (on demand side) must be designed to coordinate the operation of 

Distributed Energy Resources (DERs).  

1.2.Demand Side Control and Energy Management Approaches 

There are four generic topologies of energy management approaches in distribution systems [8] as 

shown in Figure 4. The nature of communication and the degree of autonomy determines the nature 

of the approach. The simplest form is top-down switching, also referred to as the Direct Load 

Control (DLC), in which the communication is unidirectional from utilities to customers and 

decisions on local issues are made centrally i.e. the utility or load-serving entity controls the 

customer load based on prior financial agreement. This approach does not consider the device state 

and user preference or comfort. It also compromises the privacy and autonomy of the customer by 

directly controlling loads using a unidirectional signal. Traditionally, this approach has been used 

to provide peak shaving and load shifting services [9]–[11]. Newer iterations of this control 
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approach attempt to operate flexible loads rather than simply turning it ON or OFF. One such 

example is the control of thermostatic loads such as Heat Ventilation and Air Conditioning 

(HVAC) [12]–[15]. Recently, this methodology has been extended to control plug-in electric 

vehicles and storage [16], [17] to provide ancillary services, such as frequency regulation. 

 

Figure 4. Taxonomy of energy management approaches in distribution systems (Demand-side 

management) [8] 

The autonomy of a customer is preserved in Price Reaction Control (PRC) since decisions are 

taken locally at the customer premises, although the communication remains unidirectional. Price 

incentives or economic signals are sent from a load-serving entity (or utility) to the customer where 

an intelligent agent reacts to price signals and optimally schedules the operation of the device, such 

as HVAC, electric vehicle, battery storage, water heater, etc. Since decisions are taken locally so 

user preferences and device state are considered while scheduling the operation of the device. 

However, one-way communication and lack of feedback remain a significant drawback of this 

control paradigm since the load-serving entity can never be sure of the availability of resources at 
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the customer premises. Common implementations of this control paradigm include Time-of-use 

pricing (TOU), Real-time pricing (RTP), and on-peak prices [18]–[21]. 

Centralized Optimization approaches incorporate customer feedback since they are built on 

bidirectional communication methods. However, local decisions are taken centrally at the load-

serving entity or utility and communicated to the customer for execution. The two-way 

communication ensures that customer preferences and device states are taken into account while 

computing the optimal solution for the entire system. However, privacy/security concerns arise 

due to data sharing from the customer. Also, as the system size grows, the computation time to 

find the optimal solution for the entire system grows non-linearly and is highly dependent on 

communication speed.  

Finally, the fourth approach on the two-axis graph of Figure 4 is transactive control and 

coordination. This is the most comprehensive control paradigm built on two-way communication. 

Decisions on local issues are made locally giving customer full autonomy and data security. 

Transactive energy systems are defined by GridWise® architectural council as [22]: 

“A system of economic and control mechanisms that allows the dynamic balance of supply and 

demand across the entire electrical infrastructure using value as a key operational parameter.” 

Transactive energy systems are based on distributed control and optimization approaches. 

Contrary to price reactive control where wholesale price (or some altered form of the wholesale 

price) is passed on to the customer, an optimal price is discovered in a transactive energy system. 

A systematic framework is constructed where selling and buying offers are accepted and system 

solution is reached in an iterative manner. Once converged to a solution, optimal prices and 

quantities (also known as cleared quantities) are communicated to the market participants. Being 
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a comprehensive approach, this paradigm requires a significant theoretical foundation, analysis of 

convergence properties, and stability analysis of convergence. Such distributed computation relies 

on intelligent devices or agents negotiating on behalf of participating resources. A number of pilot 

projects in the U.S. have already demonstrated the potential of transactive energy systems. The 

Olympic Peninsula Pilot project was the first project that proved this concept [23], [24]. It was 

followed up by American Electric Power (AEP) gridSMART® field demonstration [25], [26]. Like 

its predecessor, it demonstrated the use of the double-auction negotiations to establish optimal 

prices and quantities for market participants. Other projects include the Pacific Northwest Smart 

Grid Demonstration (PNWSGD) [27], [28], and PowerMatching City [29] which demonstrated the 

potential of transactive energy systems. 

1.3.Problem Statement 

The work presented in this dissertation belongs to the transactive energy topology of DER control 

and coordination. A game theory-based framework is constructed at the distribution level enabling 

DER aggregators or Home Microgrids (HMGs) to supply the load in the distribution system. The 

two-way iterative negotiations lead to an optimal solution of the system. Theoretical foundations 

of the proposed work are based on game theory, distributed control, and optimization. Following 

are some of the functional and design specifications of the proposed work:  

 Creation of electrical and transactive representations of the distribution systems.  

 Co-simulation of electrical and transactive representations. This ensures that the two 

systems can be modeled and simulated separately in domain-specific tools, yet they are 

time-synchronized and exchange boundary conditions. 
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 Finding an optimal solution for every participating entity. The solution should be 

electrically, mathematically, and economically optimal, otherwise there is no incentive for 

entities to participate. 

 The concept of fairness and transparency should be enforced. Participating entities should 

be incentivized to act fairly towards their competitors and the rest of the system. 

 Consideration of privacy issues. There should be ideally no information sharing between 

participating entities. Information sharing between participating entities and the 

Coordinating Authority (CA) should be minimized. 

 There should be no limit to the number of entities that can supply the distribution system.  

 Electrical system and supply-side reliability should be considered. 

 Consumption of the local generation should be encouraged to maximize the benefit of DER 

deployment. 

 Implementation should be generic and interoperable. This would enable multi-

infrastructure simulation like Transmission-Distribution-Transactive (TDT) co-simulation.  

1.4.Dissertation Organization 

The rest of the dissertation is organized as follows. Chapter 2 presents a comprehensive literature 

review, points out the gaps in the existing literature, and lists the contributions of this dissertation. 

Chapter 3 discusses the prerequisites and defines the language used in this dissertation. A high-

level overview of the proposed framework and its components is provided in chapter 4. It paints a 

bigger picture and discusses the interaction of different components with each other. Chapter 5 

takes a deep dive into the framework while restricting itself to a certain class of problems, whereas 

a more generic class is discussed in chapter 6. Detailed case studies are presented in chapter 7 
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where results are discussed in depth along with the implementation details. Chapter 8 concludes 

the dissertation with conclusions and a list of future topics. 
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Chapter 2: Literature Review 

Given the importance of coordinating DER operation and leveraging their response for the benefit 

of the grid, there have been many efforts in the literature to develop energy management 

approaches. Given the scope of work, the literature review in this section is focused on approaches 

that are based on two-way communication and decentralized decision making i.e. transactive class 

of energy management systems as discussed in chapter 1.  

Leveraging DER response at the distribution level is usually regarded as a multi-agent system 

where each participating agent or player is solely interested in their profit. The participating players 

have usually no regard for the system. Hence, many efforts in the literature have modeled this 

process as a competitive, infinite strategy, multiplayer game. In [30] the authors proposed a retail 

transactive energy framework named as energy internet. It consists of residential customers 

(energy cells) with high penetration of distributed energy resources. Together with electricity 

suppliers/utilities (utility cells), energy cells participate in the energy internet modeled using game 

theory. Global and local optimum solutions are calculated using a class of solvers known as 

Nikaido-Isoda and Relaxation Algorithms (NIRA). The solution is based on an iterative algorithm 

and the theoretical results are validated on a 13-node test system. Using a similar modeling 

approach, [31] proposed a distribution system framework consisting of residential prosumers while 

considering group coalition formations. It identifies the new roles for residential prosumers and 

utility suppliers to support such transactive frameworks. Like [30], it utilizes NIRA based methods 

to find an optimal solution of the system iteratively. However, it explores novel scenarios where 

residential prosumers may cooperate to form a coalition rather than just competing all the time. 

Some group coalitions are found to be more beneficial for certain players as compared to others. 
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The work also discussed a fair profit allocation under a group coalition formation. Numerically, it 

validated results on a 13-node test system to draw the conclusions.   

Authors in [32] proposed a game-theoretic based framework to study the interactions between 

residential prosumers while considering some distribution system constraints, such as line 

congestions. The role of customers in determining network reconfigurability is investigated. The 

concept of Distributed Locational Marginal Price (DLMP) is also discussed and the system is 

solved using NIRA. The economic operation of the system is claimed to be improved by the 

incorporation of various system-level and device-level constraints. Similarly, a transactive energy 

distribution system is discussed in [33] where a novel modeling approach is adopted to reflect the 

dynamic behaviors of residential prosumers. Under the proposed framework, utilities provide 

ancillary services in addition to supplying electricity. Residential prosumers manage their local 

generators and loads while participating in the transactive framework. It uses DLMP to investigate 

the impact of prosumers on a temporal and spatial scale on the electric grid. Results are validated 

on a 13-node test system and it is concluded that prosumers can improve their payoffs by satisfying 

the stated economic dispatch. In [34] authors proposed a distribution energy sharing scheme for 

three types of players i.e. consumers, generators, and retailers. The process is modeled as a 

multiplayer, non-cooperative game and solved using NIRA methods. It provides a statistical 

analysis by considering the uncertainties in demand and supply. It also considers the participation 

of multiple retailers. The work demonstrated how the proposed framework can lower the optimum 

prices (availability of cheaper energy), encourage consumption of local generation, and incentivize 

players to support the load in the distribution system. It also enforced various device-level 

constraints on each player to ensure local optimality. 
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A Cournot model-based electricity market is proposed in [35] where the dynamic behavior of 

market participants is analyzed. A dynamic Cournot game model is proposed and stability of 

equilibrium is analyzed. In [36], a distributed optimization-based game-theoretical model is 

proposed and solved. Buyers play a game to procure cheap energy from a pool of available sellers. 

The proposed approach decreases the individual energy bills of the buyers and increases the profits 

of the sellers. For comparison, a centralized optimization-based approach is also presented. It is 

shown that the distributed optimization results in higher net profits for the participating players. 

However, it is assumed that each player knows the pool of available sellers and their capacities 

before the game starts. Each player also knows the offer price of the other players. A game-theory 

based scheme is proposed in [37] where DER aggregators (termed as multi-Microgrids) try to 

minimize their operational cost. The scheme is administrated centrally by a Distribution Network 

Operator (DNO) whose objective is profit maximization. The optimal solution of the system is 

obtained using Karush-Kuhn-Tucker (KKT) methods. It is shown that the KKT methods can 

effectively balance (simultaneously optimize) the objectives of DNO and multi-Microgrids. The 

KKT methods, like the NIRA and Cournot model, assume that a given player is knowledgeable 

about her competitors/peers. This knowledge can be the strategy set of other players, their offer 

prices, or the functional form of the payoff model. Hence, these methods cannot be used to solve 

for the optimal solution of a game theory-based problem in the setting of imperfect or incomplete 

information. 

Several studies in recent years have investigated incomplete information games. A repeated game-

theoretic energy sharing for demand response aggregators is proposed in [38]. The players, i.e. 

demand response aggregators, do not know the cost or payoff functions of the other players. Each 

player tries to maximize profit by selling the energy stored in electrochemical cells to the other 
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players. A dynamic economic dispatch is performed to update the DLMPs. The game is modeled 

as a Stackelberg game and solved using a novel dynamic economic dispatch algorithm. The 

framework considers two types of dynamic pricing schemes, i.e. Real-Time Pricing (RTP) and 

Time-of-Use (TOU) pricing. It is validated in a 24-node test system and claims to lower the 

electricity costs of the participating players. A two-stage iterative Stackelberg game is proposed 

in [39] where sellers (named as distributed energy stations) lead the game by deciding the unit 

prices of electricity. The consumers, i.e. energy users, act as followers in this hierarchal game 

model. The multi-leader, multi-follower Stackelberg game is solved using the best response 

algorithm which guarantees convergence to a Stackelberg equilibrium. Similarly, a two-stage 

Stackelberg game is proposed in [40] which considers three types of players i.e. grid operator, 

service providers (sellers), and customers. The approach is incentive-based where the grid operator 

publishes an incentive to multiple service providers who then engage enrolled customers. This 

leads to iterative negotiations between service providers and customers regarding demand 

reduction. The existence of a unique Stackelberg equilibrium is demonstrated and convergence is 

achieved via a novel distributed algorithm. 

A reverse auction game-theoretic model is proposed in [41]. The methodology is tested on a smart 

grid test system with a synchronous generator, inverter-based DERs, and loads. A multi-agent 

algorithm is used to solve the reverse auction day-ahead energy sharing, i.e. hour-ahead schedule, 

for 24 hours of a day. The platform schedules DER unit-commitment for each hour of the day and 

is tested on a real-world system. A reinforcement learning-based solution for incomplete 

information, competitive games is introduced in [42]. Each participating player uses the learning 

scheme to generate a strategy set and associated probabilities of playing a particular strategy. The 

private information of each player is not shared with other players, thus constituting an incomplete 
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information game. The uniqueness and convergence to game equilibrium are guaranteed for the 

proposed double-auction scheme upon convergence. A novel two-stage stochastic game model 

proposed in [43] aims to reduce the risk of not meeting the demand from DER based Microgrids 

(suppliers). Each DER aggregator employs a conditional value at risk (CVAR) function to reduce 

the risk associated with uncertainty in supply from DER Microgrids. A Cournot pricing 

mechanism is adopted for the game model and a solution is obtained using a Sample Average 

Approximation (SAA) technique. The work also investigates the uniqueness of convergence to a 

game solution. The proposed technique is validated by simulations using real-world data.  

A two-stage, non-cooperative Stackelberg game is proposed in [44] for demand-side management 

in residential area microgrids. It considers community energy storage as a leader in the game since 

it sets the price and attempts revenue maximization. The followers in this game are the customers 

with solar photovoltaic-based DERs who play a competitive repeated game. The objective of the 

game followers is to minimize electricity costs. An iterative algorithm is demonstrated to solve for 

a unique Stackelberg equilibrium of the stated game. Similarly, a two-stage Stackelberg game is 

proposed in [45] for energy management and sharing. The microgrid operator acts as the leader in 

this game and PV-based prosumers act as the followers. The objective of the microgrid operator 

is to maximize its profit while coordinating the energy sharing among prosumers. On the other 

hand, prosumers also act to maximize their payoffs. The game is solved using a non-linear 

programming method and convergence to a unique Stackelberg equilibrium is discussed. 

Moreover, the methodology is validated using data from real-world PV systems. It also 

demonstrates that the equilibrium converged price has a positive impact on the net energy profile 

of the system. Though several studies have investigated incomplete information games, the notion 

of enforcing fairness and transparency remains a gap. In such frameworks, incentives are not 
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enough to make players act in a beneficial way towards each other. Thus, reliability forcing 

methods and indices must be designed to leverage the maximum benefits of such frameworks. 

Some of the efforts in the literature that address behaviors of participating players are based on 

developing a psychological motivational framework, while the rest are concerned with fair profit 

allocation among the players forming a coalition in the setting of cooperative games. A 

motivational phycology framework is presented in [46] to increase user participation. It develops 

motivational models that encourage players to participate in energy trading. However, this energy 

trading is peer-to-peer, i.e. without any central coordinating or enforcing authority.  The work also 

proposes a competitive, game-theoretic model to enable peer to peer energy trading. It studies 

group coalition formations and claims to reduce the cost of electricity for participating players. A 

price discrimination scheme is discussed in [47] where smart grid energy users decide on the price 

to charge a central coordinating authority. The game is modeled as a cake cutting, cooperative 

game, and a socially optimal solution is achieved using a distributed optimization algorithm. The 

objective function is designed to maximize the net benefit of all the participating players (termed 

as energy users). The work also analyzes price sensitivity and formulates a benefit function for 

price discrimination. Moreover, fairness is enforced in form of price discrimination, where each 

player gets their due payoff at the solution convergence. A non-cooperative, Stackelberg game 

model in [48] considers energy sharing among prosumers (named as residential units) and a central 

coordinating authority (names as shared facility controller). Specifically, the study focuses on 

energy storage capacity being committed to serving the load. It proposes a modified auction 

scheme between prosumers and a coordinating authority to solve the Stackelberg game model. The 

study demonstrates incentive capability in the form of the current price that each player gets at 

solution convergence.  
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For cooperative games where players may form a group coalition, a fair profit allocation can be 

determined using the Shapley value method. One such study is [31] where group coalition 

formations are discussed. In [49] the Shapely value method is compared with three other profit 

allocation schemes for cooperative games. They include the Nucleolus method, DP equivalent 

method, and the Nash-Harsanyi method. A mixed-integer linear programming (MILP) method is 

used to solve the proposed cooperative game. The authors also discuss two indices to compare the 

quantitative value of using each of the fair profit allocation schemes since each scheme may result 

in a different profit allocation. The study also analyzes the stability of each scheme and validates 

results using data from real-world buildings. Similarly, [50] discusses the Shapley value method 

from a transactive reliability perspective. A reliability-centered maintenance approach is proposed 

to analyze the system at various loading conditions and a new optimization framework is used to 

solve the system. A risk-averse cooperative game in [51] proposed the participation of Virtual 

Power Plants (VPPs) in day-ahead and real-time markets. The game is solved using a novel 

stochastic programming approach while a fair profit allocation among VPPs is ensured by using 

Nucleolus and Shapley value methods. A conditional value at risk (CVAR) is computed for each 

player to account for uncertainties in electricity price, electricity demand, and DER generation. 

A coalitional game-theory based energy trading between networked microgrids is introduced in 

[52]. A novel auction-based matching method is proposed to compute the utility of each coalition 

between the microgrids. For fair coalition utility allocation, the Shapley value method is used. A 

local power exchange algorithm is used to find the game solution. The authors also introduce a 

novel technique to find the most stable and optimal coalitions in terms of maximizing utility. The 

study demonstrates an average increase of 16% in the utility of each microgrid. In [53], a 

cooperative game model is proposed for a community microgrid to facilitate peer-to-peer energy 
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trading. Fairness among prosumers is ensured by the Shapley value method and it is compared 

with algorithms like bill sharing, supply-demand ratio, and mid-market rate. A constrained, non-

linear programming method is used to solve the game. The research effort attempts to capture the 

conflicting interests of prosumers in peer-to-peer energy trading. Specifically, the work is focused 

on the dispatch of battery energy storage in community microgrids. Hence, for cooperative games, 

the Shapley value method has been used predominantly for fair profit allocation along with other 

techniques like cake cutting methods. For non-cooperative schemes, fairness has been enforced in 

the form of the motivational phycology framework or the optimum price that a player gets. This is 

similar to Independent System Operator (ISO) operation where generators get penalized for 

deviating from their commitments in the form of financial penalties incurred.   

A hierarchical decision-making scheme is introduced in [54] for microgrids in a competitive 

setting. The process is modeled as a two-stage, multi-leader, multi-follower Stackelberg game. 

The game is led by the seller microgrids by deciding the amount of energy for sale. They are 

followed by the buyer microgrids by submitting price bids to the sellers. Buyers procure energy in 

proportion to submitted bids whereas the sellers get the revenue in proportion to sales. However, 

the study disregards conventional suppliers or retailers. The uniqueness and convergence 

properties of a Stackelberg equilibrium are also discussed. An aperiodic, event-driven, energy 

sharing scheme is introduced in [55]. The concept of consumer reward is introduced to incentivize 

sharing. In contrast to time-based periodic schemes, trading is initiated when a buyer requests 

energy from the grid operator and posts a reward for supplying. The sellers, reacting to the posted 

reward, submit their energy bids to the grid operator. Once converged, the posted reward is 

allocated to the sellers in proportion to their bids. This is a two-stage, non-cooperative, Stackelberg 

game where buyers act as leaders and sellers act as followers. The optimal trading algorithm is 
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shown to converge to a unique Stackelberg equilibrium. However, the aperiodic market is 

problematic in the sense that ISO markets operate periodically. Thus, coordinating operations with 

the ISO market requires a periodic microgrid energy market. A peer-to-peer energy trading 

platform demonstrated in [56] establishes a four-layered architecture for energy trading in 

microgrids. The trading is directly between peers or prosumers without the intervention of a central 

entity. The game is modeled as the finite strategy game where the strategy set of each player is 

limited to binary space, i.e. flexible demand OFF or ON. The solution is obtained via optimization 

and results are validated on a low voltage microgrid network. 

Table 1. Review of existing techniques to model energy sharing in distribution systems using 

game-theoretic approaches 

Reference # Solution method Game type 

[30] NIRA Complete information, non-

cooperative 

[31] NIRA Complete information, non-

cooperative while 

investigating group coalition 

formations 

[32] NIRA Complete information, non-

cooperative 

[33] NIRA Complete information, non-

cooperative 
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[34] NIRA Complete information, non-

cooperative 

[35] Cournot model Complete information, 

Cournot game, non-

cooperative 

[36] Distributed Optimization 

algorithm 

Complete information, non-

cooperative 

[37] Karush-Kuhn-Tucker (KKT) 

method 

Complete information, non-

cooperative 

[38] Dynamic Economic Dispatch Incomplete information, 

stackelberg game 

[39] Best response algorithm Incomplete information, non-

cooperative two-stage 

stackelberg game 

[40] Novel Distributed algorithm Incomplete information, non-

cooperative two-stage 

stackelberg game 

[41] Multi-agent algorithm Incomplete information, 

Reverse auction game model 
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[42] Adaptive reinforcement 

learning algorithm 

Incomplete information, non-

cooperative, double auction 

game model 

[43] Sample Average 

Approximation (SAA) 

Incomplete information, two-

stage, stochastic game model 

[44] Novel iterative algorithm Incomplete information, non-

cooperative two-stage 

stackelberg game 

[45] Non-linear programming Incomplete information, non-

cooperative two-stage 

stackelberg game 

[46] Peer-peer, system equilibrium 

not required  

Incomplete information, non-

cooperative game with group 

coalition formations 

[47] Distributed optimization 

algorithm 

Cooperative game, cake 

cutting game model 

[48] Modified auction approach Non-cooperative stackelberg 

game 

[49] Mixed-integer linear 

programming (MILP) 

Cooperative game model, 

Shapley value method, the 
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Nucleolus, DP equivalent 

method, Nash-Harsanyi 

[50] Novel optimization 

framework 

Cooperative game model, 

Shapley value method 

[51] Novel stochastic 

programming approach 

Cooperative game model, 

Shapley value method, 

Nucleolus method 

[52] Novel local power exchange 

algorithm 

Cooperative game model, 

auction-based matching 

method, Shapley value 

method 

[53] Constrained nonlinear 

programming (CNLP) 

Cooperative game model, 

Shapley value method 

[54] Hierarchal decision making 

scheme 

Non-cooperative game, Multi-

leader multi-follower 

Stackelberg game 

[55] Novel optimal trading 

algorithm 

Non-cooperative game, 

Stackelberg game model 

[56] Novel platform named as 

Elecbay 

Non-cooperative game, four-

layered architecture 
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2.1.Gaps in the existing literature 

Based on the literature review, a list of gaps in the current state of the art is compiled as follows:  

 Assuming perfect knowledge – Several existing studies assume that each player is aware 

of the strategies played by the other players. This is undesirable since it violates the privacy 

of a customer. 

 Using model-based approaches for the solution – When it is assumed that a player knows 

the game payoff function and the game model, then the solution can be obtained by using 

model-based approaches like NIRA. This is not realistic since this game information 

(strategy to payoff mapping) is not usually shared with the players. 

 Lack of player reputation indices – The behavior of a player is critical in determining the 

social welfare of energy management approaches. If a player behaves well, i.e. sticks to 

commitments, then the player should get a higher reward in form of a higher payoff from 

the coordinating authority compared to players who deviate from their commitments. 

Existing literature penalizes players by imposing penalties or reducing the clearing price. 

However, a mechanism or index that keeps track of a player’s historical performance is 

lacking. 

 Lack of reliability indices in the game model – Having a reliability index embedded in the 

game model is desirable. However, it is lacking in the current state of the art. Such an 

index, when integrated into the game model, ensures that more energy is procured from 

reliable resources as compared to unreliable resources, and thus providing an overall 

improvement of reliability.  

 Quadratic DER cost functions – In current literature, DER cost functions are approximated 

as linear or quadratic functions. However, the higher-order cost function can capture cost 
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dynamics more accurately (discussed in chapter 6). Thus, this remains a gap in the existing 

work. 

2.2.Contributions of the proposed work 

Following are the novel contributions of the work presented in this dissertation: 

 A novel electrical-transactive co-simulation framework is proposed to supply distribution 

system load from DERs and their aggregators.  

 A novel game model is proposed with an integrated player reputation index. The game 

model is infinite strategy-based, non-cooperative, and rewards players who behave in a 

beneficial way towards the system. 

 The concept of the Player Reputation Index (PRI) is proposed. It provides three key 

functions of tracking the historical performance of each player, rewarding players 

according to their behavior, and reliability. 

 A distributed, gradient-based scheme of extremum seeking is demonstrated to solve for the 

unique solution, i.e. Nash equilibrium of the proposed framework. 

 Games with non-quadratic payoff functions are considered i.e. games inclusive of players 

with non-quadratic DER cost functions. 

 A generic, dynamic mapping of the strategy set to payoff functions is discussed. The game 

model is revised accordingly to accommodate dynamic mapping. 

 For generic, non-quadratic games, the existence of multiple Nash equilibria is considered. 

Convergence properties of stable Nash equilibrium are studied. 

 It is demonstrated that when extremum seeking is used to model Nash seeking behavior of 

the players, the system converges to one of the stable Nash equilibrium points. 
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Chapter 3: Discussion on Pre-requisites 

This chapter reviews the pre-requisites that assist in developing an understanding of the proposed 

work. First, the core concept of game theory is briefly reviewed. Then, transactive energy agents 

are introduced followed by a discussion on communication technologies that enable smart grid 

communication. 

3.1.Game Theory: A brief review 

The core concept of the work presented in this dissertation stems from a branch of applied 

mathematics, namely the modern game theory. It can be defined as: 

“Game theory provides the framework and language to model the strategic interactions between 

two or more agents in a situation containing set rules and outcomes” 

Thus, it has proven to be a strong tool in modeling multi-agent systems. Particularly, it pertains to 

mathematical modeling of conflict and cooperation among rational, intelligent, agents. The first 

formal discussion on game theory was presented in a paper titled ‘On the theory of Games of 

Strategy’ authored by a Hungarian-American mathematician, John von Neumann in 1928 [57]. He 

followed it up with more foundational work in this area and published his book titled ‘Theory of 

Games and Economic Behavior’ with co-author Oskar Morgenstern in 1944 [58]. Some of the 

most significant contributions to modern game theory came from American mathematician John 

Forbes Nash Jr., who formulated the concept of Nash equilibrium. In the 1950s, he proved that 

every finite n-player, non-zero-sum non-cooperative game has a solution that was named after him 

as Nash equilibrium. 

Modern game theory serves as a strong applied tool used in a wide array of scientific and 

technological disciplines. Common application areas include fields such as computer science, 
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engineering, systems science, and economics. Game Theory is regarded as one of the seven sub-

areas of complex systems [59] as shown in Figure 5. Some definitions from the language of game 

theory are discussed below. They are used extensively throughout this dissertation. 

 

 

Figure 5. Classification of complex systems [59]. Game theory is one of the seven sub-areas 

defined in the paradigm of complex systems 
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Game 

Any interaction or set of circumstances whose outcome is dependent on the actions of two or more 

decision-makers. The utility of each decision-maker is affected by its actions as well as the actions 

(decisions taken) by the other decision-makers.  

Players 

The decision-makers participating in the game, such as individuals, business entities, firms, 

negotiating brokers, etc. 

Strategy 

A complete plan of action that a player will execute depending on the set of circumstances that 

may arise in the game. 

Payoff 

Pertains to the value attributed with the outcome of a game corresponding to a strategy played by 

the player. This value is usually in some quantifiable form such as dollars. 

Zero-Sum games 

Games in which a gain for one player translates into a loss for another player and vice versa. The 

net change in utility of the game remains zero. 

Non-Zero-Sum games 

In such games, outcomes can drive the game’s utility up or down. The total gains and losses from 

all players do not add to zero. 

Cooperative games 

The games in which the players cooperate for a higher mutual payoff. The group that they form is 

known as a coalition. 
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Non-Cooperative games 

The games in which the players compete with each other for a higher payoff. Their interests are in 

conflict and they are solely interested in maximizing their payoffs. These are the most common 

types of games. 

Nash Equilibrium 

The optimal outcome of a game. Once the game converges to a Nash equilibrium, no player has 

any incentive to change her strategy since there is no incremental benefit in deviating from Nash 

optimal strategy for any player.  

Shapley Value 

The average marginal contribution of a player’s utility across all possible coalitions. This is used 

mainly in cooperative games. 

Complete Information games 

Games in which each player knows the strategies played by the other players, their payoff 

functions, and their types. This common knowledge is shared among all the players.  

Incomplete Information games 

Games in which a given player may or may not be aware of the strategy set of other players, their 

payoff functions, and their types. 

Imperfect Information games 

Games in which the players are only unaware of the strategies played by the other players. 

However, the rest of the information, such as payoff functions, is a shared knowledge. 

Figure 6 shows the five common types of games.  



 28 

 

Figure 6. Different types of games 

3.2.Transactive Energy Agents 

Transactive energy agents refer to a family of intelligent devices that enable the seamless grid and 

transactive integration of the DERs. Formally, a transactive energy agent can be defined as an 

intelligent controller, or a decision-maker, that sits on top of a DER like PV, battery, EV, etc. 

Considering DER state, user preferences, price forecasts, and other DER specific parameters like 

EV vehicle availability, a transactive agent formulates the bids for a DER. These bids can be sent 

to the CA, however, usually, they are first sent to a DER aggregator like an energy management 

system. Transactive agents are very generic and their implementation can range from simple 

optimization to complex machine learning or fuzzy logic-based implementation. The 

implementation type is usually dictated by the nature of inputs, i.e. deterministic or stochastic and 

computational complexity available. However, the underlying goal for any agent is to maximize 

profit while considering all applicable constraints.  

For example, a generic transactive agent for battery energy storage is shown in Figure 7. The inputs 

for the battery agent include hourly price forecasts, customer preferences, and battery 

specifications. If the agent is not able to generate the price forecasts, they are communicated to the 

agent by the energy management system. User preferences for battery storage may impose 

constraints, such as ceasing battery discharge beyond a certain depth of discharge. Similarly, a 

Types of 
Games

Cooperative and 
Non-Cooperative 

games

Normal Form 
and Extensive 
Form games

Simultaneous 
and Sequential 

games

Zero-Sum and 
Non-Zero-
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Asymmetric 
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user may impose a time-based restriction on the discharge of the battery to have sufficient reserves 

for certain hours of the day. Battery state variables, such as the current state of charge, 

charge/discharge rates, charging/discharging efficiency, and losses are also considered by the 

agent while generating the bids. The output of the agent depends on the resolution of the transactive 

framework for which the bids are generated, i.e. hourly for an hour-ahead scenario. Moreover, bids 

can be quantity only (also called Q-bids) or price-quantity bids (PQ-bids). In PQ-bids, a price is 

placed on the quantity that is negotiated between the agent and the CA whereas Q-bids have no 

price on quantities. This generic implementation can be modeled as a linear or non-linear 

optimization problem depending on the type of constraints and objective function. In addition to 

arbitrage, a battery agent can also optimize a grid friendly objective function such as loss 

minimization and suppression of voltage deviations [60]. 

 

Figure 7. Structure of a generic transactive agent for the battery energy storage 

Like the battery agent, an electric vehicle (EV) agent uses inputs such as price forecasts and battery 

specifications as shown in Figure 8. However, the availability of a vehicle for grid services is 

dependent on the driving patterns and routine of the customer. These behaviors are not 

deterministic, and hence the agent implementation needs to consider the uncertainty associated 

with the availability of the vehicle. Thus, such an agent may be modeled and implemented as a 

stochastic optimization problem. 
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Similarly, other DERs and smart devices at homes may have their transactive energy agents. They 

include PV, water heaters, HVACs, microwaves, ovens, etc. The first comprehensive transactive 

energy simulation platform was implemented by Pacific Northwest National Laboratory in 2016-

2017 as part of their transactive energy program. Formulating these agents and optimally 

implementing them remains an active area of research. 

 

Figure 8. Structure of a generic transactive agent for an electric vehicle 

3.3.Communication Methods and Enabling Technologies 

In addition to intelligent devices, interoperability and communication are essential for enabling 

any transactive energy framework. Hence, it is useful to discuss enabling technologies for the 

implementation of transactive energy frameworks. Noticeably, VOLTTRON is an open-source 

software platform for distributed sensing, control, and communication of smart grid devices [61]. 

Supported by the U.S. Department of Energy, this lightweight package can run on portable, 

inexpensive, small-scale processors. Figure 9 shows the VOLTRON powered Raspberry Pi 

controller developed at Pacific Northwest National Laboratory. This platform enables application 

development for smart grid devices and provides a secure message bus for connectivity among 

different modules. It supports the agent-based implementation of software modules that perform 

the desired functions, such as battery agent bidding for the battery, electric vehicle agent bidding 

for the electric vehicle, and so on. Due to its higher interoperability, it enables the installation of 
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custom drivers and interfaces for other IoT-based devices. Most distinguishing features of 

VOLTRON include cost-effectiveness, scalability, interoperability, and security. 

The 2018 version of the IEEE 1547 standard also listed several communication protocols for 

communication. They include IEEE Std. 2030.5 (SEP2), IEEE Std. 1815 (DNP3), and SunSpec 

Modbus. However, it dropped IEC 61850 which is commonly used as the standard communication 

protocol for intelligent electronic devices at the substations.  

 

Figure 9. A Raspberry Pi based VOLTTRON controller 
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Chapter 4: High-level System Overview 

This chapter presents a high-level overview of the proposed work as shown in Figure 10. The next 

few chapters take a deeper dive into the individual sections of this framework.  

 

Figure 10. A High-level overview of the proposed work 

4.1.System Characteristics 

As Figure 10 shows, each component in the system has an electrical and a transactive 

representation. The two representations are required to be tightly-coupled, i.e. synchronized in 

time and exchanging data with each other. Some of the important features of the electrical 

representation include: 
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 Detailed model of an electrical feeder. For example, Figure 10 shows a modified version 

of the IEEE 13 bus distribution feeder. The loads in this feeder are realized using generic 

prosumers termed as a Home-Microgrids (HMGs). The source is modeled as a standard 

Utility or Retailer (UTR) 

 A generic HMG may contain all or some of the components shown in Figure 10. Due to 

the presence of DERs, a given HMG at any given time may act as a load or a generator. 

 A UTR always acts as a source/generator 

 Due to the radial nature of distribution feeders, the electrical model is solved using a 

forward/backward sweep method. 

Each component in the electrical system has a corresponding transactive system representation. 

The transactive representation is layered-structured with the following characteristics: 

 At the DER or device level, an optimization agent model generates an optimum operational 

schedule for a DER. For example, a battery agent creating a charge/discharge schedule 

based on battery specifications, expected load profile, forecasted prices, and user 

preferences. Similarly, an electric vehicle agent generating an optimum charge/discharge 

schedule for EV battery considering EV battery specifications, vehicle availability forecast, 

price forecast, load forecast, and user preferences.  

 At the DER aggregator level or HMG level, an economic dispatch model aims to supply 

all the local demand within HMG from the cheapest generation resources available. Since 

an energy management utility, such as a Home Energy Management System (HEMS), 

within HMG has knowledge and control of all DERs installed, hence this is modeled as an 

optimization problem.  
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 At the Network level, optimum outputs from all the prosumers and generators are required 

to be determined. At this level, since every entity, i.e. prosumers and generators, are 

interested in maximizing their utility, and there is no shared knowledge, hence network 

optimization cannot be used to solve the transactive system. This multi-agent system is 

modeled as a game theory problem to determine an optimum operating point for all the 

prosumers, i.e. HMGs and the generators, i.e. UTRs. 

The two representations, though modeled separately, cannot be solved independently as a solution 

that is optimum in transactive representation may violate a power flow constraint in electrical 

representation, and vice versa. Thus, the two representations are required to be tightly coupled. 

They exchange time-synchronized data with each other. This includes: 

 Power flow results and violations from electrical representation to the transactive 

representation. The common violations include line congestions, transformer overloads, 

voltage violations, etc. 

 DER operational schedules, HMG outputs, and UTR set points. 

4.2.Implementation Specifications 

The modeling approach shown in Figure 10 can be implemented using a co-simulation 

architecture. This is shown in Figure 11 where a distribution system model is co-simulated with 

the corresponding transactive model using Hierarchical Engine for Large-scale Infrastructure Co-

Simulation (HELICS) [62]. HELICS is an open-source, light-weight package that is used to co-

simulate multi-domain systems modeled in their respective tools. Here, the electrical model, i.e. 

the distribution system is modeled in GridLab-D, whereas the transactive model is realized in 

MATLAB. HELICS coordinates the data exchange between these systems and keeps them in a 

tightly-coupled, time-synchronized state. Though Figure 11 shows a transmission system model, 
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it is beyond the scope of the work presented in this dissertation as it is part of the future work 

discussed later. 

 

Figure 11. A HELICS co-simulation enabling data exchange between different modeling 

paradigms 

As electrical and transactive representations of the system exchange data with each other, the 

solution is declared optimum only when: 

 Power flow converges and there is no power flow constraint violation or system violation 

such as line overload etc. 

 The transactive system converges with optimum outputs for HMGs and UTRs. The 

optimization agents at DER and HMG level must converge before the network 

convergence occurs.  
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The detailed drill-down of individual models and solution methodologies are discussed in the next 

chapters. 
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Chapter 5: Transactive Modeling Based on Quadratic Game theory 

5.1.Introduction 

This chapter discusses a comprehensive transactive model for the distribution systems where the 

payoff functions of DERs are modeled as the quadratic functions. Once the theory is built for this 

simplified case, it can be extended to a more general class of games as discussed in Chapter 6. The 

proposed framework is modeled as a non-cooperative, infinite strategy, multiplayer game. A novel 

game model is proposed with an embedded notion of the reputation of each player. The concept 

of a Player Reputation Index (PRI) is also proposed to track each player’s historical performance 

and reward her accordingly upon convergence. Moreover, Nash seeking behavior of each player 

is modeled using the extremum seeking method. The chapter also discusses the solution to the 

problem and analyzes the convergence characteristics of these quadratic games. 

A list of set indices, constants, and variable definitions used throughout this chapter are listed 

below: 

Indices and Sets 

∆𝑡 = RTOI, minutes 

∆𝑡′ = HEMS refresh interval, seconds 

𝑁,𝑁′′, 𝑁′ = Number of Total/Buyer/Seller HMGs 

𝑀 = Number of UTRs 

𝛼(.),𝑘, 𝛽(.),𝑘, 𝛾(.),𝑘 = Coefficients for production cost function of resource ( . ) in 𝑘𝑡ℎ HMG, 

∀𝑘 𝜖 {1,2, … . , 𝑁} 

𝑎𝑘, 𝜔𝑘, ∅𝑘 = Extremum seeking parameters for 𝑘𝑡ℎ HMG,  𝑎𝑘, 𝜔𝑘, ∅𝑘 > 0   ∀𝑘 𝜖 {1,2, … . , 𝑁}  
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Constants 

𝑃𝑚𝑎𝑥
(.),𝑘

, 𝑃𝑚𝑖𝑛
(.),𝑘

= Maximum/Minimum power output (𝑘𝑊) of resource ( . ) in 𝑘𝑡ℎ HMG, 

𝑘 𝜖 {1,2, … . , 𝑁} 

𝑆𝑂𝐶𝑚𝑎𝑥
𝑘 , 𝑆𝑂𝐶𝑚𝑖𝑛

𝑘 = Maximum/Minimum allowable SOC (%) for ES in 𝑘𝑡ℎ HMG, 

𝑘 𝜖 {1,2, … . , 𝑁} 

𝜀𝐸𝑆
𝑘 = Round trip cycle efficiency of ES in 𝑘𝑡ℎ HMG, 𝑘 𝜖 {1,2, … . , 𝑁} 

𝐸𝑆𝑐𝑎𝑝
𝑘 = Total capacity (𝑘𝑊ℎ) of ES in 𝑘𝑡ℎ HMG, 𝑘 𝜖 {1,2, … . , 𝑁} 

𝑆𝐻𝑀𝐺,𝑘 = Fixed amount ($/ℎ) paid by 𝑘𝑡ℎ HMG to grid owner as the service fee, 𝑘 𝜖 {1,2, … . , 𝑁} 

𝜌𝑘 = Weighting factor for computation of PRI for 𝑘𝑡ℎ HMG, 𝑘 𝜖 {1,2, … . , 𝑁} 

Functions and Variables 

𝐽𝑡
𝐻𝑀𝐺,𝑘, 𝑅𝑡

𝐻𝑀𝐺,𝑘, 𝐶𝑡
𝐻𝑀𝐺,𝑘 = Payoff/Revenue/Cost function ($/ℎ) for 𝑘𝑡ℎ HMG at time 𝑡,      

𝑘 𝜖 {1,2, … . , 𝑁} 

𝐽𝑡
𝑈𝑇𝑅,𝑖 = Payoff function ($/ℎ) for 𝑖𝑡ℎ UTR at time 𝑡,      𝑖 𝜖 {1,2, … . ,𝑀} 

𝜋𝑡
(.),𝑘

= Production cost ($/ℎ) of generation from resource ( . ) in 𝑘𝑡ℎ HMG at time 𝑡, 

𝑘 𝜖 {1,2, … . , 𝑁} 

𝑃𝑡
(.),𝑘

, 𝑃̂𝑡
(.),𝑘

= Actual/Predicted power output (𝑘𝑊) from resource ( . ) in 𝑘𝑡ℎ HMG at time 𝑡,   

𝑘 𝜖 {1,2, … . , 𝑁}  

𝑃𝑡
𝐿,𝑘, 𝑃̂𝑡

𝐿,𝑘 = Actual/Predicted total load (𝑘𝑊) (flexible and non-flexible) of 𝑘𝑡ℎ HMG at time 𝑡,  

𝑘 𝜖 {1,2, … . , 𝑁} 
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𝑆𝑂𝐶𝑡
𝑘 = State of charge (%) of ES in 𝑘𝑡ℎ HMG at time 𝑡, 𝑘 𝜖 {1,2, … . , 𝑁} 

𝜎𝑡
𝑘 = PRI (%) for 𝑘𝑡ℎ HMG at time 𝑡, 𝑘 𝜖 {1,2, … . , 𝑁} 

𝑓𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑘, 𝑓𝑏𝑢𝑦,𝑡

𝐻𝑀𝐺,𝑘 = Optimum Selling/buying price ($/𝑘𝑊ℎ) for 𝑘𝑡ℎ HMG at time 𝑡,  

𝑘 𝜖 {1,2, … . , 𝑁} 

𝑃𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑘, 𝑃𝑏𝑢𝑦,𝑡

𝐻𝑀𝐺,𝑘 = Optimum Selling/buying quantity (𝑘𝑊) for 𝑘𝑡ℎ HMG at time 𝑡,  

𝑘 𝜖 {1,2, … . , 𝑁} 

𝑓𝑠𝑒𝑙𝑙,𝑡
𝑈𝑇𝑅,𝑖 = Optimum Selling price ($/𝑘𝑊ℎ) for 𝑖𝑡ℎ UTR at time 𝑡,      𝑖 𝜖 {1,2, … . ,𝑀} 

𝑃𝑠𝑒𝑙𝑙,𝑡
𝑈𝑇𝑅,𝑖 = Optimum Selling quantity (𝑘𝑊) for 𝑖𝑡ℎ UTR at time 𝑡,      𝑖 𝜖 {1,2, … . ,𝑀} 

𝑆𝑡
𝑖 = Total service fee from all subscribers of 𝑖𝑡ℎ UTR at time 𝑡,      𝑖 𝜖 {1,2, … . ,𝑀} 

 

Specifically, this chapter discusses the following contributions [63] of this dissertation: 

 A novel game model is proposed with an integrated player reputation index. The game 

model is infinite strategy-based, non-cooperative, and rewarding to players who behave in 

a beneficial way towards the system. 

 The concept of the Player Reputation Index (PRI) is proposed. It provides three key 

functions of tracking the historical performance of each player, rewarding players 

according to their behavior, and reliability improvement. 

 A distributed gradient-based scheme of extremum seeking is demonstrated to solve for the 

unique solution, i.e. Nash equilibrium of the proposed framework. 



 40 

 It is demonstrated that when extremum seeking is used to model Nash seeking behavior of 

the players, the system converges to one of the stable Nash equilibrium. 

Section 5.2 of this chapter introduces the high-level concept of the proposed framework and 

discusses the two types of players, whereas sections 5.3 and 5.4 take a deeper dive into the 

transactive representation, theory for Nash seeking, and the game model. 

5.2.Types of Players 

There are two types of players i.e. Home Microgrids (HMGs) and Utilities or Retailers (UTRs). 

They are formally defined below: 

5.2.1. HMGs 

As shown in Figure 12, the definition of HMGs applies to modern (commercial or residential) 

green buildings that may have all or any of the following with respective transactive energy agent: 

 Photovoltaics (PV)  

 Small-scale wind turbines (WT) 

 Diesel generator (DG) or a gas turbine (GT) 

 Energy Storage (ES) 

 Electric Vehicle (EV) – V2G type 

 Flexible and non-flexible load 

Supplying its load is the primary motivation for any HMG owner to deploy these generation 

services (both non-dispatchable (NDU) and Dispatchable (DGU)). However, when their 

generation exceeds load, HMGs will behave as generators for the network, and thus surplus power 

is available to be sold. HMGs act as loads for other intervals, when generation is not sufficient to 
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meet local loads. It is assumed that each HMG has a Home Energy Management System (HEMS) 

installed. The key functions of the HEMS include:  

 Predicting renewable energy generation (i.e. from PV and WT)  

 Predicting the local load to be supplied (at least for the duration of the next RTOI)  

 Estimate the optimum schedule of local generation, i.e. the optimal resource commitment 

within an HMG 

 Communication with the CA for the selling or purchase of power from other HMGs or 

UTRs 

 

Figure 12. A general HMG with installed DERs 

The pay-off function or net-profit for the kth HMG can be computed as 

                                                   𝐽𝑡
𝐻𝑀𝐺,𝑘 = 𝑅𝑡

𝐻𝑀𝐺,𝑘 − 𝐶𝑡
𝐻𝑀𝐺,𝑘

                                                        (1) 

The revenue 𝑅𝑡
𝐻𝑀𝐺,𝑘

 can be formulated as 
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                                 𝑅𝑡
𝐻𝑀𝐺,𝑘 = {

𝑓𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑘 ∗ 𝑃𝑡

𝑛𝑒𝑡,𝑘,        𝑖𝑓  𝑃𝑡
𝑛𝑒𝑡,𝑘 > 0

𝑓𝑏𝑢𝑦,𝑡
𝐻𝑀𝐺,𝑘 ∗ 𝑃𝑡

𝑛𝑒𝑡,𝑘,        𝑖𝑓  𝑃𝑡
𝑛𝑒𝑡,𝑘 < 0

                                                    (2) 

where  

                              𝑃𝑡
𝑛𝑒𝑡,𝑘 = 𝑃𝑡

𝑊𝑇,𝑘 + 𝑃𝑡
𝑃𝑉,𝑘 + 𝑃𝑡

𝐷𝐺/𝐺𝑇,𝑘
± 𝑃𝑡

𝐸𝑆±,𝑘 − 𝑃𝑡
𝐿,𝑘

                                       (3) 

The cost function 𝐶𝑡
𝐻𝑀𝐺,𝑘

 can be written as 

                             𝐶𝑡
𝐻𝑀𝐺,𝑘 = 𝜋𝑡

𝑊𝑇,𝑘 + 𝜋𝑡
𝑃𝑉,𝑘 + 𝜋𝑡

𝐷𝐺/𝐺𝑇,𝑘
+ 𝜋𝑡

𝐸𝑆+,𝑘 + 𝑆𝐻𝑀𝐺,𝑘                                     (4) 

,where the service fee 𝑆𝐻𝑀𝐺,𝑘 is an additional amount paid by the HMG owner for power bought 

from the UTR. It is assumed that this fee is constant for all the HMGs.   

Traditionally, production costs have been modeled as a quadratic function for synchronous 

generators, such as DG and GT [64], [65]. The constant term in the quadratic function accounts 

for the fixed costs, first-order terms account for operations and maintenance costs, and second-

order terms may account for fuel costs (in combination with first-order terms). Similar quadratic 

functions have recently been used in the literature for energy storage dependent DERs [64], [66]. 

The fuel cost is almost zero for non-conventional generators, such as PV and WT, since air and 

solar irradiance is effectively free, so a quadratic function with a very small second-order term can 

be used [67], [68]. While some literature has modeled the cost of PV output using higher-order 

functions, terms greater than second-order terms are ignored in this work. All production costs 

here are modeled as quadratic functions with only a negligible loss of precision, taking into account 

the latest literature.  

Thus, the production costs in (4) can be formulated as 

                    𝜋𝑡
𝐷𝐺/𝐺𝑇,𝑘

= 𝛼𝐷𝐺/𝐺𝑇,𝑘 ∗ (𝑃𝑡
𝐷𝐺/𝐺𝑇,𝑘

)
2
+ 𝛽𝐷𝐺/𝐺𝑇,𝑘 ∗ 𝑃𝑡

𝐷𝐺/𝐺𝑇,𝑘
+ 𝛾𝐷𝐺/𝐺𝑇,𝑘                        (5) 
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                               𝜋𝑡
𝑃𝑉,𝑘 = 𝛼𝑃𝑉,𝑘 ∗ (𝑃𝑡

𝑃𝑉,𝑘)
2
+ 𝛽𝑃𝑉,𝑘 ∗ 𝑃𝑡

𝑃𝑉,𝑘 + 𝛾𝑃𝑉,𝑘                                       (6) 

                              𝜋𝑡
𝑊𝑇,𝑘 = 𝛼𝑊𝑇,𝑘 ∗ (𝑃𝑡

𝑊𝑇,𝑘)
2
+ 𝛽𝑊𝑇,𝑘 ∗ 𝑃𝑡

𝑊𝑇,𝑘 + 𝛾𝑊𝑇,𝑘                                   (7) 

                                𝜋𝑡
𝐸𝑆,𝑘 = 𝛼𝐸𝑆,𝑘 ∗ (𝑃𝑡

𝐸𝑆,𝑘)
2
+ 𝛽𝐸𝑆,𝑘 ∗ 𝑃𝑡

𝐸𝑆,𝑘 + 𝛾𝐸𝑆,𝑘                                        (8) 

The coefficients 𝛼𝐷𝐺/𝐺𝑇,𝑘 and 𝛽𝐷𝐺/𝐺𝑇,𝑘 in (5) represent the running costs, such as fuel and 

maintenance, associated with diesel generators and/or gas turbines, whereas 𝛾𝐷𝐺/𝐺𝑇,𝑘 represents 

the installation or fixed capital cost. Similarly, in (6), (7), and (8) the first and second-order 

coefficients represent running costs, like maintenance/cleaning of PV panels, inverters, and WT 

or ES, while constant terms account for fixed capital costs (i-e. onetime upfront costs).   

5.2.2. UTRs 

Under the proposed framework, the role of conventional utilities or retailers, i.e. UTRs, changes. 

Since HMGs can partially support the load of their peers, hence primary functions of UTRs may 

include: 

 Providing maintenance support to the grid and operating the grid. They may also form a 

coalition with DSOs and have some stake in supporting the CA. 

 Supplying power to HMGs when the combined output of HMGs is not sufficient to supply 

the load in an area. 

Under this modified operational specification, UTRs may generate their revenue from selling 

power to HMGs when needed, charging HMGs a service fee for using their grid infrastructure, and 

from their stake in the CA. Thus, going forward the role of conventional utilities will evolve and 

their revenue streams may look very different from the current state of operation. 

The payoff for the 𝑖𝑡ℎ UTR may be formulated as 
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                                                           𝐽𝑡
𝑈𝑇𝑅,𝑖 = 𝑓𝑠𝑒𝑙𝑙,𝑡

𝑈𝑇𝑅,𝑖 ∗ 𝑃𝑠𝑒𝑙𝑙,𝑡
𝑈𝑇𝑅,𝑖 + 𝑆𝑡

𝑖                                                                         (9) 

Figure 13 shows the interaction of players, i.e. HMGs and UTRs, with the CA. In addition to the 

conventional power lines, communication infrastructure is required to implement the proposed 

framework. The CA, HMGs, and UTRs connect to this shared communication bus supporting an 

iterative and bi-directional communication. Bid price/quantities are sent by the players to the CA, 

whereas optimum price/quantities are sent by the CA to the players. During iterative negotiations, 

instantaneous price/quantities are communicated to the players who adjust their subsequent bids. 

The operating interval closes once convergence to a solution occurs. This will be described later 

in section 5.4. 

 

Figure 13. Interactions among HMGs, UTRs and CA (same as MO discussed in [63]) 

It should also be noted that (1)-(9) are subject to following constraints for each time step t: 
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                                       𝑃𝑚𝑖𝑛
𝐷𝐺/𝐺𝑇,𝑘

< 𝑃𝑡
𝐷𝐺/𝐺𝑇,𝑘

< 𝑃𝑚𝑎𝑥
𝐷𝐺/𝐺𝑇,𝑘

,    ∀𝑘                                                               (10) 

                                                   0 < 𝑃𝑡
𝑊𝑇,𝑘 < 𝑃𝑚𝑎𝑥

𝑊𝑇,𝑘 ,    ∀𝑘                                                                           (11) 

                                                   0 < 𝑃𝑡
𝑃𝑉,𝑘 < 𝑃𝑚𝑎𝑥

𝑃𝑉,𝑘,    ∀𝑘                                                                              (12) 

                                                  0 < 𝑃𝑡
𝐸𝑆±,𝑘 < 𝑃𝑚𝑎𝑥

𝐸𝑆±,𝑘 ,    ∀𝑘                                                                          (13) 

                                             𝑆𝑂𝐶𝑚𝑖𝑛
𝑘 < 𝑆𝑂𝐶𝑡

𝑘 < 𝑆𝑂𝐶𝑚𝑎𝑥
𝑘 ,    ∀𝑘                                                                 (14) 

                                          𝑆𝑂𝐶𝑡+1
𝑘 − 𝑆𝑂𝐶𝑡

𝑘 =
(𝑃∆𝑡

𝐸𝑆−,𝑘 − 𝑃∆𝑡
𝐸𝑆+,𝑘) ∗ ∆𝑡

𝜀𝐸𝑆
𝑘 ∗ 𝐸𝑆𝑐𝑎𝑝

𝑘 ∗ 60
,    ∀𝑘                                    (15) 

    ∑(𝑃𝑡
𝑊𝑇,𝑘 + 𝑃𝑡

𝑃𝑉,𝑘 + 𝑃𝑡
𝐷𝐺/𝐺𝑇,𝑘

+ 𝑃𝑡
𝐸𝑆+,𝑘)

𝑁

𝑘=1

+ ∑𝑃𝑡
𝑈𝑇𝑅,𝑖

𝑀

𝑖=1

= ∑(𝑃𝑡
𝐿,𝑘 + 𝑃𝑡

𝐸𝑆−,𝑘

𝑁

𝑘=1

),    ∀𝑘             (16) 

                                                                        𝑃𝐹(. ) ≤ 0                                                                               (17) 

, where constraints (10)-(13) enforce minimum and maximum output limits on DG/GT, WT, PV, 

and ES respectively. Constraint (14) provides a bound on the state of charge (SOC) for the ES. 

The coulomb counting-based SOC keeping of ES is implemented by (15). The SOC of the ES is 

updated considering current SOC, round trip cycle efficiency, charge/discharge power, and time 

resolution. The supply-demand balance at each time step is enforced by (16), whereas (17) 

implicitly defines the power flow constraints coming from electrical representation. 

5.3.Steps to the Solution 

Figure 14 shows the flow chart of the proposed transactive representation. Following are the steps 

to reaching a single optimum solution: 
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1. Using the predicted power output from the renewables (i.e. PV and WT), each HEMS first 

computes the local estimated load (within each HMG) and the maximum generation. These 

forecasts are updated after every HEMS refresh period (i-e. ∆𝑡′). Using these forecasts, an 

optimal resource allocation problem that ensures maximum consumption of local generation, 

while minimizing production costs, is solved. Since the HMG owner owns all the generation 

resources, this is set up as a normal optimization problem. At a time step 𝑡0, the objective 

function in (18) is minimized by the HEMS installed in HMG 𝑘0 𝜖 {1,2, … . , 𝑁} to allocate 

resources for the next HEMS time interval i.e. ∆𝑡′ = 𝑡1 − 𝑡0 

 

                            min  (𝜋
∆𝑡′
𝑊𝑇,𝑘0 + 𝜋

∆𝑡′
𝑃𝑉,𝑘0 + 𝜋

∆𝑡′
𝐷𝐺/𝐺𝑇,𝑘0 + 𝜋

∆𝑡′
𝐸𝑆+,𝑘0)                                             (18) 

 

Subject to: 

 

                    𝑃
∆𝑡′
𝑊𝑇,𝑘0 + 𝑃

∆𝑡′
𝑃𝑉,𝑘0 + 𝑃

∆𝑡′
𝐷𝐺/𝐺𝑇,𝑘0 + 𝑃

∆𝑡′
𝐸𝑆+,𝑘0 = 𝑃

∆𝑡′
𝐸𝑆−,𝑘0 + 𝑃

∆𝑡′
𝐿,𝑘0                         (19) 

                                                                              

                                                        (10) - (15) 

The decision variables in this optimization problem are the power outputs of DG/GT and 

ES. The power outputs of non-dispatchable sources, i.e. PV and WT, are assumed to be 

equal to their forecasted values for maximum efficiency and return of investment. 
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Figure 14. Steps in reaching the solution of the proposed framework  

2. HEMS decides, using forecasts and local commitment decisions, whether it wants to engage 

as a seller or a buyer in the RTOI. If the HEMS is left with surplus production after meeting 

the local load, it signals the CA that it will participate as a seller for the next operating cycle 

(only indicating the maximum expected surplus generation at an arbitrary offer price). The 

HEMS indicates its position as a buyer in the event of a power shortage by sending a quantity 

only demand bid to the CA. 

3. Once the CA receives the bids from the players, an iterative negotiating process starts which 

is modeled as a non-cooperative, multiplayer game. The strategy set of this game consists of 

the prices ($/𝑘𝑊ℎ) of the power (𝑘𝑊) that the players are willing to sell in the next operating 

period. Whereas their payoff is the net profit ($). The game model and Nash seeking process 

is explained in the next section. Notably, the strategies played by the players are private, i.e. 

they are only known by the CA, thus not compromising the privacy of the players. Once the 
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negotiations converge to a solution, optimum prices and quantities are established, supply and 

demand are balanced, and the operation ceases till the next period. 

4. All the optimum parameters are regarded as binding once convergence occurs. Therefore, 

before re-opening the process at the end of the operating cycle, the CA compares the actual 

power outputs with the ones committed and updates the PRIs of all players (explained in 

section 5.5) accordingly. In addition to this, financial settlements are made, reflecting the 

financial gain that each player gains from supplying the load. 

5.4.Theory – Game model and Nash seeking process 

Expanding the payoff function of a general HMG as given by (1) yields: 

                                                𝐽𝑡
𝐻𝑀𝐺,𝑘 = 𝑅𝑡

𝐻𝑀𝐺,𝑘 − 𝐶𝑡
𝐻𝑀𝐺,𝑘

 

                                  = 𝑓𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑘 ∗ (𝑃𝑡

𝑊𝑇,𝑘 + 𝑃𝑡
𝑃𝑉,𝑘 + 𝑃𝑡

𝐷𝐺/𝐺𝑇,𝑘
± 𝑃𝑡

𝐸𝑆±,𝑘 − 𝑃𝑡
𝐿,𝑘) −

                                                                                       (𝜋𝑡
𝑊𝑇,𝑘 + 𝜋𝑡

𝑃𝑉,𝑘 + 𝜋𝑡
𝐷𝐺/𝐺𝑇,𝑘

+ 𝜋𝑡
𝐸𝑆+,𝑘 + 𝑆𝐻𝑀𝐺,𝑘) 

Approximating the production cost from all generators by an equivalent quadratic function 𝜋𝑡
𝑛𝑒𝑡,𝑘

 

accounting for the net generation 𝑃𝑡
𝑛𝑒𝑡,𝑘

 such that 

                                     𝜋𝑡
𝑛𝑒𝑡,𝑘 = 𝛼𝑛𝑒𝑡,𝑘 ∗ (𝑃𝑡

𝑛𝑒𝑡,𝑘)
2
+ 𝛽𝑛𝑒𝑡,𝑘 ∗ 𝑃𝑡

𝑛𝑒𝑡,𝑘 + 𝛾𝑛𝑒𝑡,𝑘                                 (20) 

Using (20), 𝐽𝑡
𝐻𝑀𝐺,𝑘

 becomes 

                                  𝐽𝑡
𝐻𝑀𝐺,𝑘 = 𝑓𝑠𝑒𝑙𝑙,𝑡

𝐻𝑀𝐺,𝑘 ∗ (𝑃𝑡
𝑛𝑒𝑡,𝑘) − (𝜋𝑡

𝑛𝑒𝑡,𝑘 + 𝑆𝐻𝑀𝐺,𝑘) 

                            = 𝑓𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑘 ∗ (𝑃𝑡

𝑛𝑒𝑡,𝑘) − (𝛼𝑛𝑒𝑡,𝑘 ∗ (𝑃𝑡
𝑛𝑒𝑡,𝑘)

2
+ 𝛽𝑛𝑒𝑡,𝑘 ∗ 𝑃𝑡

𝑛𝑒𝑡,𝑘 + 𝛾𝑛𝑒𝑡,𝑘 + 𝑆𝑘) 

                               = −𝛼𝑛𝑒𝑡,𝑘 ∗ (𝑃𝑡
𝑛𝑒𝑡,𝑘)

2
− (𝛽𝑛𝑒𝑡,𝑘 − 𝑓𝑠𝑒𝑙𝑙,𝑡

𝐻𝑀𝐺,𝑘) ∗ 𝑃𝑡
𝑛𝑒𝑡,𝑘 − (𝛾𝑛𝑒𝑡,𝑘 + 𝑆𝑘)             (21) 
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Where the assumption in (20) is valid since bids from all DERs belonging to an HMG are 

aggregated by the HEMS. Equation (21) represents a quadratic mapping between payoff and the 

net generation for a player. It will be shown later that net generation 𝑃𝑡
𝑛𝑒𝑡,𝑘

 is linearly related with 

the strategy of the player, i.e. 𝑓𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑘

. Thus, there exists a quadratic relationship between strategy 

set and payoff function. Such games with quadratic payoffs have a unique Nash equilibrium [69]. 

Thus, the players play a strategy, get a resulting payoff from the CA, and then play a new strategy 

till they converge to an optimum solution. 

Figure 15 shows the modeling of the Nash seeking framework. For a certain operating interval 

denoted as Y under consideration, suppose there are N’ seller HMGs and N’’ buyer HMGs. Where 

𝑁′ ∪ 𝑁′′ = 𝑁 i.e. total number of HMGs. Additionally, there are also M UTRs. 
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Figure 15. Modeling of the Nash equilibrium seeking behavior of the players - Interaction of the 

players with the game model 

The three steps in a single convergence, i.e. initialization, execution, and termination, are explained 

below: 
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5.4.1. Initialization 

As mentioned earlier, during the initialization phase, all buyer HMGs send a demand or quantity 

bid to the CA. The sum of all these demands establishes the total demand for the upcoming RTOI: 

                                                                   𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = ∑ 𝑃𝑛𝑒𝑡,𝑘

𝑁′′

𝑘=1

                                                            (22) 

Also, the seller HMGs indicate their available power outputs to the CA. They indicate the quantity 

they are willing to sell at an initial offer price. This price serves as the initial condition for the 

iterative negotiation phase. All the UTRs also indicate their initial offer prices. 

5.4.2. Execution 

After the initialization phase, an iterative negotiation phase starts where players play a strategy, 

i.e. a price placed on the quantity, they are willing to inject into the network. Once CA receives 

these prices, it translates them into payoffs for each player using the game model. Once players 

receive a new payoff, they adjust their strategies and send them to CA again. This process repeats 

till convergence to Nash equilibrium occurs. It is assumed that players are trying to maximize their 

utility, i.e. payoff, and thus seeking a Nash equilibrium. As shown in Figure 15, each player applies 

a sinusoidal perturbation to its strategy and measures the resulting payoff. The following equations 

explain the gradient-based Nash seeking behavior of the players 

                                                         𝑓𝑥(𝑡) = 𝐹𝑥(𝑡) +
𝐺𝑥

𝑠
[𝐹𝑥(𝑡)𝐽𝑥(𝑡)]                                                     (23) 

, where 

                                                      𝐹𝑥(𝑡) = 𝑎𝑥sin (𝜔𝑥𝑡 + ∅𝑥)                                                          (24) 

and 𝑥 𝜖 {1,2, … , 𝑁′}. Moreover from (21), we have 
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              𝐽𝑥(𝑡) = −𝛼𝑛𝑒𝑡,𝑥 ∗ (𝑃𝑥(𝑡))
2
− (𝛽𝑛𝑒𝑡,𝑥 − 𝑓𝑥(𝑡)) ∗ 𝑃𝑥(𝑡) − (𝛾𝑛𝑒𝑡,𝑥 + 𝑆𝐻𝑀𝐺,𝑥)                (25) 

At the CA level strategies (prices) are translated into an instantaneous payoff for each player using 

a game model as proposed in Figure 16. It can be seen that the quantity sold, i.e. 𝑃𝑥(𝑡), is a function 

of the strategy played (i.e. the selling price 𝑓𝑥(𝑡)), the Player Reputation Index (PRI) of each player 

𝜇𝑡
𝑥, and the total demand 𝑃𝑑𝑒𝑚𝑎𝑛𝑑.  

 

 

Figure 16. Game model at the CA level 

The game model of Figure 16 is expressed in closed form as: 

                                         𝑃𝑥(𝑡) =
𝜇𝑌−1,||

𝑥

𝜇𝑌−1
𝑥 [𝑃𝑑𝑒𝑚𝑎𝑛𝑑 −

𝑓𝑥(𝑡)

𝜇̅𝑌−1
𝑥 + ∑

𝑓𝑦(𝑡)

𝜇𝑌−1
𝑦

𝑁′

𝑦≠𝑥

]                                          (26) 

, where  
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1

𝜇𝑌−1,||
𝑥 = ∑

1

𝜇𝑌−1
𝑥

𝑁′

𝑥=1

                                                                       (27) 

                                                               
1

𝜇̅𝑌−1
𝑥 = ∑

1

𝜇𝑌−1
𝑦

𝑁′

𝑦≠𝑥

                                                                         (28) 

                                                                𝜇𝑡
𝑁′

= 1 −
𝜎𝑡

𝑥

100
                                                                           (29) 

,where (26) represents the quantity sold as a function of the selling price and is derived by applying 

the superposition principle to the model of Figure 16. Equation (27) represents the equivalent PRIs 

of all the players, whereas (28) represents the PRIs of all the players except the player x. Equation 

(29) is the complement of the PRIs, and represents the resistive element in the game model. Since 

payoff is directly related to optimum quantity (25), hence in conjunction with (26), it shows that 

the payoff is a quadratic function of the strategy set, i.e. the selling prices. Hence, this again 

confirms that the game under consideration is a quadratic game. From (26), here is how the 

relationship between the PRIs, optimum quantities, and payoffs play out in different scenarios: 

 If the PRI 𝜎𝑡
𝑥 of a player 𝑥 decreases, and the PRIs of the other players remain unchanged, 

the complement of PRI, i.e. 𝜇𝑡
𝑥 increases, resulting in a decreased optimum quantity  𝑃𝑥(𝑡) 

and payoff 𝐽𝑥(𝑡) for the player 𝑥 

 If the PRI 𝜎𝑡
𝑥 of a player 𝑥 increases, and the PRIs of the other players remain unchanged, 

the complement of PRI, i.e. 𝜇𝑡
𝑥 decreases, resulting in a higher optimum quantity  𝑃𝑥(𝑡) 

and payoff 𝐽𝑥(𝑡) for the player 𝑥 
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 If the PRI 𝜎𝑡
𝑥 of a player 𝑥 remains unchanged, and the equivalent PRI of the other players 

improve, the equivalent complement 𝜇̅𝑡
𝑥 decreases. Thus, resulting in a decreased optimum 

quantity  𝑃𝑥(𝑡) and payoff 𝐽𝑥(𝑡) for the player 𝑥 

 If the PRI 𝜎𝑡
𝑥 of a player 𝑥 remains unchanged, and the equivalent PRI of the other players 

decrease, the equivalent complement 𝜇̅𝑡
𝑥 improves. Thus, resulting in a higher optimum 

quantity  𝑃𝑥(𝑡) and payoff 𝐽𝑥(𝑡) for the player 𝑥 

 If the bid price, i.e. 𝑓𝑥(𝑡), for a player 𝑥 decreases,  the optimum quantity 𝑃𝑥(𝑡) and payoff 

𝐽𝑥(𝑡) increase for player 𝑥 

 If the bid price, i.e. 𝑓𝑥(𝑡), for a player 𝑥 increases,  the optimum quantity 𝑃𝑥(𝑡) and payoff 

𝐽𝑥(𝑡) decrease for player 𝑥 

 If the bid price, i.e. 𝑓𝑥(𝑡), remains unchanged for the player 𝑥, and the other players 

decrease their bid price 𝑓𝑦(𝑡), the optimum quantity 𝑃𝑥(𝑡) and payoff 𝐽𝑥(𝑡) decrease for 

player 𝑥 

 If the bid price, i.e. 𝑓𝑥(𝑡), remains unchanged for the player 𝑥, and the other players 

increase their bid price 𝑓𝑦(𝑡), the optimum quantity 𝑃𝑥(𝑡) and payoff 𝐽𝑥(𝑡) increase for 

player 𝑥 

Let us briefly examine the gradient-based Nash seeking behavior of the players before discussing 

the termination stage. Figure 17 shows the quadratic relationship between the payoff and the 

strategy, i.e. the selling price for each player, as established by (25) and (26). A player can start 

either on the left or right side of the optimal strategy, which lies in the middle. At the optimal 

strategy the utility is maximized. Here, the utility is the payoff, hence when an optimal strategy is 

played, payoff is maximized. 
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Figure 17. Gradient-based Nash seeking behavior of the players 

Suppose the initial offer price of a player is less than the optimal price. This means that the player 

starts on the left side of the optimal price. Now, to estimate the gradient of the payoff, the player 

probes by applying the sinusoidal perturbations to its strategy and observes the payoff. These 

perturbations are translated into corresponding perturbations in the payoff returned to the player. 

By multiplying instantaneous payoff with originally applied perturbations, a correction factor is 

obtained. In this case, a positive correction is generated, indicating that the optimum lies to the 

right of the current strategy. Thus, the player adds this correction to its current strategy and repeats 

the process till it converges to a narrow band around the optimal strategy. Similarly, for a player 

starting on the right side of the optimum strategy, a negative correction is generated. Once the 
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players seek Nash equilibrium using this gradient search-based approach (23)-(24) and the CA 

implements equations (25)-(28), the system converges to a Nash equilibrium [69].  

5.4.3. Termination 

Once convergence is reached, optimum power outputs and prices are established as 

                                            𝑓𝑠𝑒𝑙𝑙,𝑌
𝐻𝑀𝐺,𝑥 = 𝑓𝑥(𝑡)

∗           ∀ 𝑥 𝜖 {1,2, …𝑁′}                                                    (30) 

                                              𝑃𝑠𝑒𝑙𝑙,𝑌
𝐻𝑀𝐺,𝑥 = 𝑃𝑥(𝑡)

∗         ∀ 𝑥 𝜖 {1,2, …𝑁′}                                                    (31) 

                                              𝑃𝑏𝑢𝑦,𝑌
𝐻𝑀𝐺,𝑦

= 𝑃𝑡
𝑛𝑒𝑡,𝑦

         ∀ 𝑦 𝜖 {1,2, …𝑁′′}                                                   (32) 

                  𝑓𝑏𝑢𝑦,𝑌
𝐻𝑀𝐺,𝑦

= (∑ 𝑓𝑠𝑒𝑙𝑙,𝑌
𝐻𝑀𝐺,𝑥

𝑁′

𝑥=1

) ∗ (
𝑃𝑏𝑢𝑦,𝑌

𝐻𝑀𝐺,𝑦

𝑃𝑑𝑒𝑚𝑎𝑛𝑑
) + 𝑓𝑙𝑜𝑠𝑠,𝑌

𝐻𝑀𝐺,𝑦
           ∀ 𝑦 𝜖 {1,2, …𝑁′′}                  (33) 

where, 

 Y = current operating period 

( . )∗ = value at convergence 

𝑓𝑙𝑜𝑠𝑠,𝑌
𝐻𝑀𝐺,𝑦

 = distribution system losses 

5.5.Player Reputation Index (PRI) 

The concept of PRI is introduced to ensure that the players behave in a just and transparent way 

towards the system and the other players. It is same as the Market Reputation Index (MRI) stated 

in [63]. This is a per-unit number which can be expressed in percentage as well. By retrospectively 

looking at the commitments made, and any deviations from commitments, CA updates this index 

at the end of an operating period at time t. Formally, it is defined as: 
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                                  𝜎𝑡
𝑥  = {

𝜎𝑡−1
𝑥 − 𝜌𝑘 ∗

|𝑃̂𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑥 − 𝑃𝑠𝑒𝑙𝑙,𝑡

𝐻𝑀𝐺,𝑥|

𝑃𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑥  ,        𝑖𝑓  𝑃̂𝑠𝑒𝑙𝑙,𝑡

𝐻𝑀𝐺,𝑥 ≠ 𝑃𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑥

 𝜎𝑡−1
𝑥 ∗ (1 + 𝜌𝑘)                ,                        𝐸𝑙𝑠𝑒

           (34) 

,where 𝜌𝑘 represents a constant penalizing weighting factor. 

A player with a higher PRI, i.e. closer to 100 %, is ranked as a good player. As shown in the 

previous section, PRIs are embedded in the game model. Hence, a good rating of a player helps 

the player in getting a higher payoff from the CA as compared to a player with a bad rating. To 

improve PRIs, the players must stick to their commitments and install better equipment to enable 

improved forecasting of renewables and loads. Thus, this rating system also promotes 

technological advancements in addition to fairness.  

Solutions of quadratic games can be obtained using the theoretical foundations established in this 

chapter. They are validated in Chapter 7 where case studies are discussed. The next chapter extends 

the concept introduced in this chapter to a class of generic games, i.e. non-quadratic games. 
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Chapter 6: Transactive Modeling Based on Non-quadratic Game 

Theory 

6.1.Introduction 

The previous chapter introduced a game theoretic-based method to optimally compute power 

injections (quantities sold) and compensations (payoffs) for HMGs. It focused on quadratic cost 

functions for the DERs, thus resulting in a quadratic game. This chapter extends the concept to a 

more generic class of non-quadratic games. This extension is important since the cost functions of 

DERs in HMGs can be non-quadratic. As the literature reports [70], [71], cost functions can be 

non-quadratic along with a non-linear demand. Hence, it is necessary to extend the previously 

discussed concepts to a general class of non-quadratic games. 

The contributions of the dissertation discussed in this chapter include [72]:  

 Games with non-quadratic payoff functions are discussed, i.e. games inclusive of players 

with non-quadratic DER cost functions. 

 A generic dynamic mapping of the strategy set to payoff functions is discussed. The game 

model is revised accordingly to accommodate dynamic mapping. 

 For generic non-quadratic games, the existence of multiple Nash equilibria is discussed. 

Convergence properties of stable Nash equilibrium are studied. 

 It is demonstrated that when extremum seeking is used to model Nash seeking behavior of 

the players, the system converges to one of the stable Nash equilibrium. 

Contrary to quadratic games where Nash equilibrium is unique, multiple equilibria can exist for 

non-quadratic games as discussed later in this chapter. Some of these multiple equilibria can be 

unstable [69]. In game theory, an equilibrium is classified as a stable equilibrium [73] if a small 
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change in strategy for one player at equilibrium leads to a condition where the following are 

satisfied: 

 “The player who did not change has no better strategy in the new circumstance” 

 “The player who did change is now playing with a strictly worse strategy” 

Hence, when dealing with non-quadratic games, it becomes critical to justify that the proposed 

Nash seeking method converges only to a stable Nash equilibrium. It is shown later in this chapter 

that the gradient search-based method converges only to a stable Nash equilibrium. 

This chapter is organized as follows. Section 6.2 discusses non-quadratic cost functions followed 

by a discussion on the role of CA in Section 6.3. The modified dynamic transactive game model 

is discussed in Section 6.4. Solution stability and convergence characteristics are examined in 

Section 6.5.  

6.2.Non-quadratic polynomial cost functions 

The following non-quadratic polynomials are used to model the cost functions of the DERs within 

an HMG: 

               𝜋𝑡
𝐷𝐺/𝐺𝑇,𝑘

= 𝛼𝑛
𝐷𝐺/𝐺𝑇,𝑘

∗ (𝑃𝑡
𝐷𝐺/𝐺𝑇,𝑘

)
𝑛

+ 𝛼𝑛−1
𝐷𝐺/𝐺𝑇,𝑘

∗ (𝑃𝑡
𝐷𝐺/𝐺𝑇,𝑘

)
𝑛−1

+ ⋯+ 𝛼1
𝐷𝐺/𝐺𝑇,𝑘

∗

                                                 𝑃𝑡
𝐷𝐺/𝐺𝑇,𝑘

+ 𝛼0
𝐷𝐺/𝐺𝑇,𝑘

                                                                                                 (35) 

                𝜋𝑡
𝑃𝑉,𝑘 = 𝛼𝑛

𝑃𝑉,𝑘 ∗ (𝑃𝑡
𝑃𝑉,𝑘)

𝑛
+ 𝛼𝑛−1

𝑃𝑉,𝑘 ∗ (𝑃𝑡
𝑃𝑉,𝑘)

𝑛−1
+ ⋯+ 𝛼1

𝑃𝑉,𝑘 ∗ 𝑃𝑡
𝑃𝑉,𝑘 + 𝛼0

𝑃𝑉,𝑘
     (36)       

              𝜋𝑡
𝑊𝑇,𝑘 = 𝛼𝑛

𝑊𝑇,𝑘 ∗ (𝑃𝑡
𝑊𝑇,𝑘)

𝑛
+ 𝛼𝑛−1

𝑊𝑇,𝑘 ∗ (𝑃𝑡
𝑊𝑇,𝑘)

𝑛−1
+ ⋯+ 𝛼1

𝑊𝑇,𝑘 ∗ 𝑃𝑡
𝑊𝑇,𝑘 + 𝛼0

𝑊𝑇,𝑘
       (37)    

               𝜋𝑡
𝐸𝑆,𝑘 = 𝛼𝑛

𝐸𝑆,𝑘 ∗ (𝑃𝑡
𝐸𝑆,𝑘)

𝑛
+ 𝛼𝑛−1

𝐸𝑆,𝑘 ∗ (𝑃𝑡
𝐸𝑆,𝑘)

𝑛−1
+ ⋯+ 𝛼1

𝐸𝑆,𝑘 ∗ 𝑃𝑡
𝐸𝑆,𝑘 + 𝛼0

𝐸𝑆,𝑘
                 (38) 

where, 
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𝛼𝑛
(.),𝑘

= nth-order coefficient for production cost function of resource ( . ) in 𝑘𝑡ℎ HMG, 

∀𝑘 𝜖 {1,2, … . , 𝑁} 

These non-quadratic polynomials replace the quadratic functions (5)-(8) used previously for the 

quadratic case. Equations (1)-(4) remain valid for the HMGs in this chapter. 

Similarly (9) for UTRs and constraints (10)-(17) remain applicable in this chapter. 

6.3.Role of the Coordinating Authority 

The primary responsibilities of the CA include: 

 Initiate the operating cycle by inviting bids from the players 

 Run the iterative execution 

 Maintain a PRI for each player 

 Once a stable convergence is reached, communicate the optimum prices and quantities to 

the players. 

The stages of initialization, iterative execution, and termination are shown in Figure 18. Though it 

looks similar, this process is slightly different from the quadratic case discussed earlier. 

Specifically, it differs in the following aspects: 

 Non-quadratic cost functions result in non-quadratic payoff functions for HMGs. These 

generic cost characteristics are accommodated for the DERs within HMGs 

 A different game model, i.e. a dynamic game model, is implemented at the CA level as 

explained in the next section  
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Figure 18. Iterative execution and modeling the Nash seeking behavior of the players 

6.4.Dynamic Game Model Formulation 

Figure 19 shows a revised version of the game model discussed previously. It includes an 

inductance of value 1 to model the process dynamics as explained below. 
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Figure 19. Dynamic game model implemented at the CA level 

Considering the model of Figure 19, the following dynamic system represents a generic non-

quadratic game consisting of N’ seller HMGs: 

         𝑃̇1(𝑡) = −
𝜇𝑌−1

1

𝜇𝑌−1,||

𝑃1(𝑡) −
1

𝜇̅𝑌−1
  1 𝑓1(𝑡) + {

1

𝜇𝑌−1
2 𝑓2(𝑡) +

1

𝜇𝑌−1
3 𝑓3(𝑡) + ⋯+

1

𝜇𝑌−1
𝑁′ 𝑓𝑁′(𝑡)} + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑               (39) 

        𝑃̇2(𝑡) = −
𝜇𝑌−1

2

𝜇𝑌−1,||

𝑃2(𝑡) −
1

𝜇̅𝑌−1
  2 𝑓2(𝑡) + {

1

𝜇𝑌−1
1 𝑓1(𝑡) +

1

𝜇𝑌−1
3 𝑓3(𝑡) + ⋯+

1

𝜇𝑌−1
𝑁′ 𝑓𝑁′(𝑡)} + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑                (40) 

⋮ 

𝑃̇𝑁′(𝑡) = −
𝜇𝑌−1

𝑁′

𝜇𝑌−1,||

𝑃𝑁′(𝑡) −
1

𝜇̅𝑌−1
  𝑁′ 𝑓𝑁′(𝑡) + {

1

𝜇𝑌−1
1 𝑓1(𝑡) +

1

𝜇𝑌−1
2 𝑓2(𝑡) + ⋯+

1

𝜇𝑌−1
𝑁′−1

𝑓𝑁′−1(𝑡)} + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑          (41) 

𝐽1(𝑡) = 𝑎11𝑃1(𝑡)
𝑛 + 𝑎12𝑃1(𝑡)

𝑛−1 + ⋯+ 𝑎1𝑛𝑃1(𝑡) + 𝑎00𝑃1(𝑡)
𝑘1𝑃2(𝑡)

𝑘2 … . 𝑃𝑁′(𝑡)𝑘
𝑁′ + (𝛼0

𝑛𝑒𝑡,1 + 𝑆𝐻𝑀𝐺,1)      (42)        

𝐽2(𝑡) = 𝑎21𝑃2(𝑡)
𝑛 + 𝑎22𝑃2(𝑡)

𝑛−1 + ⋯+ 𝑎2𝑛𝑃2(𝑡) + 𝑎00𝑃1(𝑡)
𝑘1𝑃2(𝑡)

𝑘2 … . 𝑃𝑁′(𝑡)𝑘
𝑁′ + (𝛼0

𝑛𝑒𝑡,2 + 𝑆𝐻𝑀𝐺,2)      (43) 

⋮ 
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𝐽𝑁′(𝑡) = 𝑎𝑁′1𝑃𝑁′(𝑡)𝑛 + 𝑎𝑁′2𝑃𝑁′(𝑡)𝑛−1 + ⋯+ 𝑎𝑁′𝑛𝑃𝑁′(𝑡) + 𝑎00𝑃1(𝑡)
𝑘1𝑃2(𝑡)

𝑘2 … . 𝑃𝑁′(𝑡)𝑘
𝑁′

+ (𝛼0
𝑛𝑒𝑡,𝑁′

+ 𝑆𝐻𝑀𝐺,𝑁′
)                                                                                                                               (44) 

, where  

                                                                            
1

𝜇𝑌−1,||
𝑥 = ∑

1

𝜇𝑌−1
𝑥

𝑁′

𝑥=1

                                                                       (45) 

                                                                                 
1

𝜇̅𝑌−1
𝑥 = ∑

1

𝜇𝑌−1
𝑦

𝑁′

𝑦≠𝑥

                                                                       (46) 

                                                                                𝜇𝑡
𝑁′

= 1 −
𝜎𝑡

𝑥

100
                                                                           (47) 

                                𝜎𝑡
𝑥  = {

𝜎𝑡−1
𝑥 − 𝜌𝑘 ∗

|𝑃̂𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑥 − 𝑃𝑠𝑒𝑙𝑙,𝑡

𝐻𝑀𝐺,𝑥|

𝑃𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑥  ,        𝑖𝑓  𝑃̂𝑠𝑒𝑙𝑙,𝑡

𝐻𝑀𝐺,𝑥 ≠ 𝑃𝑠𝑒𝑙𝑙,𝑡
𝐻𝑀𝐺,𝑥

 𝜎𝑡−1
𝑥 ∗ (1 + 𝜌𝑘)                ,                        𝐸𝑙𝑠𝑒

                            (48) 

 

, where 

 𝜌𝑘 = a constant weighting penalization factor 

n = degree of polynomial for payoff functions 

𝑃𝑥(𝑡) ∀ 𝑥 ∈ {1,2, …𝑁′} = the state variable of the dynamic system 

The N’ differential equations (39)-(41) mathematically represent the game model of Figure 19. 

Moreover, the N’ payoff equations (42)-(44) represent the non-quadratic payoff functions of the 

players. 
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To illustrate how multiple equilibria exist for non-quadratic games, by setting 𝑃̇𝑥(𝑡) =  0 ∀ 𝑥 ∈

{1,2, … ,𝑁′} the equilibrium state of the dynamic system is obtained as: 

−
𝜇𝑌−1

1

𝜇𝑌−1,||
𝑃1(𝑡) −

1

𝜇̅𝑌−1
  1 𝑓1(𝑡) + {

1

𝜇𝑌−1
2 𝑓2(𝑡) +

1

𝜇𝑌−1
3 𝑓3(𝑡) + ⋯+

1

𝜇𝑌−1
𝑁′ 𝑓𝑁′(𝑡)} + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 0 

−
𝜇𝑌−1

2

𝜇𝑌−1,||
𝑃2(𝑡) −

1

𝜇̅𝑌−1
  2 𝑓2(𝑡) + {

1

𝜇𝑌−1
1 𝑓1(𝑡) +

1

𝜇𝑌−1
3 𝑓3(𝑡) + ⋯+

1

𝜇𝑌−1
𝑁′ 𝑓𝑁′(𝑡)} + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 0 

⋮ 

−
𝜇𝑌−1

𝑁′

𝜇𝑌−1,||
𝑃𝑁′(𝑡) −

1

𝜇̅𝑌−1
  𝑁′ 𝑓𝑁′(𝑡) + {

1

𝜇𝑌−1
1 𝑓1(𝑡) +

1

𝜇𝑌−1
2 𝑓2(𝑡) + ⋯+

1

𝜇𝑌−1
𝑁′−1

𝑓𝑁′−1(𝑡)} + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 0 

This leads to the state variable vector at equilibrium as: 

    

[
 
 
 
𝑃̅1(𝑡)

𝑃̅2(𝑡)
⋮

𝑃̅𝑁′(𝑡)]
 
 
 
=

[
 
 
 
 
 
 
 
 
 
 𝜇

𝑌−1,||

𝜇
𝑌−1
1

{𝑃𝑑𝑒𝑚𝑎𝑛𝑑 −
1

𝜇̅
𝑌−1
  1 𝑓

1
(𝑡) + (

1

𝜇
𝑌−1
2

𝑓
2
(𝑡) +

1

𝜇
𝑌−1
3

𝑓
3
(𝑡) + ⋯ +

1

𝜇
𝑌−1
𝑁′

𝑓
𝑁′(𝑡))}

𝜇
𝑌−1,||

𝜇
𝑌−1
2

{𝑃𝑑𝑒𝑚𝑎𝑛𝑑 −
1

𝜇̅
𝑌−1
  2 𝑓

2
(𝑡) + (

1

𝜇
𝑌−1
1

𝑓
1
(𝑡) +

1

𝜇
𝑌−1
3

𝑓
3
(𝑡) + ⋯ +

1

𝜇
𝑌−1
𝑁′

𝑓
𝑁′(𝑡))}

⋮

𝜇
𝑌−1,||

𝜇
𝑌−1
𝑁′

{𝑃𝑑𝑒𝑚𝑎𝑛𝑑 −
1

𝜇̅
𝑌−1
  𝑁′

𝑓
𝑁′(𝑡) + (

1

𝜇
𝑌−1
1

𝑓
1
(𝑡) +

1

𝜇
𝑌−1
2

𝑓
2
(𝑡) + ⋯ +

1

𝜇
𝑌−1
𝑁′−1

𝑓
𝑁′−1

(𝑡))}

]
 
 
 
 
 
 
 
 
 
 

         (49) 

From (42)-(44), the payoff functions at equilibrium are: 

𝐽1(𝑡) = 𝑎11𝑃̅1(𝑡)
𝑛 + 𝑎12𝑃̅1(𝑡)

𝑛−1 + ⋯ + 𝑎1𝑛𝑃̅1(𝑡) + 𝑎00𝑃̅1(𝑡)
𝑘1𝑃̅2(𝑡)

𝑘2 … . 𝑃̅𝑁′(𝑡)𝑘
𝑁′ + (𝛼0

𝑛𝑒𝑡,1 + 𝑆𝐻𝑀𝐺,1) 

𝐽2(𝑡) = 𝑎21𝑃̅2(𝑡)
𝑛 + 𝑎22𝑃̅2(𝑡)

𝑛−1 + ⋯+ 𝑎2𝑛𝑃̅2(𝑡) + 𝑎00𝑃̅1(𝑡)
𝑘1𝑃̅2(𝑡)

𝑘2 … . 𝑃̅𝑁′(𝑡)𝑘
𝑁′ + (𝛼0

𝑛𝑒𝑡,2 + 𝑆𝐻𝑀𝐺,2) 

⋮ 

𝐽𝑁′(𝑡) = 𝑎𝑁′1𝑃̅𝑁′(𝑡)𝑛 + 𝑎𝑁′2𝑃̅𝑁′(𝑡)𝑛−1 + ⋯+ 𝑎𝑁′𝑛𝑃̅𝑁′(𝑡) + 𝑎00𝑃̅1(𝑡)
𝑘1𝑃̅2(𝑡)

𝑘2 … . 𝑃̅𝑁′(𝑡)𝑘
𝑁′

+ (𝛼0
𝑛𝑒𝑡,𝑁′

+ 𝑆𝐻𝑀𝐺,𝑁′
) 



 65 

Since state variable at equilibrium is a function of PRIs and strategies as shown by (49) i-e.  

𝑃̅𝑥(𝑡) = 𝑔𝑥(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

) ∀ 𝑥 ∈ {1,2, … , 𝑁′}, hence  

𝐽𝑥(𝑡) = ℎ𝑥(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

)∀ 𝑥 ∈ {1,2, … ,𝑁′} 

 In expanded form, this becomes 

𝐽1(𝑡) = ℎ1(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

) 

𝐽2(𝑡) = ℎ2(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

) 

⋮ 

𝐽𝑁′(𝑡) = ℎ𝑁′(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

) 

When players seek Nash equilibrium, their objective is to maximize their payoffs with respect to 

their strategies. The quantity to be maximized is  
𝜕𝐽𝑥(𝑡)

𝜕𝑓𝑥(𝑡)
 ∀ 𝑥 ∈ {1,2, … ,𝑁′},  

𝜕𝐽1(𝑡)

𝜕𝑓1(𝑡)
=

𝜕ℎ1(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

)

𝜕𝑓1(𝑡)
= 𝑞1(𝑡) 

𝜕𝐽2(𝑡)

𝜕𝑓2(𝑡)
=

𝜕ℎ2(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

)

𝜕𝑓2(𝑡)
= 𝑞2(𝑡) 

⋮ 

𝜕𝐽𝑁′(𝑡)

𝜕𝑓𝑁′(𝑡)
=

𝜕ℎ𝑁′(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1
1 , 𝜇𝑌−1

2 , … , 𝜇𝑌−1
𝑁′

)

𝜕𝑓𝑁′(𝑡)
= 𝑞𝑁′(𝑡) 

This leads to N’ equations in N’ variables and the N’ solutions of these equations represent the 

multiple Nash equilibria to which the system may converge. This is by definition, at Nash 
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equilibrium, the payoff becomes constant irrespective of the strategy played, i.e. partial derivative 

𝜕𝐽𝑥(𝑡)

𝜕𝑓𝑥(𝑡)
 goes to zero. Thus, there exist N’ possible Nash equilibria for this dynamic system. 

Setting 
𝜕𝐽𝑥(𝑡)

𝜕𝑓𝑥(𝑡)
= 0 ∀ 𝑥 ∈ {1,2, … , 𝑁′}, 

                       𝑞1(𝑡) =
𝜕ℎ1(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1

1 , 𝜇𝑌−1
2 , … , 𝜇𝑌−1

𝑁′
)

𝜕𝑓1(𝑡)
= 0                               (50) 

                       𝑞2(𝑡) =
𝜕ℎ2(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1

1 , 𝜇𝑌−1
2 , … , 𝜇𝑌−1

𝑁′
)

𝜕𝑓2(𝑡)
= 0                               (51) 

⋮ 

                   𝑞𝑁′(𝑡) =
𝜕ℎ𝑁′(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁′(𝑡), 𝜇𝑌−1

1 , 𝜇𝑌−1
2 , … , 𝜇𝑌−1

𝑁′
)

𝜕𝑓𝑁′(𝑡)
= 0                               (52) 

The solution of these N’ equations yields multiple Nash equilibria. Hence, for non-quadratic 

games, multiple Nash equilibria exist and the system may converge to one of the stable 

equilibrium, depending on the initial condition. However, not all equilibria among N’ equilibria 

are necessarily stable. 

Once the convergence occurs for iteration Y, optimum prices and quantities are established as: 

                                                   𝑓𝑠𝑒𝑙𝑙,𝑌
𝐻𝑀𝐺,𝑥 = 𝑓𝑥(𝑡)

∗           ∀ 𝑥 𝜖 {1,2, …𝑁′}                                             (53) 

                                                    𝑃𝑠𝑒𝑙𝑙,𝑌
𝐻𝑀𝐺,𝑥 = 𝑃𝑥(𝑡)

∗         ∀ 𝑥 𝜖 {1,2, …𝑁′}                                              (54) 

                                                   𝑃𝑏𝑢𝑦,𝑌
𝐻𝑀𝐺,𝑦

= 𝑃𝑡
𝑛𝑒𝑡,𝑦

         ∀ 𝑦 𝜖 {1,2, …𝑁′′}                                              (55) 

                                𝑓𝑏𝑢𝑦,𝑌
𝐻𝑀𝐺,𝑦

= (∑ 𝑓𝑠𝑒𝑙𝑙,𝑌
𝐻𝑀𝐺,𝑥

𝑁′

𝑥=1

) ∗ (
𝑃𝑏𝑢𝑦,𝑌

𝐻𝑀𝐺,𝑦

𝑃𝑑𝑒𝑚𝑎𝑛𝑑
)           ∀ 𝑦 𝜖 {1,2, …𝑁′′}                      (56) 



 67 

, where ( . )∗ denotes the value at stable Nash equilibrium. 

6.5.Stability and Convergence Analysis 

The stability of an equilibrium 𝑓∗(𝑡) for a non-linear dynamic system can be determined by 

examining the eigenvalues of the Jacobian matrix [74], given as follows: 

                         𝜑(𝑓∗(𝑡)) =

[
 
 
 
 
 
 
 
 
 
𝜕𝑞1(𝑡)

𝜕𝑓1(𝑡)

𝜕𝑞1(𝑡)

𝜕𝑓2(𝑡)

𝜕𝑞1(𝑡)

𝜕𝑓3(𝑡)
⋯

𝜕𝑞1(𝑡)

𝜕𝑓𝑁′(𝑡)

𝜕𝑞2(𝑡)

𝜕𝑓1(𝑡)

𝜕𝑞2(𝑡)

𝜕𝑓2(𝑡)

𝜕𝑞2(𝑡)

𝜕𝑓3(𝑡)
⋯

𝜕𝑞2(𝑡)

𝜕𝑓𝑁′(𝑡)

𝜕𝑞3(𝑡)

𝜕𝑓1(𝑡)

𝜕𝑞3(𝑡)

𝜕𝑓2(𝑡)

𝜕𝑞3(𝑡)

𝜕𝑓3(𝑡)
⋯

𝜕𝑞3(𝑡)

𝜕𝑓𝑁′(𝑡)
⋮ ⋮ ⋮ ⋱ ⋮

𝜕𝑞𝑁′(𝑡)

𝜕𝑓1(𝑡)

𝜕𝑞𝑁′(𝑡)

𝜕𝑓2(𝑡)

𝜕𝑞𝑁′(𝑡)

𝜕𝑓3(𝑡)
⋯

𝜕𝑞𝑁′(𝑡)

𝜕𝑓𝑁′(𝑡)]
 
 
 
 
 
 
 
 
 

                                   (57) 

For a stable equilibrium, all eigenvalues of 𝜑(𝑓∗(𝑡)) must be negative real. Thus, the equilibrium 

that yields negative real eigenvalues for (57) is a stable equilibrium. Even if the real part of a single 

eigenvalue becomes positive, then the equilibrium is rendered unstable. In general, the number of 

eigenvalues is equal to the number of players involved, i.e. the dimensions of the state variable. 

The Nash seeking behavior of the players is modeled as the gradient search-based method (also 

known as the extremum seeking method), given as: 

                                                         𝑓𝑥(𝑡) = 𝐹𝑥(𝑡) +
𝐺𝑥

𝑠
[𝐹𝑥(𝑡)𝐽𝑥(𝑡)]                                                     (58) 

, where 

                                                     𝐹𝑥(𝑡) = 𝑎𝑥sin (𝜔𝑥𝑡 + ∅𝑥)                                                          (59) 

and 𝑥 𝜖 {1,2, … , 𝑁′}. 
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Next, it is shown that when the Nash seeking behavior is modeled using the gradient-based method 

(58)-(59), then the system converges to one of the stable Nash equilibria depending on the initial 

condition. This is because, by definition, an unstable equilibrium is such that a small disturbance 

drives the system away from that equilibrium. In the gradient-based approach, since the players 

apply sinusoidal perturbations all the time (even when at stable equilibrium), hence they never 

converge to an unstable equilibrium. In addition to its computational simplicity, this is an 

additional advantage of this method. 

6.5.1. Numerical Example 

Consider the following example system: 

                                             𝑃̇1(𝑡) = −𝑃1(𝑡) − 3𝑓1(𝑡) + 6𝑓2(𝑡) + 2                                                   (60) 

                                             𝑃̇2(𝑡) = −𝑃2(𝑡) + 𝑓1(𝑡) + 3𝑓2(𝑡) + 1                                                     (61) 

                                          𝐽1(𝑡) = −4𝑃1(𝑡)
2 + 8𝑃1(𝑡)𝑃2(𝑡) − 4𝑃1(𝑡)                                               (62) 

                                                 𝐽2(𝑡) = −𝑃2(𝑡)
3 + 5𝑃1(𝑡)𝑃2(𝑡)                                                            (63) 

For this system, the equilibrium values for the state variables 𝑃1(𝑡) and 𝑃2(𝑡) are obtained by 

setting 𝑃̇1(𝑡) = 𝑃̇1(𝑡) = 0 in (60)-(61) yielding 

[
𝑃̅1(𝑡)

𝑃̅2(𝑡)
] = [

−3𝑓1(𝑡) + 6𝑓2(𝑡) + 2

𝑓1(𝑡) + 3𝑓2(𝑡) + 1
] 

Substituting these values in (62) and (63) result in payoff functions at equilibrium which can be 

simplified to: 

𝐽1(𝑡) = −60𝑓1(𝑡)
2 + 120𝑓1(𝑡)𝑓2(𝑡) + 52𝑓1(𝑡) − 8 
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𝐽2(𝑡) = −𝑓1(𝑡)
3 − 27𝑓1(𝑡)𝑓2(𝑡)

2 − 8𝑓1(𝑡) − 9𝑓1(𝑡)
2𝑓2(𝑡) − 33𝑓1(𝑡)𝑓2(𝑡) − 18𝑓1(𝑡)

2

− 27𝑓2(𝑡)
3 + 51𝑓2(𝑡) + 63𝑓2(𝑡)

2 + 9 

Next, taking the partial derivatives with respect to the strategy set, utility functions are obtained 

as: 

𝜕𝐽1(𝑡)

𝜕𝑓1(𝑡)
= 𝑞1(𝑡) = −120𝑓1(𝑡) + 120𝑓2(𝑡) + 52 

𝜕𝐽2(𝑡)

𝜕𝑓2(𝑡)
= 𝑞2(𝑡) = −54𝑓1(𝑡)𝑓2(𝑡) − 9𝑓1(𝑡)

2 − 33𝑓1(𝑡) − 81𝑓2(𝑡)
2 + 126𝑓2(𝑡) + 51 

Forcing 𝑞1(𝑡) = 0 , 𝑞2(𝑡) = 0 and subsequently solving for 𝑓1(𝑡) and 𝑓2(𝑡) yields the following 

two solutions for equilibria 

(𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)1 = (0.327, −0.323) 

(𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)2 = (1.185, 0.752) 

The Jacobian matrix to determine the stability of these equilibria is given as, 

𝜑 =

[
 
 
 
 
𝜕𝑞1(𝑡)

𝜕𝑓1(𝑡)

𝜕𝑞1(𝑡)

𝜕𝑓2(𝑡)

𝜕𝑞2(𝑡)

𝜕𝑓1(𝑡)

𝜕𝑞2(𝑡)

𝜕𝑓2(𝑡)]
 
 
 
 

= [
−120 120

−54𝑓2(𝑡) − 18𝑓1(𝑡) − 33 −54𝑓1(𝑡) − 162𝑓2(𝑡) + 126
] 

The Jacobian matrix computed at the solution (𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)1 is 

𝜑((𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)1) = [
−120 120

−21.44 160.66
] 

The eigenvalues of this matrix are 151.17 and −110.51. Since all the eigenvalues are not negative, 

this represents an unstable equilibrium. 
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At the other solution i.e. (𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)2, the Jacobian matrix becomes 

𝜑((𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)2) = [
−120 120

−94.93 −59.81
] 

The eigenvalues of this matrix are −89.9 + 𝑗102.4 and −89.9 − 𝑗102.4. This is a stable 

equilibrium since the real parts of both eigenvalues are negative. As previously stated, when the 

players employ the gradient search-based method, the system should converge to this stable Nash 

equilibrium. 

This results of this numerical example are verified by simulating this system in MATLAB. Figure 

20 shows the convergence to a stable Nash equilibrium i.e. (𝑓1(𝑡)
∗, 𝑓2(𝑡)

∗)2 = (1.185, 0.752). 

 

 

Figure 20. Verifying the result of a numerical example in MATLAB 
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The stability and convergence analysis in this section illustrates that when multiple Nash equilibria 

exist, the system converges to a stable equilibrium if gradient-based, Nash seeking approach is 

used. It should be noted that the computational complexities in this section do not pose any 

hindrance to the practical implementation of the proposed framework since the Jacobian matrix 

computations are not required in the actual implementation. Next, the case studies and results are 

discussed that provide insight into the benefits of deploying the proposed framework. 
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Chapter 7: Case Studies and Results 

The proposed framework is implemented and case studies are performed to establish the 

significance of the work.  

7.1.Case Study 1 

Initially, in Case study 1, two cases are compared that include: 

 Case-I: Without the proposed framework, 6 HMGs are connected to the UTRs to establish 

a base case in the IEEE 13-bus feeder shown in Figure 10. 

 Case-II: The 6 HMGs and UTRs of Case-I are integrated into the proposed transactive 

framework. 

As discussed earlier, HMGs are modeled generically, i.e. they may have all or some of the DERs 

installed. The case study configuration data is shown in Table 2. The cost functions for DERs are 

chosen such that the energy produced from DERs (subsequently HMGs) is cheaper than that 

offered by the UTRs. This is a valid assumption since the HMG owner would install a DER only 

if it produces cheaper energy than that supplied by UTRs. For simplicity, all the UTRs are 

combined into a single representative UTR when presenting the results. 

A complete day is simulated in this case study using the case configuration profiles shown in 

Figure 21. These initialization profiles include hourly averaged PV output predictions, WT output 

predictions, and load predictions for all the HMGs. The payoffs of all DERs in this case study are 

assumed to be quadratic functions. To simulate realism, HMG-5 has been deliberately initiated 

without any PV. Similarly, HMG-3 has no WT generation. The DER generation in HMG-2 is kept 

lower than its net load at all times to compare HMGs with higher and lower penetrations of DERs. 

Once the electrical-transactive co-simulation begins, players measure their instantaneous payoffs, 
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perturb their strategy according to gradient-based (extremum seeking method), and measure the 

new payoff. This process continues to iterate till convergence to Nash equilibrium occurs and no 

power flow constraint is violated for the 13-bus feeder. The data exchange between electrical and 

transactive representations is managed by HELICS.  

Table 2. Configuration data for Case Study 1 

Case Study Configuration data 

Game Parameters Number of HMGs, N 6 

Number of UTRs, M 2 

Type of Game Static 

RTOI time interval, ∆𝑡 5 minutes 

HEMS refresh interval, ∆𝑡′ 5 seconds 

Extremum 

Seeking 

Parameters for 

HMGs 

𝑎𝑘 0.05 ∀ 𝑘 

𝜔𝑘 {30, 24, 44, 36, 40, 36} rad/sec 

∅𝑘 0 ∀ 𝑘 

PV system Maximum Power Output, 𝑃𝑚𝑎𝑥
𝑃𝑉,𝑘

  {3.3, 1.1, 4.2, 5.1, 0, 2} kW 

WT system Maximum Power Output, 𝑃𝑚𝑎𝑥
𝑊𝑇,𝑘

  {3.5, 1.0, 0, 1.6, 2.5, 2.55} kW 

DG/GT system Maximum Power Output, 𝑃𝑚𝑎𝑥
𝐷𝐺/𝐺𝑇,𝑘

  {1.5, 1.2, 1.0, 0.0, 1.0, 1.3} kW 

ES system Maximum Power Output, 𝑃𝑚𝑎𝑥
𝐸𝑆+,𝑘

  {1.0, 0, 1.0, 1.0, 1.0, 1.0} kW 

Maximum Power Output, 𝑃𝑚𝑎𝑥
𝐸𝑆−,𝑘

  {1.0, 0, 1.0, 1.0, 1.0, 1.0} kW 

𝐸𝑆𝑐𝑎𝑝
𝑘  {3.0, 0, 3.0, 3.0, 3.0, 3.0} kWh 
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Round trip cycle efficiency, 𝜀𝐸𝑆 {90, 90, 90, 90, 90, 90} % 

Net production 

cost coefficients 

𝛼𝑛𝑒𝑡,𝑘 {0.0003, 0.0004, 0.0004, 

0.000175,0.000175, 0.000175} 

𝛽𝑛𝑒𝑡,𝑘 {0.015, 0.02, 0.02, 0.01, 0.01, 0.01} 

𝛾𝑛𝑒𝑡,𝑘 {10, 20, 15, 12, 13, 14} 

PRI initialization 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑘  {50, 40, 45, 30, 30, 40} % 

PRI weighting 

factor 

𝜌𝑘 {0.5, 0.5, 0.5, 0.5, 0.5, 0.5} 

 

Figure 22 shows the evolution of prices and power outputs of HMG-1 and HMG-6 till the 

convergence to equilibrium occurs. It can be seen that initially the parameters fluctuate, but once 

convergence is reached, the parameters stay within a narrow band. The plot for HMG payoffs 

looks similar to the plots in Figure 22. 
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Figure 21. Predicted profiles for (a) PV, (b) WT, and (c) Loads in all HMGs 

The results in this case study can be analyzed using evaluation metrics like Total Generated Energy 

(TGE), Change in Payoffs of the players, clearing prices, and reliability improvement. Figure 23 

(a) shows the TGE for HMGs in both cases. It can be seen that the proposed framework results in 

an increase of TGE for all the HMGs since they are able to sell the surplus energy from DERs to 

their peers. This increase is proportional to the available surplus energy and PRIs of the HMGs. 

However, for HMG-2 the increase in TGE is zero since its generation always remains lower than 

the load. The percentage increase in TGE shown in Figure 23 (b) is calculated as: 

                                      𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑇𝐺𝐸 (%) =  
𝑇𝐺𝐸𝑐𝑎𝑠𝑒−𝐼𝐼 − 𝑇𝐺𝐸𝑐𝑎𝑠𝑒−𝐼

𝑇𝐺𝐸𝑐𝑎𝑠𝑒−𝐼
× 100                                      (64) 
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Figure 22. Convergence of power outputs and selling prices for HMG-1 and HMG-6 

 

Figure 23. (a) TGE in both cases for all the HMGs (b) Percentage increase in TGE in case-II for 

all the HMGs 
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Examining the payoffs of the participating players, it can be seen that the cumulative daily payoffs 

for all the HMGs increase as shown in Figure 24 (a). This is because HMGs can sell surplus energy 

to their peers and they can also consume cheaper energy as opposed to buying from UTRs all the 

time. Though HMG-2 has a low DER penetration level and its total generation always remains 

lower than its load, still, it sees an increase in net payoff due to the consumption of cheaper energy 

from other HMGs. This increase in Figure 24 (b) is lower compared to the increase seen by other 

HMGs due to the low DER penetration of HMG-2. Thus, if the owner of HMG-2 would like to 

benefit more from the proposed framework, then HMG-2 should invest in installing more 

generation. On the other hand, the cumulative payoffs for UTRs decrease as shown in Figure 25. 

This is expected since HMGs are less reliant on UTRs in case-II as compared to case-I. The UTRs 

could recover some of the lost profit with subscription fees charged to the HMGs. 

 

Figure 24. (a) Cumulative daily payoffs for all the HMGs in both cases (b) Percentage increase 

in Payoffs due to the proposed framework 



 78 

 

Figure 25. Payoffs of UTRs decrease in case-II compared to case-I 

Figure 26 relates the payoffs of HMGs with their PRI values. It shows that as the PRIs of the 

HMGs improve, they receive a higher payoff. The payoff for all the HMGs is maximized at the 

maximum value of PRI, i.e. 100 %. At lower PRI values, the payoffs decrease as HMGs get 

penalized by the CA. At the same value of PRI, the payoffs of different HMGs can differ as shown 

in Figure 26. This difference is due to the different penetration levels of installed DERs, different 

cost functions of installed DERs, and load profile diversity in the HMGs. For example, HMG-1 

has a higher installed generation as shown previously in Figure 23. Thus, compared to HMG-3 and 

HMG-5, its payoff is higher at the same value of the PRI. The optimum purchase prices in case-II 

for all HMGs are shown in Figure 27. For some hours of the day, i.e. hours 21 and 22, there are 

no seller HMGs available, thus all HMGs meet their demand by buying energy from UTRs. That 

forces purchase prices for all HMGs equal to the UTR selling optimum price. For other hours of 

the day, HMGs can partially or completely meet their demand by consuming cheaper energy from 

their peers. This decreases their optimum price compared to the prices offered by UTRs. When 
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HMGs act as sellers (i.e. have no demand), the purchase optimum prices become zero. However, 

for HMG-2 this price is always non-zero since it always buys energy due to lower installed DER 

generation. 

 

Figure 26. Relationship between the PRIs and Payoffs of the HMGs 
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Figure 27. Optimum purchase prices for all HMGs 

For this case study, an error distribution according to a Gaussian distribution is assumed between 

the optimum (committed) and the actual power output of the HMGs. The variance of this 

distribution corresponds to the accuracy of the forecasting equipment installed in each HMG. 

Figure 28 shows the evolution of PRIs throughout the simulated day calculated using (34). The 

HMGs that stick to their commitments and do not deviate often, i.e. HMG-1 and HMG-3, 

accumulate a net gain in their PRI over the day. Whereas other HMGs, such as HMG-4, show a 

decreased PRI due to a deviation from the committed power output. The rate of gains and losses 

in PRI values are controlled by the parameter 𝜌𝑘 defined earlier in (34). Since HMG-2 does not 

sell any power, thus its PRI remains constant. 
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Figure 28. PRIs of all the HMGs throughout the simulated day 

7.2.Case Study 2: PRIs and Reliability 

To demonstrate the role of PRIs in ensuring reliability and fairness, this case study compares the 

proposed framework with two alternate frameworks in which:  

 The role of PRIs is dampened to 50 % compared to the base case 

 PRIs are not considered at all 

Figure 29 compares the percentage increase in payoffs for all HMGs due to the proposed 

framework (previously shown in Figure 24) with that in the two alternate frameworks. For this 

case study, HMG-1, HMG-3, and HMG-6 are seeded as the good players. It is seen that although 

the payoffs increase in all the cases, the gains in payoff decrease when the role of PRIs is dampened 

to half as compared to the case with PRIs. Moreover, if the role of PRIs is completely removed, 

then the payoff gains drop further. This trend is the opposite for not so good players, i.e. HMG-2, 

HMG-4, and HMG-5. As PRIs are neglected, the bad players with lower PRIs achieve a higher 

increase in payoffs. This validates the fact that the concept of PRIs is important to ensuring that 
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the players are rewarded according to their reputation that is built upon their historical 

performance.  

In addition to enforcing fairness, PRIs also improve the reliability. This is shown in Figure 30, 

which shows the cumulative energy output from all HMGs over the course of the day. It is seen 

that if the role of PRIs is ignored, then more energy is bought from unreliable players, i.e. HMG-

4 and HMG-5. The contribution from HMG-2 remains zero since it is not able to sell. Similarly, 

the energy output from good players such as HMG-1, HMG-3, and HMG-6, reduces when PRIs 

are completely ignored. Since PRIs ensure that a higher percentage of demand is met by players 

with healthy PRIs (higher reliability), hence the concept of PRIs is helpful in enhancing the 

reliability of the proposed framework. 

 

Figure 29. Percentage increase in the payoffs for all HMGs in the proposed and the alternate 

frameworks 
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Figure 30. Cumulative energy output from all HMGs with and without PRIs 

7.3.Case Study 3: Scalability 

The simulation times for the proposed framework are shown in Figure 31 as a function of the 

number of players. These times are recorded on an Intel core-i7 CPU when all the computations 

are performed on a single processor. Even without distributed computation, it is seen that the 

simulation times in the order of few seconds are not significant compared to the real-time operating 

interval, i.e. 5 minutes. Moreover, the simulation times seem to scale linearly with the size of the 

system.   

In regards to real-world deployment, it should be noted that: 

 Real-world implementation is meant to be distributed since it involves multiples 

processors, such as HEMSs, intelligent transactive agents, and CA. Thus, simulation times 
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for larger system sizes simulated on a single processor do not provide an accurate 

representation of real-world implementation, which being distributed is expected to be 

faster. However, it should be noted that the real-world implementation is dependent on 

speed and reliability of communication infrastructure used by the smart grid.   

 For very large system sizes, a hierarchical structure can be created with multiple sub-CAs 

to substantially decrease the implementation time. Each sub-CA can operate within its 

jurisdiction while closely coordinating the operation with other sub-CAs and the root CA. 

 CAs can effectively pipeline the bidding process by estimating the time to clearing. For 

example, if the CA knows that it takes 3-5 seconds to converge for 100 players, then it can 

initiate the process 5 or 10 seconds earlier than the time it is supposed to communicate the 

schedule to the players. 

 

Figure 31. Simulation time in seconds as a function of the number of players 

 



 85 

Chapter 8: Conclusions and Future Work 

A novel electrical-transactive co-simulation framework has been proposed that enables DERs and 

their aggregators to supply the load in the distribution systems. The load supply is optimal in the 

electrical and transactive sense while considering constraints at various levels. To this end, a novel 

game model is proposed with an integrated notion of the reputation of each player. Maintaining 

the reputation of each player enforces fairness and transparency. Thus, the non-cooperative game 

model rewards the players according to their historical performance. The two types of players 

include the prosumers, i.e. HMGs/DER aggregators, and the suppliers, i.e. UTRs. 

An iterative solution algorithm is proposed to solve the framework. The optimal solution satisfies 

all the constraints, i.e. power flow and the transactive constraints. This is ensured by the co-

simulation of the electrical and transactive network representations. In addition to discussing the 

DERs with quadratic cost functions, the theory is also extended to a generic class of DERs with 

non-quadratic cost functions. For both the scenarios it is demonstrated that when a gradient-based, 

Nash seeking method is employed by the players, the game converges to a solution resulting in 

optimum power outputs and payoffs for all the players. Moreover, for the case with non-quadratic 

payoffs, multiple equilibria are demonstrated, and it is shown that the gradient-based method 

converges to one of the stable solutions, where the stable solution obtained is dependent upon the 

initial condition. In addition to rewarding players according to their historical behaviors, the 

proposed index, i.e. PRI, improves reliability by ensuring that more loads are supplied from 

reliable players with higher PRIs as compared to the unreliable players. Being inherently 

embedded in the game model, PRI ensures that reliable (good) players can inject more energy into 

the distribution system compared to unreliable players, and thus obtain a higher payoff. 



 86 

The framework is implemented using existing software packages, i.e. HELICS, MATLAB, and 

GridLAB-D. Several case studies are performed to establish the results and usefulness of the 

proposed work. It is shown that the proposed work results in higher consumption of local 

generation, i.e. the total generated energy from DERs, lower buying prices, and higher payoffs for 

the players. Moreover, it results in a demand decrease for UTRs that relieves the burden on the 

transmission system, which can result in transmission upgrade deferrals. The role of PRIs in 

increasing reliability is also discussed. The practical considerations in the implementation of the 

proposed work and scalability are also considered. Though the complete framework is simulated 

on a single processor, the practical implementation is meant to be distributed across multiple 

processors, such as HEMS, transactive agents, and CAs. Thus, it is the smart grid communication 

system and its latency that can potentially impact the solution speed, where device-level 

computations are not complex.  

This dissertation made the following eight contributions to the state of art: 

 Proposed a novel electrical-transactive co-simulation architecture to enable distribution 

system load supply from DERs and their aggregators. 

 Introduced a novel game model to realize the load supply process. The model is based on 

non-cooperative game theory and is rewarding to players who behave in a beneficial way 

towards the system. 

 A new idea of ranking players according to their historical performance is introduced. It is 

embedded in the game model and thus impacts the behavior of the players and the overall 

reliability of the process. 

 A low-complexity, gradient-based scheme is demonstrated to solve for the solution of the 

proposed framework. 
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  DERs with non-quadratic payoff functions are considered i.e. games inclusive of players 

with non-quadratic DER cost functions. 

 A generic, dynamic mapping of the strategy set to payoff functions is discussed. The game 

model is revised accordingly to accommodate dynamic mapping. 

 For generic, non-quadratic games, the existence of multiple solutions is discussed. 

Convergence properties of stable solutions are studied. 

 It is demonstrated that when the gradient-based method is used to solve the system, the 

system converges to one of the stable solution points. 

The following future research directions exist for the work presented in this dissertation: 

 Modeling the communication system, i.e. adding a communication system dimension to 

the electrical-transactive co-simulation 

 In addition to energy, an extension of the concept to other parameters, such as frequency 

regulation services from DERs 

 Extending co-simulation to incorporate transmission and other infrastructures, such as 

transportation 

 Distributed computations to closely match the real-world implementation. 
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