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SUMMARY

Genome-wide association (GWA) studies can identify quantitative trait loci (QTL) putatively underlying

traits of interest, and nested association mapping (NAM) can further assess allelic series. Near-isogenic lines

(NILs) can be used to characterize, dissect and validate QTL, but the development of NILs is costly. Previous

studies have utilized limited numbers of NILs and introgression donors. We characterized a panel of 1270

maize NILs derived from crosses between 18 diverse inbred lines and the recurrent inbred parent B73,

referred to as the nested NILs (nNILs). The nNILs were phenotyped for flowering time, height and resistance

to three foliar diseases, and genotyped with genotyping-by-sequencing. Across traits, broad-sense heritabil-

ity (0.4–0.8) was relatively high. The 896 genotyped nNILs contain 2638 introgressions, which span the entire

genome with substantial overlap within and among allele donors. GWA with the whole panel identified 29

QTL for height and disease resistance with allelic variation across donors. To date, this is the largest and

most diverse publicly available panel of maize NILs to be phenotypically and genotypically characterized.

The nNILs are a valuable resource for the maize community, providing an extensive collection of introgres-

sions from the founders of the maize NAM population in a B73 background combined with data on six agro-

nomically important traits and from genotyping-by-sequencing. We demonstrate that the nNILs can be used

for QTL mapping and allelic testing. The majority of nNILs had four or fewer introgressions, and could read-

ily be used for future fine mapping studies.

Keywords: near-isogenic lines, genotyping-by-sequencing, genome-wide association, allelic analysis, maize,

disease resistance, flowering time, plant height, quantitative trait loci, genetics, Zea mays.

INTRODUCTION

Over the past decade, nearly 100 genome-wide association

(GWA) studies in maize inbred diversity panels and nested

association mapping (NAM) populations have been pub-

lished (Xiao et al., 2017). These studies have implicated

hundreds of single-nucleotide polymorphisms (SNPs) and

quantitative trait loci (QTL) in the control of dozens of com-

plex traits (Xiao et al., 2017). Candidate loci can be fol-

lowed up with fine mapping and functional studies.

Near-isogenic lines (NILs) have been used extensively to

characterize, validate and dissect QTL in maize (Szalma

et al., 2007; Pea et al., 2009; Chung et al., 2010; Eichten

et al., 2011; Mideros et al., 2014; Peiffer et al., 2014; Benson

et al., 2015; Lennon et al., 2016, 2017; Xiao et al., 2016;

Kolkman et al., 2019; Martins et al., 2019). However, the

development of NILs is time-consuming and costly, as it

requires several generations of backcrossing, selfing and

genotyping. As such, NIL populations have been limited in
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size and introgression donor diversity in the public sector

(Szalma et al., 2007; Pea et al., 2009; Chung et al., 2010;

Eichten et al., 2011; Lennon et al., 2016). Via the Interna-

tional Maize and Wheat Improvement Center (CIMMYT),

Syngenta AG (Basel, Switzerland) has made public a large

panel of maize NILs derived from crosses between 25

diverse inbred lines and B73, henceforth referred to as the

Syngenta panel (Gandhi et al., 2008). Kolkman et al. (2019)

recently used a subset of 412 ‘nested’ NILs (nNILs) from

the Syngenta panel, which were chosen for having intro-

gressions surrounding disease resistance QTL, for GWA

and candidate gene identification of resistance to northern

leaf blight (NLB).

Here we characterize a population of 1270 nNILs from the

Syngenta panel containing randomly positioned introgres-

sions from 18 inbred lines in a B73 background. The parents

of the nNILs, B73 and the 18 donor parents, represented 19

of the 27 diverse inbred founders of the maize NAM popula-

tion: B73, CML103, CML228, CML247, CML277, CML322,

CML333, CML52, CML69, Ki11, Ki3, M162W, Mo17, Mo18W,

NC350, NC358, Oh43, Tx303 and Tzi8 (Yu et al., 2008). We

phenotyped the nNILs for six quantitatively inherited mor-

phophysiological and disease resistance traits that had been

previously characterized with the maize NAM population:

days to anthesis (DTA), ear (EHT) and plant (PHT) height,

and resistance to the fungal foliar diseases gray leaf spot

(GLS), NLB and southern leaf blight (SLB; Buckler et al.,

2009; Kump et al., 2011; Poland et al., 2011; Peiffer et al.,

2014; Benson et al., 2015). Using genotyping-by-sequencing

(GBS; Elshire et al., 2011), we successfully genotyped 896 of

the 1270 nNILs. We used GWA to identify QTL for these

traits, and conducted allelic analysis on associated QTL.

RESULTS

Phenotypic and genotypic variation in flowering time,

height and disease resistance

We evaluated the 1270 BC5F4 nNILs for flowering time

(DTA), height (EHT, PHT) and resistance to three foliar dis-

eases (GLS, NLB, SLB) across four�six environments each

(Additional file 1). Each disease was assessed separately.

We used mixed models to assess genotype and environ-

mental effects on the six traits in the nNILs. Trait variation

relative to B73 was small, as would be expected for NILs

(Table 1). Broad-sense heritability (H2) for DTA was low

(0.4), which may have been due to the combination of low

phenotypic variation (less than half a day relative to B73)

and relatively imprecise phenotyping (scores taken approx-

imately 2–3 times per week) of DTA (Table 1). H2 was rela-

tively high for height and disease resistance (0.61–-0.82;
Table 1). The interaction between genotype and environ-

ment (GxE) explained < 1% of the total variance in flower-

ing time and height (Table 1). GxE also accounted for a

small proportion of the total variance in the three disease

resistance traits (2.5-8%; Table 1). The evaluation of GLS

resistance under artificially inoculated and naturally

infected conditions may have contributed to the relatively

higher GxE on GLS resistance (8%) than on resistance to

NLB and SLB (2.5%; Table 1).

Correlations among flowering time, height and disease

resistance

For trait correlation analysis, genotype best linear unbiased

predictors (BLUPs) were extracted from mixed models

(Additional file 2). As expected given their shared genetic

control (Peiffer et al., 2014), EHT and PHT were strongly

positively correlated (r = 0.76). Height was negatively cor-

related with resistance to GLS (r = �[0.25–0.26]) and SLB

(r = �[0.07–0.11]; Table 2). The correlation of EHT with

GLS and SLB resistance may have resulted from the scor-

ing method, in which disease scores were taken on the ear

leaf. For all disease experiments, inoculum was introduced

into the maize whorl, from which new leaves emerged,

and the disease then progressed upwards on the plant. As

such, plants with higher ear leaves may have had slightly

reduced GLS and SLB symptom severity scores. In con-

trast, NLB diseased leaf area (DLA) was measured on a

whole plant basis, and no correlation was observed

between NLB resistance and height (Table 2). SLB and GLS

resistance were positively correlated with each other

(r = 0.38) and with NLB resistance (r = 0.23–0.26; Table 2),

suggesting that some of the loci segregating in the nNILs

may confer multiple disease resistance.

Characteristics of introgressions present in the nNILs

We successfully genotyped 896 nNILs using GBS (Elshire

et al., 2011; Glaubitz et al., 2014) and imputed missing

SNPs with FILLIN (Swarts et al., 2014). Gandhi et al. (2008)

previously estimated an average of 5% donor genome per

BC5 line in the Syngenta panel. After four generations of

selfing, the nNILs had a lower proportion of heterozygous

SNPs (l = 0.7%; r = 1%; range: 0–13%) than expected (ap-

proximately 6%), which may have been due to the low cov-

erage of the nNIL GBS data (lraw = 0.36; rraw = 0.06;

limputed = 0.87; rimputed = 0.09) and the undercalling of

heterozygous sites by FILLIN (Swarts et al., 2014).

With the TASSEL 5 GenosToABH plugin (Bradbury et al.,

2007) and the ABHgenotypeR package (Reuscher and Fur-

uta, 2016), we identified 241 455 ‘ABH’ SNPs that were

homozygous and polymorphic between B73 and at least

one of the 18 non-B73 parents (Additional file 3). To

account for the variation in sequencing depth and quality

across samples as well as the genetic variation found

across seed stocks of identically named genetic lines

(Liang and Schnable, 2016), we utilized several seed

sources per parent to reliably call parental genotypes. The

ABH SNPs were then used to determine the positions and

genotypes of the introgressions in the nNILs (Additional
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file 4). We found 2638 introgressions across the nNILs.

Less than 1% of ABH sites were missing or heterozygous,

indicating that the introgression genotype calls matched

the introgression donors assigned by Syngenta.

The size, number and distribution of introgressions con-

tained within the nNILs here were similar to the findings of

Kolkman et al. (2019). The introgressions spanned the

entire genome (Figure 1). The distribution of individual

introgression lengths was highly positively skewed, with a

mean physical length of 13.2 Mbp (r = 22 Mbp;

median = 4.8 Mbp) ranging between 0.2 and 191.6 Mbp,

and a mean genetic length of 12.2 cM (r = 12.2 cM;

median = 8.0 cM) ranging between 0 and 96.8 cM. The

number of introgressions per nNIL ranged from 1 to 10,

with a mean of 2.9 (r = 1.5). Seventy-five percent of nNILs

had four or fewer introgressions, and we identified 138

nNILs with a single introgression. Introgression length

decreased with increasing distance from the centromere,

as would be expected given the increased probability of

recombination events at the ends of the chromosomes and

the suppression of cross-overs within pericentromeric

regions (Rodgers-Melnick et al., 2015; Figure 1).

We found substantial overlap among introgressions

from different nNILs (Figure 1). On average, 45.9 nNILs had

introgressions at any given locus (r = 24.4; range: 4–211),
with each donor allele represented by 3.4 nNILs (r = 2.0;

range: 0–17). Pairs of introgressions with overlapping posi-

tions had a mean physical overlapping interval of

19.1 Mbp (r = 29.5 Mbp; median = 6.5 Mbp) and a mean

genetic overlapping interval of 18.6 cM (r = 16.5 cM;

median = 14.0 cM). As such, GWA should be feasible with

the nNIL panel.

On average, the introgression lengths in each nNIL

summed to 38.7 Mbp (r = 41 Mbp; median = 24.2 Mbp;

range: 0.2–283.3 Mbp), approximately 2% of the genome.

To investigate whether the size of non-B73 genome (sum

of physical introgression lengths per nNIL) contributed to

phenotypic variation, we correlated total physical intro-

gression length versus the absolute values of each of the

six traits. We found that total introgression length was

weakly, but significantly, correlated with EHT, PHT and

SLB (r = 0.13, P < 0.001), but was not significantly corre-

lated (P > 0.05) with the other traits.

Loci associated with height and disease resistance

We used the 241 455 ABH SNPs underlying the introgres-

sions contained within the nNILs for GWA on each of the

six disease resistance and morphophysiological traits

(Additional files 5 and 6). Multiple testing correction of the

GWA results was conducted with the false discovery rate

(FDR) method, from which SNP-trait associations with

FDR-corrected P-values below 0.05 were considered signifi-

cant (Additional files 5 and 6). GWA identified three QTL

for EHT, five for PHT, four for NLB resistance, and 17 for

SLB resistance (Table 3). No SNPs were significantly asso-

ciated with DTA or GLS. The quantile-quantile plots of the

actual versus the expected P-values from GWA on DTA

and GLS further indicated that the nNILs did not have suffi-

cient power to detect QTL for DTA and GLS (Additional file

5).

Table 1 Genotype and environment effects on flowering time, height and disease resistance traits from mixed models

Trait N

Proportion of total variance

H2 Variation relative to B73Genotype Env. GxE B[E] Error

DTA 5401 0.020 0.752 0.000 0.079 0.149 0.40 0.431
EHT 5398 0.138 0.294 0.010 0.171 0.387 0.68 4.334
PHT 5393 0.115 0.470 0.006 0.134 0.275 0.71 6.247
GLS 4829 0.132 0.474 0.079 0.079 0.237 0.64 0.173
NLB 4455 0.070 0.467 0.024 0.281 0.158 0.61 1.313
SLB 4333 0.385 0.051 0.026 0.205 0.333 0.82 0.341

N, total number of observations; Env., environment; GxE, interaction between genotype and environment; B[E], block nested within environ-
ment; H2, broad-sense heritability; trait variation relative to B73 was estimated as the standard deviation of the genotype BLUPs, with the
following units: days to anthesis (DTA); ear (EHT) and plant (PHT) height in cm; resistance to gray leaf spot (GLS) and southern lead blight
(SLB) on a 1 (most resistant) to 9 (most susceptible) scale; percent DLA for northern leaf blight (NLB).

Table 2 Pairwise Pearson correlations between genotype BLUPs
of flowering time, height and disease resistance traits

DTA SLB NLB GLS PHT EHT

�0.06* �0.07* �0.04ns �0.01ns �0.01ns

EHT �0.11** 0.04ns �0.26** 0.76** —
PHT �0.07* 0.05ns �0.25** — —
GLS 0.38** 0.26** — — —
NLB 0.23** — — — —

Pearson correlation coefficients are shown in each cell, with sig-
nificance denoted as: nsP > 0.05, *0.05 > P ≥ 0.0001, **P < 0.0001;
BLUP, best linear unbiased predictor; DTA, days to anthesis; EHT,
ear height; PHT, plant height; GLS, gray leaf spot; NLB, northern
leaf blight; SLB, southern leaf blight.
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Figure 1. Physical positions and donors of introgressions present in nested near-isogenic lines (nNILs).

Introgressions are ordered along the y-axis based on start site position, independent of the nNIL in which they were found, and colored by donor source.
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Approximately 40% of QTL in the nNILs (12/29) over-

lapped with QTL previously reported in the NAM popula-

tion (Poland et al., 2011; Peiffer et al., 2014). PHT QTL in

bins 4.10, 9.04 and 9.04�9.05, and an EHT QTL in bin 1.00

(Table 3) colocalized with NAM QTL for PHT and EHT (Peif-

fer et al., 2014). SLB resistance QTL in bins 3.02�3.04, 5.03,

6.06 and 7.00 (Table 3) coincided with NAM QTL for SLB

resistance (Kump et al., 2011). NAM QTL for NLB resistance

(Poland et al., 2011) colocalized with nNIL NLB resistance

QTL in bins 6.05, 8.05–8.06 and 9.01–9.02 (Table 3). Both

the nNILs here and the smaller nNIL panel used by Kolk-

man et al. (2019) identified QTL associated with NLB resis-

tance in bins 6.05 and 8.05. Differences in mapping

methods (single-marker association versus stepwise

regression), Setosphaeria turcica isolates (mixture of races

versus race 0) and environments (North Carolina versus

New York) may have led to the detection of distinct NLB

loci here and by Kolkman et al. (2019).

Diverse allelic variation at quantitative trait loci associated

with height and disease resistance

Although the nNILs did not have sufficient allelic replica-

tion (three nNILs per donor per site on average) for NAM

(Yu et al., 2008), we sought to test introgression donor

effects relative to the B73 allele at loci identified by GWA.

For each locus, we regressed the associated trait against

the 19 possible donor alleles. Donor effects ranged from

�1.6 to 0.8 for SLB resistance, which was scored on a 1

(most resistant) to 9 (most susceptible) scale (Figure 2).

NLB resistance donor effects ranged from �2.7% to 3.4%

DLA. Donor effects on EHT and PHT ranged from �20.5 to

3.9 cm and from �14.2 to 11.4 cm, respectively (Figure 2).

Although EHT and PHT were strongly correlated in the

nNILs (r = 0.8), only one EHT and one PHT colocalized on

chromosome 3 at 0.5–1.5 Mbp (Table 3). This shared QTL

may be pleiotropic, as demonstrated by the high positive

correlation between donor effects on EHT and on PHT

(r = 0.92, P < 0.0001). NLB and SLB resistance were posi-

tively phenotypically correlated (r = 0.23), but we did not

find any evidence of multiple disease resistance at the QTL

level.

DISCUSSION

The large population of 1270 nNILs is an important

resource for the maize genetics community. Here we pub-

licly provide data on six distinct phenotypes, as well as

raw sequencing and SNP data from GBS. The introgres-

sions present in the 896 genotyped nNILs not only span

the entire maize genome but are also derived from 18

diverse inbred lines, which were founders of the well-

established maize NAM population (Yu et al., 2008). The

diversity of the nNIL introgressions allows for the evalua-

tion of allelic series relative to B73, the recurrent parent of

both the nNILs and the NAM population (Yu et al., 2008),

and the inbred line that has been used as the maize refer-

ence genome for over a decade (Schnable et al., 2009; Chia

et al., 2012; Law et al., 2015; Jiao et al., 2017). For future

applications, researchers could use nNILs carrying intro-

gressions at loci of interest for QTL characterization, valida-

tion, fine mapping and allelic testing. The six traits

measured on the nNILs exhibited relatively high heritability

(0.4–0.8), indicating that the introgressions within the

nNILs contribute to phenotypic variation.

We have demonstrated that the nNILs have sufficient

allelic replication for GWA. We identified 29 QTL for

height and disease resistance, 12 of which had been pre-

viously mapped in the NAM population (Kump et al.,

2011; Poland et al., 2011; Peiffer et al., 2014). These results

indicate that the low number of introgressions (three on

average) and small proportion of non-B73 genome (ap-

proximately 2% of the genome) per nNIL can allow for the

evaluation of QTL with minimal confounding effects from

the genetic background. Differences in mapping methods

and genomic features may partially explain the relatively

high number of novel QTL detected (i.e. QTL detected

here but not in the NAM population). While we used sin-

gle marker regression for GWA and allelic analysis, previ-

ous NAM studies employed joint linkage mapping

approaches that modeled multiple markers with nested

effects by family (Kump et al., 2011; Poland et al., 2011;

Peiffer et al., 2014; Benson et al., 2015). Although the

introgression lengths (12.2 � 12.2 cM) and introgression

overlapping intervals (18.6 � 16.5 cM) in the nNILs are lar-

ger than the recombination breakpoints across the gen-

omes of the NAM recombinant inbred lines (0.9 � 1.3 cM;

Li et al., 2015), QTL confidence intervals in the nNILs

(4.0 � 6.8 cM) were comparable to those previously

described in the NAM population (6.5 � 4.7 cM; Kump

et al., 2011; Poland et al., 2011). Donor allele effects on

NLB resistance (�3 to 3) were similar in the nNILs and the

NAM (Poland et al., 2011). SLB resistance donor allele

effects were relatively larger in the nNILs (�1.6 to 0.8)

than in the NAM (�0.4 to 0.4).

EXPERIMENTAL PROCEDURES

Population development

We requested 1270 nNILs from the greater Syngenta AG (Basel,
Switzerland) panel, which had been derived from crosses between
18 diverse inbred lines and the recurrent inbred parent B73
(Gandhi et al., 2008), from CIMMYT. The nNILs had been back-
crossed for five generations (BC5), and Syngenta had previously
estimated an average of 5% donor genome per BC5 seed stock
(Gandhi et al., 2008). The BC5 nNILs were then self-pollinated for
four generations (BC5F4). The 1270 BC5F4 nNILs each contained
introgressions from one of the 18 donor lines. nNILs with intro-
gressions from the same donor were considered a subpopulation,
with each subpopulation comprising 50–108 BC5F4 nNILs
(Table 4). The introgression donors were of tropical, temperate
non-stiff stalk, and mixed origin, while B73 is a temperate stiff
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stalk line (Romay et al., 2013; Table 4). Seed for the 1270 nNILs
can be requested from CIMMYT for future studies.

Field design and inoculation

The panel was evaluated for GLS, NLB and SLB severity across
four separate year/field replication environments for each disease.
For each experiment, we used an augmented incomplete block
design, in which each subpopulation was grown separately with
25-plot blocks. nNIL plots were replicated once per environment
and randomized within the subpopulation. One plot of B73, the
recurrent parent, was randomized within each 25-plot block. The
NLB and SLB experiments were conducted at the Central Crops
Research Station in Clayton, NC. NLB was evaluated in 2015 and
2018 with one replication per year, and in 2016 with two replica-
tions. SLB was assessed in 2014 with two replications, and in 2015
and 2016 with one replication per year. GLS was screened in
Andrews, NC in 2014 with one replication, and at College Farm
Research Station in Blacksburg, VA in 2016 with two replications
and in 2017 with one replication.

Inoculum for the GLS (Blacksburg, VA only), NLB and SLB
experiments was prepared from mixtures of isolates of

Cercospora zeae-maydis, S. turcica (race 0, race 1, race 2,3 and
race 2,3,N) and Cochliobolus heterostrophus (including 2–16 Bm
and Hm540), respectively, as described by Sermons and Balint-
Kurti (2018) and Martins et al. (2019). The Andrews, NC site has
naturally high and consistent levels of C. zeae-maydis inoculum
present in soil crop residues, which allowed for evaluation of
GLS under natural infection (Benson et al., 2015; Lennon et al.,
2016; Sermons and Balint-Kurti, 2018; Martins et al., 2019).

Phenotyping

In all SLB experiments and in the 2015 NLB experiment, we took
observations on flowering time two�three times per week, and
estimated plot anthesis dates. EHT and PHT were measured in
each plot in all SLB experiments, and in the 2015 and 2018 NLB
experiments. Each plot was visually evaluated for disease severity
at two time points per experiment: GLS on July 28 and August 6
in 2014, August 9 and 19 in 2016, and August 9 and 25 in 2017;
NLB on July 13 and 22 in 2015, July 17 and 21 in 2016, and July
18 and 26, 2018; SLB on July 14 and 31 in 2014, July 10 and 25 in
2015, and July 11 and 20, 2016. GLS and SLB plots were scored
on a 1�9 scale, where 1 corresponds to most resistant and 9

Table 3 QTL significantly associated with resistance to NLB and SLB, and with EHT and PHT

QTL Chr. Physical position (bp) Bin(s) Effect size P-value
Number of nNILs with
introgressions at QTL NAM QTL colocalization

NLB1 6 122 704 858–124 071 097 6.05 �1.07 9 9 10�4 17 Poland et al. (2011)
NLB2 8 106 931 964–115 490 705 8.03–8.04 �1.17 2 9 10�4 18
NLB3 8 124 043 604–161 476 885 8.05–8.06 �0.47 8 9 10�3 58 Poland et al. (2011)
NLB4 9 8 145 673–12 433 407 9.01–9.02 0.59 3 9 10�3 44 Poland et al. (2011)
SLB1 3 6 383 526–28 243 869 3.02–3.04 �0.2 1 9 10�6 72 Kump et al. (2011)
SLB2 3 31 701 560–38 013 747 3.04 �0.19 1 9 10�3 35
SLB3 3 72 227 366 3.04 �0.39 6 9 10�4 9
SLB4 3 151 815 973–152 447 840 3.05 0.52 7 9 10�4 5
SLB5 3 218 139 425–224 230 787 3.09 0.18 2 9 10�3 34
SLB6 5 28 911 521–31 726 291 5.03 0.21 9 9 10�4 31 Kump et al. (2011)
SLB7 5 32 818 953–32 945 804 5.03 0.2 9 9 10�4 33
SLB8 5 34 841 144–40 164 346 5.03 0.18 2 9 10�3 34
SLB9 6 153 427 535–155 606 473 6.06 �0.19 2 9 10�4 47 Kump et al. (2011)
SLB10 7 1 395 966–2 868 330 7.00 �0.2 1 9 10�4 45 Kump et al. (2011)
SLB11 8 60 724 302–73 563 802 8.03 �0.21 1 9 10�3 27
SLB12 8 102 416 404–105 682 245 8.03 �0.23 2 9 10�3 22
SLB13 9 60 693 136–68 800 792 9.03 �0.36 3 9 10�4 12
SLB14 9 69 430 265–70 796 565 9.03 �0.37 2 9 10�5 16
SLB15 9 71 749 971–88 688 648 9.03 �0.44 6 9 10�4 7
SLB16 9 100 696 675 9.03 �0.38 3 9 10�4 11
SLB17 10 139 318 740–140 281 980 9.06 �0.23 1 9 10�3 24
EHT1 1 56 073 1.00 �9.36 2 9 10�4 3 Peiffer et al. (2014)
EHT2 3 472 473–1 2

05 491
3.00 �3.24 2 9 10�5 33

EHT3 7 55 319 100–59 929 944 7.02 �3.45 8 9 10�4 18
PHT1 3 472 473–1 457 941 3.00 �3.26 2 9 10�3 35
PHT2 4 238 089 470–238 092 172 4.10 3.74 1 9 10�3 30 Peiffer et al. (2014)
PHT3 9 102 115 269–106 003 663 9.04 6.87 8 9 10�5 13 Peiffer et al. (2014)
PHT4 9 106 480 828–119 380 527 9.04 3.78 3 9 10�4 37 Peiffer et al. (2014)
PHT5 9 120 343 929–130 365 828 9.04–9.05 3.11 4 9 10�3 34 Peiffer et al. (2014)

Physical positions are in AGPv4 coordinates; bins divide the maize genetic map into 100 approximately equal segments; effect sizes are in
the following units: SLB (scale of 1�9, from most resistant to most susceptible), NLB (% DLA), EHT and PHT (cm); QTL that colocalized with
QTL previously reported in the NAM population for the same trait are indicated by the corresponding NAM publication.
EHT, ear height; NAM, nesting association mapping; NLB, northern leaf blight; nNIL, nested near-isogenic line; PHT, plant height; QTL,
quantitative trait loci; SLB, southern leaf blight.
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denotes most susceptible (Kump et al., 2011; Wisser et al., 2011;
Benson et al., 2015; Sermons and Balint-Kurti, 2018). NLB plots
were scored for 0�100% DLA with 5% increments (Poland et al.,
2011; Sermons and Balint-Kurti, 2018). The two disease scores
were averaged for each plot that was scored twice (Lennon et al.,
2016). Five nNILs exhibited lesion-mimic mutant phenotypes
(CML333/B73 NIL-1002, CML333/B73 NIL-1007, Ki11/B73 NIL-1103,
Ki11/B73 NIL-1104, Ki3/B73 NIL-1258), and thus were not included
in further analyses on disease resistance.

Linear models and heritability

We used SAS software, Version 9.4 (SAS Institute Inc, 2011) to fit
linear mixed models for all traits measured in this study. For each
trait, a mixed model was fit using PROC MIXED with environment,
block[environment], genotype, and genotype-by-environment
(GxE) as random effects. Variance components were extracted
from each model and used to calculate broad-sense heritability
(H2) as

H2 ¼
r2G þ r2

GE

yh
þ r2e

ph

r2G
;

where r2G , r
2
GE , and r2e are the genotype, GxE and error variances,

respectively, and yh and ph are defined as

yh ¼ n
Pn

i¼1
1
yi

ph ¼ n
Pn

i¼1
1
pi
;

where n is the number of genotypes, and yi and pi are the number
of environments and plots for the ith genotype, respectively (Hol-
land, Nyquist and Cervantes-Martinez, 2003).

DNA extraction and sequencing

Three seeds per nNIL were planted in a greenhouse at the Cornell
University Kenneth Post Laboratory. Approximately 1 month after
germination, 25–50 mg of seedling leaf tissue was collected from
each nNIL. Genomic DNA was extracted from fresh leaf tissue
using the DNeasy Plant Mini Kit system (Qiagen, Valencia, CA,
USA). GBS (Elshire et al., 2011) was performed on 914 unique
nNIL DNA samples by BGI Americas (Cambridge, MA, USA) using
100-base pair paired-end sequencing with the HiSeq 4000 system
(Illumina, San Diego, CA, USA).

Genotyping-by-sequencing analysis

For proprietary reasons, the BGI team clipped the barcodes on the
raw read fastq files before delivering the data to us. In order to
use the TASSEL-GBS pipeline (Glaubitz et al., 2014) to call SNPs
on our nNIL panel, we modified the TASSEL 5 (Bradbury et al.,
2007) base code to bypass the requirement for barcodes (Addi-
tional file 7). In addition, the TASSEL-GBS pipeline (Glaubitz et al.,
2014) only accepts single-end reads. In order to meet the single-
end read requirement, we generated the reverse complement of
the second paired-end fastq file for each set of paired-end fastq
files with the FASTX-Toolkit (Hannon, 2010), and then merged the
two fastq files.

We made a GBS build from 4603 lines from the USA maize
inbred seed bank that were previously analyzed with GBS by the
Panzea Maize Diversity Project (Zhao, 2006). We accessed the Pan-
zea Maize Diversity Project GBS fastq files (NCBI BioProject acces-
sion #PRJNA200550) from the public NCBI Sequence Read

Archive (Leinonen, Sugawara and Shumway, 2011). The Panzea
Maize Diversity Project GBS fastq files were processed with the
GBS Discovery Pipeline in TASSEL 5 (Bradbury et al., 2007; Glaub-
itz et al., 2014) with the B73 reference genome 4.0 (NCBI BioPro-
ject accession #PRJNA10769), a k-mer length filter of 64 and a
minimum quality score of 20. The TASSEL GBS Discovery Pipeline
yielded a GBS database, which we then used to call SNPs on the
Panzea Maize Diversity Project and nNIL fastq files with the GBS
Production Pipeline in TASSEL 5 (Bradbury et al., 2007; Glaubitz
et al., 2014) with a k-mer length filter of 64 and a minimum quality
score of 20 for the Panzea Maize Diversity Project lines and 10 for
the nNILs. This resulted in 564 764 SNPs. We then imputed the
GBS SNPs using the FILLIN plugin (Swarts et al., 2014) in TASSEL
5 (Bradbury et al., 2007; Additional file 8).

Introgression calling

In order to determine introgression positions, we first used the
GenosToABH plugin in TASSEL 5 (Bradbury et al., 2007) to convert
SNPs from the nucleotide-based format (e.g. A, C, G, T, etc.) to a
parent-based format (A, B, H, N) for each subpopulation separately.
In the parent-based format, ‘A’ was assigned to SNPs that matched
the B73 allele, ‘B’ was assigned to SNPs that matched the non-B73
introgression donor of the subpopulation, ‘H’ was assigned to
heterozygous SNPs, and ‘N’ was assigned to missing sites. The
Panzea Maize Diversity Project (Zhao, 2006) previously GBS-se-
quenced several seed sources per NAM parent (35 B73 DNA sam-
ples and seven per non-B73 line). To call ABH genotypes on each
subpopulation with the TASSEL 5 GenosToABH plugin, we utilized
all samples of B73 and of the respective non-B73 parent.

We then imputed ABH genotypes with the ABHgenotypeR
package (Reuscher and Furuta, 2016) in R version 3.3.1 (R Core
Team, 2019). Heterozygous and missing genotypes accounted
for a small proportion of all ABH sites (< 1%), and were usually
adjacent to or within long stretches of B sites. As such, we
attributed H and N calls to low site coverage and converted
them to B genotypes. Next, our script converted A sites within
5 Mbp of a B site to B, as A genotypes found within stretches
of B genotypes were likely due to sequencing error. To remove
small sequencing artifacts, we converted short stretches of < 50
consecutive B sites to A. Similar to the findings of Kolkman
et al. (2019) in a parallel panel of nNILs, we observed a large
sequencing artifact at the end of chromosome 5 (approximately
210–224 Mbp). Eighteen nNILs had a single introgression in the
chromosome 5 artifact region and were thus not included in
further analysis. For the remaining 896 nNILs, introgressions
within the chromosome 5 artifact region were removed before
further analysis. This resulted in 241 455 SNPs that were poly-
morphic between B73 and at least one donor. We used the
GenomicRanges R package (Aboyoun et al., 2013) to find over-
lapping regions between introgressions in different nNILs.

We sought to compare introgression lengths and QTL confi-
dence intervals found in the nNILs with recombination breakpoints
and QTL confidence intervals from the NAM population, which
have largely been reported as genetic distances (cM). As such, we
converted the physical positions of the introgressions in the nNILs
to genetic positions using a genetic map of 7386 SNPs scored on
the NAM population (Olukolu et al., 2014; Additional file 4).

Genome-wide association

For GWA, the 241 455 SNPs described above were converted to
numerical genotypes, where 0 = B73 allele and 1 = non-B73 allele.
We used the generalized linear model (GLM) plugin in TASSEL 5
(Bradbury et al., 2007) for single marker regression on each trait.
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Briefly, a GLM was fit for every trait-SNP pair, where the trait was
the response and the SNP was a fixed effect.

For multiple testing correction, we extracted P-values from the
TASSEL GLM output, and used the FDR method to adjust the
P-values with the p.adjust function in R version 3.3.1 (R Core
Team, 2019). FDR tests were conducted for each trait separately.
FDR-adjusted P-values less than 0.05 were considered significant.
Adjacent significant SNPs were considered to be part of the same
QTL, and QTL start and end positions were determined by the left-
most and rightmost SNPs, respectively.

Quantitative trait loci allelic testing

Single-nucleotide polymorphisms with a numerical genotype of 0
were coded as having a B73 allele. For each nNIL, SNPs with a
numerical genotype of 1 were coded as having the allele of the
nNIL introgression donor. This resulted in 19 possible alleles at
any given SNP. SNPs underlying each QTL were concatenated.
For each QTL, a linear model was fit with the lm function in R ver-
sion 3.3.1 (16), with the QTL-associated trait as the response and
allele as a fixed effect.

Figure 2. Introgression donor allele effects on disease resistance and height at significantly associated quantitative trait loci (QTL).

The bin location of each QTL is noted in parentheses next to the respective QTL. Bins divide the maize genetic map into 100 approximately equal segments. For

each QTL (rows), introgression donor allele effect estimates (columns) on the trait associated with the QTL are displayed. Donor effects significantly (P < 0.05)

associated with the trait are colored with a heat map, scaled with blue as the minimum and red as the maximum. Significantly associated (P < 0.05) donor

effects are outlined in black. Donor effects that could not evaluated (NA) are black. Allele effects are in the following units: gray leaf spot (GLS) and southern leaf

blight (SLB; scale of 1 to 9, from most resistant to most susceptible); northern leaf blight (NLB; % DLA); ear height (EHT) and plant height (PHT; cm).
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