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A B S T R A C T   

Streamflow forecasts are essential for water resources management. Although there are many methods for 
forecasting streamflow, real-time forecasts remain challenging. This study evaluates streamflow forecasts using a 
process-based model (Soil and Water Assessment Tool-Variable Source Area model-SWAT-VSA), a stochastic 
model (Artificial Neural Network -ANN), an Auto-Regressive Moving-Average (ARMA) model, and a Bayesian 
ensemble model that utilizes the SWAT-VSA, ANN, and ARMA results. Streamflow is forecast from 1 to 8 d, 
forced with Quantitative Precipitation Forecasts from the US National Weather Service. Of the individual models, 
SWAT-VSA and the ANN provide better predictions of total streamflow (NSE 0.60–0.70) and peak flow, but 
underpredicted low flows. During the forecast period the ANN had the highest predictive power (NSE 0.44–0.64), 
however all three models underpredicted peak flow. The Bayesian ensemble forecast streamflow with the most 
skill for all forecast lead times (NSE 0.49–0.67) and provided a quantification of prediction uncertainty.   

1. Introduction 

Streamflow forecasting is essential for hydrologists, water resource 
planners, water system managers, emergency response providers, and 
policymakers to respond to ever-increasing water demand and greater 
variability. However, since streamflow is largely driven by stochastic 
processes (rainfall, temperature, seasonal variability) and complex, 
nonlinear watershed responses (Shao et al., 2009; Londhe and Charhate, 
2010), it is challenging to precisely forecast streamflow, particularly as 
forecast lead times increase. Challenges to accurate streamflow fore
casting as outlined by Pagano et al. (2014) include automating real-time 
data assimilation for model forcing, that rainfall-runoff models are 
simplifications of real-world processes, and that precipitation forecasts 
are inherently uncertain. 

There are two broad rainfall-runoff modeling approaches used to 
forecast streamflow: physical/process-based models and empirical/sta
tistical models (Masselot et al., 2016). Process-based models attempt to 
incorporate the relevant physical laws controlling watershed response 
and streamflow generation, generally requiring substantial effort to 

build, parameterize, and calibrate, and often utilize an extensive amount 
of observed data. However, process-based models can provide the more 
reliable streamflow forecast compared to other forecasting techniques 
(Zealand et al., 1999). For instance, Demirel et al. (2009) compared the 
performance of a process-based model, the Soil and Water Assessment 
Tool (SWAT, Arnold et al., 1998) and an empirical artificial neural 
network (ANN) model in forecasting streamflow and found that, while 
ANNs were better at forecasting peak flow, SWAT performed better 
overall. Similarly, Hapuarachchi et al. (2011) found that process-based 
models provide more credible results in predicting flash flooding than 
empirical models. While process-based models can often forecast 
streamflow with adequate skill, there can also be tremendous uncer
tainty in the model predictions because of the uncertainty in input data, 
model structure, and the numerical techniques employed. Unfortu
nately, this uncertainty is often not included quantitatively in deter
ministic forecasts but is often incorporated into the final forecast 
product qualitatively using post processing tools, and forecaster 
experience. 

Empirical models attempt to reproduce the relationships between 

* Corresponding author. 
E-mail address: zeaston@vt.edu (Z.M. Easton).  

Contents lists available at ScienceDirect 

Environmental Modelling and Software 

journal homepage: http://www.elsevier.com/locate/envsoft 

https://doi.org/10.1016/j.envsoft.2020.104669 
Received 21 August 2019; Received in revised form 12 February 2020; Accepted 14 February 2020   

mailto:zeaston@vt.edu
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2020.104669
https://doi.org/10.1016/j.envsoft.2020.104669
https://doi.org/10.1016/j.envsoft.2020.104669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2020.104669&domain=pdf


Environmental Modelling and Software 126 (2020) 104669

2

inputs (e.g., precipitation) and outputs (streamflow) with no assumption 
of internal process understanding. Empirical models are often more 
easily developed and can provide reliable forecasts when the models are 
trained on robust, representative data. Several different types of 
empirical models have been used to forecast streamflow: including time 
series models such as the Auto Regressive Moving Average (ARMA) 
procedure (Babu and Reddy, 2014; Mohammad, 2015), ANNs (Khashei 
and Bijari, 2010; Kalteh, 2013), functional regressions (Masselot et al., 
2016), wavelet support vectors (Kisi and Cimen, 2011), or decision trees 
(Bhattacharya and Solomatine, 2005). 

Time series models, also known as auto-regressive models, can 
approximate complex non-linear hydrologic processes by using the 
relationship between observed values of streamflow and precipitation 
(Shao et al., 2009). Auto-regressive models assume that the present 
condition depends on the past conditions, often adjusted by an error 
function and a seasonality function (Yurekli et al., 2005). Time series 
models require a large amount of observed data to train and test the 
model (Yurekli et al., 2005; Khashei et al., 2009) and often perform 
poorly when applied outside of the data range for which they were 
developed (Guo et al., 2011). However, there have been many successful 
applications of auto-regressive models used in hydrologic forecasting. 
For instance, Toth et al. (2000) showed that using an ARMA model for 
real-time flood forecasting provided better predictive ability than simple 
rainfall-runoff models, emphasizing that empirical models can often 
outperform overly simplistic process based models. Collischonn et al. 
(2007) used an ARMA model to forecast medium-range reservoir inflow 
based on quantitative precipitation forecasts (QPF) and showed that 
prediction errors of an ARMA model could be reduced using improved 
rainfall forecasts. 

Another type of empirical model commonly used to forecast 
streamflow is an ANN. ANNs are non-linear, data-driven, self-adaptive 
type models that can learn and generalize trends based on functional 
relationships in the data (Coulibaly et al., 2000; Zhang et al., 2001). The 
ANN method has been applied in many different sectors, including 
traffic control (Srinivasan et al., 2006), image processing (Kulkarni, 
1994), stock forecasting (Guresen et al., 2011), handwriting analysis 
(Nasrabadi, 2007), and language recognition (Graves et al., 2013). In the 
water resources and environmental engineering fields, ANNs have been 
employed for rainfall forecasting (French et al., 1992; Luk et al., 2001), 
rainfall-runoff modeling (Shamseldin, 1997; Tokar and Johnson, 1999), 
reservoir operation (Jain et al., 1999; Rani and Moreira, 2010), and 
water quality forecasting (Palani et al., 2008; Singh et al., 2009). 
Although ANNs have been widely used in water resource fields there 
remain challenges, including the initial effort to build the model, 
computational power to run the model, and data required to train ANNs. 
Additionally, it can be difficult to identify important input variables, 
parameterize the number of ANN layers, and identify which transfer 
functions best describe the system (Zhang et al., 2001). One of the major 
shortcomings with ANNs is that they cannot work with major changes to 
the system, they must be re-trained to the new system state after major 
disturbances (Sudheer et al., 2003). 

One other streamflow forecasting technique that is gaining popu
larity leverages the skill from multiple models to create an ensemble 
streamflow forecast. One significant advantage of the multiple model 
ensemble (MME) approach is the ability to evaluate model uncertainty 
(Weigel et al., 2008). Cloke and Pappenberger (2009) provide a review 
of studies employing MME approaches to exploit the diversity of skillful 
predictions from different models for river flood forecasting and 
enumerate the challenges related to the ensemble approach, such as 
computing power, resolution of input data, quantification and analysis 
pf total uncertainty, communicating uncertainty, and probabilistic 
forecasting. One such MME approach is the Bayesian Generalized 
Multilevel Modeling (BGMM) method, which integrates multiple prob
ability distributions by using prior knowledge about parameter distri
butions, allows predictor variables to be linear or nonlinear, and 
incorporates information from all predictors (models). The method also 

offers a more complete quantification of uncertainty rather than simply 
attempting to improve forecasting skill (Wagena et al., 2019). 

This study compares the performance of a process-based model, 
SWAT-VSA, with a modified ARMA time series model, an ANN model, 
and a BGMM application in a real-time forecast of streamflow. We 
applied each model in the US Department of Agriculture WE-38 exper
imental watershed in east-central Pennsylvania, US, and forecast 
streamflow from 1 to 8 days into the future using a hindcast procedure. 
Precipitation data from the US National Weather Service QPF was used 
to force each model for each forecast day. The BGMM was developed by 
ensembling the outputs from the SWAT-VSA, ARMA, and ANN models 
for each forecast day. 

2. Materials and methods 

2.1. Watershed description 

The WE-38 experimental watershed is a sub-watershed of the 
Mahantango Creek watershed in east-central Pennsylvania, which 
drains to the Susquehanna River (Fig. 1). The watershed has an area of 
7.3 km2 and has been extensively studied as a United States Department 
of Agriculture Agricultural Research Service (USDA-ARS) experimental 
watershed since 1966 and contains a wealth of data to evaluate model 
performance. The watershed is characterized by complex terrain, with 
multiple runoff generating mechanisms, several crop types, and variable 
climate (snow dominated winters, humid temperate summers). Runoff 
generation and shallow subsurface flow through the vadose are 
controlled by highly fractured, shallow bedrock layers and runoff occurs 
primarily on variable saturated areas underlain by low permeability 
(fragipan) layers (Bryant et al., 2011). As part of the Appalachian Valley 
and Ridge Province, the watershed is underlain by fine siltstone, sup
porting soils prone to variable source area (VSA) runoff generation. The 
uplands feature well-drained soils with high infiltration rates while the 
lower landscape positions are more poorly drained soil with features 
that seasonally perch water and result in runoff generation by saturation 
excess processes (Lu et al., 2015). This combination of factors make 
WE38 an ideal location to test the suitability of models to forecast hy
drologic responses across a highly variable watershed. The climate of 
WE-38 is temperate humid, with a mean temperature of 10.1OC, mean 
precipitation of 1080 mm yr� 1, and mean streamflow equal to 46% of 
precipitation (Buda et al., 2011; Lu et al., 2015). Elevation ranges from 
220 to 510 m and the land use of the watershed consists of agriculture 
(44.5%), forest (33.8%), and pasture (3.5%) (Collick et al., 2015). 

2.2. SWAT model description 

The SWAT model is a process-based, semi-distributed watershed 
scale model developed to assess the impact of land management prac
tices on water availability and water quality (Arnold et al., 1998). SWAT 
requires meteorological (precipitation, min and max temperature, solar 
radiation, wind speed, and humidity), soil, land cover, and land man
agement data to simulate surface and subsurface hydrology and various 
chemical, nutrient, and sediment fluxes. SWAT-VSA re-conceptualizes 
SWAT to account for areas of the landscape subject to variable satura
tion dynamics. In SWAT-VSA the area of each hydrological Response 
Unit (HRU) is defined by the coincidence of land use and wetness index 
class, which is determined from a Topographic Index (TI), to differen
tiate areas of the landscape with respect to their moisture storage and 
saturation/runoff potential (Easton et al., 2008, 2011). SWAT-VSA was 
selected because it has been shown to provide better predictions of soil 
moisture, runoff generation, and nutrient export than the standard 
SWAT model in WE-38 and similar watersheds (Easton et al., 2008; 
Collick et al., 2015; Wagena et al., 2018). It is also capable of predicting 
these responses at a sub-field levels, which is important information for 
land managers and agricultural producers seeking to reduce the water 
quality impacts of human activities. 

M.B. Wagena et al.                                                                                                                                                                                                                             



Environmental Modelling and Software 126 (2020) 104669

3

2.3. Watershed model initialization and input data 

SWAT-VSA was initialized with a 10-m resolution digital elevation 
model resampled from 0.5 m LiDAR data obtained from Canaan Valley 
Institute (2007) using ArcSWAT 2012 and TopoSWAT (available from 
https://dx.doi.org/10.6084/m9.figshare.1342823) developed by Fuka 
et al. (2016). TopoSWAT automates the SWAT-VSA initialization pro
cess by creating the TI data and then overlaying the soil and TI data to 
develop the required database for model initialization. Soils data uti
lized by Topo SWAT are based on the Food and Agriculture Organization 
(FAO) soils database (FAO, 2007). This methodology downscales the 
FAO soils data, distributes the soil properties across TI classes, and has 
been shown to provide a more accurate representation of soil properties 
than SSURGO (Fuka et al. (2016). The land use characterization of 
WE-38 was derived from previous studies (Gburek et al., 2002, 2006; 
Needelman et al., 2004; Veith et al., 2008; Buda et al., 2009, 2013). The 
model was initialized using measured precipitation, temperature (min 
and max), relative humidity, wind speed and solar radiation from 1987 
to 2010 from land-based stations in WE-38 (Wagena et al., 2018). 

2.4. Quantitative precipitation forecasts (QPFs) 

The QPF is a forecast product developed by the US National Weather 
Service, Weather Prediction Center. The QPF is the expected amount of 
accumulated liquid precipitation, defined as the expected areal average 
on a 20 � 20 km grid in a given amount of time. The output is then post 
processed and downscaled to 5 km in final form to send to end users. The 
QPF data are generated in UTC, not in local time. The QPF data are 
adjusted for topographic effect. Additionally, forecasters adjust QPF 
data based on their experience to minimize the uncertainty of the 
forecast. It is also important to note that QPF data are provided in 6-hr 
accumulations so sub-6-hr intensity variability is not provided. 

2.5. Model calibration and evaluation 

The SWAT-VSA model was calibrated using SWAT-CUP (SWAT 
Calibration and Uncertainty Procedure) (Arnold et al., 2012) and SUFI2 
(Sequential Uncertainty Fitting) as optimization algorithms with the 
objective function, which was set to the Nash Sutcliffe Efficiency coef
ficient (NSE). The SWAT-VSA model performance was evaluated based 
on three metrics: percent bias (PBIAS), root mean square error (RMSE), 
and the NSE. These three metrics were assessed using historical obser
vations from two time periods: 1989 to 1998 for model calibration and 
1999 to 2007 for model evaluation. The NSE is an indicator of the 
predictive power of the model and ranges from -∞ to 1, where 1 is a 
perfect fit between modeled and observed data, and an NSE of 

0 indicates that the observed mean provides a better estimate of the data 
then the model (Krause et al., 2005). The PBIAS is a statistical metric 
that provides an estimate of overprediction (PBIAS > 0) or under
prediction (PBIAS< 0) of the model, while RMSE is a measure of the 
spread of observed values about the predicted values. 

2.6. SWAT-VSA streamflow forecast 

Quantitative precipitation forecasts for 1- to 8-day lead times were 
used as input to force the SWAT-VSA model in a forecast mode. Since 
QPF only contains precipitation data, the remainder of the required 
weather variables, such as relative humidity, solar radiation, wind 
speed, and temperature, were simulated using the SWAT weather 
generator (Sharpley and Williams, 1990). The daily values for temper
ature (maximum and minimum) and solar radiation were generated 
using a weekly stationary process described by Matalas (1967), relative 
humidity was generated using a triangular distribution from monthly 
averages (Sharpley and Williams, 1990), and wind speed was generated 
using a modified exponential equation (Sharpley and Williams, 1990). 
Two distinct sets of meteorological data were used in this study. The first 
was historical data used for model calibration and evaluation. The sec
ond, referred to as archived forecasts, was used to evaluate the model’s 
capability to forecast without waiting months to collect future QPF 
forecast data. After model calibration and evaluation using the historic 
data the QPF data set prepared for the hindcast procedure was used to 
initialize unique SWAT-VSA model runs for each day in the hindcast 
period (January 1, 2017 to February 28, 2018; 444 days), recreating the 
live forecast procedure that the model was to perform. Prior to using the 
QPF forecast data to force the SWAT-VSA model, the data were con
verted from UTC to local time. During conversion of QPF data from UTC 
to local time, there was missing data of 7–8 h (depending on the forecast 
day) for the first forecast day. In order to ensure that this bias was 
minimized and did not propagate to the remaining forecasts, the missing 
data were replaced with observed precipitation data. In cases where no 
observed data were available, other sources of precipitation data such as 
satellite or gridded precipitation data sources (e.g., CFSR data) could be 
used to fill missing data. Each unique model run was forced with 12 
years of observed meteorological data, with the last eight days of the run 
defined by the corresponding forecast day (i.e., 24 h, 48 h, 72 h, up to 
192 h) from the QPF data. The remaining input was defined by the 
meteorological data prepared for calibration/evaluation, just as it would 
be in a live forecast. 

The last eight days of each SWAT-VSA daily watershed discharge 
time series output, representing the hydrologic forecasts, was saved and 
separated into eight unique time series by forecast level. Thus, the 
streamflow hindcast datasets were generated as vectors of data points, 

Figure 1. Location of WE-38 watershed in Pennsylvania, USA, and land cover ortho-imagery for 2015 (a) and digital elevation model (b) showing the location of the 
weir and precipitation gauges. 
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Xij (one vector for each of the eight QPF lead times), where Xij is the 
forecast of streamflow generated by model run i (1-y) for a specific lead 
time of the QPF forecast (1–8 days), j; iþ j is equal to the day number 
within the hindcast period plus one (1-yþ1). For example, the 24-hr 
archived forecasts vector is expressed as ½X1;1; X2;1; X3;1; …; Xy;1�, and 
the 72-hr archived forecasts vector as ½X1;1; X1;2; X1;3; X2;3; X3;3; …;

Xy� 2;3�. This procedure produced time series for all eight hindcast days 
that could be directly compared to measured volumetric flow at the 
watershed outlet. 

2.7. Time series models including exogenous covariates 

ARMA models typically consider the previous condition data (lag) 
and some error term to ‘forecast’ future conditions (Babu and Reddy, 
2014), as is commonly used in reservoir forecasting. However, given the 
stochastic component of rainfall and its influence on streamflow gen
eration, we modify the standard ARMA model form to include exoge
nous covariates, specifically precipitation. The general ARMA time 
series model is described by eq. (1): 

yt ¼ ∅1yt� 1 þ ∅2yt� 2 þ…þ ∅pyt� p þ β’ Xt þ at � θ1at� 1 � θ2at� 2 � …

� θqat� q

(1) 

Fitting eq. (1) for the historical ARMA time series results in: 

yt ¼ ∅1yt� 1 þ ∅2yt� 2 þ ∅3yt� 3 þ β’ Xt þ at � θ1at� 1 � θ2at� 2 � θ3at� 3

� θ4at� 4

(2) 

The general ARMA forecast equation: 

ytþm ¼ ∅1yt� 1þm þ ∅2yt� 2þm þ ∅pyt� 3þm þ β’ Xt þ atþm � θ1at� 1þm

� θ2at� 2þm � θqat� 3þm � θqat� 4þm (3) 

The fitted ARMA forecast equation for lead time, one day (m ¼ 1 
day): 

ytþ1 ¼ ∅1yt þ ∅2yt� 1 þ ∅pyt� 2 þ β’ Xt þ atþ1 � θ1at � θ2at� 1 � θqat� 2

� θqat� 3

(4)  

Where yt is the predicted streamflow (m3/s) at time, t (d); yt� 1 and yt� p 
are previous data values for a given time t-1 and t-p: at is the error term 
at time, t; at� 1 and at� q are previous error terms for time t-1 and t-q; ∅1;

∅t� p; θ1; and θt� q are parameters to be fitted using observed data, p, and 
q are the order of the autoregressive and moving average components, 
respectively. Xt is a row vector containing the values of precipitation 
covariates at time t, β’ is a column vector containing the coefficients 
related to those covariates, e.g., precipitation and m is the forecast lead 
time (d). The covariate is precipitation, which is included to enhance the 
forecast ability of ARMA time series model. 

ARMA time series models have three components: the autoregressive 
(AR), the moving average (MA) components, and the exogenous co
variate. To fit the regression, the observed streamflow dataset was split 
into two datasets, which corresponded to the SWAT-VSA calibration and 
evaluation periods. Prior to the fitting of the ARMA model, stationarity 
of the observed streamflow data was checked using the Augmented 
Dickey-Fuller method (Cheung and Lai, 1995), and the trend and sea
sonality of the streamflow data were checked using the decomposition 
method in R by checking for increasing or decreasing values in the time 
series for trend and by checking for patterns that repeat seasonally. All 
were found to be acceptable. 

The ARMA model with exogenous covariates was first fit to the 
calibration dataset from 1989 to 1998 using eq. (1). During fitting of the 
ARMA model, the time series model orders (p, q) were derived from the 
autocorrelation functions (ACF) and partial autocorrelation functions 

(PACF) by plotting ACF and PACF and checking whether there were 
significant autocorrelations with time lags in the flow data time series 
using R. The ACF is the linear dependence of a variable with itself at two 
points in time and is useful in determining whether a time series is 
stationary. The PACF is the autocorrelation between variables after 
removing linear dependence (Berryman & Turchin, 2001). After fitting 
the model using the calibration dataset, the best model was selected by 
checking the ACF and PACF residuals of the fitted model and deter
mining whether the residuals of fitted model were normally distributed 
using Shapiro-Wilk test and quantile-quantile (Q-Q) plot. The ARMA 
model performance was then evaluated using separate streamflow and 
precipitation datasets from 1999 to 2007 period. Finally, the fitted 
ARMA time series model with the QPF forecast data as covariates (eq. 
(3)) was used to forecast streamflow for 1- to 8-day lead times for the 
01/01/2017 through 02/28/2018 forecast period. Eight time series of 
forecast streamflow data, one for each forecast day, were extracted and 
compared with the observed streamflow data. 

2.8. Artificial neural networks (ANNs) 

The ANN model developed in this study was a deep feed forward 
neural network composed of an input layer, hidden layers, and an output 
layer (Schmidhuber, 2015). Layers are made up of nodes called neurons, 
which produce real-valued activations from a number of weighed con
nections to neurons from the previous layer (Schmidhuber, 2015). The 
first layer of an ANN model is made up of input neurons, which hold the 
value of the independent (predictor) variable, one variable per node 
(Fig. 2). This process is repeated through all layers and nodes, and a final 
computation is done to calculate the values for the dependent (predic
tion) variables, constituting the output layer (Schmidhuber, 2015). 
Training the ANN model involved incrementally adjusting the weights 
(eq. (5)) assigned to each connection (neuron) between nodes to opti
mize a loss function. The backpropagation algorithm implemented in 
this study (eq. (6)) is a comparatively fast and efficient training algo
rithm and currently very common among modern ANN code libraries 
(LeCun et al., 2015). 

Fj ¼
X

wji Xi (5)  

Output¼ f
�
Fj
�

(6)  

Where Fj is the weighted sum of inputs, w are the weights, x are the 
inputs, and f is the activation function, j and i are indices for weights 
that links inputs, hidden and output layers. The most critical inputs to 
train the ANN were found to be the lag streamflow and observed 

Fig. 2. Typical structure of an artificial neural network, X (inputs), and 
W (weights). 
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precipitation to train the networks. The input variables were selected by 
a trial and error method from a combination of different input variables 
(e.g., flow and precipitation) until weights converge by increasing the 
number of iterations and changing the transfer functions, after which 
performance was evaluated by comparing the fitted ANN output to 
observed streamflow. The number of hidden layers (four) was iteratively 
determined based on the performance of fitted ANN output. To imple
ment the forecast in the ANN, a similar procedure to SWAT-VSA fore
casting was developed, with the additional variable of one-day lag 
streamflow and precipitation from QPF used as input to the fitted 
network. The forecasted streamflow for the eight-day forecast time se
ries was compared with the observed data to evaluate the performance 
of the ANNs. 

2.9. Bayesian generalized (non-) linear multilevel models (BGMM) 

The BGMM procedure, a statistical post-processing method, was used 
to ensemble the streamflow forecasts of the three models for each 
forecast period. The BGMM was fitted using the Stan Package in R 
(Buerkner, 2016; Carpenter et al., 2016; Wagena et al., 2019). Model 
predictions of streamflow for each forecast day from SWAT-VSA, ANN, 
and ARMA were used as BGMM input. The BGMM predicts a response, y;
using a combination of predictors (three model outputs) transformed by 
an inverse link function, assuming a certain distribution, D using eqs. (7) 
and (8). 

yi � Dðf ðηiÞ; θÞ (7)  

η¼ βX þ Zv (8)  

where yi is the response at time i, obtained through the linear combi
nation of η of predictors transformed by inverse function, f, and 
assuming a certain distribution, D. β and u are fitted coefficients at the 
population level and group level, respectively, and X and Z are the 
corresponding design matrices. The model parameters β, u, and θ were 
estimated using the Hamiltonian Monte Carlo-NUTS algorithm (Buerk
ner, 2016) by defining the prior distributions and X (or X, Y, and Z, 
respectively). The weights placed on each of the model predictions were 
obtained by summing the absolute value of the fitted coefficient values, 
β; and then dividing each coefficient by the sum of the absolute value of 
the coefficients obtained during the training period, eq (9): 

WeightsðiÞ¼
jðβiÞjP

ijðβÞj
(9)  

where the sum of all weights across i is equal to one, and coefficient, β are 
fitted absolute coefficient values of each predictor. 

Finally, to determine if the models were able to maintain a compo
nent mass balance, we compared estimates of baseflow and runoff from 
each model against measured baseflow and runoff in the watershed. To 
separate baseflow and runoff for the ARMA, ANN, BGMM, and measured 
data we employed a simple signal filter (Luo et al., 2012), and for 
SWAT-VSA we used the model predictions of baseflow and runoff 
directly from the model. 

3. Results 

3.1. Historical model performance assessment 

According to performance criteria recommended by Moriasi et al. 
(2007, 2015), a model simulation can be judged as satisfactory if NSE >
0.5 and PBIAS � 25% for streamflow. Based on these criteria, the results 
indicate that all three models predicted the observed flow well or 
moderately well during the calibration and evaluation periods (Table 1), 
with a low PBIAS and good NSE and RMSE performance metrics. All 
models slightly over-predicted the overall streamflow mass balance 
during calibration and evaluation periods as indicated by the PBIAS 
metric (Table 1), although peak flows were slightly underestimated 
(Fig. 3). 

Fig. 3 shows observed and predicted daily streamflow for each model 
during the calibration and evaluation periods. All models simulated the 
daily low flows moderately well during both periods (Table 1, Fig. 3). 
Overall, SWAT-VSA and the ANN model provided the most accurate 
prediction of daily streamflow, with NSE of 0.60 or greater during both 
the training and testing periods (Table 1). All models tended to under- 
predict peak flows during both the training and testing periods, 
although less so for the ANN (Fig. 3). For baseflow, the ARMA model 
performed best, followed by the SWAT-VSA and ANN models (Fig. 3). 

3.2. Forecast performance evaluation 

The short-term streamflow forecasts for the three models were 
compared to measured data to assess the forecast ability of the models. 
The forecast results show all models were generally able to forecast 
streamflow well or moderately well during most lead times (Table 2, 
Figs. 4–7). As would be expected, all models exhibited better predictive 
performance during shorter lead times (24–72 h) compared to longer 
times (Table 2). All individual models generally underpredicted 
streamflow during all lead times and exhibited increasing prediction 
bias at greater lead times. The BGMM overpredicted during all lead time 
periods except during 72–120hr forecast periods when it underpredicted 

Table 1 
Percent bias (PBIAS), Root mean square error (RMSE) in m3/s, and Nash Sutcliffe Efficiency coefficient (NSE) values for daily model calibration, and evaluation periods 
for WE38 watershed.  

Response ARMA SWAT-VSA ANN 

calibration evaluation calibration evaluation calibration evaluation 

PBIAS 0.90 7.70 5.60 6.90 0.40 3.30 
RMSE 0.21 0.18 0.20 0.11 0.17 0.12 
NSE 0.40 0.35 0.60 0.70 0.60 0.65  

Fig. 3. Daily streamflow time series plot during the training and testing periods 
for SWAT-VSA (a, b), the ANN (c, d), and the ARMA (e, f) models. 
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streamflow. The BGMM consistently exhibited the greatest NSE across 
all forecast lead times although the ANN produced similar forecast 
results. 

Fig. 4 compares the streamflow forecast by SWAT-VSA to the 
observed streamflow for each forecast period. SWAT-VSA closely 
captured the trend of daily forecasted streamflow but tended to miss 
some peak flow events, particularly during the 120–192hr lead-times 
(Fig. 4). SWAT-VSA performed better in capturing peaks during the 
24–96hr lead times, although there was still a tendency to underpredict 
high flows. While high flows were slightly underpredicted, the timing of 
events was well captured (Fig. 4). However, as indicated by Fig. 8, 

SWAT-VSA correctly partitioned total streamflow between baseflow and 
runoff fractions, both during the calibration and evaluation and, for the 
most part, for the forecast period. The notable exception was for the 
120–192hr forecasts, where SWAT-VSA underpredicted runoff (also 
corroborated in Fig. 4 and Table 2). The majority of this underprediction 
is due to the bias in QPF forecast precipitation falling well below the 
observed precipitation during the 120–192 h periods (Fig. 9). 

The ANN model forecasted streamflow well across all lead times 
(Fig. 5). The ANN performed well in predicting both base and peak 
streamflow and the trend of the observed streamflow across all lead 
times, although there was a slight tendency to under-predict peak flow 

Table 2 
Nash Sutcliffe Efficiency coefficient (NSE), Percent Bias (PBIAS), and Root Mean Square Error (RMSE) in m3/s values for hourly forecast periods for WE38 watershed.  

Time (hr) SWAT-VSA ARMA ANN BGMM 

NSE Pbias RMSE NSE Pbias RMSE NSE Pbias RMSE NSE Pbias RMSE 

24 0.42 � 13.20 0.11 0.49 � 3.80 0.11 0.64 � 0.90 0.09 0.67 2.60 0.09 
48 0.44 � 8.20 0.11 0.49 � 4.10 0.11 0.60 � 3.80 0.09 0.63 4.50 0.09 
72 0.39 � 1.90 0.12 0.48 � 3.80 0.11 0.54 2.40 0.10 0.59 � 1.40 0.10 
96 0.27 � 8.20 0.13 0.46 � 4.60 0.11 0.55 � 4.80 0.10 0.56 � 0.20 0.10 
120 0.21 � 13.90 0.13 0.45 � 4.40 0.11 0.44 � 4.10 0.11 0.49 � 1.90 0.11 
144 0.21 � 20.70 0.13 0.49 � 4.80 0.11 0.58 � 8.90 0.10 0.60 3.00 0.09 
168 0.28 � 20.40 0.13 0.50 � 4.90 0.10 0.60 � 8.80 0.09 0.62 4.10 0.09 
192 0.25 � 29.00 0.13 0.52 � 5.50 0.10 0.56 � 9.10 0.10 0.59 8.10 0.09  

Fig. 4. Performance of the SWAT-VSA model for 24hr (a), 48hr (b), 72hr(c), 
96hr (d), 120hr (e), 144hr (f), 168hr (g), and 192hr (h) streamflow forecasts. 

Fig. 5. Performance of the ANN model for 24hr (a), 48hr (b), 72hr(c), 96hr (d), 
120hr (e), 144hr (f), 168hr (g), and 192hr (h) streamflow forecasts. 

Fig. 6. Performance of the ARMA time series for 24hr (a), 48hr (b), 72hr(c), 
96hr (d), 120hr (e), 144hr (f), 168hr (g), and 192hr (h) streamflow forecasts. 

Fig. 7. Performance of the BGMM for 24hr (a), 48hr (b), 72hr (c), 96hr (d), 
120hr (e), 144hr (f), 168hr (g), and 192hr (h) streamflow forecasts. 
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particularly during spring snowmelt (March–May in Fig. 5). One of the 
strengths of the ANN model is its significant performance skill in 
capturing baseflow during all lead times (Figs. 5 and 8). However, 
baseflow separation of the ANN predicted streamflow showed it 
underpredicted runoff during forecast periods except for the 72hr fore
cast period (Fig. 8). Interestingly, the systematic underprediction of QPF 
precipitation during the 120–192hr forecasts (Fig. 9) did not impact the 
ANN predictions nearly as dramatically as the process based SWAT-VSA 
model. 

Fig. 6 shows the time series performance of the ARMA model for the 
forecast period. The ARMA model tended to underpredict peak flows 
and overpredict baseflows. Indeed, the mass balance in Fig. 8 indicates 
that the model overpredicted baseflow and underpredicted runoff. There 
is no apparent forecast lead time or time of year during which the ARMA 

model performed better or worse. 
The multi-model BGMM forecasted streamflow well during all lead 

times compared to the individual models (although the ANN produced 
similar results). Fig. 7 shows the time series performance of BGMM 
during the forecast period. The BGMM captured both baseflow and peak 
flow with skills similar to the ANN (Table 2), and the mass balance in 
Fig. 8 corroborates this. Also shown in Fig. 7 are the 95% credible in
tervals for the BGMM model predictions, which indicate the probability 
that the observed streamflow lies within the credible interval 95% of the 
time. As is clear from Fig. 7 and Table 3, the majority of the observed 
streamflow fell within the 95% credible interval of the BGMM, with only 
3.1–4.2% of the observed data (depending on forecast hr) not contained 
by the interval. Moreover, it was the larger peaks that tended to fall 
outside of this interval. 

4. Discussion 

The performance variability among the models in simulating daily 
streamflow, baseflow, and runoff is of interest to explore. Process-based 
models with representative model forcing data, adequate physical pro
cess representation, and good structure that are well calibrated gener
ally predict streamflow well compared to empirical models due to the 
process-based model’s representation of internal processes (Wang 
et al., 2011). However, well-defined and trained empirical models like 
ANNs have the ability to forecast streamflow with comparable or su
perior skill to process-based models, though the performance of ANNs is 
highly dependent on the number of layers and the transfer functions 
used to train the model (Maier et al., 2010). The availability of data is 
also crucial to generalize the performance of ANNs (Dawson and Wilby, 

Fig. 8. Average daily baseflow and runoff (in mm) for WE38 watershed during calibration (a), evaluation (b), forecasting: 24hr (c), 48hr (d), 72hr (e), 98hr (f), 120hr 
(g), 144hr (h), 168hr (i), and 192hr (j). Note that the BGMM was not run for the training and testing periods. 

Fig. 9. Scatter plots of measured vs QPF forecast precipitation for the 24–192 h 
forecasts in WE38. 

Table 3 
Percent of days the observed streamflow falls outside of the 
95% credible interval from the BGMM for each forecast hr.  

Time % of time outside of 95% CI 

24 4.0 
48 3.8 
72 3.8 
96 4.2 
120 3.5 
144 4.0 
168 3.1 
192 3.5  
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1998); ANNs are nonlinear in nature and with important variables and 
associated data, can be trained to learn and generalize complex prob
lems. In contrast, fully empirical time series models, like the ARMA, are 
linear in nature and therefore often fail to capture complex, non-linear 
processes. 

Results of this study run counter to some of the literature that shows 
a process-based model like SWAT generally outperforming empirical 
models in forecasting streamflow (Demirel et al., 2009). However, the 
inherent uncertainty stemming from model parameters, structure, 
mathematical process representations, inputs, and initial conditions can 
also cause process-based models to perform poorly compared to less 
parametrized empirical models during forecast periods (Block et al., 
2009). Indeed, in this application the ANN model tended to produce the 
most accurate predictions (Table 2, Fig. 5). The ANN for WE38 water
shed was trained with adequate data and a sufficient number of layers to 
simulate baseflow and runoff well during the calibration and evaluation 
periods, with predictive power similar to or better than SWAT-VSA 
(Table 1, Fig. 3c & d). The ARMA model also performed well in pre
dicting the trend in streamflow, baseflow, and runoff when exogenous 
covariates were used (Table 1, Fig. 3e & d). However, while the ARMA 
model forecast streamflow moderately well, it more severely over
predicted baseflow and underpredicted runoff during all periods 
compared to the other two models (Fig. 8). SWAT-VSA simulated daily 
streamflow very well during the calibration and evaluation periods 
(Table 1, Fig. 3a & b) but, like most other process-based models, missed 
capturing some of the peaks due to the stochastic nature of streamflow. 
In contrast, the SWAT-VSA performance declined substantially during 
the forecast period from its performance during calibration and evalu
ation; its performance was lower than the other two individual models 
(Table 1, Table 2). 

It is important to emphasize that the SWAT-VSA model was devel
oped by considering the relevant processes that can be predicted at the 
landscape/field level using hydrologic response units. Modeling multi
ple, complex processes inherently introduces more sources of uncer
tainty than modeling a single output variable, as in the ANN and ARMA 
models. In addition, the SWAT model is known to simulate landscape 
processes quite well but not always subsurface processes, e.g., baseflow 
(Luo et al., 2012), which may account for its relatively high bias during 
calibration and evaluation (Table 1) and during the forecast period 
(Table 2), particularly for longer QPF lead times. Despite these short
comings, the utility of SWAT-VSA goes well beyond streamflow simu
lation and forecasting. One of the benefits of SWAT-VSA over empirical 
models is its ability to make spatial predictions within the watershed for 
processes such as soil moisture, runoff generation, or nutrient export. 
For watershed management concerns beyond water supply and flooding, 
such as selection and targeting of best management practices, 
SWAT-VSA has high potential to enhance decision-making (Wagena and 
Easton, 2018). However, the process modeling that provides useful in
formation for decision-making, particularly in agroecosystem manage
ment (e.g., plant growth, evapotranspiration, and soil moisture content), 
also affects the water balance, and can cause the uncertainty in each of 
these processes to cascade through the model and impact streamflow 
estimation. As a result, SWAT-VSA is likely to be more sensitive to bias in 
the QPF data (e.g., Fig. 9). Fig. 9 compares the observed precipitation to 
the QPF predictions and demonstrates that the QPFs had significant bias, 
systematically under predicting precipitation for all lead times, most 
acutely beyond 120hr. 

Interestingly the bias in the QPF (Fig. 9) forecast did not impact the 
ANN or ARMA predictions in any systematic manner, they both provided 
approximately equivalent forecast predictions across all lead times, as 
evidenced in Table 2. This at first inspection seems counter intuitive, 
however, because both the ANN and ARMA models include a lag 
(observed) streamflow term, the models both are able to essentially bias 
correct the QPF data while running the forecast. 

To overcome the shortcomings of any individual model, the BGMM 
leveraged the skill of three individual models and resulted in good 

performance of streamflow forecasting during all forecast periods. The 
method considers the strengths and weaknesses of each model’s per
formance in forecasting streamflow based on evaluating individual 
model performance and providing the 95% credible interval. Conse
quently, the ensemble of the three models’ outputs using the BGMM 
approach generally outperformed the individual models in forecasting 
streamflow although the ANN results were similar (Table 2 & Fig. 7). In 
addition to the improved forecast skill exhibited by the BGMM 
approach, the uncertainty associated with the streamflow forecast is also 
provided, which can assist in risk-based decision making (Block et al., 
2009). Since there are no perfect forecast models (Block et al., 2009), the 
BGMM approach could improve forecast skill with respect to runoff, 
baseflow, and associated cumulative uncertainty. Indeed, BGMM fore
casted baseflow and runoff compared favorably to the individual models 
during all forecast periods by leveraging each of the model’s forecasting 
abilities (Fig. 8). 

5. Conclusions 

Using forecasted streamflow from both process-based and empirical 
models helps water resources planning and management efforts. 
Streamflow forecasting, specifically, has an essential role in water re
sources and environmental engineering. For example, hydrologic fore
casting is used by farmers to assess soil moisture condition and enable 
them to identify areas prone to runoff and erosion (Sommerlot et al., 
2016), reducing flood damage by providing a warning period where 
actions can be taken to mitigate the impact, and by reservoir operators 
to ensure adequate water supplies (Shiri and Kisi, 2010). Overall, our 
results show that there is no single superior model that can be used to 
forecast streamflow, and each model has its own strengths and weak
nesses. The ANN was able to learn stochastic, complex, nonlinear 
problems, although they still missed capturing some peak flows. While 
the process-based model did not always perform better than the 
empirical models, it does have the ability to provide spatial responses in 
the watershed and predict water quality both at the watershed outlet 
and at given locations along the stream network. ARMA models require 
relatively little data but are limited in their ability to simulate complex 
processes. 
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