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A B S T R A C T   

Water and land resource management planning benefits greatly from accurate prediction and understanding of 
the spatial distribution of wetness. The topographic wetness index (TWI) was conceived to predict relative 
surface wetness, and thus hydrologic responsiveness, across a watershed based on the assumption that shallow 
slope-parallel flow is a major driver of the movement and distribution of soil water. The index has been 
extensively used in modeling of landscape characteristics responsive to wetness, and some studies have shown 
the TWI performs well in landscapes where interflow is a dominant process. However, groundwater flow 
dominates the hydrology of low-slope landscapes with high subsurface conductivities, and the TWI assumptions 
are not likely to perform well in such environments. For groundwater dominated systems, we propose a hybrid 
wetness index (Wetness Index based on Landscape position and Topography, WILT) that inversely weights the 
upslope contributing area by the distance to the nearest surface water feature and the depth to groundwater. 
When explicit depth to groundwater data are not available, height above and separation from surface water 
features can act as surrogates for proximity to groundwater. The resulting WILT map provides a more realistic 
spatial distribution of relative wetness across a low-slope Coastal Plain landscape as demonstrated by improved 
prediction of hydric soils, depth to groundwater, nitrogen and carbon concentrations in the A horizon of the soil 
profile, and sensitivity to DEM scale.   

1. Introduction 

Accurately characterizing the spatial distribution and extent of 
wetness across landscapes has paramount importance in land and water 
resource management and conservation practices. The topographic 
wetness index (TWI) has been used as an estimator of relative wetness 
assuming that a large fraction of hillslope flow occurs as slope-parallel 
lateral flow such that flow accumulation should increase with local 
contributing area and decrease with local slope. It is defined as ​ TWI ¼
lnðsca =tanβÞ, where sca is the specific contributing area (upslope 
contributing area per unit contour length) draining to each grid cell and 
tanβ is the local slope. TWIs represent the propensity of subsurface flow 
to accumulate in a grid cell and thus increase soil moisture and the 
frequency of saturated conditions (e.g. Moore et al., 1993). This concept 
has worked well where the subsurface flow assumptions are valid, i.e. in 
mountainous terrain and areas where shallow interflow dominates the 

flow components and the surface runoff contributing areas are limited to 
small saturated areas at the bottom of hillslopes. It was initially intro
duced to define an index of hydrological similarity on a catchment scale 
(Kirkby and Weyman, 1974; Kirkby, 1975; Kirby, 1978) and was later 
integrated with soil transitivity at saturation (Beven, 1986) to become a 
hydrological modeling concept that lead to the development of the 
widely used TOPMODEL. TWI has also been used in global scale land 
surface modeling and estimation of wetland areas (Marthews et al., 
2014), in spatial mapping of soil moisture structures (e.g. Higginbottom 
et al., 2018; Western et al., 1999), tree growth modeling (e.g, Moha
medou, et al., 2019), predicting soil attributes like organic matter con
tent, denitrification processes, extractable P, PH, silt and sand content, 
to define flow paths in geochemical modeling (e.g. Li et al., 2018a; 
Moore et al., 1993; Robson et al., 1992), predicting spatial patterns and 
richness of plant species (e.g, Sørensen et al., 2006; Zinko et al., 2005; 
Zinko, 2004; Moore et al., 1993), mapping forested wetlands, flowpath 
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patterns, and hydrologic connectivity (Jancewicz et al., 2019; Li et al., 
2018b; Epting et al., 2018; Lang et al., 2013), and determining place
ment of vegetative buffers for agricultural watersheds (e.g. Wallace 
et al., 2018; Dosskey and Qiu, 2011; Dosskey et al., 2013). 

Tweaks to the TWI framework have been common as investigators 
have found issues with aspects of landscape characterization using the 
index. Ali et al. (2013) evaluated the ability of various wetness indices to 
predict field observed connected saturated areas in the 30 km2 Grinock 
watershed in Scotland. Compared to other geomorphic indices, TWI 
showed better prediction of observed saturated areas, but the matches 
were mainly restricted to permanent stream channel sections. Other 
studies showed that TWIs explain only portions of measured variables 
like saturated areas (Guntner et al., 2004), soil pH, groundwater level, 
and soil moisture (Sorensen et al., 2006). TWI has been used in water
shed modeling to predict spatially variable quick flow (e.g. Beven and 
Kirkby, 1979; Woods and Sivapalan, 1997; Woods et al., 1995), but it 
lacks the ability to represent outcropped water and shallow groundwater 
intersecting valley edges. Previous researchers have modified TWI using 
saturated hydraulic conductivity and soil depth as indicators of soil 
storage capacity (Walter et al., 2002). Ma et al. (2010) incorporated 
topographic aspects and terrain position as weighting factors to revise 
the TWI model for improved representation of soil moisture content. 
Based on the weakness observed in the ability of TWIs to model spatial 
patterns of soil moisture and drainage conditions (e.g. Guntner et al., 
2004; Iverson et al., 2004; Case et al., 2005), Murphy et al. (2009, 2011) 
created a topography-based depth-to-water (DTW) index that represents 
the elevation difference between a surface and the nearest open water 
feature as a summation of slope along least slope path. 

TWI assumptions render the index less useful for predicting relative 
wetness in landscapes where interflow is a minor component of hillslope 
flow. In the Upper Coastal Plain of the southeastern U.S, slopes are 
gentle, and low conductivity horizons that would generally enable 
interflow are relatively leaky, allowing vertical percolation to ground
water rather than interflow moving laterally to valleys (Jackson et al., 
2014). Previous application of TWI on the rolling, highly permeable 
terrain of the Savannah River Site in the Upper Coastal Plain in South 
Carolina (SC) indicated that TWI wetness was inconsistent with field 
observations of factors related to wetness (Drover et al., 2015), and the 
spatial distribution of TWI was highly sensitive to Digital Elevation 
Model (DEM) resolution. The two important limitations in the relative 
wetness maps predicted at this site by TWIs were as follows. First, high 
TWI values extended to the ridge top where relative wetness is low. This 
limitation is attributed to the logarithmic scale operation of the TWI 
model, which minimizes the difference in wetness values between grid 
cells when there is large difference in the ratio of contributing area to 

slope. Second, high variability of TWI values occurred in the riparian 
valleys where little variability in wetness is observed in the field. This is 
partially attributed to a “bumpy” valley topography creating high con
trasts between neighboring DEM cells. In general, wetness is much less 
variable at small scale than predicted by TWI in this landscape. 

The main objectives of this work were to develop a topographic 
based index that accurately characterizes the spatial structure of wetness 
that can help guide environmental management actions. Hence, we 
present a modified wetness index which incorporates the depth to 
groundwater and the horizontal distance from each pixel to surface 
water to create spatial patterns of wetness that are more consistent with 
field observations in our study region. We modified the TWI to better 
predict relative wetness in catchments where groundwater is the 
dominant flow path and interflow occurs but is less important. In such 
landscapes, surface water features (streams, wetlands, ponds, and lakes) 
mark relatively continuous positions of the water table, i.e. groundwater 
outcrop locations. Observations of such landscape reveal the obvious 
and simple conclusion that soils are generally wetter near the streams 
and lower in the landscape, but that topographic convergence is still 
important. As a result, we modified TWI by incorporating the position of 
each grid cell relative to the nearest surface water features. The closer 
the area is to a stream/lake, the wetter the area is and vice versa. For 
example, Cell A in Fig. 1 is relatively dry not only because of the small 
surficial contributing area but also because it is high in the landscape 
where vertical infiltration is more dominant (e.g. Du et al., 2016; 
Jackson et al., 2014; Jackson et al., 2016). Cell B, being situated 
downslope, has a larger upslope contributing area but its wetness is also 
affected by the position of the regional water table. Cells neighboring 
cell B with little upslope contributing area can be very wet due to 
proximity to groundwater and thus feature hydrologic behavior similar 
to cells with a large surficial contributing area. 

Specifically, we assume that wetness is inversely proportional to ΔX 
and ΔZ in a groundwater-dominated landscape, where ΔZ is the depth to 
groundwater and ΔX is the horizontal distance from the nearest surface 
water feature (Fig. 1). We modify TWI by dividing the upslope 
contributing area A by ΔX and ΔZ as follows: 

WILT ¼ ln
�

A
ΔX � ΔZ � tanβ

�

(1) 

In WILT, we can conceptualize the dimensionless ratio of the surface 
contributing area to valley separation index (SCAVSI) as the upslope 
contributing area divided by-products of the distance to wet cells (ΔX) 
and depth-to-groundwater level (ΔZ). The effect of this modification is 
to suppress high index values high in the landscape and reduce index 
variability low in the landscape. 

Fig. 1. Conceptual model showing TWI modification parameters (ΔX and ΔZ) calculated from a DEM and used to create WILT. ΔX is the distance of a cell from the 
nearest water cell and ΔZ shows the depth-to-groundwater. 
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Here we apply both TWI and WILT to a first order, low slope, Coastal 
Plain watershed where vertical infiltration and groundwater outcrop
ping to streams are the dominant hydrologic processes, but where some 
interflow occurs over an argillic Bt horizon (Du et al., 2016; Jackson 
et al., 2014). The relative performances of the two indices in this land
scape were evaluated based on spatial correspondence with maps of 
hydric soils, depth-to-groundwater, and distributional characteristics of 
index values within valley grid cells. Furthermore, the spatial distribu
tion of soil carbon (C) and nitrogen (N) content along numerous 

transects were used to evaluate the performances of the wetness indices 
to explain soil quality variables affected by wetness. The two indices 
were also compared with respect to their sensitivity to DEM resolution. 

2. Study site 

TWI and WILT were applied in upper Fourmile Branch of the U.S. 
Department of Energy (DOE) Savannah River Site (SRS) in South Car
olina, USA. Upper Fourmile Branch contains three first-order water
sheds, R, B and C, that are perennial in wet years and intermittent in dry 
years and that drain to the perennially flowing main stem (Fig. 2a). The 
hydrology and water quality of these watersheds has been extensively 
monitored since 2007 (Du et al., 2016; Klaus et al., 2015; Griffiths et al., 
2016, 2017). Most of the hillslopes are gently sloping in the 2–5% range 
with maximum slopes of 25–30% mostly along valley margins. The 
surface soils are sandy to sandy loam in texture consisting of 80–90% 
sand. Clay content increases with depth to 35% or more in the under
lying argillic sandy clay loam Bt horizon (Kilgo and Blake, 2005). The 
riparian zones, Carolina bays and well-drained depressions are domi
nated by hydric soils (Fig. 2a). The landcover consists of managed lob
lolly pines in the uplands and unmanaged mixed hard wood forest or 
scrub shrubs in the riparian zones. 

Infiltration rates are high, and while perching and some interflow 
occur over the argillic Bt horizon (Du et al., 2016), high leakage rates 
through the Bt horizon (Jackson et al., 2016) render groundwater flow 
the dominant hydrologic process (Jackson et al., 2014; Klaus et al., 
2015). Streamflow and groundwater interactions are characterized by a 
surficial aquifer that flows through thick and highly conductive sedi
mentary formation of the coastal plain consisting of alternating sand, 
some limestone and intermittent clay layers (e.g. Aadland et al., 1995). 
The water table in upper Fourmile is extensively monitored by networks 
of wells and riparian piezometers distributed across R, B, and C water
sheds. Depths to groundwater range from <1 m in the valleys and 
wetlands to 24 m near the watershed divides. 

3. Data and methods 

3.1. DEM analysis and WILT calculation 

The study utilized a LiDAR based DEM obtained over the entire SRS 
in May 2009. The LiDAR data has a horizontal accuracy of � 0.5 m and a 
vertical accuracy of � 0.15 m in open flat areas or � 0.5 m in forested 
areas. A 1 m bare-ground DEM was created using the FUSION 3.4 
GroundFilter program. We re-sampled the 1 m DEM to 2 m, 5 m, 10 m, 
20 m, 30 m, and 50 m resolutions. To illustrate the variation in repre
sentativeness of both indexes, maps of both were compared at the 10 m 
resolution (Fig. 3a and b). We evaluated the effect of DEM resolution on 
wetness structure and pattern using the resampled resolutions. Several 
researchers have looked at the effect of DEM resolution on distribution 
of TWIs (Quinn et al., 1991; Sorensen and Seibert, 2007; Kienzle, 2004; 
Drover et al., 2015). Different DEM resolutions result in different spatial 
patterns of TWI, as DEM resolution affects the calculation of slopes. We 
used a 10 m DEM, based on existing research (Quinn et al., 1991 and 
Drover et al., 2015). The 10 m resolution is coarse enough to be rela
tively unaffected by human modifications such as roads and ditches, 
which affect the flow accumulation algorithm, but is not coarse enough 
to remove local topographic variability. Stream networks and other 
surface water cells were generated using the ArcHydro terrain analysis 
tool (Maidment, 2002) and maximum extents were verified using 
ground truthed data for upper Fourmile Branch. 

Specific contributing area, slope, distance to water body cells, and 
depth-to-groundwater were obtained from GIS analysis. Water body 
cells including streams, lakes, and ponds were identified using terrain 
analysis tools in a GIS. Verification of the spatial extents of the stream 
reaches and water bodies was based on quadrangle maps, aerial pho
tographs, and field observations of the watershed, which are commonly 

Fig. 2. a) Map of the study site showing perennial, intermittent and ephemeral 
stream reaches in RBC watersheds and location of hydric soil cover, b) 10 m 
resolution map of average observed depth-to-groundwater table based on 
monthly observations of monitoring boreholes and riparian piezometers in 
Fourmile Branch, c) soil sample locations along the 16 transects, and d) LiDAR 
based LAI estimation for the study site. 
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available. Wetland polygons were available from delineations con
ducted by the United States Forest Service. Once reliable stream reach 
and water body cells were identified, the relative position of each DEM 
cell as a distance to the nearest surface water cell (stream or water 
body); ΔX was calculated in a GIS. Our study site has a depth to 
groundwater map developed from observed well and piezometer data. 
However, we wanted the WILT method to be applicable to sites without 
such local groundwater data. As a result, we sought to create a simplified 
water table surface. To do so, we assume that surface water is out
cropped groundwater and used surface water elevations to krige a 
simplified water table surface. The generated surface was generally 
flatter than the surface produced from monitoring well data, but was still 
a reasonable representation of the groundwater surface. We used the 
simplified groundwater surface to calculate depth-to-groundwater (ΔZ), 
by subtracting it from the DEM elevation. The simplified depth-to- 
groundwater (ΔZ) was then used as an input to calculate WILT. 

3.2. Hydric soils, groundwater, wetlands, and stream reach properties 

Soil characteristics vary across landscapes partly in response to fre
quency of saturation. Hydric soil units (Fig. 2a) are saturated most of the 
time, have potentially anaerobic conditions, and are usually found in 
wetlands and the lower elevations of stream valleys. The United States 
Forest Service has delineated the hydric soils from NRCS-mapped soil 
units. In Upper Fourmile, the hydric soil includes highly conductive 
Pickney, Rembert and Ogeechee sand map units located in the riparian 

areas and depressions. Wetness indexes were clustered to predict wet 
and dry regions of our study site. We evaluated the distribution and 
extent of relative wetness relative to mapped hydric soils of the study 
site (Fig. 2a). 

Observed depth-to-groundwater was used to evaluate the perfor
mance of WILT compared to TWI at 10 m resolution. The observed 
depth-to-groundwater map was created using the same procedure for 
the assumed depth-to-groundwater, but with additional observations 
from 16 wells and 6 piezometers monitored between 2012 and 2013. We 
combined elevations of outcropped surface water with observed average 
groundwater levels and kriged them to generate an observed ground
water level map. Depth-to-groundwater was calculated by subtracting 
the groundwater level from the DEM surface elevation (Fig. 2b). To 
compare the two indices to groundwater depth, TWI and WILT were 
classified into wetness categories (Table 1) based on percentile rank of 
the wetness values. Both were classified into five classes, <10th 
percentile, 10th to 25th, 25th to 75th, 75th to 90th and >90th% 
percentile as very dry, dry, medium, wet, and very wet respectively. The 
spatial distribution of those classes was compared to groundwater depth 
classes of <0.5, 0.5–2 m, 2–3, 3–5, 5–10, 10–15 and > 15 m (Fig. 5). 
LiDAR derived leaf area index observation (Fig. 2c) is proposed as a 
surrogate for wetness evaluation in the study watershed. 

Based on field observations at our site since 2010 we classified the 
stream reaches into three classes. Perennial reaches that flow year- 
round, intermittent reaches that flow for part of the year, and ephem
eral reaches that flow for a short period after a storm (Fig. 2a). We 
assessed the distribution of relative wetness values along the sections of 
stream reaches and evaluated how wetness values change based on 
stream reach properties along the first order catchment. 

3.3. Soil carbon and nitrogen content 

Soil samples were collected in the hillslope and riparian zone 
perpendicular to the main intermittent stream of the study watershed on 
16 transects (Fig. 1d). There ware a total of 189 sampling units. Each 
sampling point was georeferenced using an Archer (Juniper Systems 
Inc.) handheld GPS unit (Hemisphere XF DGPS) so that the sampling 
points could be matched with the cells of the wetness indices (Drover 
et al., 2015). Each transects consisted of a varying number of sampling 

Table 1 
Classification of calculated TWI and WILT values into five classes based on the 
percentile rank of the wetness values. The first 10% is considered as very dry, 
then 15%, 40%, 15% as dry TWI, medium and wet wetness class values 
respectively and the last 20% was considered as very wet wetness.  

TWI Classes TWI WILT 

1. Very Wet >19.8 >22.2 
2. Wet 19.8 22.2 
3. Medium 16.6 18.0 
4. Dry 8.6 7.0 
5. Very Dry <6.0 <3.0  

Fig. 3. Spatial distribution of the two wetness indices calculated from a 10 m DEM. a) TWI, b) WILT, and statistically clustered wetness index values into high and 
low wetness regions. c) TWI, and d) WILT. The polygon shows wetlands and Carolina bays (Red) and hydric soils and stream management zone of upper Fourmile 
Branch. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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points and are on average 8 m apart. The soils were sampled from the A 
horizon sampling point to a depth of 7.5 cm using a 20 l b. Slide hammer 
and sleeves with an inner diameter of 7.5 cm. Well-mixed pulverized 
samples (1 mg) were analyzed for C and N concentrations using a CHN 
elemental analyzer (NC 2100, CE Elantech Inc, Lakewood, NJ) to be 
used as a surrogate to wetness in order to evaluate the performance of 
the wetness indices (WILT and TWI). The chemical changes in C and N 
molecules in the soil depends on the soil moisture. The evaluation was 
carried out between the soil characteristics (N and C contents) against 
the corresponding 10 m resolution WILT and TWI values to determine 
the degree of correlation and intuitiveness of the relationships. The 

comparison was made using the elemental N and C concentration from 
each sample in kg ha� 1. 

3.4. Spatial cluster analysis of wetness 

To evaluate the ability of TWI and WILT to map wet areas and 
traditional streamside management zones (SMZs) we performed a 
spatial cluster analysis. Clustering was analyzed following the Getis and 
Ord method using the High/Low Clustering tool in ArcGIS (Getis and 
Ord, 1992). The tool calculates the G statistic which considers the value 
of each pixel in the context of its neighboring pixels. The values of the G 

Fig. 4. The distribution of wetness classes in the hydric soil polygons and comparison of the distribution of the wetness classes based on the different ranges of depth 
to the groundwater table. a) wetness class distribution according to original TWI formula, and b) WILT wetness class distribution, c) distribution of TWI values across 
ranges of depth to groundwater and d) WILT values. 
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statistic are analyzed in the context of the null hypothesis, which is that 
there is not spatial clustering of the feature values. The null hypothesis is 
evaluated based on z-scores and p-values. The higher the z-score, the 
stronger the intensity of clustering. A z-score near zero indicates no 
apparent clustering and a negative z-score indicates clustering of low 
values (Anselin, 1995). With a statistically significant positive z score, 
large z values (>1.96), the null hypothesis is rejected indicating clus
tering of high values representing wet condition. A statistically signifi
cant z score of less than � 1.96 shows clustering of low values 
representing dry condition. 

3.5. Relative effects of DEM resolution on TWI and WILT maps 

To explore the sensitivity wetness distribution on DEM resolution, 
we investigated five resolutions for TWI and WILT (2, 5, 10, 20, 30, and 
50 m) subsampled from the 1 m DEM. The evaluations were conducted 
using the visual inspection of the spatial arrangement of the wetness 
maps and comparison through basic spatial statistics such as minimum, 
maximum, interquartile range, mean, and coefficient of variation. We 
also compared the cumulative distribution plots for each resolution to 
evaluate the distribution of the effect of DEM resolution on the 
computed wetness. 

4. Results and discussion 

TWI and WILT produced very different maps of wetness (Fig. 3a and 
b). The TWI map produces high wetness variability in riparian zones and 
wetlands, and generates high TWI values dissecting the landscape to the 

ridgetops (Fig. 3a). WILT created a wetness map more representative of 
field observations and more consistent with the boundaries of wetlands 
and hydric soils (Fig. 3b). WILT produced much less variability of 
wetness indices within wetland and hydric soil polygons, and less 
variability high on the landscape. WILT significantly reduced the 
occurrence of high wetness values near ridgetops relative to TWI. 
Clustering the TWI and WILT maps helps to highlight the differences 
between the two indices. The clusters of high TWI values delineate the 
stream channels with high z-scores, but not wet areas adjacent to the 
channel. In addition, the high TWI clusters delineate dry channels high 
in the landscape (Fig. 3c). The clusters of high WILT values indicated by 
high z-scores delineate polygons in the riparian zone that closely 
correspond to the hydric soil polygons (Fig. 3d). This simple clustering 
technique highlights WILT’s performance in delineating wet areas and 
provides an example of how wet area maps could be produced with 
WILT. 

TWI and WILT differed substantially in their predictions of hydric 
soils and wetland polygons (Fig. 3). TWI produces a greater proportion 
of low values (indicating relatively dry soils) within the hydric soil 
polygons. According to TWI, relatively dry cells account for about 70% 
of the hydric soil polygons while only 30% of the area was classified as 
relatively wet (Fig. 4a). Additionally, TWI produces about 22% very dry 
cells within the hydric soil polygons. In contrast, WILT produced a 
negligible proportion (about 0.6%) of very dry cells (Fig. 4b) and pre
dicted 60% relatively wet cells (cells categorized as medium, wet and 
very wet) within the hydric soil polygons. 

The average depth-to-groundwater was negatively correlated to 
wetness predicted by both models, but the relationship was stronger for 

Fig. 5. Nitrogen and carbon contents from point samples of mineral soils (0–7.5 cm depth) evaluated across wetness values interpolated from the resident pixel and 
the nearest adjacent pixels, a) TWI, and b) WLIT. 
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WILT. Pearson correlation coefficients were 0.53 for WILT and 0.28 for 
TWI. TWI wetness values appeared relatively insensitive to depth to 
groundwater, whereas the distribution of WILT values appears strongly 
influenced by depth to groundwater (Fig. 4c and d). With WILT, the 
proportion of dry cell area increased with increasing depth to ground
water and the proportion of wet cells decreased as the depth-to- 
groundwater increased (see the guide line on Fig. 4d). 

It is also important to note the similarities between the TWI and 
WILT as both are based on the same assumptions regarding the control 
of the distribution of moisture across the landscapes. The comparison 
between the wetness values alsong the stream channels showed equal 
relative spatial variability (see Supplimentary Material Text S1 and 
Fig. S1) indicating the similarity between the two indices for locations of 
similar landscape position. 

Evaluation of soil C and N contents against WILT and TWI values 
interpolated from the resident and nearest pixels indicated that WILT 

wetness estimation significantly improved the correlation with both N 
and C concentrations in the soil samples (Fig. 5). The correlation coef
ficient (r) of the entire sample data increased from 0.38 (N) and 0.25 (C) 
for TWI to 0.66 (N) and 0.52 (C) for WILT (see Supplimentary Material 
Fig. S2). In most cases, correlations between the 10 m resolutions of TWI 
and soil carbon and nitrogen contents were weak, with an average 
correlation values across of the 16 transects equal to 0.31 which is close 
to the literature values of 0.4 (e.g. Florinsky et al., 2002; Sorenson et al., 
2006; Sorensen and Seibert, 2007). With WILT methodology, the cor
relation values improved substantially to an average correlation of 0.6, 
indicating that WILT incorporated subsurface controls better for land
scape wetness representation. Welsch et al. (2001) found that TWIs 
explained 56% of the variation in subsurface nitrate concentrations, by 
far the best-reported performance for TWI prediction of landscape and 
soil attributes. The improvement in wetness index estimation using 
landscape positions was definite with a significant bump in the 

Fig. 6. Spatial distribution of wetness indices at 5 m, 10 m, 30 m, and 50 m resolutions for Fourmile Branch. The panels on the left-side show TWI model and the 
right-side panels show WILT. High resolution DEMs produce very thin high TWI value drainage lines extending high into the watershed divides with under rep
resentation of valleys. In WILT maps valleys were clearly represented regardless of resolution. Coarser DEM produce a conceptual type of drainage pathways and 
water body. 
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correlation values (see Supplimentary Material Fig. S2). 
The analysis of effects of DEM resolution indicated that spatial dis

tributions of wetness values were sensitive to DEM resolution in both 
models, but the spatial distribution of TWI values was more sensitive 
than WILT values (Fig. 6). DEM scale affects the distribution of both 
indices with more smoothing and shifting of the wetness values higher as 
resolution decreased. The WILT map has less variability in spatial pre
dictions across the DEM resolutions and more consistently delineates 
wet areas than TWI (Fig. 6). The WILT maps appear fundamentally 
similar from 5 to 50 m resolutions, whereas the 5 m TWI map appears 
fundamentally different from the 50 m TWI map. TWI maps showed 
large variability of wetness values in cells adjacent to the drainage 
pathways. In finer resolution maps, the drainage pathways are narrower, 
more numerous and extend to ridgetops. As DEM scale increases, the size 
of stream pathways become larger showing better resemblance to the 
observed stream valleys in the study area at 20–30 m resolutions. Pre
vious studies have shown that DEM resolution affects the distribution 
and spatial patterns of TWI (e.g. Quinn et al., 1991; Zhang and Mont
gomery, 1994; and Wolock and Price, 1994) and on the implications of 
hydrologic responses of TOPMODEL simulation framework (e.g. Wolock 
and Price, 1994). 

Cumulative distribution functions of TWI and WILT both show shifts 
toward higher values as DEM resolution decreased (Table 2 and Sup
plimentary Material Fig. S3). The mean WILT value increased signifi
cantly from 0.66 for a 2 m resolution to 9.8 for 50 m while TWI values 
increased from 5.7 for 2 m to 8.6 for 50 m resolution. There is a dif
ference in how the distributions shifted between the two indices. 

5. Conclusions 

Our observations of the distribution of soil characteristics in the 
porous, low-slope, groundwater dominated watersheds of the south
eastern Coastal Plain suggested that an alternative to TWI was needed to 
predict landscape characteristics affected by soil wetness. In landscapes 
where interflow occurs, but percolation and groundwater flow are the 
dominant hydrologic processes, the hydrologic assumptions of TWI are 
violated, and thus the TWI has difficulty predicting the spatial distri
bution of relative wetness. Specifically, TWI predicts too many dry pixels 
in low elevation valleys and wetlands and too many wet pixels on ridges. 
Based on the observation that in low-slope, groundwater dominated 
landscapes, soils are generally wetter near nearer the streams and lower 
in the landscape, we created the Wetness Index modified by Landscape 
Position and Topography, WILT, by inversely weighting TWI by the 
product of the distance to the nearest stream and a simple estimate of the 
depth to the water table. We created WILT so that it would need only 
topographic and hydrographic information, so the depth to the water 
table is created by a simple fitting of a water table to known surface 
water elevations. We then compared TWI and WILT maps of relative 
wetness with respect to hydric soil and wetland polygons, depth-to- 
groundwater determined from both well data and surface water posi
tions, soil carbon and nitrogen content, and sensitivity to DEM scale. 

WILT maps of relative wetness performed better than TWI based on 
comparison to mapped hydric soils, wetlands, and observed ground
water depths generated from a network of monitoring wells. WILT 
produced less small scale wetness variability produced by small scale 

variations in surface topography. For example, WILT reduced the pro
portion of dry cells in shallow groundwater locations and the proportion 
of the wet cells in on ridges where the water table is deep. WILT pre
dicted about 60% cells within the hydric soil polygon as wet cells and 
less than 1% of very low wetness values which are consistent with visual 
assessments of valley bottom wetness, in contrast, TWI produced 29% 
wet and 22% very low wet cells. WILT produced much higher correla
tions with soil C and N contents measured in multiple transects. Com
parison across four different DEM resolutions showed that both WILT 
and TWI indices were sensitive to DEM resolution. However, the spatial 
structure of WILT values showed strong similarity across the resolutions, 
whereas the spatial structure of TWI values differed greatly across res
olutions. Application of WILT in the leaky, groundwater-dominated 
environment showed better accuracy for wetness prediction across 
landscapes, which can be used in land and water resource management 
and conservation planning and environmental quality improvement 
projects. 
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