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Abstract

This work studies a Robust Multi-product Newsvendor Model with Substitution (R-MNMS), where

the demand and the substitution rates are stochastic and are subject to cardinality-constrained

uncertainty sets. The goal of this work is to determine the optimal order quantities of multiple

products to maximize the worst-case total profit. To achieve this, we first show that for given order

quantities, computing the worst-case total profit, in general, is NP-hard. Therefore, we derive the

closed-form optimal solutions for the following three special cases: (1) if there are only two products,

(2) if there is no substitution among different products, and (3) if the budget of demand uncertainty

is equal to the number of products. For a general R-MNMS, we formulate it as a mixed-integer

linear program with an exponential number of constraints and develop a branch and cut algorithm

to solve it. For large-scale problem instances, we further propose a conservative approximation of

R-MNMS and prove that under some certain conditions, this conservative approximation yields

an exact optimal solution to R-MNMS. The numerical study demonstrates the effectiveness of the

proposed approaches and the robustness of our model.

Keywords: Stochastic programming, robust, cardinality-constrained uncertainty set,

mixed-integer program, branch and cut algorithm

1. Introduction

This work studies Multi-product Newsvendor Model with Substitution (MNMS) under demand

and substitution rate uncertainty, in which a retailer determines the optimal order quantity for

each product to maximize its total profit. Due to similarity among different products and their

occasional unavailability, substitution among different products is quite common and has been

observed in many studies (Bassok et al., 1999; Rajaram and Tang, 2001; Chopra and Meindl,

2007; Shumsky and Zhang, 2009; Stavrulaki, 2011; Choi, 2012; Yu et al., 2015). For instance, when

shopping at Amazon.com, a customer might turn to a blue hat if a green hat, his or her first-choice,
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were currently unavailable. Substitution somehow increases the profit of the retailer (Rajaram and

Tang, 2001), but on the other hand, significantly complicates the problem and makes the problem

very challenging to handle. Besides, due to the stochasticity of customers’ demand and substitution

rates, it might be hard to forecast the demand and substitution rates accurately. Therefore, many

works (Erlebacher, 2000; Schweitzer and Cachon, 2000; Rajaram and Tang, 2001; Rao et al., 2004;

Zhang et al., 2018) proposed stochastic programming models to tackle the demand uncertainty

by assuming that the probability distribution of the demand is known. However, in many cases,

having a good estimation of probability distribution might be very challenging. In particular,

nowadays, technology companies, and original equipment manufacturers frequently release their

new products. For example, every year, Apple Inc. releases its new-generation iPhones and

MacBooks. Without enough historical sales data, it is almost impossible to have an accurate

prediction of these new products’ demand and substitution rates and inaccurate estimations can

cause misleading decisions (Xie and Ahmed, 2018a). Therefore, to foster a more reliable decision,

instead, we study the “Robust” Multi-product Newsvendor Model with Substitution (R-MNMS)

subject to cardinality-constrained uncertainty set.

R-MNMS has the following technical features. First of all, due to the substitution effect, it

has been shown in Zhang et al. (2018), even when the demand is deterministic, MNMS can be

NP-hard. Second, most of the existing works assumed that the customers’ demand follows a given

probability distribution, which, however, might result in a loss of sales due to inaccurate demand

forecasting. Third, although many existing works illustrated interesting properties of MNMS, the

closed-form optimal solutions are rarely known; therefore, very limited managerial insights have

been discovered so far. In this paper, we will show that under some conditions, all of these features

can be appropriately addressed.

1.1. Relevant Literature

This subsection reviews the relevant literature on four topics: inventory-dependent demand

and product substitution, stochastic MNMS, existing work on R-MNMS, and R-MNMS under

cardinality uncertainty set.

Inventory-dependent Demand and Product Substitution. Optimal inventory policy

involving inventory-dependent demand has been studied extensively where the inventory level of a

product can stimulate the product demand (Eliashberg and Steinberg (1993), Gerchak and Wang

(1994), Balakrishnan et al. (2004), Balakrishnan et al. (2008), Baker and Urban (1988), and Loedy

et al. (2018)). The substitution effects among products, that take place when a product is out-of-

stock, will, in turn, influence the product demand (Maity and Maiti (2005)). Product substitution

is a classical research area in inventory management. Chopra and Meindl (2007) defined product

substitution as “the use of one product to satisfy demand for a different product within a specific

product category. Shin et al. (2015) provides three criteria to classify product substitution: i) sub-

stitution mechanism- assortment-based substitution, inventory-based substitution, and price-based
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substitution; ii) substitution decision-maker- supplier-driven substitution and customer-driven sub-

stitution; iii) Direction of substitutability- one-way substitution and two-way substitution. This

work focuses on a multi-product inventory-dependent demand model with product substitution,

which is similar to Huang et al. (2011), Netessine and Rudi (2003), Zhang et al. (2018), and Huang

et al. (2011). Particularly, our model considers that product substitution belongs to inventory-

based substitution, customer-driven substitution, and two-way substitution. More specifically, in

the product substitution, customers will choose the substitutable product of the same category as

the first-choice product when the substitutable product has a surplus (Stavrulaki, 2011; Rajaram

and Tang, 2001).

Stochastic MNMS. For the study of MNMS, the first stream used stochastic programming

approaches to handle the uncertainty in MNMS, i.e., they assumed that the probability distribution

of the demand is known, for example, Huang et al. (2011), Netessine and Rudi (2003), and Zhang

et al. (2018). Huang et al. (2011) analyzed the decentralized MNMS, where each retailer owns

one product and competes with the other retailers assuming the conditions under which the Nash

equilibrium exists, and used an iterative algorithm to solve the model. However, its centralized

counterpart, where a retailer owns all the products, becomes highly non-convex, which will be

studied in this paper. Netessine and Rudi (2003) demonstrated that the profit function could

be quasi-concave or bi-modal when the demand is deterministic. Recently, Zhang et al. (2018)

formulated stochastic MNMS as a mixed-integer linear program and developed polynomial-time

approximation algorithms with performance guarantees to solve it. Distinct from these works, this

study addresses centralized R-MNMS under a cardinality-constrained uncertainty set.

Existing Works on R-MNMS. However, in practice, It is not trivial to determine the

distribution of the random demand; in particular, when the random demand is not stationary,

i.e., the probability distribution of the random demand subjects to changing from time to time.

This inaccurate probability distribution could result in poor decisions. Under these circumstances,

alternatively, the second stream chose the robust approach (i.e., R-MNMS) to formulate the model

with partial information of the demand, which can be easily characterized or will stay the same

at a relatively long period (i.e., mean, variance, or support). For decentralized R-MNMS, Jiang

et al. (2011) used the absolute regret criterion to obtain the unique Nash equilibrium. Only the

support of the demand is known in their work, and they also showed that the robust model tended

to be more tractable than the stochastic counterpart. Recent work in Li and Fu (2017) studied a

robust two-product newsvendor model with substitution when the first two moments of demand

are known. However, the authors were only able to provide an optimal solution for two extreme

cases: (1) no substitution, or (2) perfect substitution between products. Unlike these works, our

assumptions are much less restrictive and we also study centralized R-MNMS with more than two

products.

R-MNMS under Cardinality-Constrained Uncertainty Set. In this paper, we study R-

MNMS using the cardinality-constrained uncertainty set to characterize the random demand and
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substitution rates. The cardinality-constrained uncertainty set was first introduced by Bertsimas

and Sim (2004) into robust optimization to reduce over-conservatism while, at the same time,

achieving robustness. This framework has been successfully applied to healthcare (Lanzarone and

Matta, 2012; Carello and Lanzarone, 2014; Addis et al., 2015), manufacturing (Lugaresi, 2016;

Lugaresi et al., 2017), inventory management (Bertsimas and Thiele, 2006; Solyalı et al., 2012),

portfolio optimization (Moon and Yao, 2011), scheduling (HazıR and Dolgui, 2013; Lu et al.,

2014; Moreira et al., 2015), etc. To our knowledge, we are the first to study R-MNMS under the

cardinality-constrained uncertainty set with random demand and substitution rates. We analyze

the complexity of R-MNMS and develop the exact and approximation algorithms to solve the

model. Moreover, we derive closed-form solutions for three different special cases. Finally, the

numerical study demonstrates the robustness of the solutions of R-MNMS.

1.2. Summary of Main Contributions and Managerial Insights

The objective of this study is to provide a retailer the ability to determine optimal order

quantities in a single-period multi-product newsvendor model with substitution, which optimizes

the worst-case total profit under the cardinality-constrained uncertainty set. Our contributions are

summarized as below.

We develop an equivalent reformulation of R-MNMS and prove that computing the worst-

case total profit, in general, is NP-hard for given order quantities via a reduction to the clique

problem. This result leads us to develop approximation algorithms for the general R-MNMS and

exact closed-form solutions for special cases of R-MNMS. The complexity analysis of R-MNMS can

also enlighten researchers to the properties of R-MNMS with other robust settings and develop the

corresponding solution approaches.

Although solving R-MNMS, in general, is NP-hard, we derive closed-form solutions for the

following three special cases of R-MNMS: (I) if there are only two products; (II) if there is no

substitution among different products; or (III) if the budget of demand uncertainty is equal to

the number of products. In case (I), we suggest that the decision makers should only order the

product with a higher marginal profit and substitute the other product. In case (II), the decision-

makers should be conservative to avoid the loss from inaccurate demand forecasting. In case (III),

the decision-makers should order up to the effective demand of a product if its marginal profit is

relatively high and not order it otherwise.

For the general R-MNMS, we reformulate it as a mixed-integer linear program (MILP) with

an exponential number of constraints and develop branch and cut algorithm to solve it. This

approach may inspire researchers to solve R-MNMS with other uncertainty sets. However, to

generate a valid inequality to separate an infeasible solution, one has to solve an MILP, which can

be time-consuming. In pursuit of an alternative, more effective, solution method, we provide a

conservative approximation of R-MNMS and prove that under the special cases (II) and (III), the

proposed conservative approximation is equivalent to R-MNMS.
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Our numerical study tests the efficiency of branch and cut and conservative approximation

algorithms with instances of varying sizes. Both algorithms work well when the size of the model is

not large. The conservative approximation algorithm dominates large-scale instances with better

solution quality. Our sensitivity result shows that the profit becomes smaller if the variance of the

demand grows. We seek the best budget of uncertainty by a cross-validation method, and we also

find that the solution from the robust model can be more reliable than the risk-neutral one studied

in Zhang et al. (2018) when the demand data are limited.

The remainder of the paper is organized as follows. Section 2 introduces the problem setting

and the model. Section 3 presents the properties of the model and proves the complexity of com-

puting the worst-case total profit. In Section 4, we derive the optimal order quantities for three

special cases of the model. Section 5 reformulates the R-MNMS as an MILP, and develops a branch

and cut algorithm and a conservative approximation to solve it. Section 6 presents the results of

our numerical investigation on the proposed algorithms. Section 7 concludes the paper.

Notation: The following notation is used throughout the paper. We use bold-case (e.g., x,A) to

denote vectors and matrices and use corresponding regular-case letters to denote their components.

Given a vector or matrix x, its zero norm ‖x‖0 denotes the number of its nonzero elements. We let

e be the vector or matrix of all ones, and let ei be the ith standard basis vector. Given an integer

n, we let [n] := {1, 2, . . . , n}, and use Rn+ := {x ∈ Rn : xi ≥ 0,∀i ∈ [n]}. Given a real number t,

we let (t)+ := max{t, 0}. Given a finite set I, we let |I| denote its cardinality. We let ξ̃ denote a

random vector and denote its realizations by ξ. Additional notation will be introduced as needed.

2. Model Formulation

In this section, we present the model formulation for R-MNMS.

To begin with, suppose that there is a retailer selling n similar products in the market indexed

by [n] := {1, · · · , n} at a given time period. For each product i ∈ [n], its cost is ci, price is pi,

and salvage value is si, where by convention, we assume that pi ≥ ci ≥ si. Each product also has

a random demand D̃i for each i ∈ [n]. Ideally, the retailer would like to determine the optimal

order quantity for each product i ∈ [n], denoted as Qi. Due to the substitution effect, the effective

demand of each product will be affected by its realized demand, its order quantity as well as other

products’ conditions (i.e., whether out-of-stock or not). To formulate this effect, we suppose that

the demand of product j ∈ [n] can be proportionally substituted by another product i ∈ [n] and

i 6= j, once the part of the demand of product j cannot be satisfied by its order quantity Qj . In

particular, we let α̃ji be the substitution rate, which is the proportion of the unmet demand of

product j substituted by product i. Note that α̃ji might not be equal to α̃ij . In this paper, we

assume that all the products have the same unit of measurement, and therefore, for each pair of

products i, j ∈ [n], substitution rate satisfies α̃ji ∈ [0, 1]. Also, by default, we let α̃ii = 0 for each
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product i ∈ [n]. We let D̃s
i (Q) denote the effective demand function of product i ∈ [n] as below:

D̃s
i (Q) = D̃i +

∑
j∈[n]

α̃ji(D̃j −Qj)+, ∀i ∈ [n], (1)

where the second term in the sum is due to its substitution to the unavailable products.

As shown in Zhang et al. (2018), the retailer’s total profit for given order quantities Q, substi-

tution rates α̃, and demand D̃ can be formulated as:

Π̂(Q, D̃, α̃) :=
∑
i∈[n]

(
pi min

(
Qi, D̃

s
i (Q)

)
− ciQi + si

(
Qi − D̃s

i (Q)
)

+

)
. (2)

2.1. Constructing Uncertainty Sets of Demand and Substitution Rates

Oftentimes, the substitution rates (α̃) and the demand (D̃) of products in (1) are stochastic

and their probability distributions are difficult to characterize. To address the uncertainties of

substitution rates and the demand, we will use robust optimization. In particular, we will study

R-MNMS under cardinality-constrained uncertainty sets.

First of all, in the demand uncertainty set, suppose that the demand of the n products (i.e., D̃)

is within a box, e.g., D̃ ∈ [D − l,D + u], where D denotes the nominal demand, l,u denote the

lower and upper deviations of the demand respectively satisfying l ∈ [0,D] and u ≥ 0. We also

assume that at most k ∈ [n] ∪ {0} products are allowed to deviate from their nominal demand D.

We will discuss the impact of the budget of uncertainty k on optimal order quantities. Therefore,

the uncertainty set of the demand can be written as

U0 =
{
D̃ : D̃i = Di + ∆i,−li ≤ ∆i ≤ ui,∀i ∈ [n], ‖∆‖0 ≤ k

}
, (3)

Similarly, let us denote the uncertainty set of substitution rate as below

Uα =
{
α̃ : α̃ji = αji + ∆α

ji,−lαji ≤ ∆α
ji ≤ uαji,∀ i, j ∈ [n], ‖∆α‖0 ≤ k

α
}
, (4)

where ‖ · ‖0 denotes the zero-norm, and kα is the budget of uncertainty. We suppose that the

substitution rates are contained within a box, e.g., α̃ ∈ [α − lα,α + uα], where α denotes the

nominal substitution rates, lα,uα denote the lower and upper deviations of the substitution rates

respectively satisfying lα ∈ [0,α], uα ∈ [0, e − α]. For notational convenience, we let ααii = lαii =

uαii = 0 for each i ∈ [n].

With the notation introduced above, R-MNMS can be formulated as:

v∗ = max
Q∈Rn+

min
D̃∈U0,α̃∈Uα

Π̂(Q, D̃, α̃) :=
∑
i∈[n]

(
pi min

(
Qi, D̃

s
i (Q)

)
− ciQi + si

(
Qi − D̃s

i (Q)
)

+

) .

(5)

6



In Model (5), the objective is to find optimal order quantities to maximize the worst-case total

profit over the uncertainty sets U0,Uα. For each product i ∈ [n], we let P i = pi − ci ≥ 0 and

Si = pi − si ≥ 0. Note that P i can be interpreted as the marginal profit or underage cost of

product i ∈ [n], while Si is the sum of the underage cost (pi − ci) and overage cost (ci − si) of

product i ∈ [n], where their ratio P i
Si

is known as the critical ratio of newsvendor model (c.f.,

Nahmias and Olsen (2015)). Since min(Qi, D̃
s
i (Q)) = Qi − (Qi − D̃s

i (Q))+ for each i ∈ [n], the

above Model (5) is equivalent to

v∗ = max
Q∈Rn+

min
D̃∈U0,α̃∈Uα

Π̂(Q, D̃, α̃) :=
∑
i∈[n]

P iQi −
∑
i∈[n]

Si

(
Qi − D̃s

i (Q)
)

+

 . (6)

We treat the uncertainties of demand and substitution rates separately because (i) in practice,

the demand estimation and substitution rates estimation follows different procedures (c.f. Kök

and Fisher (2007)) and (ii) the separable uncertainty sets allow us to reformulate the model as

a mixed-integer linear program and to obtain closed-form solutions. For notational convenience,

throughout this paper, we will let Q∗ denote an optimal solution to R-MNMS (6).

2.2. Discussion about How to Estimate the Uncertainty Sets

The budgets of uncertainty (i.e., k, kα) in Model 6 plays an important role, and a good choice

of these values can achieve both least-conservatism and robustness. The following steps show how

to find the optimal budgets of uncertainty k∗, kα∗ using possibly limited historical data:

Step 0: We split the historical data into two groups Υi, i ∈ [2], and select a candidate set

K ⊆ {0} ∪ [n]× {0} ∪ [n2 − n] to choose the best (k∗, kα∗).

Step 1.1: Determine nominal demand µ̂, the lower deviation l, and the upper deviation

u. To do so, we compute the sample mean µ̂i and standard deviation σ̂i of the first group of

historical demand data Υ1 for each product i ∈ [n]. Then we set the nominal demand Di = µ̂i,

and ui = li = 1.96σ̂i for each product i ∈ [n].

Step 1.2: Determine nominal substitution rate µ̂α, the lower deviation lα, and the

upper deviation uα. Similarly, we compute the sample mean µ̂αji and standard deviation σ̂αji of

the first group of historical substitution rate data Υ1 for each pair of products i, j ∈ [n]. Then

we set the nominal substitution rate αji = µ̂αji, and uαji = lαji = 1.96σ̂αji for each pair of products

i, j ∈ [n].

Step 2: Calculate the optimal order quantities Q∗(k, kα) and objective value v∗(k, kα)

for each (k, kα) ∈ K by solving Model (6).

Step 3: Compute the objective value Π̂(Q∗(k, kα),D,α) of Model (2) for each (k, kα) ∈ K
and each pair of demand and substitution rates (D,α) in the second group of historical

data Υ2.

Step 4: Determine the optimal k∗, kα∗. For each (k, kα) ∈ K, we compute the qth percentile

of {Π̂(Q∗(k, kα),D,α)}(D,α)∈Υ2
, and denote it as Π̂q%(k, kα). Given two nonnegative weights
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w1, w2 ∈ R+, we choose the optimal budgets of uncertainty k∗, kα∗ which achieve the smallest

weighted value w1k + w2k
α such that v∗(k, kα) ≤ Π̂q%(k, kα).

3. Equivalent Reformulation and Model Properties

In this section, we study R-MNMS under cardinality-constrained uncertainty set and derive its

equivalent reformulation. We also provide upper bounds of optimal order quantities and show that

computing the worst-case total profit for given order quantities, in general, is NP-hard.

Throughout the rest of the paper, we will make the following assumption.

Assumption 1. Suppose that kα = n2 − n in the substitution uncertainty set Uα.

Assumption 1 implies that the substitution uncertainty set Uα is purely a box. We make

this assumption for the following reasons: (i) first of all, it is often more difficult to estimate

substitution rates α̃ than the demand. When the available data are limited, there might not be

enough data to estimate the substitute rates. Kök and Fisher (2007) estimated the substitution

rates using inventory-transactions data through the maximum likelihood function. Vaagen et al.

(2011) showed that the survey data and similarity/dissimilarity analysis between products can

be used to obtain substitution rates. Müller et al. (2020) adapted the methodology of Anupindi

et al. (1998) and estimated the substitution rates by sales data, master data, and transaction data.

The methods in the aforementioned literature are useful to estimate the substitution rates, which

require more efforts than simply acquiring the demand data; (ii) second, under this assumption, we

can derive some interesting analytical results; and (iii) third, our exact branch and cut algorithm

in Section 5 can be applied to the general kα, and it follows directly from the derivation in Section

5.

3.1. Equivalent Reformulation

In this subsection, we provide an alternative formulation for Model (6).

First, we make the following observation.

Lemma 1. For any Q, D̃ ∈ Rn+, the profit function Π̂
(
Q, D̃, ·

)
is monotone nondecreasing in α̃;

and for any Q, α̃ ∈ Rn+, the profit function Π̂ (Q, ·, α̃) is monotone nondecreasing in D̃.

Proof. According to Model (6), the profit function Π̂(Q, D̃, ·) is nondecreasing in D̃s
i (Q) and

from (1), the effective demand D̃s
i (Q) is also nondecreasing in α̃ji for each product i, j ∈ [n].

Therefore, the profit function Π̂(Q, D̃, ·) is nondecreasing in α̃. Similarly, from (1), D̃s
i (Q) is

also nondecreasing in D̃i for each product i ∈ [n]. Therefore, the profit function Π̂(Q, ·, α̃) is

nondecreasing in the demand D̃.
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According to Lemma 1 and Assumption 1, minα̃∈Uα Π̂(Q, ·, α̃) is achieved by α̃ji = αji − lαji :=

αji for all products i 6= j and i, j ∈ [n]. In this case, Model (6) becomes

v∗ = max
Q∈Rn+

min
D̃∈U0

Π(Q, D̃) :=
∑
i∈[n]

P iQi −
∑
i∈[n]

Si

(
Qi − D̃s

i (Q)
)

+

 , (7)

where we let Π(Q, D̃) = Π̂(Q, D̃,α).

Remark 1. If Assumption 1 does not hold (i.e., kα ≤ n2 − n) and k = n, then according to

Lemma 1, minD̃∈U0 Π̂(Q, D̃, ·) is achieved by D̃i = Di − li := Di. and zi = 1, ∀i ∈ [n]. The result

in Lemma (7) now reads as

v∗ = max
Q∈Rn+

min
α̃∈Uα

Π(Q, α̃) :=
∑
i∈[n]

P iQi −
∑
i∈[n]

Si

(
Qi − D̃s

i (Q)
)

+

 ,

where we let Π(Q, α̃) = Π̂(Q,D, α̃).

Now we are ready to show our equivalent reformulation. The main idea of the derivation is to

show that in the worst-case, the uncertainty set U0 can be restricted to the following mixed-integer

set:

U =

D̃ :
∑
i∈[n]

zi ≤ k, D̃i = Di − lizi, zi ∈ {0, 1}, ∀i ∈ [n]

 . (8)

Clearly, set U ⊆ U0, since for any feasible point (D̃, z) satisfying constraints in (8), let us define

∆i = −lizi for each i ∈ [n], then (D̃,∆) satisfies the constraints in (3). Indeed, we can show that

Proposition 1. R-MNMS (7) is equivalent to

v∗ = max
Q∈Rn+

min
D̃∈U

Π
(
Q, D̃

)
, (9)

where U is defined in (8).

Proof. Let v1 denote the optimal value of Model (9), then we only need to show v1 = v∗.

(i) v1 ≥ v∗. For any D̃ ∈ U0, there exists ∆ such that ‖∆‖0 ≤ k, D̃i = Di + ∆i,−li ≤ ∆i ≤ ui.

Let us define binary variable zi =

{
0, if ∆i = 0

1, if ∆i 6= 0
for each i ∈ [n]. Since ‖∆‖0 ≤ k, thus we

must have
∑

i∈[n] zi ≤ k. Let us define D̃∗i = Di − lizi for each i ∈ [n]. Clearly, we have

D̃∗ ∈ U and D̃∗ ≤ D̃. For any fixed Q ∈ Rn+, by Lemma 1, we know that the profit function

Π
(
Q, D̃

)
is nondecreasing in the demand D̃. Thus, Π

(
Q, D̃

)
≥ Π

(
Q, D̃∗

)
, which implies

minD̃∈U0 Π
(
Q, D̃

)
≥ minD̃∈U Π

(
Q, D̃

)
for any Q ∈ Rn+. This proves v1 ≥ v∗.

9



(ii) v1 ≤ v∗. Since U0 ⊇ U , thus for any Q ∈ Rn+, minD̃∈U0 Π
(
Q, D̃

)
≤ minD̃∈U Π

(
Q, D̃

)
, thus,

v1 ≤ v∗.

From Proposition 1, by substituting D̃i = Di− lizi in (6) and defining the following cardinality

set

X =

z :
∑
i∈[n]

zi ≤ k, zi ∈ {0, 1}

 , (10)

then we can have the following equivalent formulation of R-MNMS:

v∗ = max
Q∈Rn+

f(Q) :=
∑
i∈[n]

P iQi −R(Q)

 , (11a)

where

R(Q) := max
z∈X

∑
i∈[n]

Si

Qi −Di + lizi −
∑
j∈[n]

αji (Dj − ljzj −Qj)+


+

. (11b)

This new equivalent formulation (11) allows us to compute the worst-case profit function via

an integer program rather than a nonconvex program, which can be further reduced to a MILP in

Section 5.

One direct benefit of formulation (11) is that we can easily derive upper bounds of optimal

order quantities. The result can be proved by contradiction.

Proposition 2. There exists an optimal solution Q∗ to R-MNMS such that for each product i ∈ [n],

Q∗i ≤Mi, where Mi = Di +
∑

j∈[n] αjiDj.

Proof. See Appendix A.1.

This result is very useful to derive an equivalent MILP formulation of R-MNMS in Section 5.

Remark 2. If Assumption 1 does not hold (i.e., kα ≤ n2 − n) and k = n, then similar to

formulation (11), we can have the following equivalent formulation of R-MNMS

v∗ = max
Q∈Rn+

f(Q) :=
∑
i∈[n]

P iQi −R(Q)

 ,

where

R(Q) := max
z∈Xα

∑
i∈[n]

Si

Qi −Di −
∑
j∈[n]

(α̃ji − lαjizαji)
(
Dj −Qj

)
+


+

,

where Xα =
{
zα :

∑
j∈[n]

∑
i∈[n] z

α
ji ≤ kα, zαji ∈ {0, 1}

}
. Also, we will have Mi = Di+

∑
j∈[n] α̃jiDj.

10



3.2. Complexity of the Inner Maximization Problem (11b)

It has been shown in Zhang et al. (2018) that even if k = 0, kα = 0, solving R-MNMS can be

NP-hard. In this subsection, we will show that the inner maximization problem (11b) of R-MNMS

is also NP-hard.

First, observe that

(Dj − ljzj −Qj)+ =

(Dj − lj −Qj)+ , if zj = 1

(Dj −Qj)+ , if zj = 0

for each j ∈ [n], thus this observation allows us to linearize nonlinear expressions {(Dj − ljzj
−Qj)+}j∈[n] and to rewrite (11b) as

R (Q) = max
z∈X

∑
i∈[n]

Si

Qi −Di + lizi −
∑
j∈[n]

αji

(
(Dj − lj −Qj)+ zj + (Dj −Qj)+ (1− zj)

)
+

 . (13)

Next, we show that the inner maximization problem (13) is NP-hard via a reduction to the well

known clique problem.

Theorem 1. The inner maximization problem (13) in general is NP-hard.

Proof. See Appendix A.2.

Theorem 1 shows that unlike many robust optimization problems, it might be difficult to derive

a tractable form for the general inner maximization problem (13). Thus, instead, in Section 4, we

propose three special cases such that both inner maximization (13) and R-MNMS are tractable.

For general R-MNMS, we propose an equivalent MILP reformulation and develop exact and ap-

proximate algorithms to solve it, which will be presented in Section 5.

4. Three Special Cases: Closed-form Optimal Solutions

In this section, we will study three different special cases of R-MNMS (11) and derive their

closed-form optimal solutions.

4.1. Special Case I: n = 2, k = 1

In this section, we study R-MNMS with only two products (i.e., n = 2) and the budget of

uncertainty is equal to 1 (i.e., k = 1 in set X defined in (10)). Note that if k = 0 or 2, it reduces

to Special Case III, which will be discussed in Section 4.3. Under this setting, R-MNMS (11)

becomes:

v∗ = max
Q∈R2

+

∑
i∈[2]

P iQi −max
z∈X

∑
i∈[2]

Si

Qi −Di + lizi −
∑
j∈[2]

αji (Dj − ljzj −Qj)+


+

 , (14)
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and X = {z : z1 + z2 ≤ 1, zi ∈ {0, 1},∀i ∈ [2]}. To simplify our closed-form solutions, we further

make the following assumption.

Assumption 2. Suppose that D2α21 ≥ l1 ≥ α21l2, D1α12 ≥ l2 ≥ α12l1.

Assumption 2 postulates that the demand deviation of one product cannot be smaller than

the substitution part of the other product’s demand deviation and cannot be larger than the

substitution part of the other product’s nominal demand. Please note that our analysis is general

and can be also applied to the other parametric settings without satisfying Assumption 2. However,

for the purpose of brevity, we will stick to this assumption in this subsection.

The next theorem presents our main findings of the optimal order quantities for this special case

under Assumption 2. These key findings are: (i) to divide the feasible regions into 9 subregions by

comparing Qi with Di− li and Di for each i ∈ [2]; (ii) for each subregion, R-MNMS (14) becomes a

concave maximization problem with a piecewise linear objective function. Thus one of its optimal

solutions can be achieved by an extreme point; and (iii) for each subregion, there are few potential

optimal solutions. Thus, we enumerate all the candidate solutions and find the one which achieves

the highest total profit across all 9 subregions.

Theorem 2. Suppose n = 2, k = 1, and Assumption 2 holds, then the optimal order quantities

Q∗ = (Q∗1, Q
∗
2) are characterized by the following three cases:

Case 1: If P 1 ≤ P 2α12 and P 2 ≥ P 1α21, then (Q∗1, Q
∗
2) = (0, D2 − l2 + α12D1).

Case 2: If P 2 ≤ P 1α21 and P 1 ≥ P 2α12, then (Q∗1, Q
∗
2) = (D1 − l1 + α21D2, 0).

Case 3: If P 1 ≥ P 2α12 and P 2 ≥ P 1α21, then we have the following two sub-cases:

Sub-case 3.1: If S1l1 ≥ S2l2, then (Q∗1, Q
∗
2) =

(
D1 − l1−α21l2

1−α12α21
, D2 − l2−α12l1

1−α12α21

)
or (Q∗1, Q

∗
2) =(

D1, D2 − S2l2−S1l1
S2−S1α21

)
.

Sub-case 3.2: If S1l1 ≤ S2l2, then (Q∗1, Q
∗
2) =

(
D1 − l1−α21l2

1−α12α21
, D2 − l2−α12l1

1−α12α21

)
or (Q∗1, Q

∗
2) =(

D1 − S1l1−S2l2
S1−S2α12

, D2

)
.

Proof. See Appendix A.3.

Theorem 2 provides a complete characterization of optimal order quantities of the two-product

case, which highly depend on the comparison between the marginal profit of product i and the

profit generated by using product j to substitute product i. In particular, we make the following

remarks.

Remark 3. (i) In Case 1, suppose that the marginal profit of product 1 is lower than the profit

generated by using product 2 to substitute product 1, but the marginal profit of product 2 is

higher than the profit generated by using product 1 to substitute product 2, i.e., product 2 is

12



much more profitable than product 1. In this case, the retailer should only order product 2 to

satisfy their customers’ demand and satisfy part of the customers’ demand for product 1 by

substitution. In this case, the worst-case demand of product 2 is D2− l2 while the worst-case

demand of product 1 is equal to the nominal demand D1.

(ii) The interpretation of Case 2 is similar and thus is omitted for brevity.

(iii) In Case 3, if the marginal profit of one product is higher than the profit generated by using the

other product to substitute this product (i.e., both products are similarly profitable), then the

optimal order quantities depend on the relationship between S1l1 and S2l2. One special case

is that when si = ci for each product i ∈ [2], i.e., the salvage value of each product is equal

to its unit production cost, the optimal order quantity of product 1 is Q∗1 = D1 − l1−α21l2
1−α12α21

and the optimal order quantity of product 2 is Q∗2 = D2 − l2−α12l1
1−α12α21

, while the worst-case

demand of products 1 and 2 can be (D1, D2 − l2) or (D1 − l1, D2), respectively. If there is

a tie between two solutions in Sub-case 3.1 or Sub-case 3.2, then one can randomly pick one

solution as both of them are optimal.

(iv) It is impossible that P 1 < P 2α12, P 2 < P 1α21, which implies 1 < α12α21, contradicting the

assumption that all the substitution rates are between 0 and 1.

4.2. Special Case II: α = 0

In this subsection, we analyze robust multi-product newsvendor problem without substitution,

i.e., α = 0. In this setting, the effective demand becomes D̃s
i (Q) = D̃i = Di− lizi. Thus, R-MNMS

(11) reduces to:

v∗ = max
Q∈Rn+

f(Q) :=
∑
i∈[n]

P iQi −max
z∈X

∑
i∈[n]

Si (Qi −Di + lizi)+

 , (15)

where set X is defined in (10). We first make the following observation.

Lemma 2. There exists an optimal solution Q∗ of Model (15) such that Di− li ≤ Q∗i ≤ Di for all

i ∈ [n].

Proof. For notational convenience, let us define Q−i = [Q1, · · · , Qi−1, Qi+1, · · · , Qn]> to be the
vector of the remaining elements of Q. It is sufficient to show that for any fixed Q−i ∈ Rn−1

+ , the
objective function of Model (15), f (Qi,Q−i), is monotone nondecreasing in Qi when Qi ∈ [0, Di−li]
and monotone nonincreasing in Qi when Qi ∈ [Di,+∞). Indeed, we note that

f (Qi,Q−i)

=
∑

τ∈[n]\{i}

P τQτ + P iQi −max
z∈X

 ∑
τ∈[n]\{i}

Sτ (Qτ −Dτ + lτzτ )+ + Si (Qi −Di + lizi)+


13



=


∑

τ∈[n]\{i}
P τQτ −max

z∈X

∑
τ∈[n]\{i}

Sτ (Qτ −Dτ + lτzτ )+ + P iQi, if Qi ∈ [0, Di − li],

∑
τ∈[n]\{i}

P τQτ −max
z∈X

( ∑
τ∈[n]\{i}

Sτ (Qτ −Dτ + lτzτ )+ −Di + lizi

)
+
(
P i − Si

)
Qi, if Qi ∈ [Di,+∞).

Clearly, from the above equation, we know that if Qi ∈ [0, Di − li], the coefficient of Qi is P i,

which is nonnegative, while if Qi ∈ [Di,+∞), the coefficient of Qi is P i−Si, which is nonpositive.

Thus, f (Qi,Q−i) is nondecreasing on Qi when Qi ∈ [0, Di − li] and nonincreasing on Qi when

Qi ∈ [Di,+∞). This completes the proof.

According to Lemma 2, without loss of generality, we can assume in Model (15), Q ∈ [D −

l,D]. Thus, for each i ∈ [n], (Qi −Di + lizi)+ =

0, if zi = 0

Qi −Di + li, if zi = 1
= (Qi −Di + li) zi.

Therefore, Model (15) is equivalent to

v∗ = max
Q∈[D−l,D]

∑
i∈[n]

P iQi −max
z∈X

∑
i∈[n]

Si (Qi −Di + li) zi

 , (16)

where X is defined in (10).

Suppose that {(1), (2), · · · , (n)} is a permutation of [n] such that S(1)l(1) ≥ S(2)l(2) ≥ · · · ≥
S(n)l(n). We can obtain a closed-form optimal solution to Model (16) as follows.

Theorem 3. When α = 0, the optimal solutions Q∗ of Model (16) are characterized as follows:

(i) If
∑

i∈[n]
P i
Si
≤ k, then Q∗i = Di − li, and v∗ =

∑
i∈[n] P i (Di − li).

(ii) If
∑

i∈[n]
P i
Si
> k,

Q∗i =

Di − li +
S(t+1)l(t+1)

Si
, if i ∈ T

Di, if i ∈ [n] \ T
,

and

v∗ =
∑

i∈[n]\T

P ili − S(t+1)l(t+1)k +
∑
i∈T

P i

Si
S(t+1)l(t+1) +

∑
i∈[n]

P i (Di − li) ,

where set T := {(1), (2), · · · , (t)} satisfying
∑

i∈T
P i
Si
≤ k,

∑
i∈T∪{(t+1)}

P i
Si
> k.

Proof. See Appendix A.4.

Theorem 3 reveals the impact of the budget of uncertainty on optimal order quantities. Indeed,

if
∑

i∈[n]
P i
Si
≤ k, i.e., the budget of uncertainty k is no smaller than the sum of the critical ratios

of all the products, then in this case, the optimal order quantity for each product is equal to the
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lower bound of the demand, i.e., Q∗i = Di − li for each i ∈ [n]. Hence, this implies that when

the products are not very profitable, or the accuracy of demand forecasting is relatively low, then

the decision of the retailer should be conservative to hedge against unnecessary loss from demand

forecasting. Suppose that
∑

i∈[n]
P i
Si

> k, i.e., the budget of uncertainty is smaller than the sum

of critical ratios of all the products, or equivalently, relatively a small amount of demand can be

allowed to deviate from the nominal demand D. Also, note that for each product i ∈ [n], the

value of Sili can be interpreted as the risk of lost sales for product i when its order quantity is

Di with the worst-case demand Di − li (i.e., the sum of underage cost and overage cost multiplies

the demand deviation). In this case, for each product i ∈ T whose risk of lost sales is larger than

a threshold S(t+1)l(t+1), its order quantities should be equal to Di − li +
S(t+1)l(t+1)

Si
; otherwise, it

should be Di. The threshold S(t+1)l(t+1) can be determined by searching for the product such that

the sum of the critical ratios of the products whose risk is higher than product (t+ 1) is no larger

than the budget of uncertainty k, but including the critical ratio of this product into the sum will

be above k. This result indicates that the products with a lower risk of lost sales should be ordered

up to the nominal demand, while those with higher risk should be ordered less than the nominal

demand.

4.3. Special Case III: k = n

When the budget of uncertainty is equal to n, i.e., k = n, the uncertainty set U becomes

U =

D̃ : D̃i = Di − lizi,
∑
i∈[n]

zi ≤ n, zi ∈ {0, 1},∀i ∈ [n]

 .

From Lemma 1, we know that the profit function Π(Q, D̃) is nonincreasing in D̃, thus at the

optimality, we must have zi = 1 for all i ∈ [n] in the inner maximization problem (11b), i.e., the

worst-case demand in this special case will always be equal to D − l. Then, Model (11) becomes

v∗ = max
Q∈Rn+

∑
i∈[n]

P iQi −
∑
i∈[n]

Si

Qi −Di + li −
∑
j∈[n]

αji (Dj − lj −Qj)+


+

. (17)

Note that Model (17) is a multi-product newsvendor model with substitution when the demand

is deterministic and is equal to D − l. According to the recent work in Zhang et al. (2018), the

optimal order quantities of Model (17) can be completely characterized as follows (For more details,

please refer to Zhang et al. (2018)).

Theorem 4. (Theorem 1, Zhang et al. (2018)) When k = n, the optimal order quantities Q∗ and

the optimal total profit v∗ are characterized as follows:
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(i)

Q∗j =


Ds
j (Q

∗) = Dj − lj +
∑
i∈Γ∗

αij(Di − li), if P j −
∑

i∈[n]\Γ∗
αjiP i ≥ 0

0, otherwise

(18)

for each j ∈ [n], where [n] \ supp(Q∗) = Γ∗, i.e., Γ∗ = {i ∈ [n] : Q∗i = 0}; and

(ii)

v∗ = max
Γ⊆[n]

f(Γ) :=
∑
j∈Γ

∑
i∈[n]\Γ

αjiP i(Dj − lj) +
∑

i∈[n]\Γ

P i(Di − li)

 := f(Γ∗), (19)

In Theorem 4, if the budget of uncertainty is equal to the number of products, then for each

product j ∈ [n], its optimal order quantity Q∗j is equal to its effective demand if its marginal profit

P j is larger than or equal to the sum of the profits generated by using other products to substitute

it, and 0, otherwise. This suggests that the retailer does not need to order a product if its marginal

profit is relatively low and should order up to its effective demand, otherwise. Also, in (19), the

first term is the sum of the total profit for selling product i ∈ [n] \ Γ to meet the demand of its

substitutable products j ∈ Γ and the second term is the profit of selling product i ∈ [n]\Γ to meet

its own demand. Finally, please note that although we completely characterize the optimal order

quantities for all the products, obtaining these values is in general NP-hard (Zhang et al., 2018).

Another interesting observation from Theorem 4 is that the optimal order quantity for each

product can be equal to their worst-case demand, i.e., Q∗j = Dj− lj for each product j ∈ [n], under

the following assumptions.

Corollary 1. Suppose (1) P i = P j ,∀i, j ∈ [n] and (2) for each product j ∈ [n],
∑
i∈[n]

αji < 1. Then

Q∗j = Dj − lj for all j ∈ [n].

Proof. Note that from Theorem 4, the optimal subset Γ∗ = ∅. Therefore, Q∗j = Ds
j (Q

∗) = Dj − lj
for all j ∈ [n].

Corollary 1 shows that if all the products share the same underage cost and cannot be completely

substituted by the others, then the optimal order quantities are equal to the worst-case demand,

i.e., Q∗j = Dj − lj for each product j ∈ [n].

Finally, we remark that if k = 0, then the results in Theorem 4 will also hold simply by replacing

li = 0 for each i ∈ [n].

5. Solution Approaches

Note that the inner maximization Model (11b) is a nonconvex and nonsmooth optimization

problem. In this section, we will introduce equivalent MILP formulations for R-MNMS (11) and
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its inner maximization Model (11b) by linearizing the nonconvex terms in the profit function.

These equivalent formulations allow us to develop an effective branch and cut algorithm and an

alternative conservative approximation to solve R-MNMS.

5.1. An Equivalent MILP Formulation of the Inner Maximization Problem

In this subsection, we will present an MILP formulation, which is equivalent to the inner

maximization problem (11b)1. To begin with, in (11b), let us define two new variables

uj = (Dj − lj −Qj)+ , ψj = (Dj −Qj)+

for each j ∈ [n]. Clearly, we have ψj ≥ uj for each j ∈ [n]. For simplicity, we still use the function

R(Q,u,ψ) to denote the optimal value of inner maximization problem (11b) for any given Q,u,ψ,

i.e., the inner maximization problem becomes

R(Q,u,ψ) = max
z

∑
i∈[n]

Si

Qi −Di + lizi −
∑
j∈[n]

αji (ujzj + ψj(1− zj))


+

, (20a)

s.t.
∑
i∈[n]

zi ≤ k, (20b)

zi ∈ {0, 1},∀i ∈ [n]. (20c)

Note that Model (20) is a convex integer maximization problem. Thus, we will further linearize

the objective function into a linear form. To do so, for each i ∈ [n], let us define a binary variable

xi = 1, if Qi −Di + lizi −
∑

j αji (ujzj + ψj(1− zj)) ≥ 0, and 0, otherwise. Thus, Model (20) is

equivalent to

R(Q,u,ψ) = max
x,z

∑
i∈[n]

Si

Qi −Di + lizi −
∑
j∈[n]

αji (ujzj + ψj(1− zj))

xi, (21a)

s.t.
∑
i∈[n]

zi ≤ k, (21b)

xi, zi ∈ {0, 1},∀i ∈ [n]. (21c)

The above Model (21) now becomes a binary bilinear program, which can be further linearized

by introducing new variables representing the bilinear terms. The final reformulation result is

shown below.

1For the general kα, we can derive the similar MILP formulation, which can be found in Appendix B.
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Proposition 3. The inner maximization problem (20) is equivalent to

R(Q,u,ψ) = max
x,y,z

∑
i∈[n]

Si

(Qi −Di)xi + liyii −
∑
j∈[n]

αji (ujyji + ψj(xi − yji))

 (22a)

s.t.
∑
i∈[n]

zi ≤ k. (22b)

yji ≤ xi, ∀i, j ∈ [n], (22c)

yji ≤ zj ,∀i, j ∈ [n], (22d)

zi, xi ∈ {0, 1}, yji ≥ 0, ∀i, j ∈ [n]. (22e)

Proof. See Appendix A.5.

5.2. Reformulation of R-MNMS and branch and cut algorithm

Next we are going to investigate an MILP reformulation for R-MNMS (11), which is amenable

for a branch and cut algorithm. First, from Proposition 2, without loss of generality, we can assume

that the order quantities Q can be upper bounded by M . Thus, for each product i ∈ [n], its order

quantity Qi must belong to one of the following three intervals: [0, Di − li], [Di − li, Di], [Di,Mi]

(we break the boundary points arbitrarily). For notational convenience, let us denote D
(0)
i = 0,

D
(1)
i = Di− li, D(2)

i = Di, and D
(3)
i = Mi. Next, we introduce one binary variable for each interval

to indicate whether Qi is in this interval or not, i.e., we let χ
(e)
i = 1 if Qi ∈ [D

(e−1)
i , D

(e)
i ] for each

e ∈ [3]; and 0, otherwise. And we let ∑
e∈[3]

χ
(e)
i = 1, (23a)

to enforce that Qi indeed belongs to only one interval. Correspondingly, for each product i ∈ [n]

and e ∈ [3], we further introduce another variable w
(e)
i to be equal to Qi if Qi ∈ [D

(e−1)
i , D

(e)
i ], and

0, otherwise. That is,

D
(e−1)
i χ

(e)
i ≤ w

(e)
i ≤ D

(e)
i χ

(e)
i , ∀i ∈ [n], e ∈ [3], (23b)∑

e∈[3]

w
(e)
i = Qi,∀i ∈ [n]. (23c)

Next, we can express ui and ψi (recall that ui = (Di − li −Qi)+ and ψi = (Di−Qi)+) as linear

functions of variables {χ(e)
i }e∈[2] and {w(e)

i }e∈[2] for each product i ∈ [n], i.e.,

ui = (Di − li)χ(1)
i − w

(1)
i , ∀i ∈ [n], (23d)

ψi = Di

∑
e∈[2]

χ
(e)
i −

∑
e∈[2]

w
(e)
i , ∀i ∈ [n], (23e)

18



Clearly, in (23d), if Qi > Di − li, then ui is equal to 0 since both χ
(1)
i = 0, w

(1)
i = 0 and otherwise,

it is equal to Di − li − Qi. And in (23e), if Qi > Di, then ψi is equal to 0 since χ
(1)
i = χ

(2)
i =

0, w
(1)
i = w

(2)
i = 0, and otherwise, it is equal to Di−Qi. For the inner maximization problem (22),

let us also define function g (Q,u,ψ,x, y, z) to be its objective function, i.e.,

g (Q,u,ψ,x, y, z) =
∑
i∈[n]

Si

(Qi −Di)xi + liyii −
∑
j∈[n]

αji (ujyji + ψj (xi − yji))

 ,
and set Ξ to be its feasible region, i.e.,

Ξ = {(x, y, z) : (22b)− (22e)} .

In view of the above development, we have the following equivalent MILP formulation of R-

MNMS (11):

v∗ = max
Q,u,ψ,χ,w,η

∑
i∈[n]

P iQi − η, (24a)

s.t. η ≥ g (Q,u,ψ,x, y, z) ,∀(x, y, z) ∈ Ξ, (24b)

w
(e)
i , ui, ψi ≥ 0, χ

(e)
i ∈ {0, 1},∀i ∈ [n], e ∈ [3]. (24c)

(23a)− (23e).

Note that in (24b), there can be exponentially many constraints. Therefore, we propose a

branch and cut algorithm to solve Model (24). To begin with, suppose we are given a subset

Ξ̂ ⊆ Ξ, which can be empty, then the master problem is formulated as below:

max
Q,u,ψ,χ,w,η

∑
i∈[n]

P iQi − η : η ≥ g (Q,u,ψ,x, y, z) ,∀(x, y, z) ∈ Ξ̂, (23a)− (23e), (24c)

 . (25)

Clearly, Model (25) is a relaxation of Model (24), since Ξ̂ ⊆ Ξ. Given an optimal solution(
Q̂, û, ψ̂, χ̂, ŵ, η̂

)
to the master problem (25) to check whether this solution is optimal to original

Model (24) or not, it is sufficient to check whether it satisfies constraints (24b), i.e., solve the inner

maximization problem (22) by letting (Q,u,ψ) = (Q̂, û, ψ̂) as below:

R(Q̂, û, ψ̂) = max
(x,y,z)∈Ξ

{
g
(
Q̂, û, ψ̂, x, y, z

)}
, (26)

and check if η̂ ≥ R(Q̂, û, ψ̂) or not. If η̂ ≥ R(Q̂, û, ψ̂), then
(
Q̂, û, ψ̂, χ̂, ŵ, η̂

)
is optimal to Model
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(24). Otherwise, let (x̂, ŷ, ẑ) be an optimal solution to Model (26). Then add a new constraint

η ≥ g(Q,u,ψ, x̂, ŷ, ẑ)

into the master problem (25) and continue. Note that this solution procedure can be integrated

with branch and bound, which is known as “branch and cut” (Padberg and Rinaldi, 1991; Sen and

Sherali, 2006; Bienstock and ÖZbay, 2008).

Below, we summarize the proposed branch and cut algorithm to solve Model (24), i.e., at

each branch and bound node, we proceed the following cut generating procedure until achieving

optimality.

Step 0: Initialize set Ξ̂ = ∅.
Step 1: Solve the proposed master problem (25) with an optimal solution

(
Q̂, û, ψ̂, χ̂, ŵ, η̂

)
.

Step 2: Solve Model (26), denote its optimal solution by (x̂, ŷ, ẑ) and optimal value R(Q̂, û, ψ̂).

Step 3: There are two cases:

Csse 1: If η̂ ≥ R(Q̂, û, ψ̂), set Q∗ ← Q̂,u∗ ← û,ψ∗ ← ψ̂,χ∗ ← χ̂,w∗ ← ŵ, η∗ ← η̂, stop

and output the optimal solution (Q∗,u∗,ψ∗,χ∗,w∗, η∗).

Csse 2: If η̂ < R(Q̂, û, ψ̂), then augment set Ξ̂ = Ξ̂ ∪ (x̂, ŷ, ẑ), and go to Step 1.

Note that this branch and cut algorithm will terminate in a finite number of steps since there

are only a finite number of points in set Ξ, as well as finite number of binary variables in the master

problem. However, to generate a new constraint at Step 2 might be very time-consuming since it

involves solving an MILP (26), i.e., the inner maximization problem (22). In the remaining part of

this section, we will replace this MILP (26) by its continuous relaxation and derive a conservative

approximation for R-MNMS.

5.3. Conservative Approximation

In practice, the branch and cut algorithm might not be efficient in solving very large-scale

problem instances. In this section, we propose a simple but very effective conservative approx-

imation to solve R-MNMS (24), i.e., the optimal solution from conservative approximation is a

feasible solution to R-MNMS (24). We also provide some sufficient conditions under which this

conservative approximation yields an exact optimal solution to R-MNMS (24).

To derive the conservative approximation, we simply relax variables (x, y, z) in set Ξ to be

continuous in R-MNMS (24), then we can obtain the following lower bound, i.e., a conservative

approximation to Model (24):

vCA = max
Q,u,ψ,χ,w,η

∑
i∈[n]

P iQi − η : η ≥ g (Q,u,ψ,x, y, z) ,∀(x, y, z) ∈ ΞC , (23a)− (23e), (24c)

 , (27)

where ΞC denotes the continuous relaxation of set X.
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Note that the constraints η ≥ g(Q,u,ψ,x, y, z), ∀(x, y, z) ∈ ΞC is equivalent to

η ≥ max
(x,y,z)∈ΞC

{g (Q,u,ψ,x, y, z)} ,

where the right-hand side is a linear program with nonempty and bounded feasible region for any

given (Q,u,ψ). Therefore, according to the strong duality of linear program, we can replace the

max operator by its dual, i.e., an equivalent min operator, and further change the min operator with

the existence one. Let $,σ,ρ, ζ, ξ be the dual variables associated with constraints (22b),(22c),

(22d), z ≤ e and x ≤ e, respectively. Then the conservative approximation (27) is equivalent to

the following MILP:

vCA = max
Q,u,v,η,$,σ,ρ,ζ,ξ

∑
i∈[n]

P iQi − η, (28a)

s.t. η ≥ k$ +
∑
i∈[n]

(ζi + ξi), (28b)

$ + ζj −
∑
i∈[n]

ρji ≥ 0,∀j ∈ [n], (28c)

σji + ρji ≥ −Siαji(uj − ψj),∀i, j ∈ [n], i 6= j, (28d)

σjj + ρjj ≥ Sjlj , ∀j ∈ [n], (28e)

ξi −
∑
j∈[n]

σji ≥ Si(Qi −Di)− Si
∑
j∈[n]

αjiψj , ∀i ∈ [n], (28f)

ζi, ξi, σij , ρij ≥ 0,∀i, j ∈ [n], (28g)

(23a)− (23e), (24c).

The following result summarizes the above development of the conservative approximation and

also shows that under some sufficient conditions, this approximation can be exact, i.e., vCA = v∗.

Theorem 5. Let vCA denote the optimal value of Model (28). Then

(i) vCA ≤ v∗; and

(ii) vCA = v∗, if one of the following conditions holds: (1) α = 0, or (2) n = k.

Proof. See Appendix A.6.

From Theorem 5, we see that the conservative approximation (28) provides a feasible solution

to R-MNMS (24). In addition, Theorem 5 tells that the conservative approximation can provide a

good-quality, even an optimal solution to R-MNMS (24). We will illustrate these facts in Section 6.

Please note that we provide closed-form solutions for the special cases when α = 0 and n = k in

Section 4.2 and Section 4.3, respectively.
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6. Computational Study

In this section, we test the performances of the branch and cut algorithm and conservative

approximation to solve R-MNMS (24). Also, we study the impact of demand correlation on the

total profit and test the reliability of R-MNMS (24) compared with its risk-neutral counterpart.

6.1. Effectiveness of Algorithms

We considered instances with n = 10 and n = 20 products. For each n ∈ {10, 20}, we generated

10 random instances, where for each product i ∈ [n], the nominal demand Di is between 50 and 100,

the unit price pi ranged from 85 to 95, unit cost ci varied from 40 to 50, and the salvage value si was

between 22 and 30. All the products were assumed to be similar, we assume kα = n2−n, and thus

the substitution rates were generated uniformly between 0 and 1, satisfying
∑

i∈[n] αji = 0.8 and

αjj = 0 for each j ∈ [n]. The lower bound of the demand was set to be proportional to the nominal

demand, i.e., l = θD, where θ ∈ (0, 1) is called “deviation ratio”. We tested these instances with

the budget of uncertainty k ∈ {2, 5, 8, 10} and the deviation ratio θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for

n = 10, while for n = 20, we tested the instances with θ ∈ {0.2, 0.4} and k ∈ {5, 10}. Both

approaches were coded in Python 2.7 with calls to Gurobi 7.5 on a personal computer with 2.3

GHz Intel Core i5 processor and 8G of memory. The CPU time limit of Gurobi was set to be 3600

seconds.

Table 12 in Appendix C and Table 2 display the computational results of branch and cut

algorithm and conservative approximation method with n = 10 and n = 20, respectively. Due to

the length, we calculate the average computation result of Table 12 for each parametric setting

in Table 1. For the branch and cut algorithm, Opt.val denotes the optimal value if available,

LB and UB denote best lower and upper bounds, Gap denotes the optimality gap, computed as

(UB-LB)/UB; for conservative approximation, C.val denotes its output objective value, and A-Gap

represents its optimality gap, computed as (UB-C.val)/UB (note that UB is equal to the Opt.val

if available).

From Table 1 or Table 12 in Appendix C, we see that when n = 10, both approaches find good-

quality feasible solutions. As explained in Section 5.3, the solutions obtained from conservative

approximation method are equal to the solutions calculated from branch and cut algorithm when

k = n = 10, i.e., A-Gap=0. In Table 2, we note that when the number of products increases to 20,

the conservative approximation method can find good-quality feasible solutions within the time

limit. Oftentimes, the conservative approximation solution can be even better than that obtained

by the branch and cut algorithm. Also, from Table 2, we see that if the budget of uncertainty

k increases and k ≤ n
2 , i.e., the number of possible realizations of products’ demand grows, then

the computational time tends to be longer. Also, since a larger k implies that a larger number of

products whose worst-case demand can be equal to their lower bounds, we can anticipate that the

total profit becomes smaller. Since θ denotes how much the worst-case demand can deviate from
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the nominal demand, the increase of θ implies that the variance of random demand grows, which

means a chance of being understock or overstock becomes larger and leads to a smaller total profit.

Table 1: Average computational results of branch and cut algorithm, and conservative approximation algo-
rithm with n = 10.

k θ
Branch and Cut Conservative Approximation

Average Time Average Opt.val Average Time Average C.val Average A-Gap(%)
2

0.1

5.14 35117.2 4.66 35111.4 0.02
5 6.71 33647.7 8.21 33587.5 0.18
8 13.82 32914 22.26 32710.6 0.62
10 1.04 32516.4 4.45 32708.5 0
2

0.2

4.73 33684.1 4.9 33880.5 0.04
5 6.43 30952.6 9.72 30833.6 0.38
8 14.35 29485.1 16.37 29078.4 1.38
10 0.95 29074.2 4.18 29074.2 0
2

0.3

4.48 32665.6 4.92 32649.1 0.05
5 6.85 28257.4 9.28 28079.2 0.63
8 17.7 26056.3 13.78 25296.7 2.34
10 1.11 25440 3.27 25440 0
2

0.4

5.13 31439.8 4.9 31214.9 0.07
5 6.61 25562.3 8.27 25324.6 0.94
8 15.47 22627.4 11.68 21814.1 3.59
10 1.02 21805.7 3.18 21677.6 0
2

0.5

5.51 30213.8 5.16 30187.4 0.09
5 7.7 22867.1 7.95 22570.9 1.3
8 17.46 19198.6 10.37 18181.9 5.29
10 1.58 18171.4 1.78 18171.4 0

6.2. Robustness of Model (24)

In this subsection, we illustrate how to find the optimal budget of uncertainty and also test

robustness of Model (24). Suppose that there are 10 products. The values of p, c, s, α, and kα are

the same as those in Section 6.1. We also assumed that there are 200 historical demand data points

available and we split them into two groups, Υ1,Υ2, with equal size. These historical demand data

points were generated by sampling from independent uniformly random variables between 20 and

80. We choose the candidate set K of budget of uncertainty k as {0, 1, · · · , 10}. According to

Section 2.2 with percentile q = 10, we found the optimal budget of uncertainty k∗ = 6, which is the

smallest k ∈ K such that v∗(k, kα) ≤ Π̂10%(k, kα) as shown in Figure 1. In Table 13 of Appendix D,

we further illustrate how to follow the similar procedure to jointly choose the best pair of (k, kα).
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Table 2: Computational results of branch and cut algorithm and conservative approximation method with
n = 20.

k θ Instances
Branch and Cut Conservative Approximation

Time LB UB Gap (%) Time C.val A-Gap (%)

5 0.2

1 3600 62696.6 64708.6 3.21 426 63598.0 1.72
2 3600 57808.9 59814.1 3.47 376 58676.9 1.90
3 3600 67405.0 69220.8 2.69 386 68271.3 1.37
4 3600 63595.0 65665.0 3.26 474 64289.4 2.10
5 3600 68212.6 70193.6 2.90 483 68970.1 1.74
6 3600 63162.1 65226.0 3.27 389 64158.1 1.64
7 3600 57161.3 58977.5 3.18 443 57873.8 1.87
8 3600 59865.9 61533.3 2.79 399 60482.0 1.71
9 3600 63039.5 64734.2 2.69 297 64015.2 1.11
10 3600 63736.1 65823.4 3.28 445 64440.0 2.10

Average 3600 62668.3 64589.6 2.98 412 63477.5 1.73

5 0.4

1 3600 56885.9 59198.5 4.07 209 57605.3 2.69
2 3600 52545.4 55277.5 5.20 164 53302.7 3.57
3 3600 61266.0 63481.5 3.62 210 62016.9 2.31
4 3600 57894.0 60005.2 3.65 171 58491.9 2.52
5 3600 62189.9 64349.5 3.47 214 62787.7 2.43
6 3600 57600.8 59577.6 3.43 162 58411.6 1.96
7 3600 51958.4 53876.0 3.69 188 52501.2 2.55
8 3600 54290.0 56740.3 4.51 166 54681.1 3.63
9 3600 57439.3 60157.6 4.73 162 58052.8 3.50
10 3600 57968.5 60021.7 3.54 193 58443.9 2.63

Average 3600 57003.8 59268.5 4.54 184 57629.5 3.96

10 0.2

1 3600 58550.7 61391.8 4.85 677 58760.5 4.29
2 3600 53961.4 55228.0 2.35 676 54308.9 1.66
3 3600 62883.8 66951.2 6.47 674 62988.8 5.92
4 3600 59129.6 62307.3 5.37 744 59423.0 4.63
5 3600 63215.9 65995.8 5.37 775 63774.9 3.37
6 3600 58661.4 61816.1 5.38 588 59310.5 4.05
7 3600 53268.3 56034.5 4.40 679 53631.6 4.29
8 3600 55993.3 58219.7 3.98 584 56143.3 3.57
9 3600 58682.7 61631.3 5.03 519 59298.9 3.79
10 3600 59474.8 62217.1 4.61 667 59677.8 4.08

Average 3600 58382.2 61179.3 3.84 658 58731.8 2.78

10 0.4

1 3600 48742.5 50596.0 3.80 192 48090.8 4.95
2 3600 44928.1 46423.0 3.33 132 44626.2 3.87
3 3600 52462.0 54713.1 4.29 162 51612.7 5.67
4 3600 49276.9 51014.4 3.53 149 48758.0 4.42
5 3600 52576.1 55947.0 6.41 137 52511.7 6.14
6 3600 48995.8 50832.1 3.75 113 48792.0 4.01
7 3600 44435.2 45413.2 2.20 133 44066.6 2.97
8 3600 46552.2 47417.1 1.86 141 45977.6 3.04
9 3600 49148.4 50407.4 2.56 117 48861.3 3.07
10 3600 49663.0 50784.3 2.26 183 48956.5 3.60

Average 3600 48678.0 50354.8 3.27 146 48225.3 4.20
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Figure 1: The 10th percentile of profits for Model (2) by plugging in the optimal order quantities of robust model

(24) for different k.

We also tested the reliability of the solution from robust Model (24) by comparing with the

risk neutral one studied in Zhang et al. (2018), which has the following form:

vrn = max
Q∈Rn+

∑
i∈[n]

P iQi − EP

∑
i∈[n]

Si

(
Qi − D̃s

i (Q)
)

+

 , (29)

where P denotes a particular probability distribution.

We first used the demand data in Υ2 to obtain the optimal order quantities of robust Model (24)

with k∗ = 6. Also, we obtained the optimal order quantities from the risk-neutral Model (29) by

solving the sampling average approximation (SAA) with the demand realizations from set Υ2. To

compare the quality of both solutions, we assumed that the underlying true probability distribution

of each product’s demand is independent Gaussian N (µ, σ2) truncated at the interval [20, 80]. We

selected different parametric pairs (µ, σ2) of Gaussian random vectors, and for each pair (µ, σ2),

we generated 105 i.i.d. samples to evaluate the solutions from robust Model (24) and risk-neutral

Model (29) and also to compute their statistical confidence intervals. The computational results

are presented in Table 3.

From Table 3, we see that if the data are very limited and unable to predict the underlying true

probability distribution or if the underlying true probability distribution is not the same as the one

we stick to, then the solution from robust Model (24) is more reliable than that from risk-neutral

Model (29). On the other hand, if the underlying true distribution is close to the one we predict

using the historical data (e.g., in the cases of Gaussian(40, 402) and Gaussian(40, 502)), then risk-

neutral Model (29) can be more accurate. In practice, if there are limited data or the demand is

changing rapidly, then we recommend the robust Model (24), and if there are plenty of historical
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data and products’ demand is quite stable, then risk-neutral Model (29) is more desirable.

Table 3: Mean and 95% Confidence Interval (CI) objective value of robust Model (24) and risk neutral Model (29)
under different Gaussian distributions.

Distribution Mean and 95% CI of Robust Model Mean and 95% CI of Risk Neutral Model
Gaussian(20, 102) 6416.22± 6.29 5066.66± 6.33
Gaussian(20, 402) 11559.16± 15.64 10951.76± 17.74
Gaussian(20, 502) 12316.00± 16.38 11929.89± 18.96
Gaussian(30, 102) 10875.82± 9.24 9554.59± 9.30
Gaussian(30, 502) 13643.80± 16.16 13387.78± 18.70
Gaussian(30, 802) 14013.59± 16.63 13959.36± 19.53
Gaussian(40, 102) 16618.50± 9.61 15553.12± 10.27
Gaussian(40, 402) 15780.94± 15.98 15964.15± 18.90
Gaussian(40, 502) 15734.04± 16.32 16037.57± 19.47

6.3. Impact of Demand Correlation

In this subsection, we analyze the impact of the correlation coefficient of the demand on the total

profit for different levels of budget of uncertainty k. Suppose that there are 10 products. The values

of p, c, s, α, and kα are the same as those in Section 6.1. Given i.i.d. uniform random variables

{Ũi}i∈{0}∪[n] distributed between −1 and 1, we assume that the random demand of ith product is

D̃i = 50 + 30(ρ̂Ũ0 + (1 − ρ̂)Ũi) for each i ∈ [n]. Theoretically, the Pearson correlation coefficient

between any two distinct products i and j is given by ρ̂2/(ρ̂2 + (1− ρ̂)2) (please find the derivation

in Appendix E), increasing with the increase in ρ̂ for ρ̂ ∈ [0, 1]. We constructed the demand

uncertainty set U as follows: (i) We first generated 100 data points from the probability distribution

of Ũi for each i ∈ {0} ∪ [n], denoted by {U0,l}l∈[100], {U1,l}l∈[100], · · · , {U10,l}l∈[100]; (ii) Next, we

calculated 100 demand points {Di,l}l∈[100] using the formula Di,l = 50 + 30(ρ̂U0,l + (1− ρ̂)Ui,l) for

all i ∈ [n] and l ∈ [100]; and (iii) Finally, we used these 100 demand points of {Di,l}i∈[n],l∈[100]

to construct the uncertainty set U following from the steps in Section 2.2. The optimal profits of

the robust Model (24) for different budgets of uncertainty k are illustrated in Figure 2. It is seen

that when k is small, the profit decreases when ρ̂ increases (i.e., the demand correlation coefficient

increases). This trend diminishes as k is close to n, which is mainly because the impact of the

correlation on the profit is dominated by that of k. Besides, as k increases, the worst-case demand

of most of products is equal to its lower bound according to robust model (24), which can be

over-conservative and significantly reduces the total profit.

7. Conclusion

This work studies the robust multi-product newsvendor problem with substitution (R-MNMS),

where the demand and substitution are under cardinality-constrained uncertainty sets. We first

prove that evaluating the worst-case total profit for given order quantities, in general, is NP-hard.

Next, we identify three solvable special cases of R-MNMS and derive their closed-form optimal
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Figure 2: Impact of correlation on the profit of robust model (24) at different budgets of uncertainty k.

solutions. For a general R-MNMS, we propose a mixed-integer linear program formulation that

can be solved by a branch and cut algorithm. We also develop a conservative approximation

method to solve R-MNMS and show that under certain conditions, its optimal solution can also

be optimal to R-MNMS. Finally, we conduct numerical studies to illustrate the effectiveness and

solution quality of the proposed algorithms. Please note that the cardinality uncertainty set is

essential for the results in this paper, which might not hold if one changes to other uncertainty

sets. One possible future direction is to extend the robust model to other interesting data-driven

uncertainty sets, for example, moment-based uncertainty sets (Scarf, 1957; Xie and Ahmed, 2018b;

Li and Fu, 2017). Another direction is to incorporate pricing decisions into R-MNMS, i.e., to study

joint inventory and pricing optimization in R-MNMS. Finally, to explore the correlation between

the stochastic substitution rates and stochastic demand, i.e., to study R-MNMS under a joint

uncertainty in demand and the substitution rates is also interesting.
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Appendix A. Proofs

A.1 Proof of Proposition 2

Proposition 2. There exists an optimal solution Q∗ to R-MNMS such that for each product i ∈ [n],

Q∗i ≤Mi, where Mi = Di +
∑

j∈[n] αjiDj.

Proof. We prove the result by contradiction. Suppose for any optimal solution Q∗, there exists a

product i ∈ [n] such that Q∗i > Mi. Let set B := {i ∈ [n] : Q∗i > Mi}. Hence, B 6= ∅. Let us define

a new solution Q̂ such that Q̂i =

Mi, if i ∈ B

Q∗i , otherwise
for each product i ∈ [n]. Clearly, Q̂i ≤Mi for

each i ∈ [n]. Then the objective value f(Q̂) is equal to

f(Q̂) =
∑
i∈B

P iMi +
∑

i∈[n]\B

P iQ
∗
i

−max
z∈X

∑
i∈B

Si

Mi −Di + lizi −
∑
j∈B

αji (Dj − ljzj −Mj)+ −
∑

j∈[n]\B

αji
(
Dj − ljzj −Q∗j

)
+


+

+
∑

i∈[n]\B

Si

Q∗i −Di + lizi −
∑
j∈B

αji (Dj − ljzj −Mj)+ −
∑

j∈[n]\B

αji
(
Dj − ljzj −Q∗j

)
+


+


=
∑
i∈B

P iMi +
∑

i∈[n]\B

P iQ
∗
i +

∑
i∈B

Si (Q∗i −Mi)

−max
z∈X

∑
i∈B

Si

Q∗i −Di + lizi −
∑

j∈[n]\B

αji
(
Dj − ljzj −Q∗j

)
+


+
∑

i∈[n]\B

Si

Q∗i −Di + lizi −
∑

j∈[n]\B

αji
(
Dj − ljzj −Q∗j

)
+


+


=
∑
i∈[n]

P iQ
∗
i −max

z∈X

∑
i∈[n]

Si

Q∗i −Di + lizi −
∑
j∈[n]

αji
(
Dj − ljzj −Q∗j

)
+


+


+
∑
i∈B

(
Si − P i

)
(Q∗i −Mi)

=v∗ +
∑
i∈B

(
Si − P i

)
(Q∗i −Mi)

≥v∗,

where the second equality is because of Mj = Dj +
∑

i∈[n] αjiDi for all j ∈ B, the third equality

is because for each j ∈ B, we have Q∗j > Mj = Dj +
∑

i∈[n] αijDi, the forth equality is due to the

optimality of Q∗, and the last inequality holds because Si ≥ P i and Q∗i > Mi for each i ∈ [n].

This implies Q̂ is also an optimal solution, a contradiction.
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A.2 Proof of Theorem 1

Theorem 1. The inner maximization problem (13) in general is NP-hard.

Proof. We prove this result from a reduction of clique problem to be a special case of Model (13).

(Clique Problem) Given an undirected graph G(V,E), does it have a size-τ clique?

Let us consider a special instance of the inner maximization problem (13): suppose that there

are n = |V | + |E| products, and for each product i ∈ E, we let Si = 1, Qi = Di, li = 1, while for

each product j ∈ V , we let Sj = 1, Qj = Dj − lj , lj = 1. Additionally, the substitution rate matrix

α is defined as

αji =

1, if edge i ∈ E contains node j ∈ V

0, otherwise

for all i, j ∈ V ∪ E. Let the budget of uncertainty k = τ(τ+1)
2 . Under this setting, the inner

maximization problem (13) reduces to

R (Q) = max
z

∑
i∈E

z(E)
i −

∑
j∈V

αji

(
1− z(V )

j

)
+

+
∑
j∈V

z
(V )
j , (30a)

s.t.
∑
j∈V

z
(V )
j +

∑
i∈E

z
(E)
i ≤ τ(τ + 1)

2
, (30b)

z
(V )
j , z

(E)
i ∈ {0, 1}. (30c)

It is sufficient to show that the Clique Problem is equivalent to Model (30), i.e., we only need to

show the following claim.

Claim 1. There is a clique with τ nodes in the undirected graph G(V,E) if and only if R (Q) =
τ(τ+1)

2 .

Proof. Before we prove the result, let us denote z∗ as an optimal solution of Model (30), and also

define the following two sets: V ∗ = {j ∈ V : (z
(V )
j )∗ = 1}, E∗ = {i ∈ E : (z

(E)
i )∗ = 1}, i.e.,

Ĝ(V ∗, E∗) is a substructure of G(V,E). Note that Ĝ(V ∗, E∗) might not be a graph since we might

not choose enough nodes to cover all the edges, i.e., there might exist an edge in set E∗ but not

both of its two nodes are selected in set V ∗. Thus, R (Q) is equal to

R (Q) =
∑
i∈E∗

1−
∑
j∈V

αji

(
1− (z

(V )
j )∗

)
+

+
∑
j∈V ∗

(z
(V )
j )∗ =

∑
i∈E∗

1−
∑

j∈V \V ∗
αji


+

+ |V ∗|.

(31)
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From (31), we have the following inequality:

R (Q) =
∑
i∈E∗

1−
∑

j∈V \V ∗
αji


+

+ |V ∗| ≤
∑
i∈E

1−
∑

j∈V \V ∗
αji


+

+ |V ∗| ≤
(
|V ∗|

2

)
+ |V ∗|, (32)

where the first inequality is due to E∗ ⊆ E, and the second inequality is because of
(

1−
∑

j∈V \V ∗ αji

)
+

=

0 if at least one of the two nodes from edge i is not covered by set V ∗.

Now we are ready to prove the main results.

“only if”. Suppose that there exists a size-τ clique (Vτ , Eτ ) in the graph G(V,E). Let us denote

a binary vector ẑ as

ẑ
(V )
j =

1, j ∈ Vτ
0, otherwise

,∀i ∈ V, ẑ
(E)
i =

1, i ∈ Eτ
0, otherwise

,∀j ∈ E.

Clearly, ẑ is a feasible solution to Model (30), with an objective value equal to τ(τ+1)
2 . Thus,

R (Q) ≥ τ(τ+1)
2 .

Now suppose that R (Q) > τ(τ+1)
2 . According to the objective function (30a), we must have

|E∗|+ |V ∗| =
∑
i∈E

(z
(E)
i )∗ +

∑
j∈V

(z
(V )
j )∗ ≥ R (Q) >

τ(τ + 1)

2
.

Also, the constraint (30b) implies that

|E∗|+ |V ∗| ≤ τ(τ + 1)

2
,

a contradiction.

“if”. Suppose that R (Q) = τ(τ+1)
2 . According to (31), we must have

τ(τ + 1)

2
= R (Q) =

∑
i∈E∗

1−
∑

j∈V \V ∗
αji


+

+ |V ∗| ≤ |E∗|+ |V ∗|

and by (32), we also have

τ(τ + 1)

2
= R (Q) ≤

(
|V ∗|

2

)
+ |V ∗|,

On the other hand, the constraint (30b) implies that |V ∗| + |E∗| ≤ τ(τ+1)
2 . Thus, we

must have |V ∗| + |E∗| = τ(τ+1)
2 . Suppose that the substructure Ĝ(V ∗, E∗) is not a clique,
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then there exists i0 = (u0, v0) ∈ E∗ such that at least one of its nodes is not chosen, i.e.,(
1−

∑
j∈V \V ∗ αji0

)
+

= 0. Thus, by (31), we have

τ(τ + 1)

2
= R (Q) =

∑
i∈E∗\{i0}

1−
∑

j∈V \V ∗
αji


+

+ |V ∗| ≤ |E∗| − 1 + |V ∗| < τ(τ + 1)

2
,

a contradiction.

A.3 Proof of Theorem 2

Theorem 2. Suppose n = 2, k = 1, and Assumption 2 holds, then the optimal order quantities

Q∗ = (Q∗1, Q
∗
2) are characterized by the following three cases:

Case 1: If P 1 ≤ P 2α12 and P 2 ≥ P 1α21, then (Q∗1, Q
∗
2) = (0, D2 − l2 + α12D1).

Case 2: If P 2 ≤ P 1α21 and P 1 ≥ P 2α12, then (Q∗1, Q
∗
2) = (D1 − l1 + α21D2, 0).

Case 3: If P 1 ≥ P 2α12 and P 2 ≥ P 1α21, then we have the following two sub-cases:

Sub-case 3.1: If S1l1 ≥ S2l2, then (Q∗1, Q
∗
2) =

(
D1 − l1−α21l2

1−α12α21
, D2 − l2−α12l1

1−α12α21

)
or (Q∗1, Q

∗
2) =(

D1, D2 − S2l2−S1l1
S2−S1α21

)
.

Sub-case 3.2: If S1l1 ≤ S2l2, then (Q∗1, Q
∗
2) =

(
D1 − l1−α21l2

1−α12α21
, D2 − l2−α12l1

1−α12α21

)
or (Q∗1, Q

∗
2) =(

D1 − S1l1−S2l2
S1−S2α12

, D2

)
.

Proof. According to Model (14), we have

v∗ = max
Q1,Q2≥0

{
f(Q) = P 1Q1 + P 2Q2 −R(Q)

}
, (33)

and

R(Q) = max
z∈X

∑
i∈[2]

Si

Qi −Di + lizi −
∑
j∈[2]

αji
(
(Dj − lj −Qj)+ zj + (Dj −Qj)+(1− zj)

)
+

= max
{
S1

(
Q1 −D1 + l1 − α21 (D2 −Q2)+

)
+

+ S2

(
Q2 −D2 − α12 (D1 − l1 −Q1)+

)
+
,

S1

(
Q1 −D1 − α21 (D2 − l2 −Q2)+

)
+

+ S2

(
Q2 −D2 + l2 − α12 (D1 −Q1)+

)
+
,

S1

(
Q1 −D1 − α21 (D2 − l2 −Q2)+

)
+

+ S2

(
Q2 −D2 − α12 (D1 −Q1)+

)
+

}
= max

{
S1

(
Q1 −D1 + l1 − α21 (D2 −Q2)+

)
+

+ S2

(
Q2 −D2 − α12 (D1 − l1 −Q1)+

)
+
,
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S1

(
Q1 −D1 − α21 (D2 − l2 −Q2)+

)
+

+ S2

(
Q2 −D2 + l2 − α12 (D1 −Q1)+

)
+

}
,

where the second equality is due toX =
{
z :
∑

i∈[2] zi ≤ 1, zi ∈ {0, 1}, ∀i ∈ [2]
}

= {(0, 1), (1, 0), (0, 0)}
and the third equality is because S1

(
Q1 −D1 − α21 (D2 − l2 −Q2)+

)
+

+S2

(
Q2 −D2 − α12 (D1 −Q1)+

)
+

is dominated by the other two.

Note that for each i ∈ [2], the optimal order quantity Q∗i must belong to one of the three

intervals [0, Di − li], [Di − li, Di], or [Di,+∞). Thus, we can divide the feasible region into 9

subregions (see Figure 3 for an illustration), where under each subregion, function R(Q) becomes

piecewise convex, thus Model (33) is solvable. Therefore, we can optimize Model (33) over each

subregion, and the solution with the largest objective value corresponds to an optimal solution to

the original problem (33). Therefore, we need to discuss the 9 cases, corresponding to 9 subregions.

Before we derive the main results, we observe a characterization of an optimal solution of

maximizing a piecewise concave function over a box.

Observation 1. Given an integer number τ , consider the following piecewise concave optimization

program:

max
x

{
min
i∈[τ ]

(ci)>x : 0 ≤ x ≤ U
}
.

Then an optimal solution of the above optimization problem can be one of the following points:

(i) the extreme points of the box [0,U ]; and

(ii) the intersection point of any affine system (ci)>x = (cj)>x for all i, j ∈ B ⊆ [τ ] with

2 ≤ |B| ≤ n and the boundary of the box [0,U ].

(iii) the unique solution of the affine system (ci)>x = (cj)>x for all i, j ∈ B with |B| = n + 1,

which is in the box [0,U ].

Proof. Note that the piecewise concave optimization program can be written as the following linear

program:

max
x

{
w : w ≤ (ci)>x, ∀i ∈ [τ ],0 ≤ x ≤ U

}
.

The conclusion follows by the fact that one optimal solution of the above linear program must

be an extreme point, and condition (i), (ii), and (iii) exactly characterize all the extreme points.

Now we are ready to discuss the following 9 cases.

Case 1. Suppose (Q1, Q2) ∈ Ω1, i.e., 0 ≤ Q1 ≤ D1 − l1, 0 ≤ Q2 ≤ D2 − l2.
In this case, R(Q) = 0 and Model (33) becomes:

max
Q

{
f(Q) = P 1Q1 + P 2Q2 : 0 ≤ Q1 ≤ D1 − l1, 0 ≤ Q2 ≤ D2 − l2

}
.
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Figure 3: Decomposition of feasible solution regions into 9 sub-regions, where Ω1 =
{(Q1, Q2) : 0 ≤ Q1 ≤ D1 − l1, 0 ≤ Q2 ≤ D2 − l2}, Ω2 = {(Q1, Q2) : 0 ≤ Q1 ≤ D1 − l1, D2 − l2 ≤ Q2 ≤ D2},
Ω3 = {(Q1, Q2) : 0 ≤ Q1 ≤ D1 − l1, D2 ≤ Q2}, Ω4 = {(Q1, Q2) : D1 − l1 ≤ Q1 ≤ D1, D2 − l2 ≤ Q2 ≤ D2},
Ω5 = {(Q1, Q2) : D1 − l1 ≤ Q1 ≤ D1, D2 ≤ Q2}, Ω6 = {(Q1, Q2) : D1 ≤ Q1, D2 ≤ Q2}, Ω2′ =
{(Q1, Q2) : D1 − l1 ≤ Q1 ≤ D1, 0 ≤ Q2 ≤ D2 − l2}, Ω3′ = {(Q1, Q2) : D1 ≤ Q1, 0 ≤ Q2 ≤ D2 − l2}, Ω5′ =
{(Q1, Q2) : D1 ≤ Q1, D2 − l2 ≤ Q2 ≤ D2}.

Clearly, the optimal solution of the above linear program is t11 = (D1 − l1, D2 − l2), and its

optimal total profit is

f(t11) = P 1(D1 − l1) + P 2(D2 − l2).

Case 2. Suppose (Q1, Q2) ∈ Ω2, i.e., 0 ≤ Q1 ≤ D1 − l1, D2 − l2 ≤ Q2 ≤ D2.

Figure 4: Illustration of possible solutions of Case 2.

In this case, we have R(Q) = S2(Q2 −D2 + l2 − α12(D1 −Q1))+ and Model (33) becomes:

max
Q

{
f(Q) = P 1Q1 + P 2Q2 − S2(Q2 −D2 + l2 − α12(D1 −Q1))+ : 0 ≤ Q1 ≤ D1 − l1, D2 − l2 ≤ Q2 ≤ D2

}
.

According to Observation 1, the optimal solution of above optimization problem can be one of

the following points: (1) extreme points of Ω2 i.e., t12, t
2
2, t

3
2, t

4
2; and (2) the intersection points of

linear equation Q2 −D2 + l2 − α12(D1 −Q1) = 0 with feasible regions, i.e., t52, t
6
2 (see Figure 4 for

an illustration). These potential optimal solutions and their corresponding total profits are listed
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in Table 4.

Table 4: The possible solutions and their total profits in Case 2

Possible solutions Total profit

t12 = (0, D2 − l2) f(t12) = P 2(D2 − l2)

t22 = (0, D2) f(t22) = P 2D2

t32 = (D1 − l1, D2) f(t32) = P 1(D1 − l1) + P 2D2 − S2(l2 − α12l1)

t11 = t42 = (D1 − l1, D2 − l2) f(t42) = f(t11) = P 1(D1 − l1) + P 2(D2 − l2)

t52 = (D1 − l2/α12, D2) f(t52) = P 1(D1 − l2/α12) + P 2D2

t62 = (D1 − l1, D2 − l2 + α12l1) f(t62) = P 1(D1 − l1) + P 2(D2 − l2 + α12l1)

It remains to compare these solutions. Clearly, we have

• f(t22) ≥ f(t12), since P 2, l2 ≥ 0,

• f(t52)− f(t22) = P 1(D1 − l2/α12) ≥ 0 due to Assumption 2 that α12D1 − l2 ≥ 0,

• f(t62)−f(t32) = P 2(−l2 +α12l1)+S2(l2−α12l1) = (−P 2 +S2)(l2−α12l1) ≥ 0 due to S2 ≥ P 2

and Assumption 2 that l2 − α12l1 ≥ 0,

• f(t62)− f(t42) = P 2α12l1 ≥ 0, and

• f(t62)−f(t52) = −P 1l1+P 2(−l2+α12l1)+P 1
l2
α12

= 1
α12

(P 1−P 2α12)(l2−α12l1)

≥ 0, if P 1 ≥ P 2α12

≤ 0, if P 1 ≤ P 2α12

,

due to Assumption 2 that l2 − α12l1 ≥ 0.

From the above comparison, we can draw the following conclusion on the best solution in the

subregions Ω1 and Ω2:

(i) If P 1 − P 2α12 ≤ 0, then the point t52 dominates the other points in the subregions Ω1 and

Ω2, since f(t52) ≥ f(t22) ≥ f(t12), f(t52) ≥ f(t62) ≥ f(t42), and f(t52) ≥ f(t62) ≥ f(t32).

(ii) If P 1 − P 2α12 ≥ 0, then the point t62 dominates the other points in the subregions Ω1 and

Ω2, since f(t62) ≥ f(t52) ≥ f(t22) ≥ f(t12), f(t62) ≥ f(t42), and f(t62) ≥ f(t32).

Case 3. Suppose (Q1, Q2) ∈ Ω3, i.e., 0 ≤ Q1 ≤ D1 − l1, D2 ≤ Q2.

In this case, R(Q) = S2(Q2 −D2 + l2 − α12(D1 −Q1))+ and Model (33) becomes:

max
Q

{
f(Q) = P 1Q1 + P 2Q2 − S2(Q2 −D2 + l2 − α12(D1 −Q1))+ : 0 ≤ Q1 ≤ D1 − l1, D2 ≤ Q2

}
.
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According to Observation 1, the optimal solution can be one of the following points: (1) the

extreme points in Ω3, i.e., t13, t
2
3; and (2) the intersection points of linearQ2−D2+l2−α12(D1−Q1) =

0 and the boundary of Ω3, i.e., t33, t
4
3 (see Figure 5 for an illustration). These solutions and their

corresponding total profits are listed in Table 5.

Figure 5: Possible solutions in Case 3

Table 5: Possible solutions and their total profits in Case 3

Possible solutions Total profit

t13 = t22 = (0, D2) f(t13) = f(t22) = P 2D2

t23 = t32 = (D1 − l1, D2) f(t23) = f(t32) = P 1(D1 − l1) + P 2D2 − S2(l2 − α12l1)

t33 = (0, D2 − l2 + α12D1) f(t33) = P 2(D2 − l2 + α12D1)

t43 = t52 = (D1 − l2/α12, D2) f(t43) = f(t52) = P 1(D1 − l2/α12) + P 2D2

In view of the results in Case 1 and Case 2, it remains to compare f(t52), f(t33) and also

f(t62), f(t33). Clearly, we have

• f(t52)−f(t33) = P 1(D1−l2/α12)−P 2(−l2+α12D1) = 1
α12

(P 1−P 2α12)(α12D1−l2)

≥ 0, if P 1 ≥ P 2α12

≤ 0, if P 1 ≤ P 2α12

,

due to Assumption 2 that α12D1 ≥ l2,

• f(t62)−f(t33) = P 1(D1− l1)+P 2α12(l1−D1) = (P 1−P 2α12)(D1− l1)

≥ 0, if P 1 ≥ P 2α12

≤ 0, if P 1 ≤ P 2α12

since Dl ≥ l1,

From the above comparison as well as the results of Case 1 and Case 2, we can draw the

following conclusion on the best solution in subregions Ω1, Ω2 and Ω3:
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(i) If P 1 ≥ P 2α12, then t62 dominates all the other points in Ω1, Ω2, and Ω3 since f(t62) ≥ f(t52) ≥
f(t33).

(ii) If P 1 ≤ P 2α12, then t33 dominates all the other points in Ω1, Ω2, and Ω3 since f(t62) ≤ f(t52) ≤
f(t33).

Case 4. Suppose (Q1, Q2) ∈ Ω4, i.e., D1 − l1 ≤ Q1 ≤ D1, D2 − l2 ≤ Q2 ≤ D2.

In this case, R(Q) = max{S1(Q1−D1 + l1−α21(D2−Q2))+, S2(Q2−D2 + l2−α12(D1−Q1))+}
and Model (33) becomes:

max
Q

{
f(Q) = P 1Q1 + P 2Q2 −R(Q) : D1 − l1 ≤ Q1 ≤ D1, D2 − l2 ≤ Q2 ≤ D2

}
.

According to Observation 1, the optimal solution can be one of the following points: (1) the

extreme points of Ω4, i.e., t14, t
2
4, t

3
4, t

4
4; (2) the intersection points of the line Q1 − D1 + l1 −

α11(D2 − Q2) = 0 with the boundary of Ω4, i.e., t24, t
5
4; (3) the intersection points of the line

Q2−D2 + l2−α12(D1−Q1) = 0 with the boundary of Ω4, i.e., t44, t
6
4; and (4) the intersection point

of two lines S1(Q1−D1 + l1−α21(D2−Q2))+ = 0 and S2(Q2−D2 + l2−α12(D1−Q1))+ = 0, i.e.,

t74 (see Figure 6 for an illustration). These solutions and their total profits are listed in Table 6.

Figure 6: Possible solutions in Case 4
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Table 6: Possible solutions and their total profits in Case 4

Possible solutions Total profit

t14 = t42 = t11 = (D1 − l1, D2 − l2) f(t14) = f(t42) = f(t11) = P 1(D1 − l1) + P 2(D2 − l2)

t24 = t23 = t32 = (D1 − l1, D2) f(t24) = f(t23) = f(t32) = P 1(D1 − l1) + P 2D2 − S2(l2 − α12l1)

t34 = (D1, D2) f(t34) = P 1D1 + P 2D2 −max
{
S1l1, S2l2

}
t44 = (D1, D2 − l2) f(t44) = P 1D1 + P 2(D2 − l2)− S1(l1 − α21l2)

t54 = (D1 − l1 + α21l2, D2 − l2) f(t54) = P 1(D1 − l1 + α21l2) + P 2(D2 − l2)

t64 = t62 = (D1 − l1, D2 − l2 + α12l1) f(t64) = f(t62) = P 1(D1 − l1) + P 2 (D2 − l2 + α12l1)

t74 =
(
D1 − l1−α21l2

1−α12α21
, D2 − l2−α12l1

1−α12α21

)
f(t74) = P 1

(
D1 − l1−α21l2

1−α12α21

)
+ P 2

(
D2 − l2−α12l1

1−α12α21

)

In view of the results in Case 1- Case 3, we know that point t62 or t33 dominates all the other

points of Ω1,Ω2, and Ω3, so we only need to compare f(t62), f(t33), f(t34), f(t44), f(t54), f(t74).

• f(t44) − f(t54) = (P 1 − S1)(l1 − α21l2) ≤ 0 due to Assumption 2 that l1 − α21l2 ≥ 0 and the

fact that P 1 ≤ S1,

• If P 1 ≤ P 2α12, then

f(t34)− f(t33) = P 1D1 −max{S1l1, S2l2}+ P 2l2 − P 2α12D1

= (P 1 − P 2α12)D1 + (P 2l2 −max{S1l1, S2l2}) ≤ 0,

where the inequality is because of D1 ≥ 0 and P 2l2 ≤ S2l2 ≤ max{S1l1, S2l2}. Otherwise,

f(t34) and f(t33) are incomparable.

• Compare f(t62) with f(t74)

f(t62)− f(t74) = P 2(−l2 + α12l1) + P 1(−l1) + P 1
l1 − α21l2
1− α12α21

+ P 2
l2 − α12l1
1− α12α21

= −α21

(P 1 − P 2α12)(l2 − l1α12)

1− α21α21

≤ 0, if P 1 ≥ P 2α12

≥ 0, if P 1 ≤ P 2α12

,

where the inequalities are due to Assumption 2 that l2 ≥ α12l1 and the fact that 0 ≤ α21 ≤
1, 0 ≤ α12 ≤ 1.

• If P 1 ≤ P 2α12, then

f(t54)− f(t33) = P 1(D1 − l1 + α21l2)− P 2α12D1 = (P 1 − P 2α12)D1 − P 1(l1 − α21l2) ≤ 0,

where the inequality is due to Assumption 2 that l1 ≥ α21l2 and the fact that P 1 ≥ 0, D1 ≥ 0.
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• Compare f(t62) with f(t33)

f(t62)− f(t33) = P 1(D1 − l1) + P 2α12l1 − P 2α12D1 = (P 1 − P 2α12)(D1 − l1)≥ 0, if P 1 ≥ P 2α12

≤ 0, if P 1 ≤ P 2α12

,

where the inequalities are due to the fact that D1 ≥ l1.

• Compare f(t54) with f(t74)

f(t54)− f(t74) = P 1(−l1 + α21l2) + P 2(−l2) + P 1
l1 − α21l2
1− α12α21

+ P 2
l2 − α12l1
1− α12α21

= −α12

(P 2 − P 1α21)(l1 − l2α21)

1− α12α21

≤ 0, if P 2 ≥ P 1α21

≥ 0, if P 2 ≤ P 1α21

,

where the inequalities are due to Assumption 2 that l1 ≥ α21l2 and the fact that 0 ≤ α21 ≤
1, 0 ≤ α12 ≤ 1.

• Compare f(t52) with f(t74)

f(t52)− f(t74) = −P 1
l2
α12

+ P 1
l1 − α21l2
1− α12α21

+ P 2
l2 − α12l1
1− α12α21

= −(P 1 − P 2α12)(l2 − l1α12)

α12(1− α21α21)≤ 0, if P 1 ≥ P 2α12

≥ 0, if P 1 ≤ P 2α12

,

where the inequalities are due to Assumption 2 that l2 ≥ α12l1 and the fact that 0 ≤ α21 ≤
1, 0 ≤ α12 ≤ 1.

From the above comparison as well as the results of Case 1-Case 3, we can draw the following

conclusion on the best solution in subregions Ω1, Ω2, Ω3, and Ω4:

(i) If P 1 ≤ P 2α12, then we must have P 2 ≥ P 1α21 since α12, α21 ∈ [0, 1], and t33 dominates all

the other points in subregions Ω1, Ω2, Ω3, and Ω4, since f(t33) ≥ f(t62) ≥ f(t74), f(t54) ≤ f(t33),

and f(t34) ≤ f(t33).

(ii) If P 1 ≥ P 2α12 and P 2 ≤ P 1α21, then t34 or t54 dominates all the other points in subregions

Ω1, Ω2, Ω3, and Ω4, since f(t54) ≥ f(t74) ≥ f(t52), and f(t74) ≥ f(t62) ≥ f(t33).

(iii) If P 1 ≥ P 2α12 and P 2 ≥ P 1α21, then t34 or t74 dominates all the other points in subregions

Ω1, Ω2, Ω3, and Ω4, since f(t74) ≥ f(t33), f(t74) ≥ f(t62) ≥ f(t33), and f(t74) ≥ f(t54).
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Case 5. Suppose (Q1, Q2) ∈ Ω5, i.e., D1 − l1 ≤ Q1 ≤ D1, D2 ≤ Q2.

In this case, R(Q) = max{S1(Q1−D1 + l1) +S2(Q2−D2), S2(Q2−D2 + l2−α12 (D1−Q1))}
and Model (33) becomes:

max
Q

{
f(Q) = P 1Q1 + P 2Q2 −R(Q) : D1 − l1 ≤ Q1 ≤ D1, D2 ≤ Q2

}
.

According to Observation 1, the optimal solution can be one of the following points: (1) the

extreme points of Ω5, i.e, t15, t
2
5; (2) the intersection point of line S1(Q1−D1 + l1) +S2(Q2−D2) =

S2(Q2−D2 + l2−α12(D1−Q1)) and the boundary of Ω5, i.e., t35 (See Figure 7 for an illustration).

Note that t35 ∈ Ω5 if S1l1 ≥ S2l2, otherwise, t35 6∈ Ω5. These possible solutions are listed in Table 7.

Figure 7: Possible solutions in Case 5

Table 7: Possible solutions and their total profits in Case 5

Possible solutions Total profit

t15 = t24 = t23 = t32 = (D1 − l1, D2) f(t15) = f(t24) = f(t23) = f(t32) = P 1(D1 − l1) + P 2D2 − S2(l2 − α12l1)

t25 = t34 = (D1, D2) f(t25) = f(t34) = P 1D1 + P 2D2 −max
{
S1l1, S2l2

}
t35 = (D1 − S1l1−S2l2

S1−S2α12

, D2) f(t35) = P 1D1 + P 2D2 − P 1
S1l1−S2l2
S1−S2α12

− S1S2
l2−l1α12

S1−S2α12

In view of the results in Case 1- Case 4, the only new point is t35, which is in subregion 5 if

S1l1 ≥ S2l2. Thus, suppose that S1l1 ≥ S2l2, we will compare f(t35) with f(t33), f(t34).

• Compare f(t34) with f(t35):

f(t34)− f(t35) = P 1D1 + P 2D2 − S1l1 − P 1D1 − P 2D2 + P 1
S1l1 − S2l2

S1 − S2α12

+ S1S2
l2 − l1α12

S1 − S2α12

= −(S1 − P 1)(S1l1 − S2l2)

S1 − S2α12

≤ 0,
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where the inequality is due to S1 ≥ P 1 and S1l1 ≥ S2l2.

• Compare f(t33) with f(t35)

f(t33)− f(t35) = P 2 (D2 − l2 + α12D1)− P 1D1 − P 2D2 + P 1
S1l1 − S2l2

S1 − S2α12

+ S1S2
l2 − l1α12

S1 − S2α12

≥ P 2 (−l2 + α12D1)− P 1D1 + P 1
S1l1 − S2l2

S1 − S2α12

+ S1P 2
l2 − l1α12

S1 − S2α12

=
(
P 2α12 − P 1

)(
D1 −

S1l1 − S2l2

S1 − S2α12

)
.

Since D1 − S1l1−S2l2
S1−S2α12

≥ D1 − l1 ≥ 0 and S1l1 ≥ S2l2, thus, f(t33) ≥ f(t35), if P 1 ≤ P 2α12.

From the above comparison results as well as the results of Case 1-Case 4, we can draw the following

conclusion on the best solution in subregions Ω1, Ω2, Ω3, Ω4, and Ω5:

(i) If P 1 ≤ P 2α12 and P 2 ≥ P 1α21, then t33 dominates all the other points in subregions Ω1, Ω2,

Ω3, Ω4, and Ω5, since f(t33) ≥ f(t35).

(ii) If P 1 ≥ P 2α12 and P 2 ≤ P 1α21, then

(a) if S1l1 ≤ S2l2, then t34 or t54 dominates all the other points in subregions Ω1, Ω2, Ω3, Ω4,

and Ω5, and

(b) if S1l1 ≥ S2l2, then t35 or t54 dominates all the other points in subregions Ω1, Ω2, Ω3, Ω4,

and Ω5.

(iii) If P 1 ≥ P 2α12 and P 2 ≥ P 1α21, then

(a) if S1l1 ≤ S2l2, then t34 or t74 dominates all the other points in subregions Ω1, Ω2, Ω3, Ω4,

and Ω5, and

(b) if S1l1 ≥ S2l2, then t35 or t74 dominates all the other points in subregions Ω1, Ω2, Ω3, Ω4,

and Ω5.

Case 6. Suppose (Q1, Q2) ∈ Ω6, i.e., D1 ≤ Q1, D2 ≤ Q2.

In this case, R(Q) = max{S1(Q1 −D1 + l1) + S2(Q2 −D2), S1(Q1 −D1) + S2(Q2 −D2 + l2)}
and Model (33) becomes:

max
Q

{
f(Q) = P 1Q1 + P 2Q2 −R(Q) : D1 ≤ Q1, D2 ≤ Q2

}
.

According to Observation 1, the optimal solution can only be t16, which is listed in Table 8.
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Figure 8: Possible solutions in Case 6

Table 8: Possible solutions and their total profits in Case 6

Possible solutions Total profit

t16 = t25 = t34 = (D1, D2) f(t16) = f(t25) = f(t34) = P 1D1 + P 2D2 −max
{
S1l1, S2l2

}

Note that there is no new optimal solution generated in the case; thus, the conclusion in Case

5 still follows.

Next, for the Cases 2′, 3′, 5′, since they are symmetric to Cases 2, 3, 5, thus we will directly

write down the possible solutions.

Case 2′. Suppose (Q1, Q2) ∈ Ω2′, i.e., D1 ≤ Q1, D2 ≤ Q2.

Case 2′ is symmetric to Case 2, and its possible solutions are listed in Table 9.

Table 9: Possible solutions and their total profits in Case 2’

Possible solutions Total profit

t12′ = (D1 − l1, 0) f(t12′) = P 1(D1 − l1)

t22′ = (D1, 0) f(t22′) = P 1D1

t32′ = (D1, D2 − l2) f(t32′) = P 2(D2 − l2) + P 1D1 − S1(l1 − α21l2)

t42′ = t14 = t42 = t11 = (D1 − l1, D2 − l2) f(t42′) = f(t14) = f(t42) = f(t11) = P 2(D2 − l2) + P 1(D1 − l1)

t52′ = (D1, D2 − l1/α21) f(t52′) = P 2(D2 − l1/α21) + P 1D1

t62′ = (D1 − l1 + α21l2, D2 − l2) f(t62′) = P 2(D2 − l2) + P 1(D1 − l1 + α21l2)

Case 3′. Suppose (Q1, Q2) ∈ Ω3′, i.e., D1 ≤ Q1, 0 ≤ Q2 ≤ D2 − l2.
Case 3′ is symmetric to Case 3 and its possible solutions are listed in Table 10.
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Table 10: Possible solutions and their total profits in Case 3’

Possible solutions Total profit

t13′ = t22′ = (D1, 0) f(t13′) = f(t22′) = P 1D1

t23′ = t32′ = (D1, D2 − l2) f(t23′) = f(t32′) = P 2(D2 − l2) + P 1D1 − S1(l1 − α21l2)

t33′ = (D1 − l1 + α21D2, 0) f(t33′) = P 1(D1 − l1 + α21D2)

t43′ = t52′ = (D1, D2 − l1/α21) f(t43′) = f(t52′) = P 2(D2 − l1/α21) + P 1D1

Case 5′. Suppose (Q1, Q2) ∈ Ω5′, i.e., D1 ≤ Q1, D2 − l2 ≤ Q2 ≤ D2.

Case 5′ is symmetric to Case 5 and its possible solutions are listed in Table 11.

Table 11: Possible solutions and their total profits for Case 5’

Possible solutions Total profit

t15′ = t24 = t23′ = t32′ = (D1, D2 − l2) f(t15′) = f(t24) = f(t23′) = f(t32′) = P 2(D2 − l2) + P 1D1 − S1(l1 − α21l2)

t25′ = t25 = t14 = (D1, D2) f(t25′) = f(t25) = f(t14) = P 2D2 + P 1D1 −max
{
S2l2, S1l1

}
t35′ = (D1, D2 − S2l2−S1l1

S2−S1α21

) f(t35′) = P 1D1 + P 2D2 − P 2
S2l2−S1l1
S2−S1α21

− S1S2
l1−l2α21

S2−S1α21

Based on the results in Case 1-Case 6, thus symmetricly, we can also draw the following con-

clusions in the subregions Ω1, Ω2′ , Ω3′ , Ω4, Ω5′ and Ω6:

(i) If P 1 ≤ P 2α12 and P 2 ≥ P 1α21, then

(a) if S1l1 ≥ S2l2, then t34 or t54 dominates all the other points in subregions Ω1, Ω2′ , Ω3′ , Ω4,

and Ω5′ .

(b) if S1l1 ≤ S2l2, then t35′ or t54 dominates all the other points in subregions Ω1, Ω2′ , Ω3′ ,

Ω4, and Ω5′ , since f(t34) ≤ f(t35′).

(ii) If P 1 ≥ P 2α12 and P 2 ≤ P 1α21, then t33′ dominates all the other points in subregions Ω1,

Ω2′ , Ω3′ , Ω4, and Ω5′ .

(iii) If P 1 ≥ P 2α12 and P 2 ≥ P 1α21, then

(a) if S1l1 ≥ S2l2, then t34 or t74 dominates all the other points in subregions Ω1, Ω2′ , Ω3′ , Ω4,

and Ω5′ , and

(b) if S1l1 ≤ S2l2, then t35′ or t74 dominates all the other points in subregions Ω1, Ω2′ , Ω3′ ,

Ω4, and Ω5′ , since f(t34) ≤ f(t35′).
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Thus, combining all the comparison results, we can conclude that

Case 1: If P 1 ≤ P 2α12 and P 2 ≥ P 1α21, then t33 dominates all the other points of the 9 subregions,

since f(t54) ≤ f(t33), f(t34) ≤ f(t33) from the results of Case 4, and when S1l1 ≤ S2l2, we

have

f(t35′)− f(t33) = P 1D1 + P 2D2 − P 2
S2l2 − S1l1

S2 − S1α21

− S1S2
l1 − l2α21

S2 − S1α21

−
(
P 2(D2 − l2 + α12D1)

)
=
(
P 1 − P 2α12

)
D1 + S1

(
S2 − P 2

) l2α21 − l1
S2 − S1α21

≤ 0,

where the inequality is due to P 1 ≤ P 2α12, S1 ≥ 0, S2−P 2 ≥ 0, l2α21 ≤ l1 and S2 ≥ S1α21

(due to S1l1 ≤ S2l2 and l2α21 ≤ l1).

Case 2: If P 2 ≤ P 1α21 and P 1 ≥ P 2α12, then t33′ dominates all the other points of the 9 subregions,

since f(t54) ≤ f(t33′), f(t34) ≤ f(t33′) which is due to the symmetric results from Case 4 that

f(t54) ≤ f(t33), f(t34) ≤ f(t33), and when S1l1 ≥ S2l2, by the results that f(t35′) ≤ f(t33), we

must have f(t35) ≤ f(t33′).

Case 3: If P 1 ≥ P 2α12, P 2 ≥ P 1α21, there we can separate the results into two sub-cases:

Sub-case 3.1: If S1l1 ≥ S2l2, t35 or t74 dominates all the other points, since f(t35) ≥ f(t34)

from Case 5;

Sub-case 3.2: If S1l1 ≤ S2l2, t35′ or t74 dominates all the other points, since f(t35′) ≥ f(t34)

by symmetry.

This completes the proof.

A.4 Proof of Theorem 3

Theorem 3. When α = 0, the optimal solutions Q∗ of Model (16) are characterized as follows:

(i) If
∑

i∈[n]
P i
Si
≤ k, then Q∗i = Di − li, and v∗ =

∑
i∈[n] P i (Di − li).

(ii) If
∑

i∈[n]
P i
Si
> k,

Q∗i =

Di − li +
S(t+1)l(t+1)

Si
, if i ∈ T

Di, if i ∈ [n] \ T
,

and

v∗ =
∑

i∈[n]\T

P ili − S(t+1)l(t+1)k +
∑
i∈T

P i

Si
S(t+1)l(t+1) +

∑
i∈[n]

P i (Di − li) ,

where set T := {(1), (2), · · · , (t)} satisfying
∑

i∈T
P i
Si
≤ k,

∑
i∈T∪{(t+1)}

P i
Si
> k.
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Proof. Let X̂ = {z :
∑

i∈[n] zi ≤ k, zi ∈ [0, 1], ∀i ∈ [n]}, which is a well-known integral polytope.

Thus, conv(X) = X̂ and the inner maximization problem of (15) is equivalent to maximize a linear

function of set X̂. Thus, we have

v∗ = max
Q∈[D−l,D]

∑
i∈[n]

P iQi −max
z∈X̂

∑
i∈[n]

Si (Qi −Di + li) zi

 . (34)

Let qi = Qi −Di + li for each i ∈ [n], then Model (34) is equivalent to

v∗ = max
q∈[0,l]

min
z∈X̂

∑
i∈[n]

(
P i − Sizi

)
qi +

∑
i∈[n]

P i (Di − li)

 . (35)

Let λ be the dual variable associated with constraint
∑

i∈[n] zi ≤ k and βi be the dual variable

associated with constraint zi ≤ 1 for each i ∈ [n]. Then by reformulating the inner maximization

into its dual form, Model (35) is equivalent to

v∗ = max
q,λ,β

kλ+
∑
i∈[n]

βi +
∑
i∈[n]

P iqi +
∑
i∈[n]

P i (Di − li) (36a)

s.t. λ+ βi ≤ −Siqi, i ∈ [n], (36b)

0 ≤ qi ≤ li, i ∈ [n], (36c)

λ, βi ≤ 0, i ∈ [n]. (36d)

In Model (35), since the objective function is concave in q and convex in z, and set X̂ is

convex compact set, thus according to Sion’s minimax theorem (Sion, 1958), we can equivalently

reformulate Model (35) by switching the min with max operators as follows:

v∗ = min
z∈X̂

max
q∈[0,l]

∑
i∈[n]

(
P i − Sizi

)
qi +

∑
i∈[n]

P i (Di − li)

 .

Note that maxqi∈[0,li]

(∑
i∈[n]

(
P i − Sizi

)
qi

)
=
∑

i∈[n]

(
P i − Sizi

)
+
li for each i ∈ [n]. Thus,

Model (35) is equivalent to

v∗ = min
z∈X̂

∑
i∈[n]

(
P i − Sizi

)
+
li +

∑
i∈[n]

P i (Di − li)

 . (37)

we also observe that
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Claim 2. Model (37) is equivalent to

v∗ = min
z∈X̂1

∑
i∈[n]

(
P i − Sizi

)
li +

∑
i∈[n]

P i (Di − li)

 , (38)

where X̂1 =
{
z :
∑

i∈[n] zi ≤ k, 0 ≤ zi ≤
P i
Si

}
.

Proof. Let v∗1 denote the optimal value of Model (38). To prove Model (37) is equivalent to Model

(38), we only need to show v∗ = v∗1.

v∗ ≥ v∗1. Given an optimal solution z∗ of Model (37), let us define set J1 = {i ∈ [n] : 0 ≤ z∗i ≤
P̄i
S̄i
}

and J2 = {i ∈ [n] : P̄i
S̄i
< z∗i ≤ 1}. Clearly, J1 ∪ J2 = [n] and J1 ∩ J2 = ∅. Next, we define a

new solution ẑ such that

ẑi =

z∗i , if i ∈ J1

P̄i
S̄i
, otherwise

,

for each i ∈ [n]. Clearly, ẑ ∈ X̂1. We also have

v∗ =
∑
i∈[n]

(
P i − Siz∗i

)
+
li +

∑
i∈[n]

P i (Di − li)

=
∑
i∈J1

(
P i − Siz∗i

)
li +

∑
i∈[n]

P i (Di − li)

=
∑
i∈[n]

(
P i − Siẑi

)
li +

∑
i∈[n]

P i (Di − li) ,

where the third equality is due to the definition of ẑ. Therefore, ẑ is feasible to Model (38)

with the same objective value v∗. Thus, we have v∗ ≥ v∗1.

v∗ ≤ v∗1. Since X̂1 ⊆ X̂, thus, v∗ ≤ v∗1.

Note that Model (38) is a continuous knapsack minimization problem and can be solved by

greedy procedure (c.f., Dantzig (1957); Levi et al. (2014)). Let z∗ denote an optimal solution to

Model (38). To obtain z∗, we first sort {Sili}i∈[n] in the descending order S(1)l(1) ≥ S(2)l(2) ≥
· · · ≥ S(n)l(n). Next, we discuss two cases:

Case 1. If
∑

i∈[n]
P i
Si
≤ k, then we have

z∗i =
P i

Si
, ∀i ∈ [n],

and v∗ =
∑

i∈[n] P i (Di − li). On the other hand, in (36), let us consider the following

feasible solution λ∗ = 0, β∗i = 0, q∗i = 0 for all i ∈ [n] with objective value equal to
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∑
i∈[n] P i (Di − li). Therefore, (Q∗, λ∗,β∗) is optimal to (36). Hence, the optimal order

quantity for each product i ∈ [n] is

Q∗i = q∗i +Di − li = Di − li.

Case 2. If
∑

i
P i
Si

> k, then let us define set T := {(1), (2), . . . , (t)} such that
∑

i∈T
P i
Si
≤ k,∑

i∈T∪(t+1)
P i
Si
> k. Then we have

z∗i =


P i
Si

if i ∈ T

k −
∑

τ∈T
P τ
Sτ

if i = (t+ 1)

0 otherwise

,

for each i ∈ [n], and

v∗ =
∑

i∈[n]\T

(
P i − Siz∗i

)
li +

∑
i∈[n]

P i (Di − li)

= P (t+1)l(t+1) − S(t+1)

(
k −

∑
i∈T

P i

Si

)
l(t+1) +

∑
i∈{[n]\T∪(t+1)}

P ili +
∑
i∈[n]

P i (Di − li)

=
∑

i∈[n]\T

P ili − S(t+1)l(t+1)k +
∑
i∈T

P i

Si
S(t+1)l(t+1) +

∑
i∈[n]

P i (Di − li)

Next λ∗ = −St+1lt+1, β
∗
i = 0 and

q∗i =


St+1lt+1

Si
, if i ∈ T

li, if i ∈ [n] \ T

for each product i ∈ [n]. Clearly, (Q∗, λ∗,β∗) is feasible to (36) with objective value equal

to v∗. Therefore, (Q∗, λ∗,β∗) is optimal to (36). Hence, the optimal order quantity for

each product i ∈ [n] is

Q∗i = q∗i +Di − li =

Di − li + St+1lt+1

Si
, if i ∈ T

Di, if i ∈ [n] \ T
.
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A.5 Proof of Proposition 3

Proposition 3. The inner maximization problem (20) is equivalent to

R(Q,u,ψ) = max
x,y,z

∑
i∈[n]

Si

(Qi −Di)xi + liyii −
∑
j∈[n]

αji (ujyji + ψj(xi − yji))

 (22a)

s.t.
∑
i∈[n]

zi ≤ k. (22b)

yji ≤ xi, ∀i, j ∈ [n], (22c)

yji ≤ zj ,∀i, j ∈ [n], (22d)

zi, xi ∈ {0, 1}, yji ≥ 0, ∀i, j ∈ [n]. (22e)

Proof. Let R̂(Q,u,ψ) denote the optimal value of Model (22). It is sufficient to show that

R(Q,u,ψ) = R̂(Q,u,ψ) for any feasible (Q,u,ψ) ∈ R3n
+ .

R(Q,u,ψ) ≤ R̂(Q,u,ψ). Suppose (x∗, z∗) ∈ {0, 1}2n is an optimal solution of Model (21). Define

y∗ji = z∗jx
∗
i for each i, j ∈ [n]. Clearly, (x∗,y∗, z∗) is feasible to Model (22) and

R(Q,u,ψ) =
∑
i∈[n]

Si

Qi −Di + liz
∗
i −

∑
j

αji
(
ujz
∗
j + vj(1− z∗j )

)x∗i
=
∑
i∈[n]

Si

(Qi −Di)x
∗
i + liy

∗
ii −

∑
j∈[n]

αji
(
ujy
∗
ji + ψj(x

∗
i − y∗ji)

) ,
i.e., it yields the same objective value as R(Q,u,ψ). Thus, R(Q,u,ψ) ≤ R̂(Q,u,ψ).

R(Q,u,ψ) ≥ R̂(Q,u,ψ). Suppose (x∗,y∗, z∗) is an optimal solution to Model (22). Since both

x∗ and z∗ are binary, thus according to constraints (22c) and (22d), we must have y∗ji ≤
z∗jx
∗
i = min{z∗j , x∗i } for each i, j ∈ [n]. Therefore,

R̂(Q,u,ψ) =
∑
i∈[n]

Si

(Qi −Di)x
∗
i + liy

∗
ii −

∑
j∈[n]

αji
(
ujy
∗
ji + ψj(x

∗
i − y∗ji)

)
≤
∑
i∈[n]

Si

Qi −Di + liz
∗
i −

∑
j

αji
(
ujz
∗
j + vj(1− z∗j )

)x∗i
where the first inequality is due to the coefficients of {y∗ji}j,i∈[n] are all nonnegative, i.e.,

Sili ≥ 0 and ψj ≥ uj for all i, j ∈ [n]. Hence, (x∗, z∗) is feasible to Model (21) and yields an

objective value at least as large as R̂(Q,u,ψ), which implies that R(Q,u,ψ) ≥ R̂(Q,u,ψ).
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A.6 Proof of Theorem 5

Theorem 5. Let vCA denote the optimal value of Model (28). Then

(i) vCA ≤ v∗; and

(ii) vCA = v∗, if one of the following conditions holds: (1) α = 0, or (2) n = k.

Proof. v∗ ≥ vCA holds since in (28), we replace set Ξ to be its continuous relaxation ΞC . It remains

to show that v∗ = vCA if α = 0 or n = k. To prove this result, it is sufficient to show that for any

given (Q,u,ψ) satisfying constraints (23a)− (23e), (24b)− (24c), the following linear program

max
(x,y,z)∈ΞC

g (Q,u,ψ,x, y, z)

has an integral optimal solution, i.e., the continuous relaxation of Model (22) has an integral

optimal solution.

α = 0. In this case, Model (22) is equivalent to

R(Q,u,ψ) = max
x,y,z

∑
i∈[n]

Si [(Qi −Di)xi + liyii] (41a)

s.t.
∑
i∈[n]

zi ≤ k. (41b)

yii ≤ xi,∀i ∈ [n], (41c)

yii ≤ zi, ∀i ∈ [n], (41d)

zi, xi ∈ {0, 1}, yii ≥ 0,∀i ∈ [n]. (41e)

We let Ξ̂C denote the continuous relaxation of the feasible region of Model (41), where we

relax x, z to be continuous. Then, it is sufficient to show that Ξ̂C is an integral polytope.

First of all, let us write the constraints (41b)− (41e) in the matrix form as below:e
> 0 0

0 I −I
−I I 0


zy
x

 ≤
k0

0

 , (42)

where z =


z1

z2

...

zn

, y =


y11

y22

...

ynn

, x =


x1

x2

...

xn

. By Theorem 19.3 on Page 269 of Schrijver (1998),
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to prove Ξ̂C is a integral polytope, it is sufficient to prove A =

e
> 0 0

0 I −I
−I I 0

 is totally

unimodular (TU). Indeed, if A is TU, and since

k0
0

 is integral, thus, Ξ̂C is an integral

polytope. Hence, the continuous relaxation of Model (41), which is a linear program, has

an integral optimal solution. According to Theorem 19.3 on Page 269 of Schrijver (1998), to

prove A is a totally unimodular matrix, it is sufficient to prove that for any S ⊆ [3n], there

exist S1 and S2 such that S1 ∩ S2 = ∅, S1 ∪ S2 = S,
∑

i∈S1
A.i −

∑
i∈S2

A.i ∈ {−1, 0, 1}2n+1.

We let Ŝ1 = S∩{1, 2, · · · , n} = {i1, · · · , i|S1|}, T
1
z = {iτ}τ≤|S1|,τ is odd and T 2

z = {iτ}τ≤|S1|,τ is even.

Also, we let Ŝ2 = S∩{n+1, · · · , 2n}, Ŝ3 = S∩{2n+1, · · · , 3n}, T 1
y =

{
j ∈ Ŝ2 : j − n ∈ T 1

z

}
,

T 2
y = Ŝ2 \T 1

y , T 1
x =

{
j ∈ Ŝ3 : j − n ∈ T 1

y

}
, T 2

x = S3 \T 1
x . Clearly, we have S1 = T 1

z ∪T 1
y ∪T 1

x ,

S2 = S \ S1. For such S1 and S2, we have
∑

i∈S1
A.i −

∑
i∈S2

A.i ∈ {−1, 0, 1}2n+1.

k = n. From the discussion in Section 4.3, we already know at the optimality, we must have z∗i = 1

for all i ∈ [n] when k = n. In (22a), the coefficient of yji is
∑

j∈[n] αji(ψj − uj) ≥ 0, since

ψj ≥ uj for each j, i ∈ [n] and j 6= i. Also, the coefficient of yii is li, which is nonnegative,

for each i ∈ [n]. Thus, at the optimality of the continuous relaxation of Model (22), we must

have yji = min(xi, zj) = min(xi, 1) = xi for all i, j ∈ [n]. Then, the continuous relaxation of

Model (22) is equivalent to

max
x∈[0,1]n

∑
i∈[n]

Si

(Qi −Di)xi + liyii −
∑
j∈[n]

αji (ujyji + ψj(xi − yji))


= max
x∈[0,1]n

∑
i∈[n]

Si

(Qi −Di + li) +
∑
j∈[n]

αji(Qj −Dj + lj)+

xi,

which is a linear program over a unit box. Thus, there exists an optimal solution x∗ of

the above linear program, which corresponds to an extreme point of the box [0, 1]n, i.e.,

x∗i ∈ {0, 1} for all i ∈ [n]. Thus, y∗ji = x∗i ∈ {0, 1} for all i, j ∈ [n]. Therefore, the continuous

relaxation of Model (22) has an integral optimal solution (x∗,y∗, z∗).
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Appendix B. MILP Reformulation of Model (20) for General kα

Suppose kα is general, i.e., Assumption 1 does not hold. Then the formulation (20) becomes

R(Q,u,ψ) = max
z

∑
i∈[n]

Si

Qi −Di + lizi −
∑
j∈[n]

(αji − lαjizαji) (ujzj + ψj(1− zj))


+

, (43a)

s.t.
∑
i∈[n]

zi ≤ k, (43b)

∑
j∈[n]

∑
i∈[n]

zαji ≤ kα, (43c)

zi ∈ {0, 1}, ∀i ∈ [n], (43d)

zαji ∈ {0, 1}, ∀j, i ∈ [n]. (43e)

Similar to Proposition 3, We can reformulate (43) as an MILP.

Proposition 4. The inner maximization problem (43) is equivalent to

R(Q,u,ψ) = max
x,y,z

∑
i∈[n]

Si

(Qi −Di)xi + liyii −
∑
j∈[n]

αji [ujyji + ψj (xi − yji)] (44a)

+
∑
j∈[n]

lαji
[
ujT

α
ji + ψj

(
Bα
ji − Tαji

)] (44b)

s.t.
∑
i∈[n]

zi ≤ k. (44c)

∑
j∈[n]

∑
i∈[n]

zαji ≤ kα, (44d)

yji ≤ xi, yji ≤ zj ,∀i, j ∈ [n], (44e)

Tαji ≤ zαji, Tαji ≤ yji,∀i, j ∈ [n], (44f)

Bα
ji ≤ zαji, Bα

ji ≤ xi, Bα
ji ≥ zαji + xi − 1, ∀i, j ∈ [n] (44g)

zαji, zi, xi ∈ {0, 1}, yji, Tαji ≥ 0,∀i, j ∈ [n]. (44h)

Proof. The proof is similar to that of Proposition 3, i.e., we eliminate the bilinear terms by in-

troducing variables yji = xizj , T
α
ji = zαjiyji, B

α
ji = zαjixi for each i, j ∈ [n], and then applying

McCormick inequalities (McCormick, 1976).

Let us define J(Q,u,ψ,x, y, z, Tα,Bα, zα) to be the objective function of (44), i.e.,

J(Q,u,ψ,x, y, z, Tα,Bα, zα) =
∑
i∈[n]

Si

(Qi −Di)xi + liyii −
∑
j∈[n]

αji [ujyji + ψj (xi − yji)]
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+
∑
j∈[n]

lαji
[
ujT

α
ji + ψj

(
Bα
ji − Tαji

)] .

And Λ = {(x, y, z, Tα,Bα, zα); (44a) − (44h)}. According to Section 5.2, we have the following

equivalent MILP formulation of R-MNMS(44):

v∗ = max
Q,u,ψ,χ,w,ϑ

∑
i∈[n]

P iQi − ϑ, (45a)

s.t. ϑ ≥ J(Q,u,ψ,x, y, z, Tα,Bα, zα),∀(x, y, z, Tα,Bα, zα) ∈ Λ (45b)

w
(e)
i , ui, ψi ≥ 0, χ

(e)
i ∈ {0, 1}, ∀i ∈ [n], e ∈ [3]. (45c)

(23a)− (23e).

Appendix C. Computational Results of Branch and Cut Algorithm and Con-

servative Approximation Method with n = 10
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Appendix D. Illustration of Finding the Best Pair of Budgets of Uncertainty

(i.e., k∗, kα∗)

In this Appendix, we illustrate how to find the best pair of budgets of uncertainty (i.e., k∗, kα∗)

and also test robustness of Model (45). Suppose that there are 10 products. The values of p, c, and

s are the same as those in Section 6.1. We also assumed that there are 200 historical data of demand

and substitution rates and we split them into two groups, Υ1,Υ2, with equal size. The historical

demand were generated by sampling from independent uniformly random variables between 20

and 80. The historical substitution rates were generated by sampling from independent uniformly

random variables between 0.05 and 0.1. We choose the candidate set K of budget of uncertainty

k and kα as K = {0, 1, · · · , 10} × {0, 10, · · · , 90}. According to Section 2.2 with percentile q = 10,

w1 = 1
n = 1

10 , and w2 = 1
n2−n = 1

90 , we found the optimal budget of uncertainty k∗ = 9 and

kα∗ = 0, which is the smallest w1k + w2k
α = 0.9 such that v∗(k, kα) ≤ Π̂10%(k, kα) as shown in

Table 13.
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Table 13: The 10th percentile of profits for Model (2) by plugging in the optimal order quantities of robust
model (45) for different k and kα. The best pair of budgets of uncertainty (i.e., k∗, kα∗) is highlighted in
bold.

k kα v∗(k, kα) Π̂10%(k, kα) k kα v∗(k, kα) Π̂10%(k, kα) k kα v∗(k, kα) Π̂10%(k, kα)
0 0 24648.0 6075.4 3 70 17841.1 6245.2 7 40 9792.1 11009.3
0 10 24648.0 6075.4 3 80 17840.5 6249.8 7 50 9363.0 6705.8
0 20 24648.0 6075.4 3 90 17841.0 6250.7 7 60 9351.1 6712.8
0 30 24648.0 6075.4 4 0 15836.1 6354.0 7 70 9339.8 6713.5
0 40 24648.0 6075.4 4 10 15765.7 6366.1 7 80 9333.2 6730.5
0 50 24648.0 6075.4 4 20 15708.3 6353.9 7 90 9332.4 6734.8
0 60 24648.0 6075.4 4 30 15687.0 6310.7 8 0 11017.2 10938.2
0 70 24648.0 6075.4 4 40 15682.5 6331.6 8 10 10450.6 10933.6
0 80 24648.0 6075.4 4 50 15681.1 6314.6 8 20 9893.4 10923.7
0 90 24648.0 6075.4 4 60 15679.0 6318.5 8 30 9345.4 10909.2
1 0 22350.7 6102.6 4 70 15676.7 6322.5 8 40 8810.5 10873.5
1 10 22340.4 6088.8 4 80 15674.5 6340.7 8 50 8284.9 10920.2
1 20 22340.3 6088.8 4 90 15674.1 6339.1 8 60 7765.2 10947.1
1 30 22340.2 6088.9 5 0 13763.6 6449.4 8 70 7479.0 7479.0
1 40 22340.0 6089.0 5 10 13679.6 6455.3 8 80 7479.0 7479.0
1 50 22339.9 6089.0 5 20 13612.4 6461.6 8 90 7479.0 7479.0
1 60 22339.3 6089.4 5 30 13567.9 6497.8 9 0 10066.3 10066.3
1 70 22339.7 6089.1 5 40 13553.3 6435.2 9 10 9460.2 10060.5
1 80 22339.7 6089.1 5 50 13546.6 6442.1 9 20 8864.2 10048.2
1 90 22339.7 6089.1 5 60 13543.8 6437.7 9 30 8277.9 10030.0
2 0 20119.1 6203.6 5 70 13541.0 6433.5 9 40 7705.0 9990.0
2 10 20076.7 6141.4 5 80 13538.3 6428.9 9 50 7138.4 9966.7
2 20 20069.8 6119.3 5 90 13537.9 6456.2 9 60 6634.7 6634.7
2 30 20070.5 6118.8 6 0 12589.8 10730.7 9 70 6634.7 6634.7
2 40 20070.1 6119.4 6 10 12089.1 10723.4 9 80 6634.7 6634.7
2 50 20069.4 6123.4 6 20 11605.0 9930.4 9 90 6634.7 6634.7
2 60 20069.8 6118.6 6 30 11493.7 6579.1 10 0 8972.8 8972.8
2 70 20067.8 6125.6 6 40 11460.1 6582.3 10 10 8329.4 8965.3
2 80 20067.9 6125.8 6 50 11445.4 6587.3 10 20 7710.8 8936.0
2 90 20068.2 6122.1 6 60 11437.4 6594.0 10 30 7103.4 8919.8
3 0 17959.3 6266.8 6 70 11433.2 6594.8 10 40 6503.4 8889.2
3 10 17895.1 6259.5 6 80 11430.0 6594.0 10 50 5910.2 8868.3
3 20 17856.2 6255.4 6 90 11429.3 6612.1 10 60 5790.4 5790.4
3 30 17847.3 6257.0 7 0 11851.7 11015.7 10 70 5790.4 5790.4
3 40 17844.2 6270.3 7 10 11319.8 11018.2 10 80 5790.4 5790.4
3 50 17844.4 6271.2 7 20 10796.7 11022.8 10 90 5790.4 5790.4
3 60 17841.8 6265.4 7 30 10287.6 11019.3
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Appendix E. Proof of the Pearson Correlation Coefficient

Given i.i.d. uniform random variables {Ũi}i∈{0}∪[n] distributed between −1 and 1, suppose

that the random demand of ith product is D̃i = 50 + 30(ρ̂Ũ0 + (1 − ρ̂)Ũi) for each i ∈ [n]. The

Pearson correlation coefficient between any two distinct products i, j ∈ [n] such that i 6= j is equal

to ρ̂2/(ρ̂2 + (1− ρ̂)2) and it is increasing with the increase of ρ̂ when ρ̂ ∈ [0, 1].

Indeed, we let E(·) and V(·) denote the expectation and variance operators, respectively. Since

{Ũi}i∈{0}∪[n] are i.i.d. and uniformly distributed in [-1, 1], we have

E(Ũi) = 0,V(Ũi) = 1/3.

For each product i ∈ [n], the expectation of D̃i is equal to

E(D̃i) = E(50 + 30
[
ρ̂Ũ0 + (1− ρ̂)Ũi)

]
= 50 + 30

[
ρ̂E(Ũ0) + (1− ρ̂)E(Ũi)

]
= 50,

while its variance is

V(D̃i) = V(50 + 30
[
ρ̂Ũ0 + (1− ρ̂)Ũi)

]
= 302

[
ρ̂2V(Ũ0) + (1− ρ̂)2V(Ũi)

]
= 300(ρ̂2 + (1− ρ̂)2).

For any pair i, j ∈ [10] with i 6= j, we have D̃i = 50 + 30(ρ̂Ũ0 + (1 − ρ̂)Ũi), D̃j = 50 + 30(ρ̂Ũ0 +

(1− ρ̂)Ũj). Then the covariance between D̃i and D̃j is

Cov(D̃i, D̃j) = Cov(50 + 30(ρ̂Ũ0 + (1− ρ̂)Ũi), 50 + 30(ρ̂Ũ0 + (1− ρ̂)Ũj))

= 900
[
ρ̂2V(Ũ0) + ρ(1− ρ̂)Cov(Ũ0, Ũj) + ρ(1− ρ̂)Cov(Ũ0, Ũi) + (1− ρ̂)2Cov(Ũi, Ũj)

]
= 300ρ̂2

The last equality holds since Ũ0, Ũi, Ũj are independent with zero means. Thus, the Pearson

correlation coefficient between two distinct products i and j is equal to

Cov(D̃i, D̃j)√
V(D̃i) ·

√
V(D̃j)

=
300ρ̂2

300(ρ̂2 + (1− ρ̂)2)
=

ρ̂2

ρ̂2 + (1− ρ̂)2
=

1

1 + (1
ρ̂ − 1)2

,

which is increasing with the increase of ρ̂ when ρ̂ ∈ [0, 1].
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