
This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1111/GCB.15894
 This article is protected by copyright. All rights reserved

MS. EMILY  KYKER-SNOWMAN (Orcid ID : 0000-0003-1782-1916)

DR. DANICA  LOMBARDOZZI (Orcid ID : 0000-0003-3557-7929)

DR. ELIN M JACOBS (Orcid ID : 0000-0001-5697-7628)

DR. NICHOLAS GREGORY SMITH (Orcid ID : 0000-0001-7048-4387)

DR. WILLIAM R WIEDER (Orcid ID : 0000-0001-7116-1985)

Article type      : Report

Increasing the spatial and temporal impact of ecological research: A roadmap for integrating 
a novel terrestrial process into an Earth system model

Running title: Bringing ecology into Earth system models

Emily Kyker-Snowman, Department of Natural Resources and the Environment, University of New 

Hampshire, Durham NH 03824, ek2002@wildcats.unh.edu

Danica L. Lombardozzi, Climate and Global Dynamics Laboratory, National Center for 

Atmospheric Research, Boulder CO 80307, dll@ucar.edu

Gordon B. Bonan, Climate and Global Dynamics Laboratory, National Center for Atmospheric 

Research, Boulder CO 80307, bonan@ucar.edu

Susan J. Cheng, Department of Ecology and Evolutionary Biology and Center for Research on 

Learning and Teaching, University of Michigan, Ann Arbor MI 48104, chengs@umich.edu

Jeffrey S. Dukes, Department of Forestry and Natural Resources, Purdue University, West Lafayette 

IN 47907; Department of Biological Sciences, Purdue University, West Lafayette IN 47907, 

jsdukes@purdue.edu 

Serita D. Frey, Department of Natural Resources and the Environment, University of New 

Hampshire, Durham NH 03824, serita.frey@unh.eduA
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1111/GCB.15894
https://doi.org/10.1111/GCB.15894
https://doi.org/10.1111/GCB.15894
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15894&domain=pdf&date_stamp=2021-09-20


This article is protected by copyright. All rights reserved

Elin M. Jacobs, Department of Forestry and Natural Resources, Purdue University, West Lafayette 

IN 47907, ekarlsso@purdue.edu

Risa McNellis, Department of Biological Sciences, Texas Tech University, Lubbock TX 79409, 

risa.mcnellis@ttu.edu

Joshua M. Rady, Department of Forest Resources and Environmental Conservation, Virginia Tech, 

Blacksburg VA 24061, jmrady@vt.edu

Nicholas G. Smith, Department of Biological Sciences, Texas Tech University, Lubbock TX 79409, 

nick.smith@ttu.edu

R. Quinn Thomas, Department of Forest Resources and Environmental Conservation, Virginia Tech, 

Blacksburg VA 24061, rqthomas@vt.edu

William W. Wieder, Climate and Global Dynamics Laboratory, National Center for Atmospheric 

Research, Boulder CO 80307, Institute of Arctic and Alpine Research, University of Colorado, 

Boulder, CO 80309, wwieder@ucar.edu

A. Stuart Grandy, Department of Natural Resources and the Environment, University of New 

Hampshire, Durham NH 03824, stuart.grandy@unh.edu

Correspondence

Emily Kyker-Snowman, Department of Natural Resources and the Environment, University of New 

Hampshire, Durham NH 03824. Email: ek2002@wildcats.unh.edu

Abstract 

Terrestrial ecosystems regulate Earth’s climate through water, energy, and biogeochemical 

transformations. Despite a key role in regulating the Earth system, terrestrial ecology has historically 

been underrepresented in the Earth system models (ESMs) that are used to understand and project 

global environmental change. Ecology and Earth system modeling must be integrated for scientists to 

fully comprehend the role of ecological systems in driving and responding to global change. 

Ecological insights can improve ESM realism and reduce process uncertainty, while ESMs offer 

ecologists an opportunity to broadly test ecological theory and increase the impact of their work by 

scaling concepts through time and space. Despite this mutualism, meaningfully integrating the two A
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remains a persistent challenge, in part because of logistical obstacles in translating processes into 

mathematical formulas and identifying ways to integrate new theories and code into large, complex 

model structures. To help overcome this interdisciplinary challenge, we present a framework 

consisting of a series of interconnected stages for integrating a new ecological process or insight into 

an ESM. First, we highlight the multiple ways that ecological observations and modeling iteratively 

strengthen one another,  dispelling the illusion that the ecologist’s role ends with initial provision of 

data. Second, we show that many valuable insights, products, and theoretical developments are 

produced through sustained interdisciplinary collaborations between empiricists and modelers, 

regardless of eventual inclusion of a process in an ESM. Finally, we provide concrete actions and 

resources to facilitate learning and collaboration at every stage of data-model integration. This 

framework will create synergies that will transform our understanding of ecology within the Earth 

system, ultimately improving our understanding of global environmental change and broadening the 

impact of ecological research. 

Keywords: global ecology, Earth system models, data-model integration, collaborative bridging, 

modeling across scales, history of models, interdisciplinary workflow

I. The need to integrate ecology and Earth system models 

Terrestrial ecosystems are an integral component of the Earth system. They govern the 

exchange of energy, water, and greenhouse gases between Earth’s land surface and atmosphere and 

provide numerous services for society, including climate regulation and mitigation. For example, 

terrestrial ecosystems absorb approximately a third of anthropogenic carbon emissions (Friedlingstein 

et al., 2019), mitigating the impact of these emissions on climate change. They also play an essential 

role in regulating global water fluxes, from moderating soil water availability to influencing 

precipitation patterns and evaporative cooling. The physical properties of terrestrial ecosystems, 

including their surface reflectivity (i.e., albedo) and surface roughness, also help control the amount 

of energy absorbed and released by the land surface (Bonan, 2008, 2016). Human management of 

terrestrial ecosystems can change these biosphere-atmosphere interactions, for example by reducing 

carbon storage through deforestation and increasing greenhouse gas emissions through agricultural A
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fertilization (Lade et al., 2019; Law et al., 2018). Given the importance of terrestrial ecosystems 

within the Earth system, modern ecological research papers frequently recommend updating existing 

ESMs to reflect new evidence or ideas about ecology that may have large-scale impacts on climate. 

This integration, however, has been slow (Fisher & Koven, 2020). 

Historically, integration of ecological insights into ESMs has been hampered because of a 

disconnect between the scientists conducting empirical research and those engaging in modeling work 

(Fig. 1), a lack of cross-disciplinary training in modeling and empirical skills, and undervaluing of 

insights derived from modeling and data exercises completed along the way to incorporating an 

ecological process into an ESM. Although many scientists engage in both empirical and modeling 

work, the prevailing paradigm for integrating ecology into models tends to separate the tasks involved 

into the subdisciplines of empirical data collection and model development (Figs. 1, 2). Even when 

ecologists engage with model development, the models used in ecology often fall short of the global 

scale of ESMs. While these models generate valuable insights regardless of their ultimate contribution 

to ESMs, large-scale integrative understanding of global change impacts requires the use of ESMs 

because of the many interactions within and among the components of the Earth system. For clarity in 

terminology, we define “Earth system models” as models which represent the interactions among 

land, atmosphere, ocean, and cryosphere processes and follow the principles of energy and matter 

conservation. While we focus specifically on including ecology in the terrestrial component of ESMs, 

our recommendations can apply to similar challenges in other disciplines (e.g., marine ecology and 

modeling ocean-atmosphere interactions). The land component of ESMs can and should continue to 

incorporate ecological processes to improve model realism and to better understand the role of 

ecological processes within the larger Earth system. 

Scientists in both empirical and modeling communities are aware of the need for and benefits 

of collaborating around ESMs. ESM developers understand that ecology plays an important role in 

controlling terrestrial ecosystems and that ecological insights can generate models that more faithfully 

represent real systems, both conceptually and in terms of model uncertainty. Ecological processes, for 

example, can generate amplifying or stabilizing feedbacks that can fundamentally alter climate and 

when incorporated will change model performance (e.g. nitrogen constraints on CO2 fertilization of 

plant NPP changed the magnitude of model-projected future shifts in ecosystem carbon storage A
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(Thornton et al., 2007)). Empiricists, on the other hand, understand the potential large-scale impact of 

their work and that ESMs can help to realize this impact (Fig. 3). For example, ESMs are useful for 

expanding the temporal and spatial scale of ecological research beyond the constraints of a particular 

set of sites or experiments. Additionally, models can be used to explore interactions and feedbacks 

between ecological and climate factors that might be prohibitively complex to measure directly. 

Models are an important means for ecologists to explore new concepts and generate insights about 

complex systems that can lead to testable hypotheses. Finally, models are a means to understand the 

impact of specific management and policy decisions and help stakeholders to make science-informed 

decisions.

Despite the mutual benefits that empirical and modeling communities receive from 

collaborating, obstacles remain to better integrating these communities (Leuzinger & Thomas, 2011; 

Reed et al., 2015). While most empiricists are adept at developing ecological theory for their specific 

species or system, translating that theory into a generalized mathematical formula can be challenging 

without decades of research gathering long-term data over broad scales. Next, empiricists face the 

formidable task of integrating this mathematical formulation into an ESM. ESMs can exceed millions 

of lines of code (Danabasoglu et al., 2020), and hunting for the right place to insert new code without 

breaking the rest of the model can be daunting. Working within the particular computing language or 

framework of an ESM can also be intimidating without extensive training in computational science 

and applied mathematics, which university ecology programs typically do not offer. Additionally, the 

overwhelming complexity and ambiguity of large models can make it difficult, without training, to 

assess the reliability of model results. Given these obstacles, an empirically-focused ecologist might 

question whether it is a good use of their time to put in the training and work involved with modeling 

ecological processes in the Earth system.

Modelers working to integrate ecological processes into ESMs, many of whom have formal 

ecological training, also face challenges in this partnership. Modelers must strive for parsimony in 

model development (i.e. avoiding unnecessary model complexity; see Table 1), and balancing this 

against the push to continuously incorporate more and more ecological detail can be difficult. 

Incorporating new processes can sometimes increase rather than decrease model uncertainty. 

Ecological and biological processes are inherently more complex and challenging to quantitatively A
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define than the physical and/or chemical processes that drive most atmospheric or ocean models. As 

an example, the physiology of stomata does not conform to the principles of fluid dynamics that 

underpin the atmospheric and ocean components of ESMs. Quantitative ecology is a robust field, but 

the math of ecology is often defined in units of genes or whole organisms using statistical 

relationships, rather than the units of matter and energy and process representations that ESMs use, 

and translating between the two is persistently difficult. 

Even when ecology can be quantified in a way that can be incorporated into an ESM, 

ecological data can be time- and resource-intensive to gather, and model development can be limited 

by the availability of all the necessary data to drive, tune, or test a new process. Including all 

ecological processes that impact water, energy, or biogeochemical cycles can lead to models that are 

overly complex and lack adequate foundations in measured data. Modelers are sometimes reluctant to 

add a new process without convincing evidence that its impact outweighs the uncertainty it adds to the 

model. Most ESMs strive to balance ecological realism with excessive complexity, which can lead 

empiricists to be frustrated with the disconnect between model parameters, processes, and reality. 

Meanwhile, modelers may grow frustrated and overwhelmed by the abundance of ecological data that 

“should” but cannot easily be incorporated into models. Resolving the realism-complexity dilemma 

requires modelers to understand the principles and constraints of researching ecological processes, 

while empiricists should be more involved in model development and aware of the unique data 

needed to translate ecological concepts for ESMs.

We address these challenges by providing a clearly defined map of the stages involved in the 

incorporation of a new ecological idea into an ESM. We seek to pull back the curtain on the complex, 

multi-scale workflow of coupled model-data-theory development (Fig. 1, 2, 3) and lower the barriers 

to interdisciplinary collaboration by articulating various phases and considerations along the way 

(Fig. 4). Below, we discuss the history of incorporating ecology into ESMs to provide context for the 

characteristics of modern ESMs. We then present our suggested workflow for integrating ecological 

processes into ESMs (Fig. 4). In this workflow, we describe the iterative procedure of data collection 

and model development for understanding ecological processes and models at different scales (Fig. 

3). We highlight three stages through this workflow and the valuable outcomes at each stage, 

regardless of whether the endpoint of incorporating an ecological process into an ESM is reached. A
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Finally, we include a list of resources to guide scientists through all the stages of this workflow. These 

guidelines and the suggested workflow will facilitate stronger connections between empirical and 

modeling communities, improving ESMs through realistic process representation and increasing the 

impact of ecological research.

II. History and context for current decision-making in ESM development

 For many ecologists, Earth system modeling may seem a distant discipline, but in fact, 

ecology is already an important part of ESMs. The origin of ESMs is nearly 100 years old. In the 

early 20th century, an early model of weather forecasting (Richardson, 1922) required knowledge of 

land surface temperature, surface-absorbed radiation, and exchanges of heat, moisture, and 

momentum with the atmosphere. As a result, the model acknowledged the role of energy and moisture 

fluxes from plant canopies, and included rough representations of stomatal conductance and leaf 

fluxes in its calculations. In the 1960s, modelers expanded their work to the global scale with different 

labs and centers developing atmospheric general circulation models, which would form the 

foundation of some of our present-day ESMs (Edwards, 2011). As model development continued, 

terrestrial vegetation and human modification of the land became recognized as necessary aspects of 

climate science (Schneider & Dickinson, 1974), and prominent studies identified surface albedo, 

evapotranspiration, and deforestation as important climate regulators (Charney et al., 1975; Robert E. 

Dickinson & Henderson-Sellers, 1988; Sagan et al., 1979; Shukla & Mintz, 1982).

In the 1980s, attention turned to representing more than the atmosphere in global models. 

Models of the land surface, such as the Biosphere-Atmosphere Transfer Scheme (BATS; (R. E. 

Dickinson, 1986)) and Simple Biosphere model (SiB; Sellers et al., 1986), were developed for 

coupling with atmosphere models. These models initially focused on the biogeophysical processes of 

energy, moisture, and momentum fluxes and the associated hydrologic cycle. These models 

represented vegetation in more detail, including traits such as stomatal conductance, canopy height, 

leaf area index, and rooting depth. Photosynthesis was also recognized as an essential process to 

model, initially as a diagnostic (Robert E. Dickinson et al., 1981) and later as a predictor (Sellers et 

al., 1996) of carbon and water fluxes (Bonan, 1995; Denning et al., 1996). Building upon a history of 

ecosystem biogeochemical models first conceived during the International Biological Program (IBP) A
cc

ep
te

d 
A

rt
ic

le

https://paperpile.com/c/wUP0mf/TBPb
https://paperpile.com/c/wUP0mf/P4dQ
https://paperpile.com/c/wUP0mf/byEh
https://paperpile.com/c/wUP0mf/4Cr3+HbWE+Y2Zr+vXCI
https://paperpile.com/c/wUP0mf/4Cr3+HbWE+Y2Zr+vXCI
https://paperpile.com/c/wUP0mf/9kAC
https://paperpile.com/c/wUP0mf/9kAC
https://paperpile.com/c/wUP0mf/NskY
https://paperpile.com/c/wUP0mf/rpHI
https://paperpile.com/c/wUP0mf/SQac
https://paperpile.com/c/wUP0mf/SQac
https://paperpile.com/c/wUP0mf/ODLa+SsdB


This article is protected by copyright. All rights reserved

in the 1960s and 1970s, the carbon cycle was subsequently added to ESMs so that atmospheric CO2 

concentration automatically changed over time rather than being manually specified (Cox et al., 2000; 

Fung et al., 2005). Bioclimatic rules and simplified equations for competition for space were also 

added to allow vegetation composition and biogeography to change in relation to the simulated 

climate (Bonan et al., 2003; Foley et al., 1996; Sitch et al., 2003). 

The current generation of ESMs now also includes models with nitrogen and phosphorus 

cycles, wildfires, biogenic volatile organic compound emissions, mineral dust emissions, methane, 

wetlands, agricultural management, and land use/land cover change (Bonan, 2016). That many 

ecological and biogeochemical processes are now included in ESMs is a defining feature in the 

evolution of climate models, which initially focused on the physical system, to today’s more 

comprehensive ESMs that emphasize the interdisciplinary aspects of climate science (Bonan & 

Doney, 2018). For example, representations of the nitrogen and phosphorus cycles were added to some 

ESMs because of their role in regulating the carbon cycle (P. E. Thornton et al., 2009; Y. P. Wang et al., 

2010; Yang et al., 2014; Zaehle & Friend, 2010). Similarly, more soil biogeochemical models are 

including direct representations of microbial populations because of their controls on nutrient and 

carbon cycling (Huang et al., 2021; Kyker-Snowman et al., 2020; K. Wang et al., 2017; Wieder et al., 

2018; Wieder, Grandy, et al., 2015). However, many important processes are still absent from ESMs; 

for example, herbivores are recognized in ecology as important ecosystem drivers, but are not widely 

included in ESMs.

Conversations about including ecology in models have become increasingly common in the 

modeling community, particularly as modelers seek to better match model projections with 

observations. ESMs continue to be modified to include ecology that impacts model calculations of 

surface fluxes of energy, moisture, carbon, and momentum. What conditions need to be met for a 

process to be considered for integration into an ESM? The ecological properties and processes that 

have made their way into ESMs reflect choices by the modeling community about where to focus its 

efforts, as well as the practical limitations of the modeling work itself. In general, new ecological 

processes enter an ESM if:
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● The process can (or is hypothesized to) influence climate on large spatiotemporal scales. 

Given the effort needed to code and test the addition of an ecological process into an ESM, the 

impact of this addition needs to be visible on large spatial scales or on long time frames. For 

example, explicit representations of vegetation were added to ESMs because they had a clear 

impact on and improved the performance of climate models through regulating water fluxes 

on long (e.g., decadal) timescales (Robert E. Dickinson, 1984; Robert E. Dickinson & 

Henderson-Sellers, 1988; Sato et al., 1989; Sellers et al., 1986).

● The process can be reasonably incorporated into existing model infrastructure.

New ESM developments build on earlier ones, which means there needs to be a clear plan for 

how to insert the code for the new process into the existing model code. In addition, this 

linking should be able to occur without major restructuring to the model’s existing structure. 

For example, in order to integrate nitrogen cycling into an ESM, code needed to be developed 

to link nitrogen fluxes to the physics of the land surface and calculations of carbon fluxes 

(Bonan & Levis, 2010; Peter E. Thornton et al., 2007).

● Process understanding and data are available to model the process globally.

The equations representing the process need to be solvable on a three-dimensional global grid 

(latitude, longitude, height) as well as on short time scales representing the model’s timestep 

for calculations (e.g., 30 minutes). Ideally, any input data required by the new ecological 

process should be available globally as a gridded product or be calculable using existing 

variables simulated by the ESM. For example, the TRY database provides data that has been 

used to create global maps of plant traits that are used as the foundation for plant functional 

types (Kattge et al., 2011).

● The mathematics of the process are tractable within the limits of current computing 

resources.

Computing resources have significantly expanded, allowing more ecological processes to 

enter models. However, there are still limits to numerical processing power. Processes must be 

reducible to a mathematical form that does not dramatically increase computing costs of the 

entire ESM, given that existing ESMs already push the capacity of the world’s most powerful 

supercomputers (Washington et al., 2009). For example, representing biodiversity by A
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modeling a large number of individual plant species or soil microbial taxa would greatly 

increase computing costs, so simplified representations of plant functional types and soil 

decomposition are typically used.

● There is a community of researchers dedicated to developing, testing, and maintaining 

the process in the model. Writing the code for a new ecological process is only one part of 

the process for integrating a new component into an ESM. Once code is written, it needs to be 

tested with different components of the ESM and under different simulation conditions before 

the process can be considered as an official addition to the ESM. In addition, the continued 

longevity of the process in the model requires there to be one or more researchers continuing 

to maintain and update the modeled process as new data about the process and new changes to 

the ESM are made. As such, a community of researchers with the resources to both advocate 

for the inclusion of the process and support its inclusion in the model long-term is needed. 

With the origin of ESMs in the atmospheric and physics communities, it is perhaps not 

surprising that the incorporation of ecology into ESMs started in these communities. The modeling 

community has initiated several grassroots efforts to bring more ecologists into ESM work. These 

efforts range from creating conference workshops and research coordination networks (e.g., (Cheng, 

2018; Leuzinger & Thomas, 2011; Rogers et al., 2014)  to leading tutorials and short courses to 

provide training for empiricists and modelers to bridge these subdisciplines (e.g., the CTSM tutorial at 

NCAR; FluxCourse; Bracco et al., 2015). However, these efforts are limited in the number of people 

they can reach. Larger, systematic changes in education and training, funding structures, and 

engagement across communities are critical to shifting the current siloed paradigm. We propose a new 

practical roadmap for empiricist-modeler collaboration that breaks down traditional disciplinary 

boundaries and fosters iterative, shared conceptual development.

III. Introducing the practical roadmap for integrating ecology and ESMs 

New efforts to close the gap between ecological empiricists and Earth system modelers are 

growing, but the two communities could still be better integrated. To do so, each community needs to 

understand the approaches used by the other and work together both to develop the technical A
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advancements needed to expedite data-model integration (e.g., Fer et al., 2021) and to address the 

social dimensions of collaboration. Focusing only on technical or mathematical aspects of data-model 

integration can perpetuate barriers through the use of discipline-specific language and dismissal of 

non-technical obstacles to participation (Bernard & Cooperdock, 2018; Duffy et al., 2021; Morales et 

al., 2020), which can lead to members feeling excluded and keep disciplines siloed (Marín-Spiotta et 

al., 2020; Mattheis et al., 2019). In general, effective cross-disciplinary collaboration depends on 

several key principles that facilitate team dynamics (O′Rourke et al., 2013) and need to be built into 

the start of a collaboration; namely: respect and trust among all team members, clear communication, 

common goals, and effective project leadership (Nancarrow et al., 2013). Research shows that clear 

team communication is essential for optimizing project outcomes (Anderson-Cook et al., 2019; 

Kuziemsky et al., 2009), as it is the foundation for identifying shared objectives and building 

interpersonal relationships that are necessary for teams to remain cohesive during times of conflict 

(Cooley, 1994). Breaking down barriers to interdisciplinary collaboration requires researchers to 

adopt practices that not only improve their collaboration, but also dismantle the inequitable and 

exclusionary dimensions of their disciplines (Chaudhary & Berhe, 2020; Duffy et al., 2021; Emery et 

al., 2021). Additionally, computing tools and frameworks evolve rapidly, and solutions that focus on 

facilitating collaboration will outlast any particular technological tool. To achieve better integration 

and collaboration among empirical and modeling communities, we outline a few necessary 

foundational principles of collaboration and educational change (Fig. 2). We also propose a workflow 

that highlights one possible pathway to improve collaboration between fields to improve the work of 

each (Fig. 4). 

In addition to strengthening empiricist-modeler team dynamics, we emphasize the need to 

rethink ecological education to incorporate process modeling concepts and normalize regular 

collaboration between empirical and modeling subdisciplines. At many institutions, the ecology 

curriculum emphasizes field techniques and statistical analysis, but fewer options may exist for 

courses on ecological process-based modeling. While a given department may offer one or a few 

courses, often these are not required in ecological education, and programming skills development is 

limited to high-level statistics programs and languages like R and python that do not entirely prepare 

students for the computer science that powers modern ESMs. Conversely, educational requirements in A
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other disciplines, such as atmospheric sciences, frequently include both field and modeling techniques 

and in-depth quantitative and programming skills in which computational science and applied 

mathematics are essential tools of the science. Ecologists wanting to learn modeling techniques often 

find themselves taking classes outside their discipline, attempting to separate content from technique 

and applying techniques to a different field, which is a challenging task. This can pose a large enough 

burden on the student that many do not follow through, finding it easier to continue with familiar 

skills. A detailed plan for modifying the way ecology programs teach quantitative skills is beyond the 

scope of this paper, but others have begun the difficult work of rethinking educational paradigms to 

address this problem (Hampton et al., 2017).

ESM communities also need to identify opportunities for redesigning their training so they can 

learn more about ecological concepts and data collection frameworks. Ecological data is complex and 

filled with caveats, and modelers often encounter data after it has been processed and organized and 

thus may be unfamiliar with the nuances of data collection and analysis. Modeler training in 

ecological concepts could take place at the student level, with classwork focused on the impacts of 

living organisms on biogeochemical, water and energy cycles, or at later career stages via field site 

visits, shared seminars, interdisciplinary conference sessions, etc. One powerful approach is for a 

modeler to take a day trip with an ecologist to engage in fieldwork. While we recognize that the 

outdoors are not a comfortable space for many people and this can be a barrier to participation (Anadu 

et al., 2020; Giles et al., 2020; Morales et al., 2020), direct experience with how an ecologist gathers 

data can be an invaluable insight into the the limitations and interpretation of data in a modeled 

context. Virtual site visits using recorded video are another alternative for those unable to visit in 

person. 

Beyond these foundational shifts, we propose a new workflow for modeler-empiricist 

collaboration with three specific stages (Fig. 4). This workflow is meant as one (but not the only) 

route for any empiricist or modeler to understand the stages involved in integrating a new process or 

idea into an ESM. We strive to break down traditional disciplinary barriers between modelers and 

empiricists and highlight the iterative collaboration and shared skill sets that are necessary at each 

stage. The first stage in this workflow (“Assess process & potential impact”) includes a list of 

questions that anyone (regardless of programming ability) can ask to assess the readiness of a process A
cc

ep
te

d 
A

rt
ic

le

https://paperpile.com/c/wUP0mf/BtHs
https://paperpile.com/c/wUP0mf/0t2D+QgP9+8jl5
https://paperpile.com/c/wUP0mf/0t2D+QgP9+8jl5


This article is protected by copyright. All rights reserved

for incorporation into an ESM. The second stage (“Test process alone”) involves the quantification 

and scaling of the new ecological concept using simple models and large-scale parameter 

determination. Finally, the last stage of the flowchart (“Test process with ESM”) discusses the 

multiple steps involved in making modifications to an ESM, evaluating the impact of the new process 

on model-wide behavior, and projecting the large-scale impact of the new process within the Earth 

system. Importantly, each stage of this workflow generates valuable scientific products (e.g. 

hypotheses, new or improved theory, regional or ecosystem-scale models), regardless of whether the 

endpoint of “inclusion in an ESM” is reached. We recognize that tackling any part of this workflow is 

challenging for aspiring and seasoned modelers alike, and we encourage researchers to see it through. 

We include specific illustrative examples for each stage of the workflow (Boxes 1-3) and one that 

illustrates stepping through the entire workflow (Box 4), as well as resources for accomplishing each 

step (Table 1).

Workflow part 1: Identifying and understanding a new process 

The first stage of the proposed workflow assesses the readiness of a new process for inclusion 

in an ESM based on how well the process can be quantified and understood in an ecosystem context. 

Many empiricists recognize the importance of their work for understanding global change and 

highlight the need to incorporate new processes into models. However, highlighting this need has 

minimal impact on ESMs unless coupled to an understanding of the stages of model development and 

the unique types of data necessary to progress through those stages. As such, the first part of the 

workflow provides three guiding questions empiricists should ask to assess whether a new process is 

ready for inclusion in an ESM, each of which will be discussed in more detail in the following 

paragraphs (Fig. 4, “Assess process & potential impact”). These questions can help identify data gaps 

and point to valuable targets for future experiments to facilitate downstream ESM integration. 

Importantly, these questions can be addressed by any empiricist without requiring formal modeling 

skills. While connecting with modelers is not required at this point, it can be helpful in co-designing 

future experiments to make process integration more streamlined (Fig. 2).

The first guiding question aims to evaluate the level of theoretical/empirical understanding of 

the targeted process: Do you expect your process to respond consistently to environmental drivers, 

enabling scaling across space and time? Consistent, quantified patterns are the heart of process A
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modeling. Detailed understanding of a process or mechanism at a single location can help to identify 

whether the process is likely to scale. In order to develop a broad theoretical representation of a 

process, it can help to determine whether data are available across multiple sites and ecosystem types 

and at various timescales. For example, if a specific tropical soil owes its high carbon storage capacity 

to a unique volcanic mineral (Torn et al., 1997), it would be wise to evaluate the carbon storage 

capacity of soils without this mineral before generalizing observed patterns to a global scale. While it 

is not necessary at this stage to gather enough data to create a fully quantified global representation of 

a process, information gained in this step may help identify data gaps and guide the design of 

additional empirical experiments needed for large-scale modeling, such as repeating experiments 

across underexplored regions or a wider range of environmental conditions. This step also helps to 

identify conceptual areas where a large amount of data may be available but consistent relationships 

with environmental factors and process rates have not yet been identified. For instance, soil microbial 

biodiversity is being rapidly catalogued through metagenomics, but these data do not yet provide 

critical information for representing process rates at large scales (Fierer et al., 2021).

The second question in this stage of the workflow requires ecologists to get familiarized with 

ESMs and the way processes are represented: Is your process already in or related to an existing 

process in an ESM? Investigating this question will help identify existing model frameworks that can 

be used as scaffolding for building simple models and ultimately incorporating the process into an 

ESM. ESMs represent similar environmental processes using a variety of different approaches and 

equations, so it might help to start by identifying one or more ESMs that you may be interested in and 

reading model documentation to determine how related processes are represented and whether the 

model will fit your needs. For example, if you want to improve the representation of foliar nitrogen 

acquisition, it is vital that the model you choose already has a terrestrial nitrogen cycle. This is also an 

ideal time to discuss collaborations with ESM developers. We encourage ESM developers at this 

stage to welcome ecologists interested in working with ESMs by taking the time to explain modeling 

concepts in jargon-free language and providing resources to work through technical challenges.

If the selected ESM already contains a model of the process, the empiricist can consider how it 

can be improved or revised using new data or theoretical understanding. Many times a process is 

represented implicitly (e.g. soil microbial activity is often represented using a cascading A
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decomposition scheme (Wieder, Allison, et al., 2015; Wieder et al., 2018)). Illustrating that explicit 

representation of the process will fundamentally change model behavior will help to determine 

whether an explicit representation is needed. In addition, if the current representation of the process 

connects multiple cycles (e.g. carbon and nitrogen, water and energy), exploring existing model 

structures can help empiricists understand all the connections between their process and various 

cycles that must be elucidated and quantified when updating the ESM. Like hooking up speakers to a 

television or finding the right dongle to plug in your phone, the new process will only work within the 

ESM if all the appropriate ins and outs are connected. If the process is not currently in a model, it is 

worth investigating why not (perhaps connecting with an ESM modeler) and whether it might be 

implicitly included through other model process representations. For example, plant hydraulic stress is 

not always explicitly included in ESMs (Kennedy et al., 2019), but may be implicitly included by 

existing connections between soil moisture and stomatal conductance.

The third and final question helps to identify ecological concepts that may be more appropriate 

to a different type of modeling because they are unlikely to alter climate simulations within an ESM: 

Is the process likely to influence climate on scales of time and space consistent with other ESM 

processes? Put another way, is the process likely to change the results of global climate simulations 

using ESMs? Generally, ecology in ESMs impacts climate prediction in two major ways: through 

biogeochemical (carbon and nutrient cycling) and biogeophysical (evapotranspiration and energy 

fluxes) processes. Coupling these processes provides a means for assessing feedbacks between 

ecosystems and climate that distinguish ESMs from stand-alone ecosystem models. 

Simple estimates can be made to assess whether a process, when applied to large regions or 

the entire globe, has the potential to meaningfully influence climate. For example, the general process 

of insect herbivory, which responds to temperature (e.g., Deutsch et al., 2018; Edburg et al., 2011) 

and could meaningfully affect carbon fluxes through changing plant biomass, might influence climate 

(Box 1). On the other hand, temperature affects the distribution and abundance of mosquito species 

(Hunt et al., 2017), but if mosquitoes are not known to have a meaningful impact on climate, 

inclusion of mosquito species distributions would not change the outcome of ESM simulations, and 

may be better suited to a different type of model. In addition, new, climate-influencing processes must 

occur or change at a rate that is meaningful at ESM timescales. For example, changes in A
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environmental conditions may alter the rates of soil microbial metabolic processes over the course of 

minutes or even seconds, but these rapid fluctuations are too fast to capture in the timestep of a typical 

ESM. On the other end of the spectrum, bedrock weathering is a process that releases nutrients for 

plants and may impact plant biomass (Morford et al., 2011), but it happens so slowly that it is unlikely 

to shift simulated plant productivity in an ESM over decade to century timescales. 

Apart from facilitating ESM incorporation, these questions produce valuable intellectual 

products on their own: greater understanding of how a process fits into the terrestrial system, 

identification of knowledge gaps and a clear path towards future empirical work, and determining 

whether an ESM is the appropriate modeling tool for the process of interest. Reflecting on these 

questions can help ecologists define “future directions” for their work with greater specificity than 

“inclusion in a model,” and also generate valuable insights into the scale of an ecological process and 

its connections to water, energy, or biogeochemical cycles. In a classroom setting, these questions can 

be an effective way to practice “thinking like a modeler” without requiring any involvement with 

programming. Regardless of whether the answer to all of these questions for a given ecological 

concept is “yes”, they are beneficial for ecologists to ask.

Box 1: 

Herbivores like insects and grazers have large impacts on plant biomass and productivity, yet 

they are still absent from ESMs. How do the conceptual questions in Part 1 of the workflow guide 

next steps in deciding whether to incorporate herbivores in ESMs? Although herbivores are broadly 

not yet included in ESMs (Question 2) and are known to have important impacts on plant biomass 

with feedbacks to climate (Question 3), ESMs also require that any new process behave consistently 

across space and time (Question 1) in a way that can be captured quantitatively. To move forward 

with incorporating herbivores into ESMs, the known impact of herbivores on plant biomass must be 

reduced down to quantifiable patterns that are consistent across space and time. For example, do 

herbivores reduce plant biomass by a fixed proportion, or by a proportion that depends on climate 

factors already present in ESMs like temperature and precipitation? Does the impact of herbivores 

vary in a predictable way across continents and ecoregions? If the answer is yes, then perhaps a 
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simple model can be developed (Workflow part 2) or existing simple models can be considered for 

ESM incorporation (Workflow part 3). 

Workflow part 2: Beginning to work with simple models 

After assessing the theoretical understanding of a process and its likely importance for 

terrestrial ecosystems and climate, the next workflow steps involve the iterative development, 

implementation, and evaluation of simple models outside of the ESM, in addition to the collection 

and/or assembly of data necessary to apply the simple model at large scales (Fig. 4, “Test process 

alone”). The aim of these activities is to generate knowledge, highlight uncertainties, and refine 

understanding of the process(es) in question. At its core, this stage involves identifying formulas to 

represent our theoretical understanding of ecological systems. This stage is a key precursor to 

working with ESMs because once a process is integrated into an ESM, it becomes harder to discern 

the cause of disagreement with observations, and uncertainty increases. For example, photosynthesis 

can be evaluated with leaf gas exchange data in highly controlled chambers. Gross primary 

productivity, on the other hand, is evaluated using eddy covariance flux towers. Errors can arise in the 

model’s scaling from leaf to canopy, soil moisture, nitrogen availability, leaf area index, and aspects 

of the model other than the photosynthesis parameterization (Rogers et al., 2017). The "test process 

alone" stage is essential to identify the adequacy of a process model before compensating errors occur 

within the ESM. Although not a strict requirement, this phase of the workflow is best accomplished 

with equal, collaborative contributions from both empiricists and modelers (Fig. 2) including someone 

familiar with ESMs who can craft a bridge for future process incorporation. 

Simple models are created at this stage by translating knowledge from conceptual models of 

organisms and ecosystems to mathematical representations of matter and energy. The development of 

simple models can start by creating a simple statistical model or using a pre-existing model. For 

example, R has a photosynthesis package (Duursma, 2015) that can be used as a starting point for 

modifications to photosynthesis like temperature acclimation (e.g., (Smith et al., 2017)) or ozone 

damage (e.g., Lombardozzi et al., 2012). Simple models can also be developed using any coding 

language (both R and Python are free and open source), or even start by using a spreadsheet program 

like Excel, and can range in complexity from a single equation to a complex web of variables and 

parameters. Unlike the first phase of the workflow, testing theory with data at this phase requires A
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some comfort with programming and data management (for resources, see Table 1). These activities 

can be easily integrated into ecological coursework, and a variety of resources have been developed to 

facilitate this (e.g., (Carey et al., 2020)). Additionally, cross-disciplinary collaboration is beneficial at 

this stage, as it helps to formalize conceptual models, clarify assumptions, evaluate ideas within the 

scientific community about a process, connect various components of ecosystems and the Earth 

system, and test the broader applicability of theories over space and time. 

In addition to simple model development, this phase of the workflow involves assembling the 

data necessary to estimate parameters and drive simple models at large scales. (Note: In a model, a 

“parameter” is the value of a variable in an equation. The word “parameterization” may seem like a 

derivative of “parameter”, but is in fact a separate concept referring to representing a complex 

microscale process as an approximate bulk process. For example, model representations of 

photosynthesis are a parameterization of subcellular-level processes, and may use parameter values 

within the calculation (Bonan, 2019)). Necessary data fall into several distinct categories: data for 

parameter estimation during model development, driver data to feed into the model (e.g., climate or 

soil characteristics), and data for benchmarking the model following simulations (i.e., observational 

data to compare against model output). 

At this stage, it is worth making a “shopping list” of the data necessary for a given modeling 

exercise and evaluating the availability of values at the relevant scale (Fig. 3). These data may come 

initially from a single site or lab experiments, but to eventually scale model results globally, data 

gathered across multiple regions and experiments become useful. ESMs use a variety of large-scale 

datasets for parameter estimation and evaluation, and it can be helpful to seek out datasets already in 

use before attempting to assemble a new dataset from scratch. Large-scale data can come from meta-

analytical techniques and syntheses (e.g., Field & Gillett, 2010; Ainsworth & Long, 2005; 

Lombardozzi et al., 2013), pre-existing large synthesized datasets (e.g., SoDaH (Wieder et al., 2020), 

TRY (Kattge et al., 2011)), satellite data (e.g., Li & Xiao, 2019), or model-derived products (e.g., 

Fluxnet-MTE (Jung et al., 2020)). Direct measurements are generally preferable for parameter 

estimation and model evaluation but are not always feasible to collect. As a result, parameter 

estimation and model evaluation often use data products (i.e., data that have been modified by 

models) to achieve the spatial and temporal scales required by the ESM. Data products can be closely A
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connected to the original data (i.e., data averages) or less closely connected (i.e., output of another 

mechanistic model that uses data as an input).  Understanding the uncertainty of a data product is 

critical for determining the value of its use in parameter estimation and model evaluation (Dagon et 

al., 2020; Dietze, 2017). Simple models often get stuck here on the way to ESM incorporation 

because of gaps in data requirements to run models at global scales (e.g., lack of maps of soil edaphic 

properties or other input data that may be critical for further model development).

The creation and improvement of simplified mathematical models and large-scale synthesized 

datasets makes several valuable contributions to understanding and refining ecological theories, 

regardless of the eventual implementation in ESMs. Simple models help formalize, and make explicit, 

the underlying assumptions in the theories they represent and can illustrate weaknesses in existing 

theory. As such, they can be used to generate testable hypotheses that can be interrogated with 

existing data or new experiments. Estimating parameters for simple models with available 

observations helps identify data and knowledge gaps that can be addressed with further study. 

Compared to larger ESMs, simple models have greater traceability, allowing scientists to explore and 

understand model complexity, their associated uncertainties, and emergent properties that can be 

evaluated with independent observations. These simpler models also have the advantage of being 

easier to use, with greater flexibility and lower computation costs than running a full ESM, and can 

potentially be implemented in ESMs in a modularized manner that allows for testing multiple 

ecological theories (e.g., Fisher & Koven, 2020). Finally, these models help to clarify theory and 

develop concepts through independent community efforts to use them and improve their process 

representation. 

Box 2: 

After establishing that a new process is appropriate to consider including in an ESM (Part 1), 

what comes next? Current models of soil microbial activity highlight Part 2 of the workflow: simple 

quantified models evaluated at a variety of scales but not yet incorporated into ESMs. As an example, 

the MIcrobial-MIneral Carbon Stabilization (MIMICS) model was motivated by theories highlighting 

interactions among soil microbes and minerals that are responsible for soil organic matter 

decomposition and persistence. A simple process model was initially developed in R using A
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measurements from laboratory experiments and rates of leaf litter mass loss. This model was tested 

first at a single site (Wieder et al., 2014), and subsequent evaluation across continental and global 

scale gradients illustrated reasonable agreement with litter decay rates and soil carbon stocks 

(Wieder, Grandy, et al., 2015) and a higher vulnerability of Arctic soil C stocks, compared to models 

that implicitly represent microbial activity (Wieder et al., 2019). MIMICS continues to undergo 

further development (e.g. to include coupled C-N biogeochemistry (Kyker-Snowman et al., 2020) and 

vertical resolution (Y. Wang et al., 2021)), refinement (Zhang et al., 2020), and evaluation (Basile et 

al., 2020; Koven et al., 2017; Shi et al., 2018; Sulman et al., 2018). All of these activities rely on 

conducting simulations across multiple study sites and at global scales, which is a valuable precursor 

to considering incorporating MIMICS into an ESM.

Workflow part 3: Integrating processes into ESMs 

Developing and evaluating a simple model ultimately paves the way for integrating a process 

into an ESM, as illustrated in the final stage of the workflow (Fig. 4, “Test process with ESM”). The 

first step is deciding which ESM to use. Many ESMs exist and vary substantially in their ecological 

process representations (Fisher & Koven, 2020), and adding a new process requires an understanding 

of how processes of interest are currently represented in a given ESM (as in Stage 1) and a simple 

model that can be integrated within the framework of that ESM (developed in Stage 2). Additionally, 

some ESMs have proprietary or restricted access (e.g., GFDL-ESM, IPSL-CM5 (Dufresne et al., 

2013; Dunne et al., 2020)) and require collaboration and/or approval by model developers, while 

others are open-source and community driven (e.g., CESM, E3SM (Danabasoglu et al., 2020; Golaz 

et al., 2019)). While not always required, incorporating new processes will be most efficient when 

building relationships with model developers who can help with technical aspects of code 

development. For example, developers with experience in running and testing the model can provide 

code structure guidance and highlight possible interactions or feedbacks among processes that might 

not be obvious to a novice model developer. ESM communities can be insular and siloed at times, and 

ESM developers at this stage can help build more integrated empirical-modeling collaborations by 

seeking out and remaining open to working with ecologists (see Table 1 for several opportunities).
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Once access to model code is available, integrating the new process representation can begin. 

The first step is finding the location to integrate the new process. While this will vary depending on 

the ESM, code modules will often have descriptive names and the location of variables within the 

code can be searched using linux- and editor-based search tools (e.g., grep). It is also helpful to find a 

similar variable or process in the code (with similar inputs and outputs) that can be used as an 

example for how to structure the new process code. Having an example to mirror can be particularly 

useful in identifying other modules where the variables may be required (e.g., sometimes setting the 

initial value for variables happens in a different module). Additionally, it can be helpful to outline or 

diagram a work plan in advance, noting the modules and variables that will need to be added, 

modified, and connected. 

Modifications should build on each other, starting with a simple change: for example, add a 

single variable, and then test that the code will compile and run for a short period of time. 

Sequentially add more complexity, connecting the new variable or process to existing model 

structure. Using this layered approach will help to identify any structural bugs early in the 

development process. Although the ultimate goal is to have a sophisticated representation that 

includes spatially-varying processes, simpler versions of the model can -- and should -- be tested to 

determine the sensitivity of the system to the new process. These simpler model iterations are 

excellent training tools for graduate students and postdoctoral trainees as they become more familiar 

with the model. Once the basic framework for the new process is in place, it can be tested to identify 

the magnitude of change in relevant processes, as well as any interactions with other ecosystem 

processes. Often, these proof-of-concept simulations can turn into publications that highlight the 

potential importance of the process at site or global scales and identify gaps in data that can help to 

improve the process representation.

Throughout the development, testing, and evaluation process, the simplest relevant version or 

component of the ESM available should be used. For example, if the new process does not rely on 

carbon cycling, it may be possible to leave out this portion of the model in your testing, allowing the 

model to run faster and reducing the complexity of model interactions. Often with ecological 

processes, the development process uses only the terrestrial component of an ESM driven by a 

gridded atmospheric data product (e.g., reanalysis), since fully coupled ESM runs are far more A
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computationally expensive than smaller terrestrial-only runs. Additionally, running in the coarsest 

available resolution and for the smallest spatial domain possible (e.g., a single site) will expedite 

model testing. Once code is tested, running it globally (and eventually coupled to an atmospheric 

model) is necessary to ensure the simulation operates appropriately over the global domain. 

An approach called “modular development” can also be useful for testing and evaluating 

different ecological theories, and can be employed when implementing new processes in ESMs 

(Fisher & Koven, 2020; see also Clark et al., 2015). This involves adding an alternate representation 

of a process that is already simulated in a model (not removing the process) and letting the user 

specify which theory the model will use in a given simulation. For example, testing multiple 

representations of stomatal conductance (Franks et al., 2018), soil carbon and nitrogen cycling 

(Wieder, Cleveland, et al., 2015; Wieder et al., 2018), and hydrology (Clark et al., 2008, 2011) have 

been helpful in testing different theories and highlighting when and where certain process 

representations perform best. This allows for refinement of existing theory and process representation, 

advancing the state of current knowledge. 

Once the new process is incorporated, the model must be tested and evaluated. A first step is 

to determine whether the new process fundamentally changes model behavior relative to a simulation 

without this process. Does it affect other simulated processes, and by how much? Many processes do 

not exist in isolation within a model and thus cannot be modified for only one purpose. Better models 

of photosynthesis, for example, may be desired to improve the carbon cycle, but also impact energy 

and water fluxes to the atmosphere through stomatal conductance (Bonan et al., 2011). A second step 

is to evaluate model behavior against observations. Model evaluation is most effective if multiple 

processes are assessed, and is most useful when compared to evaluation of a baseline model 

simulation where the new process is not simulated. This step is similar to simple model evaluation in 

the second stage of this workflow, but this evaluation process should be repeated once the simple 

model is embedded within an ESM. One simple form of evaluation is to run a simulation at a single 

location where relevant observational or experimental manipulation data have been collected, such as 

a field site or a flux tower (Cheng et al., 2019; Medlyn et al., 2015). These data can be used to assess 

whether the new model behavior fundamentally changes model performance (De Kauwe et al., 2013, 

2014; Smith et al., 2015; Thomas et al., 2013; Zaehle et al., 2014). It is also important to evaluate A
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global responses. While global data can be more challenging to access, several resources are currently 

available. Perhaps the most useful is the International Land Model Benchmarking (ILAMB; Collier et 

al., 2018) project, which has developed internationally accepted benchmarking standards for ESM 

performance. This project has compiled global datasets for a range of variables and can help to 

identify where model performance is enhanced or degraded. Remotely sensed data products can also 

help with model evaluation at regional to global scales.

One of the greatest challenges in ESM development is ensuring parsimony while capturing the 

full range of biological complexity. This is particularly challenging for community models with 

contributors from multiple fields and institutions, which commonly suffer from “feature fatigue”. 

Human instinct is to continue to add features to a solution, even when removing features may be more 

beneficial or efficient (Adams et al., 2021). While adding processes can improve model realism, care 

must be taken to avoid sacrificing model reliability, which can be degraded with the addition of 

uncertain parameters (Prentice et al., 2015). Eco-evolutionary optimality theory is one recent tool that 

can be used to improve model realism while limiting the number of new parameters (Box 3; Scott & 

Smith, 2021; H. Wang et al., 2017). Unlike statistical approaches where environmental responses are 

hard-coded with parameters, a theoretical approach allows process responses to emerge with fewer 

parameters (Prentice et al., 2015). These responses can then be tested with data that might, in a more 

statistical approach, be needed to estimate parameters.

The workflow so far has presented guidelines for incorporating a new process into an ESM, 

which requires substantial work in developing and incorporating new code into a model and then 

evaluating the responses of terrestrial processes. Often, the ecological workflow ends here with the 

assessment of the global-scale impact of a process and how it may change ecological functioning 

through time. Beyond this, an exciting next step is to understand whether this new process has climate 

feedbacks by comparing land-only and coupled model simulations. Land models can be coupled to 

other ESM components (atmosphere, ocean, ice, etc.) to investigate global feedbacks in water, energy 

or biogeochemical cycles. Connecting land and atmosphere components allows investigation of 

unexpected feedbacks with the atmosphere that may be different from land-only simulations. 

Box 3: A
cc

ep
te

d 
A

rt
ic

le

https://paperpile.com/c/wUP0mf/mhsU
https://paperpile.com/c/wUP0mf/mhsU
https://paperpile.com/c/wUP0mf/8DNQ
https://paperpile.com/c/wUP0mf/PDvX
https://paperpile.com/c/wUP0mf/suhi+rRQr
https://paperpile.com/c/wUP0mf/suhi+rRQr
https://paperpile.com/c/wUP0mf/PDvX


This article is protected by copyright. All rights reserved

One example of how models have maintained parsimony (Part 3 of the workflow) is 

photosynthetic acclimation (Smith & Dukes, 2013). Initially, empirical models were developed to 

simulate temperature acclimation of photosynthetic biochemical capacity in ESMs based on observed 

responses (e.g., Kattge et al., 2009; Kattge & Knorr, 2007) and then incorporated in ESMs (Friend, 

2010; Lombardozzi, Bonan, et al., 2015; Mercado et al., 2018; Smith et al., 2017; Smith & Dukes, 

2013; Ziehn et al., 2011). However, more recently, eco-evolutionary optimality theory has been 

invoked to simulate photosynthetic biochemical capacity in a way that incorporates the processes 

without added parameters (configuration variables internal to a model that rely on observational 

data), thus increasing model realism without altering model reliability (Scott & Smith, 2021; Smith & 

Keenan, 2020; H. Wang et al., 2017). Eco-evolutionary optimality theory approaches rely on the 

assumption that natural selection will remove non-competitive traits from an environment, thus 

providing testable, theoretical trait responses to the environment over short and long time scales, and 

offer potential promising avenues for adding biological processes to ESMs with little to no added 

parameters (Franklin et al., 2020). Eco-evolutionary optimality approaches are available to simulate 

processes at the leaf (Jiang et al., 2020; Prentice et al., 2014; Smith et al., 2019; Smith & Keenan, 

2020; H. Wang et al., 2020; H. Wang et al., 2017), plant (Dybzinski et al., 2015; Farrior et al., 2013; 

Weng et al., 2015) and ecosystem (Baskaran et al., 2017; Franklin et al., 2020) scales. 

Box 4:  

The following example illustrates the entire workflow, from initial conceptual development to 

simple modeling to working with ESMs. As part of her research, co-author Lombardozzi measured 

how leaf-level gas exchange changed in response to ground-level ozone. Upon analyzing her data, 

she found that leaf-level carbon (photosynthesis) and water (transpiration) fluxes decreased at 

different rates. Since these are both important greenhouse gases and affect fundamental plant 

processes (photosynthesis and stomatal conductance, which scale through time and space regardless 

of biome), she thought that ozone damage could have a global impact on climate feedbacks on model-

relevant timescales and therefore should be included in large-scale models. Although Lombardozzi 

had no modeling or coding experience, she emailed several people working on the Community Land 

Model (CLM) to see if they might want to collaborate. She did some research about the A
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photosynthesis and stomatal conductance models used in CLM and talked with modeling colleagues 

to decide how to best include this type of damage. After completing online Linux and Fortran 

tutorials, Lombardozzi started using a simple photosynthesis-stomatal conductance model provided 

by her colleagues. She applied linear regressions calculated from her experiment to the rates of 

maximum carboxylation (Vcmax) to simulate ozone damage to photosynthetic enzymes. She was able 

to show that including ozone damage improved simulated photosynthesis and stomatal conductance at 

the leaf scale (Lombardozzi et al., 2012). 

Did these changes matter globally? Lombardozzi worked with model developers to find out, 

using the simple model to update code in the CLM to account for ozone damage. Using data from her 

experiment and a constant ozone concentration, she showed that ozone did have large consequences 

for carbon and water cycling globally (Lombardozzi et al., 2013). While this experiment highlighted 

the sensitivity of global processes to ozone damage, it did not provide a realistic assessment of how 

ozone changes carbon and water cycling. Lombardozzi therefore synthesized existing published 

literature to determine how photosynthesis and stomatal conductance change in relation to ozone 

exposure, and identified a complete lack of data for tropical forests (Lombardozzi et al., 2013). 

Despite missing data for large biomes, these data were then used to update the CLM code to capture 

responses across different plant functional categories (e.g., broadleaf trees, needleleaf trees, 

herbaceous vegetation), and when combined with realistic ozone data, simulated that ozone decreases 

global photosynthesis by 10.8% and transpiration by 2.2%, with larger impacts in Eastern US, 

Europe, and Southeast Asia (Lombardozzi, Levis, et al., 2015). 

IV. Creating community change across scales 

Empirical and modeling communities already work together and influence one another in 

many ways, yet integrating ecological processes into ESMs remains a persistently slow process with 

myriad challenges limiting efficient collaboration. Historically, ESMs have been developed by 

atmospheric and physical science communities while ecology has only been integrated relatively 

recently, and the disciplinary requirements in trainee education have not provided enough of a shared 

foundation to build strong conceptual bridges between ESMs and empirical ecologists. These 

communities must collectively address persistent obstacles including confusing technical language, A
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lack of resources for skills development, and the need for better connections and integration across 

scientific communities. We provide resources to help expand terrestrial ecological process 

representation in ESMs (Table 1). With the advent of these and other tools, empiricists will be better 

poised to take advantage of technical workflows that can help streamline data-model integration (e.g., 

Fer et al., 2021). 

The interdisciplinary work of developing an Earth system model is not only technical, but also 

social. As such, in addition to the workflow presented above, we offer specific suggestions for 

restructuring ecological education and interactions within collaborations (see Section III), both of 

which are key to ensuring that the workflow does not break down. For bridge-building between 

communities to be inclusive, the modeling and empirical communities need to examine their 

community practices, values, and norms. This work includes understanding the demographics of who 

is (and is not) represented in the research communities (Bernard & Cooperdock, 2018), what 

processes our communities are willing to consider (or dismiss) as valuable contributions to ESMs 

(e.g., microbes, moths, management), where data are collected and why some regions or ecosystems 

are over/under sampled (Martin et al., 2012; Metcalfe et al., 2018), when we overlook potential 

collaborators or fail to provide them with platforms for sharing their work, such as at conferences 

(Ford et al., 2019), and why we make the decisions that we do about where to focus efforts.

Improved collaboration between empirical and modeling communities will positively benefit 

each community. Adding modeling to empirical work can increase its impact while simultaneously 

advancing ecological theory, modeling capabilities, and model realism. To get started or go further 

with this work, we have assembled a list of resources for skills development at each stage of the 

workflow (Table 2). To maintain contemporary resources, please visit the regularly updated website 

(https://ecoesm.github.io/). Despite the many complex challenges involved in integrating terrestrial 

ecology and Earth system modeling, there has never been a better time to attempt such difficult work. 

Finding and communicating with scientists across the globe is getting easier every year, computing 

resources are rapidly evolving, and the internet provides an ever-growing assortment of free tools for 

developing new quantitative and programming skills. In addition, funding sources are increasingly 

recognizing the value of data-model integration (e.g. the NASA Modeling, Analysis, and Prediction 

program (https://map.nasa.gov/) or the USDA NIFA Data Science for Food and Agricultural Systems A
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program (https://nifa.usda.gov/program/dsfas)) and grassroots efforts are creating a framework for 

these collaborations using workshops and tutorials. Our insights into the history of ecology in ESMs, 

workflow for developing and incorporating ecological processes into ESMs, and specific resource 

suggestions will advance this exciting progress and provide a scaffold for building fruitful bridges 

between empirical and modeling communities.
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Figures

Table 1. Glossary of commonly used words in Earth System Modeling.

Term Definition

Benchmarking

Comparing models against a consistent set of observational data to document the performance of multiple 

models or improvements with newer versions of a particular model.

Calibration

Setting or adjusting model parameters based on model performance against a training dataset. Separate 

from validation.

Data 

assimilation Adjusting model states at regular time intervals based on observations.

Ensemble

Multiple model simulations from one or more models that follow a standard protocol, including "multi-

model" ensembles of multiple models and "multi-member" ensembles that differ in initial conditions or 

parameter values. Ensembles are used to understand model variability and uncertainty.

Equifinality The ability of multiple model configurations or parameter sets to explain the same set of observations.

Evaluation Assessing model performance, often using a validation or benchmarking approach.

Feature fatigue The continual addition of new model processes, often with diminishing returns on model performance.

Fluxes Movement of matter or energy between the components of a model. Alternatively: flows.

Forcing Driver inputs external to a model.

Forecasting

A type of prediction that generates model outputs of future conditions based on current knowledge and 

initial states.

Modularity

A property of models in which one representation of a process can be swapped out for another to allow 

comparison of model formulations.

Parameter Constant within an equation in a model.

Parameterize

To represent a complex process as a simplified equation that relates parameters and variables to one 

another.

Parsimony

Avoiding unnecessary model complexity; only including those model components that contribute to the 

goals of model development.

Prediction Model outputs beyond the scope of observed data.

Projection

Model outputs based on a certain scenario or set of conditions occurring as represented in the forcing 

data.

Realism The adherence of model representations to the actual properties and behavior of ecosystems.

Sensitivity How model output changes in response to shifts in inputs or individual model parameters.A
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States

The current values of components of a model system, which typically change through time. For example, 

soil moisture, soil temperature, biogeochemical pools.

Toy model A simple model that allows for exploration of a subset of ecosystem processes.

Traceability The ability to connect model sensitivity or uncertainty back to a particular model component.

Trait Property of an ecosystem component that maps onto model parameters.

Validation

Evaluating model performance against an independent dataset without modifying parameters. Separate 

from calibration.

Table 2. Table of textbooks and free resources for developing cross-disciplinary skill sets in empirical 

and modeling work and learning to traverse the stages of integrating new processes into an Earth 

System model. For a regularly updated list of resources, visit https://ecoesm.github.io/.

Skill/ Category Item Description Link

Programming

NCAR Python 

tutorials

Basic introduction to the Python 

language from the National Center for 

Atmospheric Research https://ncar.github.io/python-tutorial/

Programming

PEcAn project 

tutorials

Introduction to working with the 

Predictive Ecosystem Analyzer https://pecanproject.github.io/tutorials.html

Programming The Unix Shell The basics of file systems and the shell http://swcarpentry.github.io/shell-novice/

Programming Udacity

Free courses on basic programming 

competency with github, linux, R, 

python, and many others https://www.udacity.com/

Programming

Software 

Carpentry

Free courses on basic programming 

competency with github, linux, R, 

python, and many others https://software-carpentry.org/lessons/index.html

Programming R tutorial Basic introduction to working with R https://education.rstudio.com/learn/beginner/

Simple modeling InsightMaker

Tools for developing quantitative stock-

and-flow diagrams of processes https://insightmaker.com/

Simple modeling

Teaching 

Resources

Lessons and other resources developed 

for teaching basic principles of 

ecological modeling

https://matthesecolab.com/teaching/

http://www.maryheskel.com/teaching.html

https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6757

Simple modeling

Modeling the 

Environment

Textbook on environmental modeling 

by Andrew Ford https://islandpress.org/books/modeling-environment-second-edition

Simple modeling EDDIE 

Modeling/forecasting teaching modules 

developed for NEON sites https://serc.carleton.edu/eddie/macrosystems/index.htmlA
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Simple modeling

Excel modeling 

tutorial

Tutorial on building simple models in 

Excel

http://www.mbaexcel.com/excel/how-to-build-an-excel-model-step-

by-step/

Earth system 

modeling

Climate Change 

and Terrestrial 

Ecosystem 

Modeling

Textbook on global-scale ecosystem 

modeling by Gordon Bonan

https://www.cgd.ucar.edu/staff/bonan/ecomod/index.html

https://www.cgd.ucar.edu/staff/bonan/ecoclim/index.html

Earth system 

modeling CESM tutorial

Workshop on working with the 

Community Earth System Model https://www.cesm.ucar.edu/events/tutorials/

Earth system 

modeling

Earth System 

Modeling 

Framework

Introduction to working with Earth 

System Models https://earthsystemmodeling.org/tutorials/

Earth system 

modeling CESM-Lab Cloud version of CLM https://github.com/NCAR/CESM-Lab-Tutorial

Figure 1. Historically, the process of integrating ecology in Earth System models (ESMs) has often 

separated tasks along disciplinary lines, with empirical ecologists feeding data into a mysterious 

“modeling” process and modelers modifying and using data without a thorough understanding of data A
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collection procedures and caveats. The newest generation of scientists has the opportunity to pull back 

the curtain by developing cross-disciplinary skill sets and building stronger, more collaborative 

bridges between empirical and modeling communities, with the goal of accelerating the integration of 

ecological concepts into ESMs.

Figure 2. The prevalent existing paradigm in ecology-Earth System model (ESM) integration 

separates tasks along disciplinary lines, with empirical scientists giving data and generalized patterns 

to modelers who then develop quantitative models and work with ESMs. We recommend a shift away 

from this historical paradigm towards a more collaborative one in which empiricists and modelers are 

involved in co-producing knowledge (with differing degrees of contribution) at every stage of data A
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collection, theory development, and model integration. We also emphasize the two-way exchange of 

ideas, insights, and data between empirical and modeling driven activities. 

Figure 3. In the hierarchy of model development, simple models of individual processes, classes of 

organisms, and inorganic components (site/local scale) are often pieced together to form larger 

models of ecosystems and regions (ecosystem scale) and ultimately combined to form Earth system A
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models (ESMs; global scale). Data gathered at each of these scales can be used to inform model 

development at the same scale.
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Figure 4. Although scientists sometimes think “The Illusion” (top panel) is the way that ecological concepts are integrated into Earth 

system models (ESMs), the reality is more like a complex metabolic cycle or eddy-filled stream, with different data inputs (gray boxes) and 

valuable insights (tan boxes) throughout the process. We identify three key phases in integrating a new process into an ESM, namely: 

“Assess process & potential impact”, which emphasizes conceptual skills (green boxes), “Test process alone”, which involves simple 

programming (teal), and “Test process with ESM”, which involves more complex programing (blue). Within each phase, we offer specific 

questions to guide empiricists and modelers along the way.
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