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Examining the Relationship Between Students’ Measurement Schemes for Fractions and Their 

Quantifications of Angularity 

 

Sara Brooke Mullins 

 

ABSTRACT 

 

 In the basic understanding of measurement, students are expected to be able to subdivide 

a given whole into a unit and then change the position of that unit along the entire length of the 

whole. These basic operations of subdivision and change of position are related to the more 

formal operations of partitioning and iterating. In the context of fractions, partitioning and 

iterating play a fundamental role in understanding fractions as measures, where students are 

expected to partition a whole into an iterable unit. In the context of angle measurement, students 

are expected to measure angles as a fractional amount of a full rotation or a circle, by partitioning 

the circle into a unit angle and then iterating that unit angle to find the measure of the given 

angle. Despite this link between measurement, fractions, and angles, research suggests that there 

is a disconnect between students’ concepts of measurement and geometry concepts, including 

angle and angle measurement. Therefore, one area of study that might help us understand this 

disconnection would be to investigate the relationship between students’ concepts of 

measurement and their concepts of angle measurement.  

 This current study documents sixth, seventh, and eighth grade students’ measurement 

schemes for fractions and their quantifications of angularity, and then investigates the 

relationship between them. This research is guided by the following question: What is the 

relationship between middle school students’ measurement schemes for fractions and their 

quantifications of angularity? Results indicate that the majority of students involved in this study 

do not possess a measurement concept of fractions nor a measurement concept of angularity. 

However, these results demonstrate that there is a relationship between students’ measurement 



schemes for fractions and their quantifications of angularity. It is concluded that students who 

construct more sophisticated fraction schemes tend to construct more sophisticated 

quantifications of angularity. 
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GENERAL AUDIENCE ABSTRACT 

 

Although the concepts of measurement, fractions, and angle measurement are related, research 

suggests that there is a disconnect between students' concepts of measurement and geometry 

concepts, including angle and angle measurement. Therefore, one area of study that might help 

us understand this disconnection would be to investigate the relationship between students' 

concepts of measurement and their concepts of angle measurement. This current study 

documents sixth, seventh, and eighth grade students' understandings of measurement, as 

indicated by their fraction schemes, and angle measurement, as indicated by how they quantify 

angularity or the openness of an angle. This study then investigates the relationship between 

them. This research is guided by the following question: What is the relationship between middle 

school students' measurement schemes for fractions and their quantifications of angularity? 

Results indicate that the majority of students involved in this study do not possess a 

measurement concept of fractions nor a measurement concept of angularity. However, these 

results demonstrate that there is a relationship between students' measurement schemes for 

fractions and their quantifications of angularity. It is concluded that students who construct more 

sophisticated fraction schemes tend to construct more sophisticated quantifications of angularity. 
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Chapter 1: Introduction 

It is through geometry that one purifies the eye of the soul. 

–Plato 

 Geometry is a subject that is often misunderstood as being contained in its own 

mathematical silo, disconnected from other subjects and the world. However, Johannes Kepler 

once said, “Where there is matter, that is geometry” (Maclean, 2007, p. 188). This emphasizes 

the idea that geometry can be seen everywhere in the world. Furthermore, Pythagoras once said, 

“There is geometry in the humming of strings, there is music in the spacing of spheres” (Young, 

1965, p. 113). From this, geometry is further described as being ever present and is directly 

related to many other things and has infinite applications. Despite this, geometry can be a subject 

that students either love or hate. Most often, sadly, students hate it (e.g., Melo & Martins, 2015; 

Phillips, 1953). In their investigation of this love-hate relationship between students and 

geometry, Melo and Martins (2015) found that students typically dislike geometry for the 

following reasons: students do not understand the content, because it is too difficult; students do 

not see the importance of it; students find it disconnected from other subjects; or students do not 

find it fun or interactive. In the 2015 Trends in International Mathematics and Science Study 

(TIMSS), it has also been documented that students in the United States have lower achievement 

scores in the geometry content domain than other mathematics content domains (Mullis et al., 

2016). This demonstrates that geometry is a difficult subject for students to understand. 

 To highlight the difficult nature of geometry, consider the following example. In 

Virginia, as part of a high school Geometry course, students are expected to measure angles and 

solve problems involving angles (VDOE, 2016d). However, these curriculum standards focus on 

using degrees as a unit of measurement. Although curriculum standards in earlier grades and 
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courses focus on measuring angles in the context of circles, recognizing that a one degree angle 

would be 1/360 of a circle (VDOE, 2016a), standard units of measurement (i.e., degrees) are 

emphasized. This lies in contrast to researchers’ approach of encouraging students to use 

nonstandard units of measurement and then build towards standard units (Clements et al., 1996; 

Clements & Battista, 1986; Mitchelmore, 1997). Not allowing students to develop their own 

units of measurement could prevent students from fully understanding angle measurement. In 

fact, Moore (2013) states that this approach “might facilitate relating angle measures through 

calculations, but it fails to address the quantitative structure behind the process of determining an 

angle’s measure” (p. 227, emphasis in original). In other words, students may be able to calculate 

angle measure by reading degrees from a protractor, but may not fully understand the process of 

obtaining an angle measurement. As a result, students may develop “shallow and fragmented 

angle measure understandings” (Moore, 2013, p. 226). This current study then seeks to 

investigates students’ understandings of geometry concepts, and how they are and should be 

connected to other mathematical concepts.  

Measurement in Geometry 

 Measurement forms the basis of students’ understanding of counting, fractions, rational 

number reasoning, as well as proportional reasoning (Lamon, 2007; Steffe, 1992; Thompson et 

al., 2014). Measurement, in the conceptual sense, involves the coordination of partitioning a 

quantity into a unit and then iterating that unit to recreate the whole (Piaget et al., 1981/1960). 

Kieren (1980) summarizes it best: 

First, a unit must be partitioned off and then displaced without gaps or overlaps. This 

corresponds to a seriation. Second, the continuous units form inclusions—one piece 
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included in two, and so on. Therefore, measurement is constructed from a synthesis of 

displacement and partitioning of an additive nature. (p. 101) 

 With this process, students are able to develop their own measurement unit, rather than simply 

reading standard units of inches from a ruler, thus allowing them to develop a more conceptual 

understanding of measurement.  

 As noted in the Common Core State Standards Initiative (CCSSI, 2010), students begin 

learning measurement by indirectly comparing measurable attributes, and then formally by 

iterating a unit of length to obtain the number of times the unit spans the object’s length. Other 

state standards support this notion of taking a unit of measure and laying it end-to-end, with no 

gaps or overlaps, to obtain the object’s size or measurement (Indiana Department of Education 

[IDOE], 2014; Nebraska Department of Education [NDOE], 2015; Oklahoma State Department 

of Education [OSDOE], 2016; South Carolina Department of Education [SCDOE], 2018; Texas 

Education Agency [TEA], 2012). Thus, there is agreement that measurement should focus on 

iterating a unit to obtain an object’s size, which supports the understanding of the 

aforementioned concept of measurement. 

 By extending this concept of measurement to angles, it should follow that angle 

measurement is obtained by taking some unit and iterating that unit a certain number of times. 

This emphasizes the notion that angle measurement can be obtained by “determining the 

fractional amount of the circle’s circumference subtended by an angle, provided that the circle is 

centered at the vertex of the angle” (Moore, 2013, p. 227), and is supported in several curriculum 

standards (CCSSI, 2010; SCDOE, 2018; TEA, 2012; VDOE, 2016a, 2016b). Students who have 

a conceptual understanding of measurement should be able to determine an angle measurement 

by simply partitioning a circle into some unit angle, iterating that unit angle to obtain the circle, 
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and identifying the number of iterations made. For example, given an arbitrary angle, with no 

measurement of degrees or radians, a student should be able to iterate that angle until they have 

created a circle, then count the number of iterations. If they could make 8 iterations, they would 

say that angle was 1/8 of the circle, or if they could make five iterations, they would say the 

angle was 1/5 of the circle. By focusing on angle measurement in relation to a fractional amount 

of circles (Moore, 2013), students may begin to understand angle measures, for example, as 1/4 

of a circle or 1/7 of a circle, and then extend this concept of measurement to degrees and radians, 

thus providing a more meaningful understanding of the units of measurement (Clements & 

Battista, 1986).  

 However, students must also understand the multiplicative relationship between the 

length of the radius and the amount of rotation associated with the angle, denoted by the arc 

length, to help them understand angle measure in situations involving multiple circles, a single 

varying circle, or a group of concentric circles (Hardison, 2018; Moore, 2013; Thompson, 2008). 

For example, Moore (2013) explained that if the radius is extended, the arc length of the new 

angle will maintain the same proportional relationship to the circles’ circumference. Consider the 

diagram in Figure 1.1. If a student were to create ∠GBF and then extend the length of 𝐵𝐺̅̅ ̅̅  to 𝐵𝐻̅̅ ̅̅  

and length 𝐵𝐹̅̅ ̅̅  to 𝐵𝐸̅̅ ̅̅ , the student would obtain the same angle, but the side lengths, the 

corresponding arc, and the circle’s circumference would also increase in size. However, the 

relationship between the arc GF to the circumference of the corresponding circle and the 

relationship between arc HE to its corresponding circle would be the same proportion; that is, the 

arcs would be the same fractional part of the circumferences, and therefore the angles would 

have the same measurement. By having a conceptual understanding of measurement, students 

can better understand angle measurement in terms of this multiplicative relationship.  
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Figure 1.1  

Angle Measures in Concentric Circles 

 

Measurement Schemes for Fractions 

 One way to think about how students develop a concept of measurement is by examining 

their schemes. Schemes identify and describe the different actions and processes a student may 

use while solving tasks (Steffe, 2002, 2003; Steffe & Olive, 2010; von Glasersfeld, 1995b). 

Building upon Steffe and Olive’s fraction schemes, Wilkins and Norton (2018) describe a 

progression of schemes for fractions to help explain the ways students think about fractions as 

measures. In their measurement schemes for fractions, Wilkins and Norton (2018) describe the 

different operations used, such as partitioning and iterating, as students think about fractions as 

measurements or sizes.  

 As a general description of these measurement schemes, students first begin with the 

operation of partitioning. Once they can partition a whole, they can begin to see fractions as parts 

of wholes, indicative of a part-whole scheme (PWS; Steffe, 2003; Steffe & Olive, 2010; Wilkins 

& Norton, 2018). In this case, they have no iterable unit, and simply rely on the number of parts 

taken out of the whole. Once students develop an iterating operation, they may then begin to 

recreate a whole by iterating a given part (Steffe, 2002, 2003; Steffe & Olive, 2010). This 
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iterable unit of 1 is indicative of a measurement scheme for unit fractions (MSUF; Wilkins & 

Norton, 2018). Here, students recognize the relationship between the one unit and the number of 

iterations it takes to recreate the whole. Once students are able to simultaneously partition and 

iterate, known as splitting, they construct the measurement scheme for proper fractions (MSPF; 

Wilkins & Norton, 2018). Students understand the proper fraction m/n as simply m units of 1 

from the n iterations needed to create the whole. Because students may not understand the 

partitions or units as 1/n but rather 1’s, they are limited in their understanding of improper 

fractions. For example, they view 4/5 as four 1’s used to make 5. They do not see 4/5 as four 

1/5’s. As a result, when working with improper fractions, they view 7/5 as seven 1’s used to 

make 5, which does not make sense to them because seven 1’s is bigger than five 1’s. When 

students are able to establish an iterable unit of 1/n, they have constructed the generalized 

measurement scheme for fractions (GMSF; Wilkins & Norton, 2018). With this iterable unit, 

students are able to work with all fractions, proper and improper. They view 4/5 as four 1/5’s and 

7/5 as seven 1/5’s.  

 These measurement schemes for fractions are directly related to the concept of 

measurement described above. They incorporate the operations of partitioning and iterating to 

help describe how students think about fractions. Furthermore, these descriptions of students’ 

ways of thinking present fractions as a size or measure (Wilkins & Norton, 2018). Due to this 

direct connection to the concept of measurement, these measurement schemes for fractions can 

be used to categorize students’ concepts of measurement in a developmental way.  
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Quantifications of Angularity 

 One way to examine students’ concepts of angle measurement is through their 

quantifications of angularity. Quantification is the process of identifying an attribute of an object, 

assigning a value to that attribute, and defining a measurement where the unit of measure holds a 

proportional relationship to the attribute (Moore, 2013; Thompson, 2011). When thinking about 

angles, the attribute that is quantified is the openness of the angle (Hardison, 2018; Moore, 

2013). Piaget (1965/1952) and Steffe (1991) explained several different types of quantifications, 

and Hardison (2018) examined students’ different quantifications of angularity and the mental 

actions that were included in those quantifications. From these bodies of work, there are five 

different quantifications of angularity: gross, intensive, extensive, ratio, and rate. These 

quantifications form a developmental progression for categorizing students’ concepts of angle 

and angle measurement.  

 With a gross quantification, students rely on perceptual material and make visual 

judgments (Piaget, 1965/1952; Steffe, 1991). Applying this to angularity, students visually 

compare the openness of the angle, or incorrectly compare the length of the rays, arcs, or size of 

the wedge created by the angle (Bütüner & Filiz, 2016). Moving away from their reliance on 

perceptual material, students with an intensive quantification compare angles by some 

established “measure.” This measure is nonadditive and is not a formal measurement; it is some 

unit of comparison the student has constructed. For example, a student may compare two angles 

by rotating a ray through the interior of each angle and “timing” those durations. Whichever 

angle took longer to “sweep,” the student may say that angle is larger (Hardison, 2018). In this 

case, the student is not actually using a stopwatch to time the durations, but is using some 

constructed timing system—not a formal timing—to “measure” the durations.  
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 When students are able to establish an additive relationship between the attributes of each 

object being compared, in this case the openness of each angle, students are said to have an 

extensive quantification (Hardison, 2018; Kieren, 1980; Piaget, 1965/1952). For example, a 

student with an extensive quantification may partition a larger angle into parts the size of the 

smaller angle, or iterate the smaller angle to recreate the larger angle. From this, they are able to 

see how many times the smaller angle can be added to recreate the larger angle. In both of these 

cases, the relationship between the two angles’ attributes are additive (e.g., if you put together 

four copies of the smaller angle, you get the larger angle).  

 Once students are able to establish a multiplicative relationship between the attributes, 

students are said to have a ratio quantification (Hardison, 2018; Thompson, 1994). Given the 

previous example, students can partition and iterate angles to recognize that the smaller angle is 

1/4 the size of the larger angle and the larger angle is 4 times the size of the smaller angle. There 

is a clear multiplicative relationship between the openness of each angle. Finally, when students 

are able to maintain this multiplicative relationship within the context of different circles, 

especially concentric circles, they are said to have a rate quantification (Hardison, 2018). With a 

rate quantification, students conceive angularity as the fractional amount of the circle’s 

circumference established by the minor arc of the angle (Moore, 2013). This enables students to 

maintain the multiplicative relationship between the length of the ray of the angle (radius), the 

minor arc, and the corresponding circle’s circumference across all circles centered at the vertex 

of the angle (Hardison, 2018; Moore, 2013). These quantifications of angularity specifically 

describe the mental actions and operations students use in the context of angles, essentially 

providing a progression of schemes that can be used to describe student’s concepts of angle 

measurement.   
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Rationale for This Study 

 The work of Piaget et al. (1981/1960) suggests that young children should be able to 

develop a concept of measurement, involving the processes of subdivision and change of 

position. This concept of measurement is emphasized in mathematics curriculum standards 

(CCSSI, 2010; SCDOE, 2018; TEA, 2012; VDOE, 2016a, 2016b). Because the concept of 

measurement focuses on subdivision and change of position, this has a direct link to students’ 

understanding of fractions through the processes of partitioning and iterating (Lamon, 2007; 

Steffe, 2002; Steffe & Olive, 2010). Furthermore, research suggests that when fractions are 

taught from a measurement perspective, students are better equipped with the skills necessary to 

construct more sophisticated rational number constructs and fraction schemes (Lamon, 2007; 

Wilkins & Norton, 2018). As such, focusing on this concept of measurement can have an impact 

on students’ understanding of fractions, which can also then impact their concepts of angle 

measurement.  

 After students have this foundational understanding of operational measurement, they can 

begin to understand fractions as measures, and then further extend this concept to angle 

measurement. Students typically learn about angles as formed by the intersection of two rays or 

lines (CCSSI, 2010; VDOE, 2016b, 2016c). This concept is then expanded in fourth and fifth 

grade, where students are introduced to identifying angle measurement as a fractional amount of 

a full rotation or a circle (CCSSI, 2010; VDOE, 2016a). Angle measurement is said to be 

measured in degrees. A degree is then defined as 1/360 of a circle, where an n degree angle 

represents n one-degree angles (CCSSI, 2010). This concept of angle measurement also involves 

the operations of partitioning and iterating, again highlighting the connection between 

measurement, fractions, and angle measurement. Research shows that when students understand 
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angles as dynamic turns, they are able to gain a deeper understanding of angle measurement, 

which allows better connections between concepts (Clements & Burns, 2000). This also enables 

students to develop a more abstract conceptualization of angles (Mitchelmore & White, 2000), 

leading to higher performance and greater learning gains (Smith et al., 2014). However, research 

also shows that when students are limited to conceptualizing angles as static figures, they 

typically understand angle measurement by focusing on the length of rays, size of the arc drawn 

to represent the angle (not the subtended arc), or a linear distance between the sides of the angle 

(Barabash, 2017; Bütüner & Filiz, 2016; Clements & Battista, 1989, 1990; Clements, 2003; 

Clements et al., 1996; Piaget et al., 1981/1960). These limited understandings may cause 

students to continue to lag behind as they progress into Geometry and Trigonometry (Moore, 

2013; Yigit, 2014). As Moore (2013) noted, when students have limited understanding of angle 

measure, “their ability to construct flexible trigonometric function understandings” (p. 226) is 

inhibited.  

 Furthermore, although this described concept of measurement and angle measurement is 

emphasized in the mathematics curriculum standards (CCSSI, 2010; IDOE, 2014; NDOE, 2015; 

OSDOE, 2016; SCDOE, 2018; TEA, 2012; VDOE, 2016a, 2016b), standard units of 

measurement are often emphasized (e.g., inches, feet, and degrees). Students typically are not 

provided opportunities to explore with non-standard units of measurement early on, and 

therefore may not fully understand measurement and angle measurement. It has also been 

documented that students often perform poorly on geometry and measurement tasks and 

assessments. Results from the 2015 TIMSS report demonstrated that the content domain of 

geometry was a problematic area for students, as indicated by their low scores (Mullis et al., 

2016). For example, in fourth grade the average score for the Geometric Shapes and Measures 
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domain was 525, compared to 546 for the Number domain and 540 for the Data Display 

domain1. In eighth grade, the average score for the Geometry domain was 500, compared to 520 

for Number, 525 for Algebra, and 522 for Data and Chance. In addition, reports from the 2017 

National Assessment of Educational Progress for fourth and eighth grade (National Center for 

Education Statistics [NCES], 2011) demonstrate that students’ average scores for the categories 

of Measurement and Geometry were often lower than the other categories. 

 From these results, it is evident that students struggle with the domain of geometry and 

measurement. As discussed earlier, understanding angles and angle measurement is a major 

component of Geometry; students are expected to measure angles and solve problems involving 

angles (VDOE, 2016d). Due to these low scores for the geometry domain, it appears that 

students have limited understanding of concepts of measurement and geometry concepts, 

including angle and angle measurement. It is unclear whether students do not have the 

aforementioned concept of measurement involving partitioning and iterating, or if they simply 

cannot relate it to the context of angle measurement. Therefore, one area of study that might help 

us understand this would be an investigation of the relationship between students’ concepts of 

measurement and their concepts of angle measurement. This will help gain insight into whether 

students (a) do not have a concept of measurement which then limits their concept of angle 

measurement, (b) do indeed have a concept of measurement, but are unable to apply it to the 

context of angles, or (c) do have a concept of measurement they can apply to the context of 

angles. 

                                                 
1 Scores range from 0 to 1,000. However, student scores usually range from 300 to 700 (Mullins et al., 2016). 
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Purpose Statement and Research Question 

 The purpose of this study is to examine the relationship between students’ concepts of 

measurement and their concepts of angle measurement. Specifically, this current study will 

document sixth, seventh, and eighth grade students’ measurement schemes for fractions and their 

quantifications of angularity, and then investigate the relationship between them. As such, this 

research is guided by the following question: What is the relationship between middle school 

students’ measurement schemes for fractions and their quantifications of angularity?  
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Chapter 2: Literature Review and Theoretical Framework 

 This chapter is organized into five main parts, each containing several sections. The first 

part describes the theoretical framework that guides this study and its methods. Because this 

study investigates students’ understanding of fractions and angle measurement, it is necessary to 

first describe how understanding and knowledge are constructed through the lens of radical 

constructivism, then examine the possible ways students construct concepts of measurement, 

fractions, and angles. The second part of this chapter focuses on the concept of operational 

measurement and how students construct this concept. The third part of this chapter focuses on 

fractions. This part examines the relationship between the concept of measurement and fractions. 

Fraction operations and schemes are also discussed to better understand how students 

conceptualize fractions as measures. In addition, the measurement schemes for fractions 

framework, concerning students’ measurement concepts of fractions, is described. The fourth 

part of this chapter focuses on angles and angle measurement. This part offers a literature review 

of students’ conceptualizations of angles and the process for quantifying angularity. The 

framework used to explain students’ quantifications of angularity is also described. The fifth and 

final part of this chapter ties together the two frameworks into one coherent framework that can 

be used to examine the relationship between students’ measurement schemes for fractions and 

their quantifications of angularity. 

Radical Constructivism 

 Radical constructivism is one branch of constructivism that places the individual at the 

center of the construction of knowledge. Von Glasersfeld (1995b) defined radical constructivism 

as an approach for understanding how knowledge is created, and how we come to know what we 

know. Within radical constructivism, knowledge is thought to reside in the “heads of persons,” 
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which then leads the person to “construct what he or she knows on the basis of his or her own 

experience” (von Glasersfeld, 1995b, p. 1). This comes out of Piaget’s (Garvin, 1977) argument 

that knowledge is not a copy of the objects we interact with, but rather is our interpretation of 

those objects and our actions performed on those objects.  

 There are two underlying principles of radical constructivism that comes from Piaget’s 

work: “The first is that knowledge is actively built by a cognizing subject” and the second is 

“that the function of cognition is to organize one's experiential world, not to discover an 

ontological reality” (Fleury, 1998, p. 158). Von  Glasersfeld (1995b) noted that knowledge does 

not represent the world or even a picture of it, but rather knowledge contains actions, schemes, 

concepts, and thoughts. He went on to say that knowledge “pertains to the ways and means the 

cognizing subject has conceptually evolved in order to fit into the world as he or she experiences 

it” (von Glasersfeld, 1995b, p. 114). This means that as people experience the world, they begin 

to develop viable models and adapt their operations to fit within that model (Pepin, 1998; Piaget, 

1980; Ulrich, et al., 2014), indicating that knowledge is viable, purposeful, and experiential 

(Larochelle & Bednarz, 1998). Piaget (1970, 1971, 1977) further clarified this process of 

knowledge development in terms of cognitive structures. 

Piaget’s Cognitive Development 

 Piaget (1970, 1971, 1977) argued that knowledge can be explained through notions, 

operations, and structures. His explanation of knowledge, called genetic epistemology, focuses 

on “formalization– in particular, logical formalizations applied to equilibrated thought structures 

and in certain cases to transformations from one level to another in the development of thought” 

(Piaget, 1970, p. 1). Specifically, he states: “The fundamental hypothesis of genetic 

epistemology is that there is a parallelism between the progress made in the logical and rational 
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organization of knowledge and the corresponding formative psychological process” (Piaget, 

1970, p. 13). With this is mind, his explanation comprises both psychological and historical 

components, and focuses on knowledge as a continual process of construction and reorganization 

(Piaget, 1970). Therefore, knowledge is not static and is made up of actions and coordinations of 

actions.  

 For Piaget, we as humans are biological and psychological creatures who develop our 

knowledge through adaptation (Piaget, 1980; von Glasersfeld, 1995b, 2001). As Piaget saw it, 

cognition was “an instrument of adaptation, as a tool for fitting ourselves into the world of our 

experience” (von Glasersfeld, 1995b, p. 14). However, this type of adaptation for learning is 

much different from the biological adaptation seen in animals; adaptation in the biological sense 

“refers to the biological make-up, the genetically determined potential with which we are born; 

and learning is the process that allows us to build up skills in acting and thinking as a result of 

our own experience” (von Glasersfeld, 2002, p. 20). Although we are born with some innate 

actions or intuitions, we build off of these to develop more sophisticated knowledge structures 

(Piaget, 1970, 1971, 1977). Adaptation essentially is how the organism learns to survive the tests 

of the environment.  

 Instead of developing physical characteristics, like animals do when they evolve, children 

develop conceptual functions; and whichever ones are feasible or can be adapted for survival or 

achieving a goal are retained. This means that functions that were not adapted, did not fit with 

our experiential world, or did not work, were eliminated (von Glasersfeld, 2001). Therefore, 

knowledge becomes a viable model for our reality (von Glasersfeld, 1995a, 1982, 2002) and the 

construction of this knowledge can be explained through assimilation, accommodation, and 

equilibration. 
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Assimilation, Accommodation, and Equilibration  

 Within radical constructivism, the idea is that the individual learner creates viable models 

of reality based on their own experiences (von Glasersfeld, 1995a, 1995b, 2000; Ulrich et al., 

2014). In general, we construct our knowledge through assimilating new situations into prior 

knowledge and making accommodations in order to maintain equilibrium. Therefore, knowledge 

essentially is a continual process of assimilation, perturbation, accommodation, and equilibration 

(Piaget 1970, 1971, 1977). As we experience new situations every day, we continually construct 

new knowledge. 

 To more specifically describe this process, from Piaget’s concepts of schemes, von 

Glasersfeld (1995b) developed a three-part model for scheme theory, consisting of three main 

components (Figure 2.1). First, the individual is presented with a situation, known as the 

“experiential situation” (von Glasersfeld, 1982, p. 625) or “perceptual situation” (von 

Glasersfeld, 2000, p. 8). When placed in this situation, a person will activate some mental 

action(s) or cognitive structure(s) related to some aspect of that situation based on their prior 

knowledge, through the process of assimilation. At this moment, the actor must recognize the 

situation, know which actions are related to it, and know what structure to apply (von 

Glasersfeld, 1990, 2000). Although not every situation or experience will be the same, there are 

similarities between situations which should trigger certain actions (von Glasersfeld, 1990, 

1995b). When this new situation does not fit their current knowledge model, or the expected 

result is not produced, they must reorganize their knowledge in a different manner to 

accommodate this new experience. Finally, this will hopefully produce an expected result (von 

Glasersfeld, 1982, 1995b, 2000, 2002). However, if this process does not produce an acceptable 

outcome, or the person is presented with an unrecognizable situation, there is a perturbation 
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which results in disequilibrium (Piaget 1980; von Glasersfeld, 1990, 1995b). At this moment, 

accommodations must be made in order to achieve the goal of equilibrium. 

Figure 2.1  

Scheme Theory Model (Modified from von Glasersfeld, 2000, 2002) 

1  2 
 

3 

Perceived Situation Activity Expected Result 

 

 Equilibrium is the state at which there is a cohesive connection between schemes, 

structures, and systems. Thus, disequilibrium is the state at which some of these links and 

connections have become broken. When this occurs, the person must self-regulate and make 

modifications, known as accommodation, to their current cognitive structures to help resolve this 

imbalance caused by the perturbation (Piaget, 1970, 1971, 1977; von Glasersfeld, 1990, 2002). 

This new information is then fed back into the loop, where new information is assimilated, new 

actions are accommodated, and the result is examined. From this, we can see the continual 

construction Piaget was describing. 

 Ultimately, our main goal in life is to reach a state of equilibrium, to establish a fully 

functioning, connected structure. However, Piaget (1980) argues that there is no perfect state of 

equilibrium, but that we are always working towards a “better” equilibrium. As we develop and 

modify our existing structures, our means and goals change. Again, when there is a disconnect 

between the means and goal, we must self-regulate and modify our schemes. This means that our 

current schemes are always a result “from a modification or reorganization of one’s prior system 

of schemes” (Ulrich et al., 2014, p. 329). Therefore, schemes build off one another, and develop 

into a system of schemes. Von Glasersfeld (1995b) summarizes Piaget’s theory in the following 

manner: “cognitive change and learning in a specific direction take place when a scheme, instead 
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of producing the expected result, leads to perturbation, and perturbation, in turn, to an 

accommodation that maintains or re-establishes equilibrium” (p. 68). Therefore, our knowledge 

is a viable model based on our experiences, meaning that whatever works for us in that situation 

becomes our knowledge. Due to this reliance on knowledge being individually constructed, it is 

then necessary to investigate individual students to examine their schemes and cognitive 

structures.  

Piagetian Measurement 

 Before students can develop an understanding of fractions and angle measurement, they 

must first construct an initial understanding of measurement. To help elucidate the basic 

operations of measurement, consider the example of constructing length measurement. Piaget 

and colleagues (1981/1960) generally describe measurement as the ability to “take out of a whole 

one element, taken as a unit, and to transpose this unit on the remainder of a whole” (p. 3). They 

specifically define this as operational measurement; they further explain operational 

measurement as a coordination of subdivision and change of position2. Subdivision refers to the 

action of taking one element as a unit out of a whole. In the early stages of developing an 

understanding of measurement, students’ subdivisions may not result in equal-sized divisions. 

However, in the more advanced stages, students’ subdivisions result in equal-sized partitions. 

Change of position describes the action of taking that unit and transposing it the entire length of 

the whole. Piaget et al. note that even though it may not be possible to transpose the unit an 

integer number of times in the whole, students can still use that unit to find the length. For 

example, Piaget et al. discuss that in these instances, students may transpose the unit, find that it 

                                                 
2 This coordination is not clearly defined by Piaget et al. (1981/1960). However, based on their descriptions, it 

appears that in earlier stages, this could be a sequential coordination. Then, in the later stages representing a more 

sophisticated understanding of measurement, this is a simultaneous coordination. 
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goes five and a half times, but then they will round their answer and claim that the unit goes five 

or six times. Therefore, the unit does not have to go into the whole an integer number of times, 

but it can still be used to exhaust or reestablish the whole. Once children can coordinate their 

actions of taking out a unit of the whole (subdividing) and then moving that unit the entire length 

of the whole (change of position), recognizing that the length of the objects remains the same, 

these children have developed operational measurement. 

Development of Operational Measurement 

 Operational measurement involves the coordination of subdividing a whole into a unit, 

establishing that unit as a unit of measurement, and then transposing, or changing the position of 

that unit the entire length of the whole (Piaget et al., 1981/1960). Students then transfer the units 

of measurement between objects, to compare their measurements. Piaget et al. (1981/1960) 

defined three stages children, ages four to beyond seven, often progress through as they begin to 

develop operational measurement. In Stage I, children focus on visual and perceptual estimates 

for comparing objects. They often focus on one endpoint to determine which object is longer or 

taller, without regard to the other endpoint or the space between. This is what Piaget et al. refer 

to as visual transfer. Children in Stage II then begin using manual transfer to move objects side 

by side for comparisons. Instead of focusing on one endpoint, these children align one set of 

endpoints together and then evaluate the location of the other set of endpoints to determine 

which object is longer or taller. More sophisticated children in this stage may also use body 

transfer, that is, using their body to measure, such as comparing an arm’s length to an object’s 

length or height.  

 Between Stage II and III children measure more intuitively by using tools to compare 

lengths. However, these children can only compare the tool to each object, and not between both 



 

20 

objects. For example, they can determine that the tool is longer than Object A and the tool is 

shorter than Object B, but cannot compare Object A to Object B. This is what Piaget et al. call 

intuitive transfer. Finally, in Stage III children no longer rely on visual judgements, and can now 

use a tool to compare Object A to Object B . They establish a unit of measurement, using a tool, 

and recreate the length of one object, understanding conservation of length. Once they find the 

measurement of Object A, they remember that measurement as they transfer the same unit of 

measurement or tool to Object B. They then recreate the length of Object B and compare the two 

measurements. At this point of coordinating the subdivisions of changes of positions, and then 

transferring the unit of measurement between objects, these children are said to have developed 

operational measurement. 

Conservation of Length 

 The key concept that impacts the development of operational measurement is 

conservation of length. Piaget et al. (1981/1960) claim that “underlying all measurement is the 

notion that an object remains constant in size throughout any change in position” (p. 90), which 

they define as conservation of length. However, this is a difficult concept for children to 

understand. As Piaget et al. argued, children must have a system of reference, referring to a 

coordinate system of space, in order to understand change of position and conservation of length. 

They simply cannot transpose or iterate the unit haphazardly; they must be able to keep track of 

the location of the changes of position, and know when the whole is exhausted, thus indicating 

when to stop iterating. Piaget et al. (1981/1960) note that “an understanding of measurement 

demands that the several reference points are linked in a systematic whole, which implies 

‘coordinate axes’” (pp. 3–4). This spatial ability enables children to see the relationship between 
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the subdivision and change of position, as well as conservation of length. Without it, children’s 

understanding of conservation of length will be hindered. 

 Piaget et al. (1981/1960) offered several examples of tasks and children’s responses for 

each stage to help describe how children develop conservation of length, leading to operational 

measurement. For example, children were given the task in Figure 2.2 and were asked to 

determine if the two strings have the same length. As part of the interview, after the children 

respond, the researcher straightened out the curvy string and repeated the question. The idea was 

to determine if the children recognize that no matter the shape of the curvy string, it will always 

be longer.  

Figure 2.2  

Curvy Length Compared to Straight Length Task 

 

 Children in Stage I often state that the two strings are the same length, even after tracing 

or stretching the curvy one out. In Stage IIA, children state the two strings are the same length at 

first. However, after the curved one is stretched out, they say it is longer. Once that string is 

curved again, they state that the two strings are the same. These children are focused on the 

furthest endpoint of each string in relation to one another. In Stage IIB, children focus on both 

sets of endpoints of the strings, but realize the curved string will be longer due to the curves. 

Finally, in Stage III, children logically know that the curved string is longer, and do not have to 

rely on endpoints. 

 In another task, children were presented with two identical sticks “with their extremities 

facing one another” (Piaget et al., 1981/1960, p. 95). Then, one stick is moved forward, and 
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children were asked to compare lengths. Children in Stage I first state the sticks are the same. 

However, after moving one stick, the children say that the moved stick is now longer. Piaget et 

al. (1981/1960) argue that these children are “thinking only in terms of the further extremities 

and ignoring the nearer extremities” (p. 95). These children do not account for both ends 

simultaneously and do not think about the intervals between the endpoints remaining the same. 

Children in Stage IIA similarly state the sticks are equal before movement and that the moved 

one is longer after movement. These children also focus on the farthest endpoint to judge lengths 

and do not account for the intervals between endpoints. Although these children recognize that 

the change in length was due to the movement, Piaget et al. (1981/1960) note “the movements 

which they invoke are not Euclidean changes of position” (p. 97) because they are not 

accounting for the intervals between endpoints. Thus, there is no conservation of length. In the 

next stage, Stage IIB, children determine the sticks are equal before movement. After movement, 

the children realize that although one stick looks longer, it is not; it is simply due to the 

movement. They also recognize that one endpoint is longer on one stick, but the other endpoint is 

longer on the other stick; each stick is longer on one opposite end. They note: 

In the end they guess at conservation, without basing this notion on an exact composition 

of the spaces left empty by the change in position of the test objects and the 

corresponding spaces which are occupied: they do not realize that in every change of 

position these two factors are mutually compensating. Their thought does not yet 

embrace a system of fixed sites and deals only with the transformation of objects. That 

limitation precludes the operational conservation of length. It does however, admit of an 

intuitive conservation of relations of equality, which anticipates operation and may even 

come near to it. (Piaget et al., 1981/1960, p. 101) 
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Therefore, these children have an intuitive conservation of length, which is close to becoming 

fully operational, but is not there yet. 

 Finally, children in Stage III have a logical understanding of conservation of length, and 

it is no longer a guess or hypothesis. They recognize changes in position and realize that the 

length of the stick does not change when it is moved. Piaget et al. (1981/1960) argue that these 

more sophisticated children also recognize that “when an object undergoes a change of position 

the empty sites which have previously been occupied are equivalent to sites which were 

previously empty and are now filled, so that the overall length of the object remains constant” (p. 

103). Thus, these children recognize length as an interval between two endpoints. From this 

collection of evidence, Piaget et al. (1981/1960) argue that “there can be no conservation of 

length, any more than of distance, unless there is a reference system which provides a common 

medium for all objects, whether moving or stationary” (p. 103). They go on to note that children 

must be able to coordinate the objects, their parts such as endpoints, and the intervals or empty 

space between them. Lastly, they note that it is necessary to consider both the filled and empty 

space because “such sites, whether empty of filled, form the essential framework of all metrics” 

(p. 103). Therefore, in order for children to understand conservation of length, they must 

understand changes of position and recognize length as the interval of filled space between 

endpoints. 

Development of Units of Measurement for Length 

 In their analysis of how young children develop operational measurement, Piaget et al. 

(1981/1960) define the terms “length” and “distance” to make a clear distinction between them. 

They define length as the occupied or filled space between two points or objects, and distance as 

the empty space or linear separation between two points or objects. They go on to note that: 
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“Psychologically, the problems of distance are different from those of length, though logically, 

they are interdependent, since distance is the length of an interval and length is the distance taken 

up by an object” (p. 69). Concerning length, it is described as a filled space whereas distance is 

an empty space. Nonetheless, they both have a measurement. Coxford (1963) states that 

“measurement is the process whereby a number is given to a segment” (p. 424, emphasis in 

original). This number, or quantity, is created by laying a unit of measurement end to end to 

create a segment the same length as the object (Coxford, 1963), whether it is a filled or empty 

space.  

 From this, it is clear that the measurement of an object depends upon the tool the child 

uses to measure, or the unit the child subdivides the whole into. For example, if given a piece of 

string, a child may use a paperclip as their unit of measurement, another child may use an eraser, 

and another may use a pencil. Depending upon each child’s unit of measurement, they may 

obtain different numbers or quantities for the string’s length (i.e., 6 paperclips, 3 erasers, 1 

pencil). However, if each child lays their number of units (i.e., 6 paperclips, 3 erasers, 1 pencil) 

end to end to recreate the piece of string, they should find that all their lengths are the same. The 

important take away is that measurement of length relates to number or quantity; whether it is a 

filled or empty space, there is a number associated with it.  

 However, for young children, this process of creating a unit of measurement is not an 

easy task. For example, Piaget et al. (1981/1960) argue that in order to understand a standard one 

foot ruler, an individual must actively construct the multiple copies of inches in order to make 

the ruler; the inches simply did not appear. Piaget et al. (1981/1960) further describe that it is 

necessary for students to understand that the inches and feet on a ruler are the “end-product of 

operations carried out in the past” (p. 27). Therefore, they go on to argue that there is a need to 
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investigate how children construct initial units of measurement, not standard ones, to see how 

they are then able to transfer those initial units to other objects, ultimately leading to the 

development of standard measuring tools. From this argument, there is a distinction between the 

concept of measurement and the process of measuring. Concerning the former, when a child can 

coordinate subdivision and change of position, Piaget et al. believe that the child has developed a 

concept of operational measurement. However, concerning the latter, children simply read a 

measuring tool, made up of ready-made units, without any concern for subdivision and change of 

position.  

 Overall, there are many components of the development of operational measurement. In 

general, measurement is dependent upon awareness of and conservation of units (Coxford, 

1963). Piaget et al. (1981/1960) determined that a child’s understanding of length is “an 

outcome, not of a complementary relation between subdivision and change of position, but of 

their operational fusion” (128). This operational fusion emphasizes the coordination of 

subdivision and change of position. Children must first be able to realize that length is the 

amount of filled space between two points. Then, they must be able to subdivide that whole into 

a unit and iterate that unit the entire length of the whole (change of position). Next, children must 

be able to coordinate those subdivisions and changes of position to understand conservation of 

length. Once this coordination happens, these children have developed operational measurement.  
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Relating Measurement to Fractions 

 This part of the chapter focuses on the concept of fractions. These sections examine the 

relationship between the concept of measurement and fractions. Fraction operations and schemes 

are also discussed to better understand how students conceptualize fractions as measures. Finally, 

the measurement schemes for fractions framework concerning students’ measurement concepts 

of fractions is described. 

 From the conceptual understanding of measurement as subdivision and change of 

position, there is an explicit connection to fractions. As discussed above, subdividing is related to 

partitioning a whole into a unit of measurement and change of position is related to iterating that 

unit the length of the object. These operations of partitioning and iterating are foundational 

mental operations required for understanding fractions (Kieren, 1980; Lamon, 2007, 2012; 

Steffe, 1992, 2002; Steffe & Olive, 2010). Other mental operations required for fractions 

include: (a) unitizing—treating an object, entity, or a collection of items as a unit or a whole 

(McCloskey & Norton, 2009; Norton & McCloskey, 2008; Steffe, 1992); (b) disembedding—

taking one of those partitions or units out of the whole while maintaining the structure of the 

whole (Norton, 2008; Norton & McCloskey, 2008; Steffe, 1992); and (c) the ability to coordinate 

units—building and working with units at different levels (Hackenberg, 2007; Hackenberg et al., 

2016; Steffe, 1992, 2002; Steffe & Olive, 2010). In the initial understanding of fractions, 

students need to be able to construct (unitize) a whole, separate (partition) that whole into a unit, 

pull out (disembed) one of those units from the whole, and repeat (iterate) that unit the length of 

the whole, while maintaining the relationship between the whole and the iterable unit 

(coordination of units; Norton & McCloskey, 2008; Steffe, 2002; Wilkins & Norton, 2011, 

2018). For example, given a rod, a student needs to be able to consider that rod as the whole, 
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partition it into a unit, such as 1/4, disembed one of those fourths, and iterate the 1/4 unit four 

times to recreate the whole, while realizing that four 1/4 units makes the whole and that the 

whole is four times as large as that unit. As demonstrated, these operations are similar to those 

that define the concept of measurement described by Piaget et al. (1981/1960), subdivision and 

change of position.  

 In understanding fractions and rational numbers, in general there are different concepts of 

fractions that students may develop. Kieren (1980) described five different subconstructs of 

rational numbers: (a) part-whole, (b) quotients, (c) measures, (d) ratios, and (e) operators. Each 

of these different subconstructs describe a different understanding of fractions. With a part-

whole understanding, students understand 4/5 as 4 equal parts out of 5; they understand the 

relationship between the whole and number of parts. They recognize that a whole is broken into 

five equal parts, and they are only taking four of those parts out of the whole (Kieren, 1980; 

Lamon, 2012). Understanding fractions as parts of wholes indicates a purely additive 

relationship, where the parts add up to make the whole (Kieren, 1980). In the quotient 

subconstruct, students understand 4/5 as dividing 4 into 5 equal parts. This is similar to a part-

whole understanding, but is different in that students are actually dividing the whole into parts 

(Kieren, 1980; Wilkins & Norton, 2018). The measurement subconstruct involves an 

understanding of 4/5 as 4 iterations of 1/5. This is directly related to Piaget et al.’s (1981/1960) 

concept of measurement. Here the fraction represents a size relative to the whole (Lamon, 2012; 

Wilkins & Norton, 2018). With a ratio concept, students understand 4/5 as a relationship or 

comparison of 4 to 5. This can either be a part-whole comparison or a part-part comparison 

(Lamon, 2012; Wilkins & Norton, 2018). With a part-whole comparison, the ratio represents a 

comparison of a part of the set to the whole set; in a part-part comparison, the ratio represents a 
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comparison of a part of the set to another part of the set (Lamon, 2012). For example, a part-

whole ratio comparison for 4/5 could be four girls to five students. A part-part comparison for 

4/5 could be four girls to five boys in a class of nine students. Finally, an operator concept 

represent students understanding 4/5 as a rule for multiplying by 4/5 of something. This notion 

focuses explicitly on the multiplicative relationship between two quantities (Kieren, 1980; 

Lamon, 2007; Wilkins & Norton, 2018).  

 Despite these different subconstructs, there are similarities between each of them, and 

thus they are related to one another. Kieren (1980) notes that partitioning plays a major role in 

the development of each of these subconstructs, and iteration was especially useful for the 

measures subconstruct. Furthermore, the quotient and ratio subconstructs are related to the part-

whole subconstruct, and the operator is essentially a more sophisticated measurement concept 

(Wilkins & Norton, 2018). In fact, Lamon (2007) found that the operator subconstruct is 

naturally developed from the measurement subconstruct. Although these subconstructs are 

related, certain ones promote a deeper understanding of fractions and rational numbers. 

 When students are taught fractions as measures, they are better prepared to solve 

problems involving fractions and also develop a deeper understanding of fractions and rational 

numbers (Lamon, 2007; Norton & Wilkins, 2009, 2012; Wilkins & Norton, 2018). Lamon 

(2007) found that by being introduced to fractions as measures, students were better able to 

develop other subconstructs of rational number, helping foster a better understanding of rational 

numbers. She claimed that the group of students who understood fractions as measures were the 

strongest “because it connected most naturally with the other subconstructs” (Lamon, 2007, p. 

659) and therefore helped foster more meaningful understanding. In another study, Norton and 

Wilkins (2009) highlighted the importance of obtaining a measurement construct of fractions, as 
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it is central to the progression of fractions schemes (Norton & Wilkins, 2012). Therefore, these 

findings emphasize the importance of helping students develop the concept of measurement, as it 

underlies other mathematical concepts such as fractions.  

 However, the manner in which students are often taught fractions focuses on fractions as 

a quantity and not a size (Lamon, 2007). This type of understanding of a fraction as a quantity is 

related to part-whole concepts (Steffe, 2002; Steffe & Olive, 2010; Wilkins & Norton, 2018). In 

the United States, most textbooks emphasize the part-whole concept of fractions and typically do 

not move beyond that concept (Watanabe, 2007). In their study, Boyce and Norton (2016) found 

that about 54% of the sixth graders they interviewed had not constructed a measurement meaning 

of fractions, and were classified as pre-fractional. Although a part-whole concept of fractions is 

important, there are limitations to this understanding (Hackenberg et al., 2016; Thompson & 

Saldanha, 2003; Wilkins & Norton, 2018). For example, when students attempt to work with  

improper fractions such as 8/5, they become confused when they try to understand 8 parts out of 

5. They do not understand having more parts than what is in the whole. As a result, students 

often convert improper fractions into mixed numbers. This allows them to think in terms of part-

whole. They are then able to understand 8/5 as one whole (1) and 3 out of 5 parts. Although it is 

an important foundational understanding for fractions, it is necessary to move beyond part-whole 

understandings and focus on fractions as sizes or measurements. Furthermore, because all the 

subconstructs of fractions involve the underlying operations of partitioning and iterating, 

fractions inherently relate to the concept of measurement. Therefore, it is necessary to examine 

the different ways in which students may develop this measurement concept of fractions. 



 

30 

Fraction Operations and Schemes 

 Schemes are “constructs used by teachers and researchers to model students’ cognitive 

structures” (McCloskey & Norton, 2009, p. 46). They identify and describe the different actions 

and processes a student may use while solving tasks. Von Glasersfeld (1995b) developed a three-

part model for scheme theory, consisting of three main components (see Figure 2.1). This 

scheme theory model consists of a recognition template, mental actions, and a result. The mental 

actions employed in that situation that are used to carry out a specific function are known as 

operations. These operations are developed from abstractions of personal experience (von 

Glasersfeld, 1995b). Piaget (1970) defined an operation as “an action that can be internalized; 

that is, it can be carried out in thought as well as executed mentally” (p. 21). To further describe 

operations, von Glasersfeld notes that they reside in the mind, are unobservable, but “can only be 

inferred from observation” (p. 70, emphasis in original). In essence, operations do not have to be 

physically acted out (von Glasersfeld, 1995b), hence mental actions, and can only be inferred 

from observing student activity.  

 In contrast to these mental actions known as operations, a scheme describes or models a 

student’s cognitive structures (McCloskey & Norton, 2009). Piaget (1970) defined a scheme as 

“whatever is repeatable and generalizable” (p. 42). His definition focuses on a student’s general 

ways of operating. As discussed earlier, when a student’s assimilated mental actions produce an 

expected result, they reach a state of equilibrium. From here, the student is able to coordinate and 

repeat those notions and operations, leading to the development of structures known as schemes. 

Therefore, the difference in an operation and a scheme is that an operation is a certain mental 

action a student employs whereas a scheme is a three-part structure a student employs, including 

those individual mental actions. Essentially, operations are one key component of the entire 
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scheme structure. When thinking about fractions within the realm of Steffe’s (2002) 

reorganization hypothesis, there are certain operations and schemes that have been identified that 

are key for understanding fractions. These basic operations and schemes help provide a general 

framework for understanding and analyzing students’ understanding of fractions.  

Operations Involved with Fractions   

 When thinking about the concept of fractions, specifically grounded in Steffe’s (2002) 

reorganization hypothesis, there are many different mental operations required for fractional 

understanding. These include unitizing, partitioning, disembedding, iterating, splitting, and the 

ability to coordinate different levels of units (Hackenberg, 2007; Hackenberg et al., 2016; 

Lamon, 1996, 2012; McCloskey & Norton, 2009; Norton, 2008; Norton & McCloskey, 2008; 

Norton & Wilkins, 2009, 2012; Olive, 1999; Steffe, 2002, 2003; Steffe & Olive, 2010; von 

Glasersfeld, 1981; Wilkins & Norton, 2011, 2018). Without these mental actions, students are 

limited in their understanding of fractions. Therefore, it is necessary to understand each of these 

operations and how they impact fractional understanding. 

Unitizing   

 Unitizing can be described as “the cognitive assignment of a unit of measurement to a 

given entity; it refers to the size chunk one constructs in terms of which to think about a given 

commodity” (Lamon, 1996, p. 170). This means that anything can become a unit of measurement 

as long as the student views it as a separate entity from the given entity (Lamon, 1996, 2012; 

Norton, 2008). Consider a general example posed by Lamon (2012) in which you are given 24 

cans of soda. Some possible ways of unitizing these individual cans is by treating this group as 

one 24-pack, two 12-packs, four 6-packs, or as 24 individual cans. In this case, unitizing is 
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unique to each individual and is a “subjective process” (Lamon, 2012, p. 104). Nonetheless, it is 

also a process that occurs naturally as a student begins to separate and chunk items.  

 This process is necessary for students to understand fractions as they need to be able to 

unitize different objects, recognizing that wholes are made of smaller units, and thus leading to 

the development of composite units (Hackenberg et al., 2016; Steffe & Olive, 2010). Students 

need to be able to break a whole into smaller parts and then unitize the parts, thus establishing a 

composite unit with respect to the initial whole. For example, suppose a student broke the whole 

bar given in Figure 2.3 into four parts, took one of those parts, and then copied it three more 

times. A student may be able to then unitize each one of the parts into a new unit, known as a 

unit fraction (1/4), and furthermore unitize all four unit fractions into a composite unit, one 

whole containing four units of 1/4 (Hackenberg et al., 2016). From this example, it can be seen 

that unitizing is an important operation that is foundational for fractional understanding. It also 

plays a key role in the partitioning operation (Hackenberg et al., 2016). 

Figure 2.3  

Example of Unitizing Unit Fractions 

 

Partitioning  

 Subdivision, as described by Piaget et al. (1981/1960), is similar to the fragmenting 

process described by Steffe and Olive’s (2010). This is simply the “act of breaking or fracturing 

a whole” (Lamon, 2012, p. 172) into different parts (Lamon, 1996). There are different levels of 

A whole containing four units of 1/4

 
    

 
A unit fraction (unit of 1/4) 
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fragmenting, where partitioning is a special case that produces equal sized parts (Hackenberg et 

al., 2016; Steffe & Olive, 2010). For example, students who use a lower level of fragmenting 

may break a whole into two unequal parts, or may not use the entire whole. Students who use a 

higher level of fragmenting may make equal parts and “use up all of the material” (Hackenberg 

et al., 2016, p. 42). This level of fragmenting is known as partitioning, where the main focus is to 

produce equal sized parts (Steffe & Olive, 2010).  

 More clearly defined, partitioning is “the process of dividing an object or objects into a 

number of disjoint and exhaustive parts” (Lamon, 2012, p. 172), where the parts are 

“nonoverlapping and nonempty” (Lamon, 2012, p. 49). This indicates that the divided parts do 

not overlap and everything in the whole is contained in the parts. Further explaining the process 

of partitioning, Norton (2008) notes that partitioning enables “students to create equal groups 

from a discrete collection or continuous whole. The operation involves positing a specified 

number of slots in which to distribute the set or break up the whole into a continuous but 

partitioned whole” (p. 406). When students are able to partition a whole into equal parts and 

recognize that any one of those parts could be iterated a necessary number of times to recreate 

the whole, it is said that these students are using a more sophisticated process called equi-

partitioning (Hackenberg et al., 2016; Steffe, 2002; Steffe & Olive, 2010). 

Disembedding  

 Once a student has partitioned a whole, if they have constructed a disembedding 

operation, they are then able to take one of those partitions out of the whole while maintaining 

the structure of the whole (Norton, 2008; Norton & McCloskey, 2008). “Disembedding is the 

fundamental mental operation on which part-whole comparisons are based” (Steffe & Olive, 

1996, p. 118). For example, suppose a student partitions a whole into five parts. If they want to 
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obtain 3/5, they understand to take 3 parts out of the 5. While doing so, they also maintain the 

whole consisting of five parts, or 5/5. They recognize that taking three of those parts out does not 

affect the whole, because those three are simply parts of the whole.  

Iterating  

 Iteration is the process of copying a piece or part of a whole to recreate the whole 

(Hackenberg et al., 2016; Steffe, 2002; Steffe & Olive, 2010). This is similar to the process of 

change of position as described by Piaget et al. (1981/1960). Students ultimately make 

“connected copies of a part by repeating it” (Hackenberg et al., 2016, p. 186). These copies are 

identical copies, meaning they all are the same size and represent the same unit (McCloskey & 

Norton, 2009; Norton & McCloskey, 2008). For example, given the task in Figure 2.4, students 

may copy the small piece four times to recreate the whole. 

Figure 2.4  

Example Task Designed to Elicit an Iterating Operation 

 

Here, the student is able to establish a relationship between the unit and the whole; that is a 1-to-

4 relationship between the 1 unit being iterated and the whole quantity of 4 formed from the 

iterations (Hackenberg et al., 2016). Extending this iterating operation, students will eventually 

realize that only iterating the unit once will produce 1/4 of the whole, iterating it twice will 

produce 1/2 of the whole, and iterating it three times will produce 3/4 of the whole (Hackenberg 

How many times does the small bar fit into the larger bar? 
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et al., 2016; McCloskey & Norton, 2009; Norton & McCloskey, 2008; Steffe & Olive, 2010). 

This then leads students to recognize the multiplicative relationship between the two quantities: 

one unit is 1/4 the size of the whole, and the whole is four times as large as the one unit.  

Splitting  

 The operations of partitioning and iterating can be viewed as inverses of each other, and 

when coordinated result in another operation called splitting (Hackenberg et al., 2016; 

McCloskey & Norton, 2009; Norton & Wilkins, 2009, 2012; Steffe 2002, 2003; Steffe & Olive, 

2010; Wilkins & Norton, 2011, 2018). Steffe (2002) explicitly defined splitting as the 

simultaneous “composition of partitioning and iterating” (p. 19, emphasis in original).With 

splitting, students are able to reverse their thinking (Hackenberg, 2010; Hackenberg et al., 2016; 

Steffe, 2002). This allows students to think about partitioning and iterating as one operation, 

instead of two separate ones (Hackenberg et al., 2016; Norton, 2008; Steffe, 2002; Wilkins & 

Norton, 2011). Consider the example task given in Figure 2.5. The student is given a bar and told 

that it is three times as long as another bar. Norton and Wilkins (2009) explains that to solve 

tasks like this, that are “iterative in nature” (p. 151), a student must anticipate using partitions 

that could be iterated to recreate the whole. In this example,  the student needs to understand to 

partition the given bar into three pieces while also realizing that iterating one of those pieces 

three times will recreate the whole. 

Figure 2.5  

Example Task Designed to Elicit a Splitting Operation 

 

The bar shown is 3 times as long as another bar. Draw the other bar. 
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 Oftentimes, however, students may interpret a splitting task as an iterating task 

(Hackenberg et al., 2016). For example, students may simply iterate the bar three times. In this 

case, students are not simultaneously composing their partitioning and iterating operations, and 

fail to employ the splitting operation. Once students have developed the splitting operation, they 

are better equipped to solve more advanced fractional tasks, thus developing more sophisticated 

fractional schemes (McCloskey & Norton, 2009; Norton & Wilkins, 2012; Steffe, 2002, 2003; 

Wilkins & Norton, 2011, 2018). Although not directly stated, the splitting operation appears to 

be an extension of Piaget et al.’s (1981/1960) concept of measurement as the coordination of 

subdivision and change of position (see 2 above). 

Coordination of Units 

 The coordination of units involves the process of building and working with units 

(Hackenberg, 2007; Hackenberg et al., 2016; Steffe, 1992, 2002; Steffe & Olive, 2010). When 

working with fractions, students create units through partitions and iterations; they then need to 

establish multiplicative relationships between those units and the whole, requiring coordination 

of units. In order to construct more sophisticated fraction schemes, students need to be able to 

coordinate different levels of units. For example, students typically begin by working with one 

level of units and then proceed to coordinate two levels of units (Hackenberg et al., 2016). From 

here, they are able to coordinate three levels of units in activity, meaning they can coordinate two 

levels of units and then, in activity, coordinate those two levels with a third level of units 

(Hackenberg, 2007; Steffe, 1992).  

 Once students interiorize their coordination of two levels of units with a third level of 

units, they can assimilate with three levels of units coordination, coordinating the three levels of 

units at once or as one whole multiplicative structure (Hackenberg, 2007). For example given the 
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task in Figure 2.6, students who can coordinate two levels of units may partition the whole into 

five parts, take one of the five parts, and call it 1/5. Then after iterating the part seven times, they 

may lose track of the original whole and say the result is 7/7. They no longer think about the 

relationship between the unit (1/5) and the original whole (5/5), but now relate the iterated part 

as a 1 to the new whole (7). Through this process of coordinating units students often lose track 

of the original whole and are unable to relate their final result to the original whole. However, a 

student who can coordinate three levels of units may partition the whole into five pieces, 

recognize that each of those partitions represents a 1/5, and can furthermore iterating any one of 

them seven times and maintain the 1-to-5 relationship and the 1-to-7 relationship, resulting in 

7/5. Here, students can simultaneously consider the whole unit of 1, the unit fraction 1/5, and the 

seven units of 1/5.  

Figure 2.6  

Example Task Designed to Elicit Three Levels of Units Coordination 

 

Your stick is 7/5 as long as the stick below. Draw your stick. 

 

     

 

Coordination of two level of units 

 

1/5 1/5 1/5 1/5 1/5 

Five units of 1/5 = 5/5  

 

1 1 1 1 1 1 1 

Seven units of 1= 7/7 

 

Coordination of three levels of units 

 

1/5 1/5 1/5 1/5 1/5 

Five units of 1/5 = 5/5  

 

1/5 1/5 1/5 1/5 1/5 1/5 1/5 

Seven units of 1/5 = 7/5 
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Summary of Operations 

  For a complete understanding of fractions, students need to construct the operations of 

unitizing, partitioning, disembedding, iterating, splitting, and be able to coordinate three levels of 

units (Hackenberg, 2007; Hackenberg et al., 2016; Lamon, 1996, 2012; McCloskey & Norton, 

2009; Norton, 2008; Norton & McCloskey, 2008; Norton & Wilkins, 2009, 2012; Olive, 1999; 

Steffe, 2002, 2003; Steffe & Olive, 2010; von Glasersfeld, 1981; Wilkins & Norton, 2011, 

2018). Partitioning is related to Piaget et al.’s (1981/1960) subdivision operation and involves 

dividing or separating a whole into parts of equal size with no gaps or overlaps. This then 

enables students to begin breaking a whole into fractional units. Once students have broken a 

whole into pieces, they may begin iterating one of the pieces to recreate the whole, or another 

fractional part of the whole. Iterating is an extension of Piaget et al.’s (1981/1960) notion of 

change of position; that is taking one unit and transposing it along the entire length of the whole 

to recreate the whole.  

 When students can simultaneously coordinate their partitioning and iterating operations, 

it is said they have developed the splitting operation. Splitting describes the simultaneous action 

of partitioning and iterating, and appears to be related to Piaget et al.’s (1981/1960) description 

of measurement as the coordination of subdivision and change of position. At this point, students 

do not have to partition a whole first and then iterate one of those units; they can partition and 

iterate simultaneously. Finally, the ability to coordinate units helps students maintain the 

multiplicative relationships between different levels of units created by partitioning and iterating, 

with respect to the whole. 
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Fraction Schemes 

 Schemes describe the ways in which students think about certain concepts, and in this 

case fractions (Steffe, 2002, 2003; Steffe & Olive, 2010). Schemes are formed by the actions and 

operations students use and then how they interpret the results of those actions or operations. 

Schemes also describe a progression for how students may move from less sophisticated ways of 

thinking to more sophisticated ways of thinking (Steffe & Olive, 2010). In their work, Steffe and 

Olive (Steffe, 2002, 2003; Steffe & Olive, 2010) outlined the following schemes to help describe 

the ways in which students think about fractions: part-whole scheme (PWS), partitive unit 

fraction scheme (PUFS), partitive fraction scheme (PFS), reversible partitive fraction scheme 

(RPFS), and the iterative fraction scheme (IFS).  

 Building on Steffe and Olive’s work, Wilkins and Norton (2018) reorganized the 

previous fraction schemes to describe them in terms of a measurement concept of fractions. In 

doing so, they combined some of the previous schemes into new ones, thus creating the 

following progression of schemes to describe the development of measurement concepts of 

fractions: part-whole scheme (PWS), the measurement scheme for unit fractions (MSUF), the 

measurement scheme for proper fractions (MSPF), and the generalized measurement scheme for 

fractions (GMSF). Figure 2.7 represents this progression as well as the relationship to the 

different operations that impact these schemes. 
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Figure 2.7  

Learning Progression for Measurement Schemes for Fractions (From Wilkins & Norton, 2018, 

p. 32) 

 

Part-Whole Scheme  

 With a PWS, students are able to partition a whole into parts and then disembed the given 

part(s) out of the whole (Steffe, 2003; Steffe & Olive, 2010; Wilkins & Norton, 2018). For 

example, suppose students are given a whole stick with a specific length. When asked to find 4/5 

of the stick, students need to be able to partition the stick into five equal parts and then identify 

or disembed four of those parts. They are then able to recognize that fraction as 4/5, meaning 4 

parts out of the 5 parts in the whole. As demonstrated, this requires the operation of partitioning 

and disembedding; students must be able to break a whole into parts before they can recognize 

how many parts of the whole. As a result, partitioning is a precursor for the development of a 

PWS, as presented in Figure 2.7. Although having a PWS is important for basic understanding of 

fractions as it provides a foundation, only thinking of fractions as parts of wholes limits students’ 

fractional understanding (Hackenberg et al., 2016). With only a PWS, students do not recognize 

the partitions as iterable units; they are simply parts that make up the whole. As presented in 

Figure 2.7, iterating is not necessary for the construction of a PWS and may not develop until 
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after a PWS. Therefore, students do not need to iterate the parts they made, because they are 

simply parts of the whole. 

Measurement Scheme for Unit Fractions  

 Once students construct an iterating operation, and after students construct a PWS, they 

construct a MSUF (Figure 2.7; Wilkins & Norton, 2018). This scheme is synonymous to Steffe 

and Olive’s PUFS where students are given a part of the whole, as well as the unpartitioned 

whole, and can figure out the size of the part by iterating it to recreate the whole (Steffe, 2002, 

2003; Steffe & Olive, 2010). After students iterate the part to make the whole, they are then able 

to determine the size of the fractional part from the number of iterations. The MSUF is different 

from the PWS in that students now have established an iterable unit of 1, and recognize the 

relationship between that unit and the whole, n. They understand that the unit can be iterated n 

times to recreate the whole, establishing the notion of a unit fraction. They no longer rely on 

parts of the whole, but rely on the n iterations of the unit to name the fraction. This iterable unit 

of 1 is the distinguishing factor between the PWS and MSUF.  

 To describe the actions and operations involved in a MSUF, suppose a student is given 

the task in Figure 2.8. Students with a MSUF would iterate the smaller bar and determine that 

four iterations make up the larger bar. This would lead them to determine that the smaller bar is 

1/4 of the larger bar. Similar to operating with a PWS, the student recognizes that the bar is one 

of those four iterations. However, they understand the reciprocal relationship between the 

iterable unit and the n iterations. Having this iterable unit is important for a measurement concept 

of fractions. This notion of a measurement concept of fractions extends Kieren’s notion of 

fractions as measures. Kieren (1980) argued that being able to understand fractions as measures 

requires iteration, which is further consistent with Piaget et al.’s (1981/1960) concept of 
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measurement as the coordination of subdivision and change of position. This notion of a fraction 

as a measure focuses on iterating a unit, but the MSUF focuses on obtaining an iterable unit, and 

is therefore more advanced than Kieren’s (1980) notion.  

Figure 2.8  

Example Task Designed to Elicit a MSUF 

 

Measurement Scheme for Proper Fractions  

 After developing a MSUF, some students are able to generalize their scheme from unit 

fractions to proper fractions, thus developing a MSPF (Wilkins & Norton, 2018). The MSPF 

combines Steffe and Olive’s PFS and the RPFS (Steffe 2002, 2003; Steffe & Olive, 2010). With 

a PFS, students are able to take an unpartitioned piece and compare it to an unpartitioned whole 

to determine the size of the piece. Here, they take the proper fraction, partition it into a unit 

fraction, establishing an iterable unit of 1, and then iterate that unit n times to recreate the whole. 

During these actions, students coordinate two levels of units sequentially: the unit fraction to the 

proper fraction, and the unit fraction to the whole. It is also important to note that in this situation 

students sequentially partition and then iterate the unit fraction. (McCloskey & Norton, 2009; 

Norton, 2008; Norton & McCloskey, 2008; Norton & Wilkins, 2009, 2012; Olive, 1999; Steffe, 

What fraction is the smaller stick out of the larger stick? 
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2002, 2003; Steffe & Olive, 2010; Wilkins & Norton, 2011, 2018). Once a student can 

simultaneously partition and iterate, they have developed the splitting operation. This then 

enables them to reverse their thinking and construct a RPFS.  

 With a RPFS, students are able to take an unpartitioned piece and partition it into a unit 

fraction and iterate it n times to create the whole to determine the size of the piece. Although this 

sounds similar to the PFS, here students simultaneously partition and iterate. They are able to 

coordinate the partitions and iterations to visualize the whole, knowing when to stop iterating. 

For example, suppose a student is given the task in Figure 2.9. Students are given an 

unpartitioned bar and asked to find the whole. In order to do so, with a RPFS, a students will 

partition the bar into four pieces, each one representing a 1, and then iterate one piece five times 

to create the whole.  

Figure 2.9  

Example Task Designed to Elicit a RPFS 

 

 Since a MSPF combines a PFS and a RPFS, students with a MSPF are able to split. They 

are also able to reverse their partitioning of the fractional whole and iterating the unit fraction as 

an iterable unit of 1 to understand the proper fraction m/n; that is they maintain the relationship 

between the n iterations needed to create the whole and the m iterations taken. They understand 

The bar shown below is 4/5 as long as the whole candy bar. Draw 

the whole candy bar. 

 

    

 

Sample student work 
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the proper fraction m/n as simply m units of 1 from the n iterations needed to create the whole. 

They are able to work with proper fractions by recognizing the relationship between the unit 

fraction and the whole, and then by iterating the unit fraction to create the proper fraction 

(Wilkins & Norton, 2018). This requires an inverse relationship between the unit fraction and 

whole, as well as the unit fraction and proper fraction (Wilkins & Norton, 2018). Within this, 

they are coordinating three levels of units in activity: the 1 to n  relationship, as well as the 1 to m 

relationship. This coordination happens sequentially, representing two two-level coordinations 

(Wilkins & Norton, 2018).  

Generalized Measurement Scheme for Fractions  

 The final scheme is the GMSF (cf. Steffe and Olive’s IFS, 2010). With a GMSF, students 

are able to use their splitting operation to work with improper fractions and smaller wholes 

(McCloskey & Norton, 2009; Norton, 2008; Norton & Wilkins, 2009, 2012; Olive, 1999; Steffe, 

2002, 2003; Steffe & Olive, 2010; Wilkins & Norton, 2011, 2018). Here, students are able to 

establish an iterable unit fraction as 1/n instead of as an iterable unit of 1, as described in the 

MSPF. This allows them to create a whole using any fraction, thus requiring the coordination of 

units (Figure 2.7). With a GMSF, students are able to simultaneously coordinate three levels of 

units—the improper fraction, the unit fraction, and the whole. For example, given the task in 

Figure 2.10, a student with a GMSF can simultaneously partition the bar into seven pieces and 

iterate one of those pieces five times to create the whole. In doing so, they must recognize that 

each partition represents a 1/5 of the whole, and not a 1/7. 
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Figure 2.10  

Example Task Designed to Elicit a GMSF 

 

Summary of Fraction Schemes 

  Fraction schemes describe the different ways students think about fractions. Building on 

Steffe and Olive’s work, Wilkins and Norton (2018) reorganized the fraction schemes to describe 

them in terms of a measurement concept of fractions (see Figure 2.7). Before the development of 

a PWS, partitioning is required (Wilkins & Norton, 2018). This enables students to partition a 

whole into parts and then determine how many parts of the whole is given. Here, students have 

no iterable unit; they simply rely on how many parts out of the whole. Once the iterating 

operation is developed, students can iterate a part to recreate the whole and then determine the 

size of the unit fraction, leading to the construction of a MSUF. With a MSUF, students have an 

iterable unit of 1. Students then rely on the n number of iterations of that unit to determine the 

size of the whole. Upon developing the splitting operation, students can simultaneously partition 

and iterate. They are able to reverse their partitions and iterations to maintain the relationship 

between iterating the unit fraction as an iterable unit of 1 and the number of iterations, n, to 

understand the proper fraction m/n. They understand the proper fraction m/n as simply m units of 

The bar shown below is 7/5 as long as the whole candy bar. Draw the whole candy bar. 
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Seven units of 1/5 = 7/5 
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1 from the n iterations needed to create the whole. At this point, students are attributed with a 

MSPF. Finally, after students are able to coordinate three levels of units, they can coordinate the 

improper fraction, the unit fraction, and the whole simultaneously. This indicates that students 

are able to establish an iterable unit fraction of 1/n, recognizing that 5/4 is five units of 1/4. At 

this point, students are said to have constructed a GMSF.  

Relating Measurement to Angles  

 This part of the chapter focuses on angles and angle measurement. The following sections 

offer an overview of the relationship between the concept of measurement and angles. It also 

provides a literature review of students’ conceptualizations of angles and the process for 

quantifying angularity. Finally, the framework used to explain students’ quantifications of 

angularity is described. 

  The foundational concept of measurement as subdivision and change of position takes on 

a different meaning once students begin studying angle measurement. Instead of looking at linear 

measurement, measurement is now placed in the context on circles. The understanding and 

development of angle measurement requires students to use a different reference system for 

coordinating subdivision and changes of position (Piaget et al., 1981/1960). They must be able to 

recognize angle measurement “as a special kind of coordination between the length of the arms 

and the distance which separates them” (p. 182). That is, children need to recognize that angle 

measurement is the separation between two rays that make an angle, where the separation is 

made by rotating one ray about a point, thus emphasizing a dynamic construction (Piaget et al., 

1981/1960). These dynamic actions, such as rotating, helps students realize that an angle is 

created by iterating a unit, whether that be a set rotation or a specified sweep (Clements & Burns, 
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2000; Clements et al., 1996; Smith et al., 2014). Nonetheless, the foundation concepts of 

subdivision and change of position still apply. 

 In the most conceptual understanding, angles are defined as fractional amounts of a full 

rotation or a circle (Moore, 2013; Thompson, 2008). This then allows students to recognize angle 

measurement as the angle’s openness, or separation. In order to understand the angle’s openness, 

Thompson (2008) argues that students must first “say what about an angle we [they] are 

measuring and the method by which we [they] derive a measure of it” (p. 35). Following 

Thompson's (2008) argument, Moore (2013) further argues that angle measurement should be 

developed “as representative of the same quantitative relationship” which can be achieved “by 

conceiving angle measure as the process of determining the fractional amount of the circle’s 

circumference subtended by an angle, provided that the circle is centered at the vertex of the 

angle” (p. 227). This directly relates to partitioning a circle into a piece, and then iterating that 

piece to determine the fractional amount of the circle that the angle comprises. However, this is 

not the initial understanding of angle and angle measurement that students develop.  

What is an Angle? 

 There are many different definitions and concepts of angle that have been used to teach 

students about angles. For example, in their textbook, Henderson and Taimina (2005) define an 

angle as “the union of two rays (or segments) with a common endpoint” (p. 38). Charles (2011) 

also defines an angle as two rays with the same endpoint. This indicates that students must 

understand rays, line segments, and endpoints before they can understand angles. In another 

textbook, Greenberg (2008) uses the following definition for angles: “An angle with vertex A is 

a point A together with two distinct non-opposite rays 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗ (called the sides of the angle) 

emanating from A” (p. 18). From this definition, again students must understand what a ray, 
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point, and vertex are to understand angles. However, this definition goes even farther than the 

previous one in that the rays cannot be opposite. Based on this definition, a straight line is not an 

angle. Similarly, Long (2009) defines an angle as “two rays with the same endpoint that do not 

lie on the same line” (p. 23), emphasizing that straight lines are not angles. Each of these 

definitions does not capture an angle as being created by rotating one ray about a point. This then 

may limit students’ understanding of 0o, 180o, and 360o angles.  

Different Conceptualizations of Angles 

 Depending on how angles are defined and presented to students, students can develop 

different conceptualizations of angle. Researchers have documented students’ conceptualizations 

of angles and categorized them into two categories: static and dynamic (Browning et al., 2008; 

Bütüner & Filiz, 2016; Clements & Burns, 2000; Kontorovich & Zazkis, 2016; Smith et al., 

2014). With a static angle conception, angles are viewed as a geometric shape or figure, or as a 

pictorial/figurative representation (Kontorovich & Zazkis, 2016; Smith et al., 2014) in which the 

student focuses on what the angle looks like in relation to the location or position of the sides 

(Bütüner & Filiz, 2016). A common example of a static angle conception is the notion of an 

angle as a union. An angle as a union is seen as the intersection of two rays or line segments at a 

common vertex (Mitchelmore & White, 1998; Keiser, 2004). With this concept, students focus 

on the position of the angle, where both sides of the angle are visible, and not on the movement 

that was involved in the creation of the angle (Mitchelmore & White, 2000).  

 With a static angle conceptualization, students can have a difficult time identifying angles 

in different positions, orientations, and contexts. For example, students may struggle with 

identifying 0o, 180o, and 360o angles (Smith et al., 2014) because they cannot see the two distinct 
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rays and related vertex or endpoint. Students also confuse right angles in different orientations, 

often calling them left angles (Outhred, 1987), because they are focused on how the angle looks.  

 In contrast, with a dynamic angle conception, students understand that angles are created 

by movement or actions, in which students sweep, drag, or rotate a line or ray to make an angle 

(Clements & Burns, 2000). Additionally, students might use body movements or gestures to 

represent angles (Clements & Burns, 2000; Smith et al., 2014). A common example of a 

dynamic angle conception is the notion of an angle as a turn. When students think of angles as 

turns, they can recognize and identify the rotation used to make the angle; they understand that 

angles are created by rotating one line or ray, or by sweeping a line or ray (Browning et al., 

2008; Bütüner & Filiz, 2016; Clements & Battista, 1989, 1990; Clements & Burns, 2000; 

Kontorovich & Zazkis, 2016; Smith et al., 2014; Yigit, 2014).  

 By conceptualizing angles as dynamic angles, students are able to understand a greater 

variety of angles in different contexts and orientations. They no longer focus on how the angle 

looks, but focus on the sweeping or rotation motion. For example, students are no longer limited 

to focusing on the two distinct rays and related vertex or endpoint and can now understand 

straight angles and semi-circles as a rotation of 180o, and circles as 360o. Students also no longer 

focus on the orientation of the angle, and are better prepared to understand right angles as 90o no 

matter the orientation. With a dynamic conception of angles, students are better prepared to gain 

a more abstract understanding of angles.   

Angle Measurement 

 Piaget et al. (1981/1960) discuss the different stages students progress through as they 

learn about angles and angle measurement. In Stage I, students draw and “measure” angles from 

visual estimates. As they progress to Stage II, they begin using tools but still only view the angle 
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as a perceptual figure (Piaget et al., 1981/1960). In Stage III, students develop more complex 

skills and try to use slope to “measure” angles. However, they still fail at recognizing angle 

measurement as the openness or separation between the two lines. It is only in Stage IV that 

students can begin to coordinate many actions within different dimensions to understand angle 

measurement as the separation between two lines. These students no longer see angles as solely 

figural, but as the result of operations and actions (Piaget et al., 1981/1960). 

 Because students can develop different conceptualizations of angle depending on how 

angles are defined and presented to students, this will also affect the different ways in which 

students understand angle measurement. If students do not understand what an angle is or how it 

is constructed, students are limited in their understanding of angle measurement (Barabash, 

2017; Clements et al., 1996; Thompson et al., 2014). Thompson et al. (2014) claimed that even 

understanding angle as a size, from a magnitude perspective, can be misleading. They note that 

“any reference to an angle’s magnitude would have little meaning because even when thinking of 

size, an angle would not have a unique size” (p. 2). For example, given the two angles in Figure 

2.11, the two angles have the same measurement, but are presented in two different circles of 

different size; in this case, students may think the angles have different measures because one 

appears larger than the other, and they have different sizes. 

 This focus on the size of angles may cause some students to think that angle 

measurement can be determined by measuring the side lengths of the angles (Barabash, 2017; 

Bütüner & Filiz, 2016; Clements & Battista, 1989, 1990; Clements, 2003; Piaget et al., 

1981/1960). Students may also think about angle measurements as being related to the size of the 

arc drawn to represent the angle (not the subtended arc) or the distance between the sides of the 

angle (Barabash, 2017; Bütüner & Filiz, 2016; Clements & Battista, 1989, 1990; Clements et al., 
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1996; Piaget et al., 1981/1960). This relates back to Piaget et al.’s (1981/1960) distinction 

between length and distance, where they define length as the occupied or filled space between 

two points or objects, and distance as the empty space or linear separation between two points or 

objects. When dealing with angle measurement, it is important to help students understand that it 

is not the linear distance between the two endpoints, but rather the separation between them.  

Figure 2.11  

Angles with the Same Measure but Different Size Circles (from Thompson et al., 2014, p. 2) 

   

 When angles are thought of as turns, they are understood as being constructed by 

sweeping, dragging, or rotating a line or ray (Andrews, 2002; Browning et al., 2008; Clements & 

Burns, 2000; Clements & Battista, 1989, 1990; Clements et al., 1996; Cullen et al., 2018; 

Mitchelmore, 1997; Smith et al., 2014). This process of a turn is developed by students using 

their informal knowledge of rotating objects using nonstandard units, then abstracting those ideas 

to develop more formal knowledge of rotating objects using standard units (Mitchelmore, 1997). 

For example, students may begin using nonstandard units of turns, such as rotating a bottle a half 

turn, or what they perceive as a half turn. Then, they may relate this to a clock hand rotating. 

From here, students can develop standard units of turns, such as minutes and hours. In their 
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work, Clements et al. (1996) focused on angle construction and measurement in terms of units of 

turns. They focused on getting students to:  

 (a) build up images of turn as physical rotation, a change in heading or orientation; (b) 

distinguish between smaller and larger turns (gross comparison); (c) construct and iterate 

units of turn; (d) estimate turn measures using certain units as benchmarks; and (e) 

recognize that different physical rotations can yield the same geometric effect. (p. 315) 

This is similar to Mitchelmore’s (1997) approach and is directly related to Clements and 

Battista’s (1986) argument for focusing on nonstandard units of measurement and then build 

towards standard units of measurement.  

 By referencing a sweeping motion, students will be able to relate this to a circle, 

recognizing the angle measurement “by comparing the fraction of the circular arc and the circle’s 

circumference” (Cullen et al., 2018, p. 146). With these sweeping or turning motions, students 

can relate this to their general measurement concept in terms of partitions and iterations. For 

example, in order to understand the standard units of measurement for angles, students would 

have to recognize that a turn represents a specific partition of a circle (Clements et al., 1996). A 

semi-circle could be created by partitioning a circle in half, which could then be conceived as a 

half turn. A student could also relate this to partitioning a circle into twelfths and then iterating 

that partition six times. Then building from this concept, they would be able to see that the 

partition of 1/12 would be 30o, where they recognize a circle is 360o and 
360

12
= 30.  

 From this process, students are better prepared to understand tools for measuring angles, 

such as protractors. Instead of being provided a protractor to measure an angle, in which no 

concept of measurement is reinforced (Andrews, 2002), students would be able to see how a 

protractor was developed by iterating a unit of one degree 180 times (Barabash, 2017). The 
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iterations of degrees would be implicitly seen in the tool, as suggested by Battista (2006). 

Therefore, there is a direct link between the basic concepts of measurement and the 

understanding of angle measurement. Students need to be able to understand partitions, 

iterations, and fractions to understand where standard units of angle measurements are derived. 

 With these conceptions of an angle as a dynamic construction, students are able to 

develop a more abstract conceptualization of angles, thus leading to a better and deeper 

understanding of angle measurement, as well as higher performance and greater learning gains 

(Clements & Burns, 2000; Cullen et al., 2018; Mitchelmore & White, 1998, 2000; Smith et al., 

2014). For example, Clements and Burns (2000) discovered that when students use these 

dynamic actions for angles, they are able to develop schemes that can then be utilized in later 

situations. As a result, students gain a deeper understanding of angle measurement and clearer 

connections between concepts (Clements & Burns, 2000). In contrast, in their study, Bütüner and 

Filiz (2016) discovered that many high achieving sixth-grade students were limited to a static 

conception of angles, leading to many of these aforementioned misconceptions related to angle 

measurement. As a result, only 36% of students were able to correctly identify angles and only 

39% were able to correctly compare the size of angles. By focusing on a dynamic conception of 

angles and with the concept of measurement, students are better able to see the whole, the 

partitions into a unit, the iterations of the unit, and the coordination between the units of 

measurement and the whole (Barrett et al., 2006). Therefore, students may be more apt to relate 

and expand the foundational principles of measurement to angles. 

What Curriculum Standards Emphasizes 

 It is important to look at what curriculum standards emphasize to better understand how 

students might think about angle and angle measurement. The first place the Virginia Standards 
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of Learning (SOLs) mention angles is in explaining the Kindergarten standards: “A vertex is the 

point at which two or more lines, line segments, or rays meet to form an angle” (VDOE, 2016c, 

p. 16). This definition supports the union concept of an angle. Then in first grade, this definition 

is expanded to include the idea that “An angle is formed by two rays that share a common 

endpoint called the vertex. Angles are found wherever lines or line segments intersect” (VDOE, 

2016b, p. 20). This again supports the union concept of angle. This definition is used throughout 

second, third, and fourth grade as well. It is not until fifth grade that students are introduced to a 

more formal concept of angle and angle measurement, by placing angles within the context of a 

circle: 

 Angles are measured in degrees. A degree is 1/360 of a complete rotation of a full 

circle. There are 360 degrees in a circle. 

 To measure the number of degrees in an angle, use a protractor or an angle ruler. 

Before measuring an angle, students should first compare it to a right angle to 

determine whether the measure of the angle is less than or greater than 90 

degrees. Students should understand how to work with a protractor or angle ruler 

as well as available computer software to measure and draw angles and triangles. 

(VDOE, 2016a, p. 25) 

With this progression, students jump from understanding an angle as the intersection of two rays, 

line segments, or lines to thinking of angle measurement as 1/360 of a circle. If students begin by 

focusing on intersections of rays, this can be difficult to then expand this definition in the context 

of a circle. Furthermore, notice the emphasis placed on the use of protractors. Instead of allowing 

students to develop their own units, they move straight to using protractors and standard units of 

measurement (i.e., degrees).  
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 Although the fifth grade standard states that one degree is 1/360 of a circle, they claim 

students should use protractors to measure angles. Despite the focus on the relationship between 

the angle and the circle, without a deep understanding of partitioning and iterating, this definition 

simply defines an angle in terms of degrees. This approach is what researchers have argued 

against in support of helping students use nonstandard units of measurement and then build 

towards standard units (Clements et al., 1996; Clements & Battista, 1986; Mitchelmore, 1997).   

 A similar progression is seen in the Common Core State Standards for Mathematics 

(CCSSI, 2010). Students begin learning about angles as the intersection of two rays or lines. This 

concept is then extended in fourth grade, where students are introduced to angle measurement as 

fractional parts of a full rotation or a circle: 

Recognize angles as geometric shapes that are formed wherever two rays share a 

common endpoint, and understand concepts of angle measurement: 

a. An angle is measured with reference to a circle with its center at the common 

endpoint of the rays, by considering the fraction of the circular arc between the 

points where the two rays intersect the circle. An angle that turns through 1/360 of 

a circle is called a “one-degree angle,” and can be used to measure angles. 

b. An angle that turns through n one-degree angles is said to have an angle measure 

of n degrees. (CCSSI, 2010, p. 31) 

However, different from the Virginia standard, this definition not only focuses on angle 

measurement as a fractional amount of a circle, but also emphasizes understanding how to use 

non-standard units of measure to measure angles in terms of turns. There is no mention of a 

protractor. Students are expected to understand how angles are created which then allows them 
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to develop an understanding of angles as turns. However, again this can be a drastic jump from 

thinking about angles as static figures to dynamic turns.  

 In both of these examples, the idea is that students recognize angles in terms of a circle, 

and that angle measurement is derived from that relationship to the circle. Thus, it is imperative 

to investigate this relationship between an angle, circle, and angle measurement. Moore (2013) 

noted that through his review of thirty elementary and secondary textbooks, most define angle 

measurement as “a number obtained by using a protractor, and a measurement of an arc length” 

(p. 227). He goes on to argue that these common concepts of angles and angle measurement as 

determined by degrees often lead students, and teachers, to develop “shallow and fragmented” 

(Moore, 2013, p. 226) understandings of angle measurement. 

 Although these concepts are important for helping students understand degrees as the 

standard unit of measurement for angle, and for relating right angles, complimentary angles, and 

supplementary angles through calculations, they “fail to address the quantitative structure behind 

the process of determining an angle’s measure (Moore, 2013, p. 227, emphasis in original). 

Therefore, Thompson (2008) and Moore (2013) argue that angle measurement should be 

established as a quantitative relationship between the circle’s circumference, the radius, and the 

arc length—that is the arc subtended by the angle. For example, a one degree angle would 

subtend 1/360 of the circumference of any circle at the vertex of the angle (Moore, 2013; 

Thompson, 2008). With this concept of angle measure, students maintain a relationship between 

the length of the arc and the circumference; this helps them recognize that if the length of the 

rays get longer or smaller, the angle measurement remains the same. For example, given the 

angles in Figure 2.12, some students might think ∠GBF is smaller than ∠CBA due to the length 

of the rays being shorter. However, with Moore’s (2013) concept of angle measurement as the 
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fractional amount of a circle’s circumference, students would be able to recognize that ∠GBF 

and ∠CBA are in fact the same angle because the two arcs created by both angles, arc GF and arc 

CA, subtend the same fractional amount of each of the circle’s circumference. As the length of 

the rays extend, a larger circle is created, resulting in a larger circumference. Even though the 

arcs and circles are getting larger, so is the circumference, and therefore the fractional amount or 

proportion remains the same.  

Figure 2.12  

Comparing Angle Measurements Using Equivalent Arcs 

 

 To summarize this concept of angle measurement, students need to understand that two 

rays intersect to form “an object...that has a measurable attribute of openness” (Moore, 2013, p. 

228). This attribute can then be assigned a quantity to better understand that measurement. 

However, in order to quantify the openness of the angle, students must recognize the quantitative 

relationship between the circle’s circumference, the radius, and the arc length created by the 

angle (Moore, 2013). This involves “coming to understand a unit in terms of a multiplicative 
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relationship between a class of subtended arcs and the corresponding circle’s circumference” 

(Moore, 2013, p. 228). What this means is that students ultimately develop a group of equivalent 

circles, where they recognize that although the circles get bigger, the proportional relationship 

between each of the subtended arcs and the circle’s circumference remains the same (e.g., see 

Figure 2.12). Although some may argue that this is the most sophisticated concept of angle 

measure, and most difficult for students to understand, it is important to help students build 

towards this concept.  

Quantifications of Angularity Framework 

 As discussed above, Moore’s (2013) quantification of openness relies on the ability to 

maintain the relationship between the angle, subtended arc, and circle’s circumference. However, 

students will not always begin with this quantification. Thompson (2011) defined quantification 

as “the process of conceptualizing an object and an attribute of it so that the attribute has a unit 

of measure, and the attribute’s measure entails a proportional relationship...with its unit” (p. 37). 

He goes on to note that: 

Quantification is a process of settling what it means to measure a quantity, what one 

measures to do so, and what a measure means after getting one. Measurement comes into 

play after the quantification process, although measurement, from the start, is the motive 

for quantifying a quantity and trial or imagined measurements are involved while amidst 

the quantification process. (p. 38, emphasis in original)  

Therefore, quantification is not the process of simply assigning a value or number to an object’s 

attribute, nor is it the process of measuring. Instead, quantification is the process of identifying 

an attribute of an object, and then defining a unit of measurement that holds a multiplicative 

relationship to the attribute in order to assign a value to that attribute.  
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 When looking at angle measurement, or quantifying angularity, students must identify the 

object, determine the attribute to be quantified, in this case the angle’s openness or angularity, 

and then define a unit of measurement for that attribute. Since there are different 

conceptualizations of angles, students may identify different attributes to be measured (e.g., the 

linear length between the two rays’ endpoints, or the linear separation of the rays). Therefore, 

there are different quantifications students may develop as they learn about angle and angle 

measurement. In his work, Hardison (2018) developed a framework for assessing students’ 

quantifications of angularity—the openness of an angle. In his framework, he examined the 

different quantities students construct in relation to angle measure, being defined by the openness 

of the angle, and how students quantified those quantities. By combining Hardison’s (2018) 

quantifications with Piaget’s (1965/1952) and Steffe’s (1991) explanation of quantifications, 

there are five different quantifications of angularity: gross, intensive, extensive, ratio, and rate. 

These quantifications represent the different mental actions and operations used to conceive 

angle measurement, and therefore represent a progression of schemes for quantifications of 

angularity. 

Gross Quantification 

 A gross quantification is similar to constructing a gross quantity, as described by Piaget 

(1965/1952). With a gross quantity, “quantification is restricted to the immediate perceptual 

relationships” (Piaget, 1965/1952, p. 11). This limits students to only being able to look at 

“relationships expressing ‘more’, ‘equal to’, or ‘less’ immediately perceived in the given 

qualities” (p. 76). Steffe (1991) further explains Piaget’s notion of gross quantity by explaining: 

“a gross quantitative comparison might be isolated by a child in his or her perceptual field and 

might exist only temporarily in the immediate here and now” (p. 62). This implies a reliance on 
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sensory and perceptual data. There is also no additive nor multiplicative relationship between the 

quantities (Piaget, 1965/1952). For example, given the task of the curvy versus straight string in 

Figure 2.2 as presented by Piaget et al. (1981/1960), children in Stage I often state that the two 

strings are the same length, even after tracing or stretching the curvy one out. This is an example 

of a gross quantity since the students simply use visual comparisons of the endpoints. The same 

is true in the context of angles.  

 When examining students’ understanding of angles, Piaget et al. (1981/1960) found that 

students who are limited in measuring linear length are also limited in their measuring of 

angularity. Just like comparing the two strings, a student who has developed a gross 

quantification for angularity may compare the two angles in terms of how they appear. One way 

this could be done it to visually compare the two objects to see which one is more open (Piaget et 

al., 1981/1960). Other students may compare the side lengths of the angles, that is, the length of 

the rays (Bütüner & Filiz, 2016). For example, given the two 45° angles in Figure 2.13, some 

students may say that Angle B is larger because its rays extend further than the rays of Angle A. 

Some students may also compare the size of the arc representing each angle (Bütüner & Filiz, 

2016). For example, imagine that the arc denoting Angle B was placed at the dotted arc; students 

may think Angle B is larger due to the size of that arc being larger. Others may compare the 

angles by the amount of space between the rays or the size of the wedge (Bütüner & Filiz, 2016). 

For example, some students may say that the wedge made by Angle B is larger than the one 

made by Angle A.  



 

61 

Figure 2.13  

Two 45o Angles with Different Ray/Side Lengths 

 

Intensive Quantification 

 Once students no longer rely solely on the figurative material, students can construct an 

intensive quantity, thus developing an intensive quantification. Steffe (1991) explains that 

intensive quantities occur once students coordinate two gross quantities. However, these 

quantities are purely nonadditive (Kieren, 1980). An intensive quantity is “the name given to any 

magnitude which is not susceptible of actual addition, as for example temperature” (Piaget, 

1965/1952, p. 244). Piaget (1965/1952) explains that if a student has a quantity of water with a 

temperature of 15° and another with a temperature of 25°, the student cannot add these two 

temperatures to create a mixture that is 40°. The quantity simply offers some measure of 

comparison. Kieren (1980) further explains that these intensive quantities are “‘measurable’ in 

the sense that they may be arranged in a series showing differences in degrees of the quantity 

under consideration” (p. 93). As another example, consider the task of the curvy versus straight 

string in Figure 2.2 as presented by Piaget et al. (1981/1960). Some children in Stage II focus on 

both sets of endpoints of the strings, but realize the curved string will be longer due to the curves. 

Steffe (1991) argues that these children have abstracted the perceptual relationships, and as a 

result these students can compose one length with the other (Piaget, 1965/1952). However, these 

Angle A   Angle B 
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quantities from the curvy string and straight string are nonadditive because there is no specific 

measure for a curve versus a straight segment. Students just know that a curve will have more 

length because it will take longer to walk a curved path than if walking straight (Piaget et al., 

1981/1960).  

 Although Hardison (2018) does not describe an intensive quantifications of angularity, 

insight into these quantifications can be obtained by relating the description of intensive 

quantities to Hardison’s work with angles. In the context of angles, Hardison (2018) suggested 

that students may use a radial sweep to compare the angles (Figure 2.14). A radial sweep 

“involves the rotation a [sic] single ray (or segment), whose endpoint is fixed at the vertex of the 

angle, through an angle’s interior” (Hardison, 2018, p. 301). After making these sweeps, students 

compare the duration of those sweeps to see which angle is larger (Hardison, 2018). With this 

method, students simply determine how long it took for the sweeps to reach the other edge of the 

angle. This is related to the concept of an angle as a turn and the resulting actions performed by 

students (Clements et al., 1996; Clements & Burns, 2000; Smith et al., 2014). Although Hardison 

(2018) provides this radial sweep as an example of a gross quantification, since he did not 

include an intensive quantification category, I argue that this mental action and motion used by 

students qualifies as an intensive quantification because students are moving past perceptual 

comparisons and are relying on the duration of the sweeps. They are “timing” those durations to 

determine which angle is larger, but these durations are nonadditive because they have no 

specific measure. 

 Another method suggested by Hardison (2018) is that students might compare two angles 

by performing a segment sweep. That is, given two angles, students might imagine drawing 

segments within an angle, moving out towards the end, and compare which one gets larger faster 
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(Figure 2.14). Students compare two angles “by comparing the growths of the sweeping 

segments without any noticeable simultaneous sensorimotor activity” (Hardison, 2018, p. 95). 

Students are therefore able to establish a relationship between the growth rates of the segments 

within each angle. Hardison (2018) argues that these students do not necessarily rely on the 

figurative material or physical acts of drawing out the segments in one angle. Some students 

might draw the segment sweeps in one angle, and then sequentially imagine drawing them in the 

other angle (Hardison, 2019). This use of a segment sweep would also be considered indication 

of an intensive quantification of angularity. 

 Another motion that students may use in developing an intensive quantification is by re-

presenting an opening (Figure 2.14). Re-presentation of an opening is the ability to bring forth a 

mental image of an angle previously viewed once the perceptual material is absent (Hardison, 

2018). This “involves imagining two distinct rays (or segments) opening from a closed position” 

(Hardison, 2018, p. 301). In these cases, students will recreate the angle’s openness from a 

closed position using hand motions or physical material. 

Figure 2.14  

Motions Used by Students as Described by Hardison (2018) 

 

   Radial Sweep          Segment Sweep          Re-presented Opening 
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 Extending the visual comparisons used in gross quantification, another way that students 

may compare angles is by the action of superimposition (Hardison, 2018). With superimposition, 

students place on angle atop the other to determine which one is more open. For example, given 

Angle A and Angle B in Figure 2.13, a student may place Angle A on top of Angle B and realize 

that they create the same size angle. However, some students may still claim that the length of 

the rays for Angle B is longer and the dotted arc is larger. 

 Finally, students may compare angles to benchmark angles, such as a 90° angle 

(Hardison, 2018; Hardison & Lee, 2019; Piaget et al., 1981/1960). Given two angles, a student 

may create a 90° angle on top of both angles. Then the student is able to relate each angle to the 

90° angle to determine which angle is larger. For example, given the angles in Figure 2.15, a 

student may begin by drawing a 90° angle on both angles. Upon completion, a student may say 

that Angle A is larger because it is closer to making a 90° angle than Angle B. 

Figure 2.15  

Using 90o Benchmark Angle for Comparisons 

 

Extensive Quantification 

 When students are able to think about the relationship between two quantities additively, 

it is said that students have established an extensive quantification (Kieren, 1980; Piaget, 

1965/1952). Because the relationship between the attributes are additive (Kieren, 1980), it is at 

 
         Angle A     Angle B 
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this moment students can begin introducing units into their quantities (Steffe, 1991). For 

example, suppose students are given two rows of eight toothpicks, one row that is zig-zagged 

and made to look shorter, such as the task presented by Piaget et al. (1981/1960). Children in 

Stage II may move the toothpicks to straighten the zig-zagged one to determine it is indeed 

longer. Children in Stage III logically know that the length of the two rows of toothpicks are 

equal because they both have eight toothpicks. They recognize the number of toothpicks as units, 

and compare eight toothpicks to eight toothpicks to determine the lengths are equal.  

 Students use similar actions to compare angles. Piaget et al. (1981/1960) suggested that 

some students may still rely on visual estimates but by intuitively visualizing the comparison 

through the use of other mental operations. Students are able to develop extensive quantifications 

through the use of operations such as partitioning and iterating (Hardison, 2018; Piaget et al., 

1981/1960). For example, a student may iterate a smaller angle a certain number of times to 

determine a larger angle is four copies of the smaller angle (Figure 2.16). They understand that 

by adding four copies of the smaller angle they can create the larger angle. However, they do not 

recognize the entire multiplicative relationship that Angle B is 4 times the size of Angle A and A 

is 1/4 units of B. 
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Figure 2.16  

Using Angle Iteration and Partition for Comparing Angles 

 

 Another student may partition a larger angle into units the same size as the smaller angle 

to determine the size of the smaller angle. For example given the angles in Figure 2.16, a student 

may partition Angle A into parts the size of Angle B, thus producing four partitions. From this 

they may say that it takes four Angle Bs to make Angle A. However, these explanations are 

based solely on the additive relationship between the angles; students do not understand the 

multiplicative relationship between Angles A and B.  

 Other students may extend their superimposition action of placing an angle on top of 

another to compare their units of openness (Piaget et al., 1981/1960). Instead of visually 

comparing to determine which angle is larger, students are able to make claims concerning units, 

Angle Iteration 

 
 Angle A     Angle B 

 

Angle Partition 
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such as Angle A is four copies of Angle B (Figure 2.17). Again, students do not recognize the 

multiplicative relationship between Angles A and B. 

Figure 2.17  

Using Angle Imposition for Comparing Angles 

 

 Another action that students may use is to compare angles to benchmark angles, such as a 

90° angle (Piaget et al., 1981/1960). This is different than the visual comparison for intensive 

quantification in that students make claims involving units. For example, given the angles in 

Figure 2.15, some students may say that Angle A is about 75° because it is close to 90°, and that 

Angle B is about 20° because it is close to 0°. In all extensive quantifications, students rely on 

operations to produce additive units that enable them to compare the openness of the given 

angles, but do not recognize the multiplicative relationship between the units.  

 In all of the previous quantifications—gross, intensive, and extensive—students are 

comparing objects based on attributes either visually, non-additively, or additively (Kieren, 

1980). Kieren (1980) argues that with these quantifications, students have not reached 

measurement yet, but that these types of quantifications are necessary for measurement to take 

place. However, because measurement is defined by the coordination of subdivision and change 

of position (Piaget et al., 1980/1961), these students have an initial understanding of angle 

 
 Angle A     Angle B    Angle A superimposed 

                 on Angle B 
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measurement. Since some of the motions and actions involve partitioning and iterating, it seems 

they appear to have these foundational operations necessary for measurement. 

Ratio Quantification 

 A ratio quantification comes about once a student is able to recognize a multiplicative 

relationship between the two quantities being compared (Hardison, 2018; Thompson, 1994). 

Different from the extensive quantification where students may develop additive relationships 

between quantities, here students only rely on the multiplicative relationship and understand it in 

its totality. Thompson (2014) describes this difference as “comparing two quantities additively 

creates a difference; comparing two quantities multiplicatively creates a ratio” (p. 185). Whereas 

with an extensive quantification students are producing units that are then applied to both 

quantities, with a ratio students are able to measure both quantities in terms of one another. For 

example, given two angles A and B, students can measure Angle A in units of Angle B and can 

also measure Angle B in units of Angle A. Thompson (1994) also notes that “even though the 

result is expressed in the same way as what is often called a ‘unit rate,’ the comparison described 

is between two specific, non-varying quantities, and hence is a ratio comparison” (p. 191).  

 In the context of angles, a student who demonstrates a ratio quantification may iterate a 

smaller angle a certain number of times to determine the smaller angle is 1/4 unit of the larger 

angle, and the larger is 4 units of the smaller (Figure 2.16). They fully understand that the two 

quantities are multiplicatively related. Another student may partition a larger angle into units the 

same size as the smaller angle to determine the size of the smaller angle. For example, given the 

angles in Figure 2.16, a student may partition Angle A into parts the size of Angle B, thus 

producing four partitions. From this they may say that Angle A is 4 units of Angle B, and Angle 

B is 1/4 units of Angle A. Other students may extend their superimposition action of placing one 
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angle on top of another to compare their units of openness (Piaget et al., 1981/1960); From this 

students recognize that Angle B is 1/4 units of Angle A and Angle A is 4 units of Angle B 

(Figure 2.17). These actions are similar to those described as extensive quantifications, however, 

these results are multiplicative and not additive. 

 Hardison (2018) further describes that when a student makes a ratio quantification, they 

make “multiplicative comparisons of circular quantities (e.g., arc lengths)” (p. 45). In this case, 

students relate angularity to the context of circles. Hardison (2018) gives the following example 

to help explain this process: 

If an angle is conceived in terms of a radial sweep, he might insert a circular arc into the 

angular context by imagining the trace of a single point along the rotating ray. If the 

individual could enact extensive quantitative operations on both an angle and a single 

circle centered at the angle’s vertex, then he might quantify angularity as a ratio. (p. 45) 

 He goes on to explain that, for example, given the tasks in Figure 2.18, students may recognize 

that four iterations of the arc will recreate the circumference of the circle. From this, the student 

can understand that the angle given is 1/4 the full circle. He argues that “such reasoning entailing 

a multiplicative comparison of an arc length and a circumference would constitute a ratio 

quantification of angularity” (p. 45). In both of these cases, the student is relying on a 

multiplicative relationship between the arc length and circumference of the circle. This is similar 

to Moore’s (2013) quantification of openness, where students must have the ability to maintain 

the relationship between the angle, subtended arc, and circle’s circumference. However, it is 

important to note that this is within the context of one given circle.  
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Figure 2.18  

Example of Ratio Quantification 

 

Rate Quantification  

 A rate quantification occurs when students are able to extend their ratio quantification 

into the context of multiple circles, a single varying circle, or a group of concentric circles. 

Thompson (1994) distinguishes a ratio and rate in the following way: whereas a ratio may only 

appear as a single quantity, a rate represents the entire structure (Thompson, 1994). The entire 

structure in this case being the proportional relationship between a circle’s radius length, arc 

length, and circumference (Moore, 2013). Once a rate quantification is established, students can 

conceive of angularity as “the fractional amount of a circle’s circumference subtended by an 

angle, provided that the circle is centered at the vertex of the angle” (Moore, 2013, p. 227).  

 Hardison (2018) further describes the rate quantification as being able to understand “the 

multiplicative comparisons of circular lengths as being invariant across all possible circles” (p. 

46). With this notion, students can recognize that no matter the length of the rays, as long as the 

arcs created by the angles are the same fractional amount of each circle’s circumference, then the 

two angles are congruent. For example, given the angles in Figure 2.12, with a rate 

quantification, students would be able to recognize that ∠GBF and ∠CBA are in fact congruent 

  5 inches 

 
20 inches 
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angles because the subtended arcs have the same quantitative relationship with respect to each 

circles’ circumference. Students would recognize that as the ray length gets longer, the circle 

gets bigger, meaning it has a larger circumference; despite this, the relationship between the 

length of the ray, the length of the arc, and the circumference remains the same proportional 

relationship. As another example of a rate quantification, suppose students were given the 

example in Figure 2.19. If students can recognize that each and every circle centered at the 

angle’s vertex, no matter what size, would create an arc 1/4 the length of that circle’s 

circumference, then Hardison (2018) argues that these students would demonstrate a rate 

quantification. Again, students must be able to recognize the multiplicative relationship between 

the subtended arc length and the circle’s circumference across all possible circles. 

 Once students have a rate quantification, they may use an arc sweep to compare angles. 

An arc sweep is when students imagine “the interior of an angle being swept out by a circular arc 

bounded by the sides of an angle and where the circle containing the arc is centered at the vertex 

of the angle” (Hardison, 2018, p. 329). For example, in Figure 2.20, a student may sweep out an 

arc, creating different arcs made by concentric circles, and recognize the multiplicative 

relationship between the radius, length, and circumference. 

Figure 2.19  

Example of Rate Quantification 
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Figure 2.20  

Example of Arc Sweep 

 

Summary of Quantifications of Angularity 

 There are five different quantifications of angularity that can be derived from Piaget’s 

(1965/1952) and Steffe’s (1991) explanation of quantifications and Hardison’s (2018) 

quantifications of angularity: gross, intensive, extensive, ratio, and rate. These quantifications 

help describe students’ ways of thinking about angle measurement, and ultimately represent a 

progression of schemes. A gross quantification represents actions wherein students simply 

compare angles by visual judgements. An intensive quantification is characterized students 

moving away from visual judgements and introducing some type of measure for comparing the 

angles. These measures are not yet units, but are some comparison quantity such as duration of a 

sweep. An extensive quantification arises once students introduce units into their measures of 

comparisons. Instead of timing durations, students may use partitions and iterations to count how 

many times larger Angle A is than Angle B. However, these quantities are not multiplicative. 

Once students recognize the multiplicative relationship between their quantities of measures, 

then they have reached a ratio quantification (Hardison, 2018). Students are now able to 

recognize that Angle B is 1/4 units of Angle A and Angle A is 4 units of Angle B (Figure 2.17). 
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Finally, once students are able to extend these multiplicative relationships into other contexts, 

specifically cases involving multiple circles, a single varying circle, or a group of concentric 

circles, a rate quantification is obtained.  

 These quantifications can be categorized into two different groups. A gross, intensive, 

and extensive quantification represents a non-circular quantification (Hardison, 2018, 2019; 

Hardison & Lee, 2019). With these quantifications, students are making visual judgments or 

comparisons based on units with the given angle(s). Students do not relate the angles to the 

context of circles. A ratio and rate quantification represent circular quantifications (Hardison, 

2018, 2019; Hardison & Lee, 2019) because students are able to place the angle(s) in the context 

of circles. Especially with a rate quantification, students must recognize that the relationship 

between the length of the ray, subtended arc, and circumference is invariant across all possible 

circles when the circles are centered at the angle’s vertex (Hardison, 2018). They must be able to 

recognize that within multiple circles, a single varying circle, or a group of concentric circles 

(e.g., Figure 2.12), the angle measurement remains that same, regardless of the size of the circle, 

as long as the circles remain centered at the angle’s vertex. 

A New Reorganization Hypothesis Concerning Angles 

 Considering the two frameworks for measurement schemes for fractions (Wilkins & 

Norton, 2018) and quantifications of angularity (Hardison, 2018), a connection can be made by 

examining the underlying operations involved in each scheme and quantification. According to 

Steffe’s (2002) reorganization hypothesis, partitioning and iterating, as well as the ability to 

coordinate units (Steffe & Olive, 2010), are important and necessary operations for 

understanding whole numbers, which are then reorganized to understand fractions. Hackenberg 

extended this reorganization hypothesis from fractions to Algebra (see Hackenberg, 2013; 
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Hackenberg & Lee, 2015; Lee & Hackenberg, 2014). Similarly, I extend this reorganization 

hypothesis from fractions to geometry concepts, specifically angle measurement. I argue that the 

operations used for fractions are reorganized to understand angle measurement. Therefore, I 

hypothesize that students must first develop a measurement concept, as indicated by their 

fraction schemes, before they are able to construct more sophisticated quantifications of 

angularity.  

 Recall from the measurement schemes for fractions framework, that the schemes form a 

hierarchical structure from PWS to MSUF to MSPF to GMSF. Furthermore, the partitioning 

operation is a precursor to the construction of a PWS, iterating is a developmental precursor to 

MSUF, splitting is a precursor to MSPF, and the coordination of units is a precursor to GMSF. 

Similarly, the quantifications of angularity framework follows a hierarchical developmental 

structure: gross, intensive, extensive, ratio, and rate. This developmental structure also builds on 

the operations of partitioning, iterating, and the ability to coordinate different levels of units. 

Gross and intensive quantifications rely on visual judgments and do not depend on these 

operations. It is not until students are able to operate on angles through partitioning and iterating 

that they construct an extensive quantification of angularity. In other words, students need to be 

able to partition and iterate in the context of angles, implying those two operations are 

developmental precursors.  

 Furthermore, students must reorganize these operations in the context of angles. In 

particular, students must reorganize what it means to partition or iterate the “openness” of an 

angle, and not focus only on particular parts of the angle. For example, students who focus solely 

on the absolute openness, created by the endpoints of the rays, without relating it to the overall 

angle, have not reorganized these operations to the context of angles. Consider the example of 
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student work in Figure 2.21. This student is focusing on the absolute openness made by the 

endpoints of the rays. They have taken that openness and iterated that linear length to create their 

new angle. Now consider the example of student work in Figure 2.22. This student partitions the 

openness of the angle by partitioning the ray length. Once they have partitioned the length of the 

angle five times, they draw their new angle the same length as that fifth partition. Notice how 

this new angle is actually larger than the original angle. In both these cases, there is indication 

that students cannot transfer the partitioning and iterating operations to the context of angles. 

Figure 2.21  

Example of Student who Focuses on Absolute Openness 
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Figure 2.22  

Example of Student who Incorrectly Partitions Openness 

 

 For a ratio quantification, students rely on the multiplicative relationship between those 

partitions/iterations and the given angles, therefore splitting needs to be a precursor. Students 

must first be able to “split” in the context of angles, recognizing what it means to split the 

“openness” of an angle. Otherwise, they have not reorganized their splitting operations to the 

context of angles. For example, consider the example of student work in Figure 2.23. This 

student is focusing on the absolute openness, made by the endpoints of the rays. They have taken 

that linear openness and partitioned that linear length into five sections. Then, they have taken 

one of those sections, and drawn their new angle to have the same linear openness. Notice how if 

we were to extend the length of the rays for this new angle to become the same length as the 

original angle, it would be about one half the original angle. Now consider the example of 

student work in Figure 2.24. They have correctly split the openness into five parts, and then drew 

one of those angles as their new angle. In addition to being able to split, students need to be able 
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to coordinate at least two levels of units to maintain the proportional relationship between the 

angle, arc, and the circle’s circumference.  

Figure 2.23  

Example of Student who Cannot Split in the Context of Angles 

 

Figure 2.24  

Example of Student who can Split in the Context of Angles 

 

 Finally, for a rate quantification, students extend the previous actions and operations used 

for a ratio quantification (i.e., splitting and two levels of units coordination) into the context of 
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multiple circles. Students also need to maintain the proportional relationship between the arcs, 

radii, and circumferences of multiple circles, necessitating three levels of units coordination.  

 In the quantifications of angularity framework, students are reorganizing their fraction 

operations to use in the context of angle measurement. This connection is visualized in Figure 

2.25. The two frameworks (i.e., measurement schemes for fractions and quantifications of 

angularity), as indicated by the solid boxes, and the underlying operations (i.e., partitioning, 

iterating, splitting, and units coordination), as indicated by the circles, that tie them together are 

aligned in a new progression. For example, it is not until after students have developed the 

splitting operation that they construct a MSPF. Similarly, it is not until after students understand 

what it means to split the openness of an angle that they construct a ratio quantification. 

Therefore, it may be possible that a MSPF is necessary for the construction of a ratio 

quantification. It is also important to note that the coordination of units plays a role in the lower 

fraction schemes. For example, coordinating two levels of units is required for MSPF. However, 

to maintain consistency between the two frameworks, the units coordination in the diagram 

refers to three levels of units coordination. It is also important to note that the dotted arrows 

indicate a linear progression, that is all stages to the left precede the stages to the right. For 

example, a PWS precedes a MSUF, and a ratio quantification precedes a rate quantification. 
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Figure 2.25  

A New Reorganization Hypothesis 

 

 Relating the underlying operations between the fraction schemes and quantifications of 

angularity, I hypothesize that there is a connection between these two frameworks, and thus a 

relationship between the two developmental hierarchies exists. A gross quantification is purely 

visual and involves no additive nor multiplicative relationship between the quantities (Piaget, 

1965/1952). In addition, there are no units involved or related to the quantities being compared. 

Therefore, this quantification does not require the construction of the aforementioned mental 

operations. An intensive quantification moves beyond figurative material and involves some 

nonadditive quantity (Kieren, 1980; Steffe, 1991). However, similar to a gross quantification, 

there are no units involved, and therefore again does not require the construction of the 

aforementioned operations. From this description, gross and intensive quantifications do not 

involve the mental operations of partitioning and iterating, and therefore may be developed 

without a measurement concept or the construction of more sophisticated measurement schemes 

for fractions. 
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 The partitioning operation involves the process of breaking a whole into some number of 

parts to create a quantity (Lamon, 1996, 2012). Once a student has developed the partitioning 

operation, they are then able to construct a PWS. With a PWS, students are able to partition a 

whole into parts and then disembed the given part(s) out of the whole (Steffe, 2003; Steffe & 

Olive, 2010; Wilkins & Norton, 2018). For an extensive quantification of angularity, students 

begin using additive units for comparing quantities (Kieren, 1980; Piaget, 1965/1952; Steffe, 

1991). In describing an extensive quantification, Hardison, (2018) noted that students need to be 

able to break an angle into some unit they can then use to compare it to another angle, thus 

requiring the partitioning operation. From these descriptions, the partitioning operation is a 

precursor to a PWS and an extensive quantification, indicating that students need to construct at 

least a PWS before developing an extensive quantification. However, iterating is also needed for 

an extensive quantification.  

 The iterating operation involves the process of copying a piece or part of a whole to 

recreate the whole (Hackenberg et al., 2016; Steffe, 2002; Steffe & Olive, 2010). Once a student 

has developed the iterating operation, they are able to construct a MSUF. With a MSUF, students 

have established an iterable unit of 1, and recognize the relationship between that unit and the 

whole, n. They understand that the unit can be iterated n times to recreate the whole, establishing 

the notion of a unit fraction. They no longer rely on parts of the whole, but rely on the n 

iterations of the unit to name the fraction. As mentioned earlier, with an extensive quantification, 

students need to be able to break an angle into some unit, and then iterate the unit to compare it 

to another angle (Hardison, 2018), thus requiring the iterating operation. Therefore, an extensive 

quantification requires both the partitioning and iterating operations, which then links it to a 
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PWS and a MSUF. Therefore, it seems that after a student has constructed a PWS and MSUF 

they are then able to construct an extensive quantification.  

 The splitting operation is the simultaneous action of partitioning and iterating. With 

splitting, students do not have to partition a whole first and then iterate one of those units; they 

can partition and iterate simultaneously. Once this operation is developed, students are able to 

reverse their thinking and thus construct a MSPF. With a MSPF, students are able to work with 

proper fractions by recognizing the relationship between the unit fraction and the whole, and 

then by iterating the unit fraction to create a proper fraction (Wilkins & Norton, 2018). This 

requires an inverse, or multiplicative, relationship between the unit fraction and whole, as well as 

the unit fraction and proper fraction (Wilkins & Norton, 2018). Also, students are able to 

coordinate three levels of units in activity. With a ratio quantification, students are able to 

recognize a multiplicative relationship between two quantities being compared (Hardison, 2018; 

Thompson, 1994). When comparing angles, a student may partition a larger angle into units the 

same size as the smaller angle and then iterate that unit to determine the relationship between the 

large and small angle, which represent the underlying actions of the splitting operation. In other 

instances, students need to maintain the relationship between the angle and subtended arc, as 

well as the multiplicative relationship between the arc length and circumference of the circle, 

requiring the coordination of three levels of units in activity. From these descriptions, splitting 

precedes the construction of a MSPF, and also precedes the construction of a ratio quantification. 

Furthermore, once students have developed the splitting operation and can coordinate three 

levels of units in activity within the context of fractions, they can then reorganize these 

operations in the context of angles. This suggests that the construction of a MSPF is related to 
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the construction of a ratio quantification. However, it is not clear that it would precede the other 

but may co-develop.  

 The coordination of units involves building and working with units. With a GMSF, 

students are able to establish an iterable unit of 1/n, create a whole using any fraction, and 

simultaneously coordinate three levels of units. With a rate quantification, students understand 

the multiplicative structure between angles and circles, that being the proportional relationship 

between a circle’s radius length, arc length, and circumference (Moore, 2013). Therefore, 

assimilating with three levels of units coordination is a precursor to both a GMSF and a rate 

quantification, thus providing a link between those two constructs. This suggests that the 

construction of a GMSF is related to the construction of a rate quantification  

 Overall, this new reorganization hypothesis links the measurement schemes for fractions 

to the quantifications of angularity through the underlying operations. To summarize, a gross and 

intensive quantification of angularity does not involve any of the mental actions and operations 

associated with measurement, in particular, partitioning and iterating. Thus, these quantifications 

may develop without a concept of measurement, as indicated by the measurement schemes for 

fractions. A PWS and MSUF are related to an extensive quantification by the partitioning and 

iterating operations. The construction of the splitting operation makes it possible for a student to 

construct a MSPF; similarly, the underlying splitting operation, once reorganized to the context 

of angles, is required to construct a ratio quantification of angularity. They both would also 

require students to maintain three levels of units in activity. Furthermore, to move beyond an 

extensive quantification of angularity students would need to develop multiplicative reasoning 

with angles. A GMSF is related to a rate quantification by the coordination of units. Although 

these measurement schemes for fractions are related to the quantifications of angularity, it is 
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unclear if the fractions schemes precede or co-develop with the quantifications of angularity. 

However, it does appear that students need to develop a concept of measurement, as indicated by 

the measurement schemes for fractions, before they can develop more sophisticated 

quantifications of angularity. 

 From this new reorganization hypothesis, I hypothesize that a concept of measurement 

precedes the ability to quantify angularity using additive units, and therefore a measurement 

concept is necessary for the construction of more sophisticated quantifications of angularity. In 

other words, students need to construct more sophisticated measurement schemes of fractions, 

indicating a measurement concept, in order to construct more sophisticated quantifications of 

angularity. For example, a PWS does not represent a measurement concept of fractions. 

Therefore students with only a PWS would lack the necessary operations and concepts to form 

more sophisticated quantifications of angularity. However, the other fraction schemes represent a 

measurement concept of fractions and therefore could be related to more sophisticated 

quantifications of angularity. Concerning the quantifications of angularity, a gross and intensive 

quantification do not require a measurement concept of angle. These quantifications are based on 

visual comparisons and do not involve units, therefore eliminating a requirement for 

measurement. As a result, they could be constructed by a student with any fraction scheme. 

However, extensive, ratio, and rate involve the use of units and are therefore more sophisticated; 

thus students would need a measurement scheme for fractions in order to construct these 

quantifications. It is important to note that this is not a one-to-one correspondence (i.e., PWS to 

gross, MSUF to extensive), but rather a conditional relationship. Students need a measurement 

concept before they can quantify angularity using additive units. This indicates that students’ 

measurement schemes for fractions are positively related to their quantifications of angularity. 
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 Further describing this development, gross and intensive quantifications precede a 

measurement concept, but a measurement concept precedes the construction of more 

sophisticated quantifications of angularity (i.e., extensive, ratio, and rate). Therefore, a 

measurement concept is necessary for the construction of an extensive quantification, implying 

that students need to construct at least a MSUF, a measurement concept of fractions, to construct 

an extensive quantification. However, again it is unclear if a MSUF precedes an extensive 

quantification or if they co-develop. Once students have a measurement concept, indicated by at 

least a MSUF, they are then able to construct more sophisticated quantifications of angularity. 

This implies that a MSUF precedes the construction of a ratio and rate quantification. In order to 

construct a ratio or rate quantification, students need to be able to reason multiplicatively. 

Therefore, multiplicative reasoning precedes the construction of a ratio quantification, implying 

that students need to be able to split before moving to a ratio quantification.  

 In summary, a gross and intensive quantification precede a measurement concept. A 

measurement concept then precedes more sophisticated quantifications of angularity. Once 

students have a MSUF, they are able to construct an extensive; once students have multiplicative 

reasoning, indicated by splitting (note the red arrows in Figure 2.25), they are able to construct a 

ratio and rate quantification. Again, this is not a one-to-one correspondence, but a hypothesis that 

a measurement concept is required for more sophisticated quantifications of angularity. Once 

students have that measurement concept, the fraction schemes and quantifications may co-

develop. A student may not have to construct a GMSF to construct a rate quantification, but they 

do have to have at least the splitting operation. Again, this new reorganization hypothesis links 

the measurement schemes for fractions to the quantifications of angularity through the 

underlying operations.  
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Chapter 3: Methodology 

 The purpose of this study was to examine the relationship between students’ concepts of 

measurement and their concepts of angle measurement. Specifically, this research was guided by 

the following question: What is the relationship between middle school students’ measurement 

schemes for fractions and their quantifications of angularity? This study first involved a pilot 

study to aid in the design of the angularity tasks, and to help assess the validity of students’ 

quantifications of angularity as measured by the tasks. Then, this study used quantitative survey 

data to assess students’ measurement schemes for fractions and their quantifications of angularity 

and further test for a relationship between these two constructs. Finally, clinical interviews were 

used to further assess the validity of students’ quantifications of angularity based on the devised 

instrument.  

 For the validation of students’ quantifications of angularity, this study employed a mixed 

methods approach to better understand students’ quantifications of angularity. This mixed 

methods research design took a sequential explanatory design (Creamer, 2017; Creswell & Plano 

Clark, 2007), with a quantitative priority. This study was conducted in two phases: Phase One 

included the quantitative strand, and Phase Two included the qualitative strand. The quantitative 

data collected was used to examine the relationship between students’ measurement schemes for 

fractions and their quantifications of angularity. The qualitative data was used to confirm and 

validate inferences from the quantitative data. This chapter will be presented in three sections: an 

overview of the study, a description of the pilot study, and a detailed explanation of the mixed 

methods study. 
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Overview of the Study 

 This study involved two different investigations, one focused on the validity of students’ 

quantifications of angularity and the other focused on examining the relationship between 

students’ measurement schemes for fractions and quantifications of angularity. These 

investigations were conducted at different times, and are described in Table 3.1. The first 

investigation involved a pilot study to initially assess the validity of students’ quantifications of 

angularity based on a new instrument. During this pilot study, students were interviewed and 

qualitative data was collected. The next component of this study involved the mixed methods 

study. This was done in two phases: (1) the quantitative strand and (2) the qualitative strand. 

During this time, students were given both the Measurement Schemes for Fractions Instrument 

(MSFI) and the Quantifications of Angularity Instrument (QAI). This provided quantitative data 

concerning students’ understanding of fractions and angle measurement. Next, using this 

quantitative data from both the MSFI and the QAI, data analysis was conducted to answer the 

research question. Finally, students who participated in these surveys were recruited for 

interviews focused on their quantifications of angularity. This qualitative data was used to 

confirm and validate the inferences made from the quantitative data.  
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Table 3.1 

Overview of Study Investigations 

 Pilot Study Mixed Methods 

  
Phase One:  

Quantitative Strand 

Phase Two: 

Qualitative Strand 

Purpose 

- Assess validity of 

quantifications of 

angularity 

- Assess students’ concepts of 

fractions and angle measurement 

- Examine relationship between 

student’s measurement schemes 

for fractions and their 

quantifications of angularity 

- Assess validity 

of quantifications 

of angularity 

 

Data 

Collection 

Tool 

- Interviews 

 

- Measurement Schemes for 

Fractions Instrument (MSFI) 

- Quantifications of Angularity 

Instrument (QAI) 

- Interviews 

 

Type of 

Data 
- Qualitative - Quantitative 

- Qualitative 

- Quantitative 

 

Pilot Study  

 The quantifications of angularity tasks were created based on a reviewing tasks in 

previous literature designed to elicit student thinking concerning angles. This resulted in a total 

of 24 original angularity tasks (see the “Quantifications of Angularity Instrument (QAI) 

Description” section for more details). Since there is limited research concerning students 

quantifications of angularity, and there is no holistic instrument that has been designed and 

validated to assess students’ quantifications of angularity, it was important to determine if these 

angularity tasks would be useful for assessing student’s quantifications of angularity. Therefore, 

a pilot study was conducted to provide an initial validation of the QAI to ensure that the tasks 

measured what they were intended to measure (Krupa et al., 2019). Kane (2013) clarifies that 

“validity is not a property of the test. Rather, it is a property of the proposed interpretations and 

uses of the test scores” (p. 3). Krupa et al. (2019) further argue that without “a rigorous 
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validation process...claims made based on the measure are worthless, unsubstantiated, and 

potentially misinforming research” (p. 1). Therefore, it was necessary to test the QAI to ensure 

that the scores are valid, and in this case they measure students’ quantifications of angularity, to 

ensure more credible claims. The five main components for assessing and ensuring validity 

presented in the Standards (American Educational Research Association [AERA] et al., 2014) 

are: test content, response processes, internal structure, relations to other variables, and 

consequences of testing (Krupa et al., 2019). However, because the main purpose of this study 

was to examine the relationship between student’s measurement schemes for fractions and their 

quantifications of angularity, a small scale validation was conducted during the pilot of these 

tasks that focus primarily on test content, response processes, and consequences of testing. The 

detailed results of the pilot study are provided in Chapter 4. 

Development of Tasks 

First Iteration of Tasks   

 The QAI was created by reviewing tasks in previous literature designed to elicit student 

thinking concerning angles. Twenty-four tasks were created to potentially provoke particular 

ways of thinking that are consistent with the five different levels associated with quantifications 

of angularity (Appendix A). A test blueprint with examples of student thinking is provided in 

Table 3.2. These preliminary tasks were designed to elicit the actions associated with each 

quantification of angularity. These tasks were designed to assess if students possess a certain 

quantification or not. It is also important to understand that even though students may possess a 

more sophisticated quantification, it can only be inferred from the tasks if a student does or does 

not possess a certain quantification. Therefore, tasks were developed to specifically assess each 

type of quantification to help distinguish which quantification the student possessed. 
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Table 3.2 

QAI Item Blueprint with Example Solutions 

Tasks Purpose 
Quantifications of 

Angularity 
Examples of Solutions 

1-4 
Assess gross 

quantification 

Gross 

- Claims angle with shorter rays is 

smaller 

-Claims angle with shorter arc is 

smaller 

Not Gross - Correctly compares the angles 

5-8 
Assess intensive 

quantification 

Gross 

- Incorrectly draws angle based on 

size of rays or arc 

- Incorrectly orders angles 

Intensive 

- Correctly draws angle with more, 

less, or same openness 

- Uses radial sweep, segment 

sweep, superimposition, or re-

presents opening to prove 

- Discusses amount of rotation or 

openness to prove 

-Correctly orders angles 

- Uses benchmark angles for 

comparison 

9-12 
Assess extensive 

quantification 

Not Extensive - Incorrectly iterates angle 

Extensive 

- Correctly partitions larger angle 

into smaller angles 

- Correctly iterates smaller angle 

to determine how many times it 

will take to make the larger angle  

- Superimpose smaller angle to 

determine how many times it 

will take to make the larger angle 

- Discusses additive relationship 

between angles 

13-16 
Assess splitting 

operation 
Splitting 

- Simultaneously partitions and 

iterates angle to draw their angle 

 

17-20 
Assess ratio 

quantification 

Not Ratio 
- Incorrectly compares angles 

- No multiplicative relationship 

Ratio 

- Partitions or iterates angle the 

correct number of times to obtain 

smaller/larger angle 

-Multiplicative explanation 
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Table 3.2 Continued 

Tasks Purpose 
Quantifications of 

Angularity 
Examples of Solutions 

21-24 
Assess rate 

quantification 

Not Rate 

- Incorrectly compare angles 

- States ∠GBF is smaller than 

∠IBD etc. based on length of 

rays, arcs, sector, or different 

size circles 

- States ∠GBF is smaller than 

∠IBD based on how fast it grows 

(segment sweep) 

- States angles are equal based on 

superimposition visual 

comparison 

- States angles are equal based on 

same units found during 

superimposition 

Rate 

 

- States all angles are equal based 

on concentric circles 

- States all angles are equal based 

on proportional relationship 

between ray, arc, and 

corresponding circle 

 

 To generally describe the QAI, the tasks were grouped based on the type of quantification 

it was designed to assess. Each task was designed to elicit particular ways of thinking and actions 

relative to the different types of quantifications. For example, the first four tasks assessed 

whether a student possessed a gross quantification or not. Consider Task 2 in Figure 3.1. This 

task purposefully presented the smaller angle with longer rays. A student with a gross 

quantification would compare angles based purely on visual comparisons, and therefore would 

claim that Angle 1 is larger. Other tasks within this category presented similar situations, 

including examples where a larger angle was represented with a smaller arc and two congruent 

angles were presented with different length rays. If the student answered the questions correctly, 

it was inferred that the student had constructed a more sophisticated quantification than gross. 
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Figure 3.1  

Task Designed to Assess Gross Quantification of Angularity 

 

 In the next set of tasks (5-8), these four tasks assessed whether a student had a gross or at 

least an intensive quantification. These tasks focused on how students understand openness and 

the specific actions used to compare angles. Consider, for example, Task 7 in Figure 3.2. This 

task asked students to draw an angle that was less open and then prove how it was less open. A 

student with at least an intensive quantification would correctly draw an angle that was less open, 

and might use actions such as radial sweep, segment sweep, or superimposition to prove the new 

angle was less open. Other tasks within this category presented similar situations where students 

must draw an angle that was more open or had the same openness. The goal behind these tasks 

was to elicit specific actions for proving the angles had different or the same amount of 

openness. These tasks also helped assess if a student had a gross quantification, in which they 

drew angles with shorter/longer ray lengths or smaller/larger arcs, or could not correctly order 

2. Circle one below:  

 

      
  Angle 1    Angle 2 
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the angles. Overall, if a student was able to draw an angle that was more open, less open, or the 

same openness and prove it using a specific method other than visual judgments, it was 

determined that the student had at least an intensive quantification. If the student was unable to 

correctly solve the tasks, it was inferred that the student had a gross quantification, provided they 

demonstrated indications of such quantification in the previous set of tasks. The final task within 

this group asked students to order a group of angles from smallest to largest. The goal behind this 

task was to assess if students could use benchmark angles for comparisons. The angles within 

this task purposefully had short rays for obtuse angles and long rays for acute angles, to help 

assess whether the student had constructed a gross or at least an intensive quantification. 

Figure 3.2  

Task Designed to Assess Intensive Quantification of Angularity 

 

 The next four tasks (9-12) helped determine whether a student possessed an extensive 

quantification or not. These tasks focused on how students compared and related angles to one 

another. They were also designed to assess whether students used additive thinking. For 

example, Task 9 in Figure 3.3 asked students to make an angle that was three times bigger than 

the given angle. Even though this was written in a multiplicative manner, students with an 

7.  Draw an angle that is smaller than the angle below. How do you know 

your angle is smaller?  
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extensive quantification could interpret this in an additive manner. The goal was to determine 

whether students could correctly partition and iterate angles to create smaller/larger angles. If 

students created smaller/larger angles by drawing shorter/longer ray lengths or smaller/bigger 

arcs, then it was inferred that students did not have an extensive quantification. However, if 

students could properly partition and iterate to create the desired angle, it was inferred that they 

possessed at least an extensive quantification. Students’ explanations were also used to infer their 

understandings. For example, if a student noted that it took three of the smaller angle to make the 

larger angle, or something that conveyed an additive nature, it was inferred that they had at least 

an extensive quantification. However, if students discussed the angles multiplicatively, it was 

inferred that these students had at least an extensive quantification. Although they may possess a 

more sophisticated quantification, from these tasks it could only be inferred that they had at least 

an extensive quantification.  

Figure 3.3  

Task Designed to Assess Extensive Quantification of Angularity 

 

 Tasks 13 through 16 assessed students’ splitting operation. Although this was not part of 

the quantifications of angularity framework, these tasks provided a threshold between an 

extensive and ratio quantification, moving from additive thinking to multiplicative thinking. 

Also, since splitting is relevant to the measurement schemes for fractions, it was important to 

9.   Draw an angle that is three times larger than this angle: 

 Explain your process: 
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include such tasks in the angularity instrument for comparisons. These splitting tasks helped 

assess if a student was using additive or multiplicative reasoning for their quantifications. For 

example, given Task 13 (Figure 3.4), students who could split would partition the angle into five 

parts, and take one of those partitions as their angle, recognizing that iterating it five times would 

recreate the given angle. If a student could not split, it was inferred that they had not constructed 

a ratio quantification. If a student could split, it was inferred that they had constructed at least an 

extensive quantification. 

Figure 3.4  

Task Designed to Assess Splitting Operation 

 

  To assess a ratio quantification, Tasks 17 through 20 were designed to elicit 

multiplicative reasoning. These tasks asked students to compare the angles in terms of one 

another and to relate angles to the context of circles. For example, Task 17 (Figure 3.5) asked 

students to measure Angle 1 in terms of Angle 2, and vice versa. The goal behind this task was 

for students to partition and iterate the angles for comparison, noting a multiplicative 

relationship. If students noted that Angle 2 was 1/4 Angle 1, then it was inferred that the student 

13.  The angle below is five times as large as your angle. Draw your angle: 

 Explain your process: 
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possessed a ratio quantification. Another task within this group, Task 19 (Figure 3.5) gave 

students a circle with a central angle. They were told the circumference was 48cm and the arc 

made by the angle was 8cm, and were asked how they could find the measure or size of the 

angle. It was not intended that students would respond with an answer in degree units, but that 

students with a ratio quantification would recognize the multiplicative relationship. For example, 

students may note that since it would take six iterations to recreate the circle, the angle was 1/6 

of the circle. If students responded with such explanations, it was inferred that they possessed a 

ratio quantification. If students did not respond with a multiplicative explanation, it was inferred 

that they did not possess a ratio quantification. 

 Finally, four tasks (21-24) were designed to assess a rate quantification. These tasks 

helped determine if a student recognized that the relationship between the length of the ray, 

subtended arc, and circumference was invariant across all possible circles when the circles were 

centered at the angle’s vertex. For example, consider Task 21 in Figure 3.6. Students who 

responded that all the angles were congruent was attributed a rate quantification. Students who 

responded that they were not equal would not be attributed a rate quantification. For Task 23 in 

Figure 3.7, students with a rate quantification would recognize that although the circle changed 

size, the angle remained the same. It was inferred that students who responded that the angle 

remained the same possessed a rate quantification. It was inferred that students who responded 

the angle would change did not possess a rate quantification. 
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Figure 3.5  

Task Designed to Assess Ratio Quantification of Angularity 

  

17. Measure Angle 1 in terms of Angle 2. Write your measurement of Angle 1 below. 

Measure Angle 2 in terms of Angle 1. Write your measurement below of angle 2 below. 

.

 
    Angle 1      Angle 2 

 

19. The circumference or total distance around the circle is 48cm. The thick arc is 8cm 

long. Determine the measure/size of the angle in relation to the circle. 
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Figure 3.6  

Task Designed to Assess Rate Quantification of Angularity 

 

  

21. Compare the angles in the following diagram. Circle one answer. 

 

∠GBF is     ∠IBD. How do you know? 

∠ IBD is  ∠CBA. How do you know? 

∠HBE is   ∠GBF. How do you know? 

∠CBA is  ∠HBE. How do you know? 
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Figure 3.7  

Task Designed to Assess Rate Quantification of Angularity 

 

 Once these tasks were developed, they were evaluated by one expert researcher in the 

mathematics education field, in addition to my own evaluation, to help assess test content, face 

validity, and the quality of each task (AERA et al., 2014; Krupa et al., 2019). We also 

determined if the items were balanced, meaning there was an even distribution of the types of 

tasks concerning each type of quantification. For example, we investigated whether there was an 

equal amount of extensive quantification items as ratio quantification items. Upon examination, 

we felt the tasks would provide valid assessments of students’ quantifications of angularity, and 

we deemed them appropriate to use for pilot testing. 

  

23. Suppose you are given the angle below. If the smaller circle 1 was enlarged to the 

dark circle 2, what would happen to the size of the angle?  
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First Round of Interviews   

 After we evaluated the tasks for test content, face validity, and quality of tasks, the tasks 

were then presented to three students. These students were recruited using a purposeful sampling 

method (Creswell & Plano Clark, 2007). Students were purposefully recruited from fifth, sixth, 

seventh, eighth, ninth, and tenth grade. Three students agreed to participate: a seventh grade girl, 

an eighth grade girl, and a tenth grade boy. After receiving parental consent and student assent, I 

interviewed each student to ask questions about their methods for solving each task. This helped 

evaluate response processes, to determine how students actually respond to test questions 

compared to the hypothesized response (AERA et al., 2014; Krupa et al., 2019). During this 

time, I investigated whether students thought about the question in the manner that I intended. I 

looked to see if students interpreted the question in a different way than it is written. Next, I 

evaluated the consequences of testing (AERA et al., 2014; Krupa et al., 2019) by examining how 

students responded to the items during the interview. I examined to see if there were any 

unintended consequences of test bias or failure to represent the intended construct. Finally, these 

interviews were used to see if the tasks could be used to identify students’ quantifications of 

angularity.  

Second Iteration of Tasks   

 After these initial interviews, the previous expert researcher and myself discussed results 

of the pilot testing and made changes to the tasks. For example, two of the students stated that 

the Tasks 17 and 18 did not make sense and suggested rewording it to be more specific. 

Furthermore, students were also able to easily solve Tasks 21 through 24, even though they did 

not have a ratio/rate quantification. This suggested that those items were too easy and were not 

valid for assessing a ratio or rate quantification. A more detailed description of this iteration is 
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provided in the Results section associated with the Pilot Study. These revised tasks are presented 

in Appendix B. 

Second Round of Interviews   

 Once we addressed all the concerns brought forth from the three initial interviews, I 

conducted a second round of pilot testing with two more students. These students were again 

recruited using a purposeful sampling method (Creswell & Plano Clark, 2007). Students were 

purposefully recruited from fifth, sixth, and seventh grade to provide variability. The two 

students who agreed to participate were a fifth grade boy and a seventh grade girl. After 

receiving parental consent and student assent, I interviewed each student to ask questions about 

their methods for solving each task, including the revised tasks. This helped evaluate response 

processes, to determine how students actually respond to test questions compared to the 

hypothesized response (AERA et al., 2014; Krupa et al., 2019). During this time, I investigated 

whether students thought about the new questions in the manner that I intended. I looked to see if 

students interpreted the question in a different way than it is written. Next, I evaluated the 

consequences of testing (AERA et al., 2014; Krupa et al., 2019) by examining how students 

responded to the items during the interview. I examined to see if there were any unintended 

consequences of test bias or failure to represent the intended construct. Finally, these interviews 

were used to see if the new tasks could be used to identify students’ quantifications of angularity.  

 Final Iteration of Tasks   

 After the second round of pilot testing, revisions to the tasks were again made based on 

students’ responses. For example, students still noted that Tasks 17 and 18 were confusing. 

Again, a more detailed description of this iteration is provided in the Results section associated 

with the Pilot Study. Once the tasks were revised, they were given to the original expert 
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researcher in the mathematics education field, along with two more experts in the field of 

mathematics education. This again helped assess test content and face validity (AERA et al., 

2014; Krupa et al., 2019). The three experts evaluated the quality of each task, determined if the 

items were balanced, and evaluated the tasks for test content. Based on feedback from the 

experts, additional modifications were made to the overall instrument resulting in 23 total tasks 

for the QAI. These 23 final tasks were then used for the main study and are included in 

Appendix C. A table of these revisions between the first and the final iteration is also provided in 

Appendix D. These tasks and the final instrument are also presented and discussed in the Results 

section associated with the Pilot Study. 

Mixed Methods Study 

 Radical constructivism supports the notion that knowledge is an individual construction. 

Thus, it is necessary to gain insight into how students think about and solve mathematical tasks. 

A mixed methods approach, including both quantitative and qualitative data, provided an 

opportunity to better examine students’ concepts of fractions and angle measurement. 

Quantitative data was used to help describe students’ measurement schemes for fractions and 

their quantifications of angularity; qualitative data further provided insight into how students 

think about angularity, and also helped confirm and validate their quantifications of angularity as 

inferred from the QAI. Oftentimes, it is difficult to tell from survey data exactly how students are 

thinking about a particular task. There may be evidence that they are operating at a certain level 

or with a specific scheme; however, upon inquiring into their thinking, they demonstrate 

different behaviors, which provides different insight into their knowledge. By considering both 

quantitative and qualitative data, the researcher can better understand the students’ ways of 

thinking and operating. 
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 With a mixed methods approach, the goal is to “enhance validity through triangulation” 

(Creamer, 2017, p. 3, emphasis in original). This triangulation involves “verification through 

multiple data points or multiple types of data about the same phenomenon” (Creamer, 2017, p. 3, 

emphasis in original). In this case, both quantitative and qualitative data helped with 

triangulation, to provide a more detailed description of the students’ knowledge. Creswell and 

Plano Clark (2007) argue that “the use of quantitative and qualitative approaches in combination 

provides a better understanding of research problems than either approach alone” (p. 5). Again, 

through the lens of radical constructivism, it is imperative that the researcher enter the mind of 

the learner (Zazkis & Hazzan, 1998) to better understand their ways of thinking, and not to solely 

rely on quantitative survey data. A mixed methods approach integrates both quantitative and 

qualitative data to allow “the analyst to develop a richer, more analytically dense, more 

complete, and confidently argued response to their research question(s) (Bryman, 2006; Fetters, 

Curry, & Creswell, 2013; Fielding, 2012)” (Bazeley, 2018, p. 12). This integration occurs before 

the researcher makes final conclusions (Bazeley, 2018; Creswell & Plano Clark, 2007). This 

linkage of quantitative and qualitative data is known as mixing (Creamer, 2017; Creswell & 

Plano Clark, 2007). Mixing can occur at any phase of the study (i.e., design, data collection, 

sampling, analysis, or inferences; Creamer, 2017), but needs to occur before the final 

conclusions are made to offer better insight into the problem (Bazeley, 2018; Creswell & Plano 

Clark, 2007). 

 In the present study, mixing occurred at the data collection, sampling, analysis, and 

inferences phases. This study also took a sequential explanatory design (Creamer, 2017; 

Creswell & Plano Clark, 2007), where the quantitative data was given priority. First, quantitative 

survey data was collected, and then qualitative data was collected through student interviews, to 
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help explain the survey data and validate inferences from the survey data. Also, during data 

collection, nested sampling (Creamer, 2017) was used for qualitative interviews. Students who 

participated in the interviews were a subsequent subgroup of those who participated in the 

quantitative survey. Mixing was achieved in the analysis phase through the sequential analysis of 

the quantitative and qualitative data. These analyses were then compared, and relationships, 

patterns, and trends between them were identified (Creamer, 2017; Creswell & Plano Clark, 

2007). This allowed the researcher to weave the two data strands together to make one cohesive 

argument, and in this case, an argument about the validity concerning students’ quantifications of 

angularity. Thus, mixing in the inference phase occurred through the development of a meta-

inference related to validity. Meta-inferences are “inferences that link, compare, contrast, or 

modify inferences generated by the qualitative and quantitative strand” (Teddlie & Tashakkori, 

2009, p. 300; as cited by Creamer, 2017, p. 15). By mixing the quantitative and qualitative data, 

meta-inferences lead to more credible conclusions (Creamer, 2017; Creswell & Plano Clark, 

2007), since the conclusions are better supported by both strands of data. In this case, by 

weaving together the quantitative and qualitative data, a meta-inference about the validity of 

students’ quantifications of angularity could be gained. In summary, this study was conducted in 

two phases. The first phase focused on gathering survey data from students. Phase Two focused 

on obtaining qualitative data through student interviews to enhance understanding of students’ 

thinking and to validate inferences from survey data. 

Phase One: Quantitative Survey Study 

 During Phase One, quantitative survey data was collected through two different 

instruments. One instrument was used to assess students’ fractions schemes, the MSFI, and 

another instrument was used to assess their quantifications of angularity, the QAI. The purpose 
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of using the MSFI was to assign a measurement scheme for fractions to each student (see Norton 

& Wilkins, 2009, 2012; Wilkins & Norton, 2011; Wilkins et al., 2013). The purpose of using the 

QAI was to assign a quantification of angularity to each student. These assignments were then 

used for statistical analysis to determine if there is a relationship between them. The data from 

the QAI was later used in conjunction with student interviews to assess validity. 

Participants   

 Participant selection was couched in a purposeful sampling method (Creswell & Plano 

Clark, 2007). Participants included sixth, seventh, and eighth grade students at one middle 

school. The purpose of recruiting sixth, seventh, and eighth grade students was that some of them  

have not had a formal Geometry course at this point in middle school, but most have had some 

type of instruction centered on angles. For example, students begin learning about angles as the 

intersection of two rays or line in first grade, which is then carried through fourth grade (VDOE, 

2016b). In fifth grade students learn about angle measurement as a fractional amount of a full 

rotation or a circle and focus on angle measurements in degrees (VDOE, 2016a). I contacted a 

local school district and obtained permission from the superintendent to conduct data collection 

within that specific district. According to Virginia Tech Institution Review Board (IRB) 

protocol, superintendent approval was necessary before obtaining IRB approval. After obtaining 

superintendent permission and IRB approval, I then contacted the principal of one middle school 

and requested permission to conduct data collection. 

 This middle school is a small school, located in the rural Southeast. It houses sixth 

through eighth grade students. The highest level of math offered at the middle school was 

Algebra; three students enrolled in Geometry were bused to the high school to take their class. 

The middle school also operated on a block schedule, where students took four classes each day, 
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each class lasting 90 minutes. This school had 100% pass rate the past three years for the 

Algebra I test (VDOE, 2019). However, the school had an average pass rate of 76% for sixth 

grade mathematics, 71.6% for seventh grade mathematics, and 74.3% for eighth grade 

mathematics (VDOE, 2019). About 50% of these students in this middle school were 

economically disadvantaged (VDOE, 2020). In terms of student demographics, 85% of students 

were White non-Hispanic, about 4% were Black, 3% were Hispanic, and less than 1% were 

Asian (VDOE, 2020). During the 2019-2020 school year that data was collected, there were a 

total of 501 students enrolled in the school. Of these 501 students, 176 were sixth graders, 158 

were seventh graders, and 167 were eighth graders (VDOE, 2020).  

 After obtaining permission from the principal, I recruited one teacher from each grade 

level, resulting in one sixth grade teacher, one seventh grade teacher, and one eighth grade 

teacher. This resulted in two sixth grade math classes, four seventh grade math classes, and three 

Algebra classes (Table 3.3). The Algebra classes include both seventh and eighth grade students, 

but were mostly eighth grade students. Participants were then recruited from these teachers’ 

classrooms, giving a possible sample of 180 students. The three teachers agreed to incorporate 

the instruments as normal classroom activity and data was collected during students’ regularly 

scheduled math class.  
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Table 3.3 

Total Numbers of Teachers and Classes Recruited for Phase One 

Teacher Block Class Number of Students 

1 

1st 7th grade “gifted” math 15 

2nd 6th grade math 25 

3rd 6th grade math 18 

2 

1st Algebra 15 

3rd Algebra 20 

4th Algebra 23 

3 

1st 7th grade math 22 

2nd 7th grade math 22 

4th 7th grade math 21 

Total   180 

 

 A week before data was collected, parent information forms were sent home, to allow 

parents the option to opt students out of their data being included as part of the overall dataset. 

On the day of data collection, student assent was also obtained, giving students the option to opt 

out of having their data included in the dataset. Only students who agreed to participate, and 

whose parents did not opt out, were included in the study. Students were also given instructions 

to provide some indication that they attempted a task, even if they were unable to provide a 

solution. For example, some students drew stars beside tasks they did not know. This was then 

used to determine if students attempted to solve the tasks or did not complete any tasks. To 

determine which students were included in data analysis, only students who had parental 

permission, gave student assent, and did not skip more than two pages on the surveys were 

included. Students who did not solve any tasks or skipped more than two pages on the surveys 
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were removed from the study. The total number of students included in this study are described 

in Table 3.4 and Table 3.5.  

 Overall, 155 students were included in this study. This included 152 students who 

completed the MSFI and 152 students who completed the QAI. It is important to note that the 

152 students who completed the MSFI were not be the same 152 students who completed the 

QAI. In relation to the MSFI, 24.3% of students were enrolled in sixth grade, 50.7% were 

enrolled in seventh grade, and 25% were enrolled in eighth grade. Additionally, 24.3% of 

students were enrolled in Math 6, 45.4% were enrolled in Math 7, and 30.3% were enrolled in 

Algebra. For the QAI, 23.7% of students were enrolled in sixth grade, 49.3% were enrolled in 

seventh grade, and 27% were enrolled in eighth grade. Furthermore, 23.7% of students were 

enrolled in Math 6, 44.1% were enrolled in Math 7, and 32.2% were enrolled in Algebra. From 

the 152 students included in this study, 54.6% were boys and 45.4% were girls. 

Table 3.4 

Total Numbers of Students who Participated in Phase One 

Course 

Possible 

Number of 

Students 

Instrument 
Parent 

Opt Out 

Student 

Opt Out 

Total 

Surveyed* 

Math 6 42 
MSFI 2 3 37 

QAI 2 3 36 

Math 7 80 
MSFI 0 2 69 

QAI 0 2 67 

Algebra 58 
MSFI 7 2 46 

QAI 7 2 49 

Total 180 
MSFI   152 

QAI   152 

* Some students were absent and did not complete a survey. Thus, the total number of students 

surveyed may be different. 
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Table 3.5 

Student Demographics 

Instrument Grade Course Gender Total Surveyed Total 

MSFI 

6 Math 6 
Boy 18 37 

(24.3%) Girl 19 

7 

Math 7 
Boy 34 

77 

(50.7%) 
Girl 35 

Algebra 
Boy 4 

Girl 4 

8 Algebra 
Boy 13 38  

(25%) Girl 25 

QAI 

6 Math 6 
Boy 17 36 

(23.7%) Girl 19 

7 

 

Math 7 
Boy 33 

75 

(49.3%) 

Girl 34 

Algebra 
Boy 4 

Girl 4 

8 Algebra 
Boy 15 41 

(27%) Girl 26 

Totals 
  Boys 69 (45.4%) 

152 
  Girls 83 (54.6%) 

 

Measurement Schemes for Fractions Instrument (MSFI) Description   

 Each student who was present on the first day of data collection was given the MSFI. The 

measurement schemes for fractions tasks were designed by Norton and Wilkins (see Norton & 

Wilkins, 2009, 2012; Norton et al., 2018; Wilkins & Norton, 2011; Wilkins et al. 2013) and 

partially validated for assessing students’ ways of operating with fractions (Wilkins et al., 2013). 

These tasks included 28 items that are grouped into 4 tasks per operation or scheme. For 

example, there are four items for each operation: splitting and units coordination. There are also 

four items for each fraction scheme: four items for the PWS, four items for PUFS, four items for 

PFS, four items for RPFS, and four items for IFS. Table 3.6 presents the breakdown of the 

survey by fraction operation/scheme and the number of items used for the MSFI. 
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Table 3.6 

Fraction Operation/Scheme Item Breakdown for the MSFI 

Measurement Schemes for Fractions Tasks 

Fraction Scheme/Operation Number of Items 

PWS* 4 

PUFS* 4 

Splitting* 4 

PFS 4 

RPFS* 4 

Units Coordination 4 

IFS* 4 

Total 28 

*Indicates tasks included in the MSFI (Total of 20) 

 

 However, because the measurement schemes for fractions rename and also combine some 

of these schemes (Wilkins & Norton, 2018), only the PWS, PUFS, splitting, RPFS, and IFS tasks 

were used. This means that a total of 20 tasks were used in the MSFI. The PWS tasks assess 

students’ construction of a PWS. The PUFS tasks assess students’ construction of a MSUF. The 

RPFS tasks assess students’ construction of a MSPF. The splitting tasks also help assess the 

possession of a MSPF, since splitting is a developmental precursor to that particular scheme. 

Finally, the IFS tasks assess students’ construction of a GMSF.  

 In addition, two different forms of the instrument were created and used in data 

collection. The same items were used in both forms of the survey, just in a different order. This 

helped control for testing effects. 

Fraction Scheme Coding   

 I followed the coding scheme outlined by Wilkins and Norton (2011). In this coding 

scheme, each measurement scheme for fractions task was scored with a 1–demonstrate strong 
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evidence of operating in alignment with scheme or operation, or a 0–demonstrate no evidence of 

operating in alignment with scheme or operation. For tasks in which students show some 

indication of compatibility with scheme, but do not fall within either of these categories, scores 

of .4 and .6 were given to indicate a leaning towards more compatibility or less compatibility 

with the scheme (Wilkins & Norton, 2011). Two coders independently scored each student’s 

survey, scoring each item individually. These scores were then summed to provide an overall 

score for each operation or scheme. By grouping similar tasks related to a particular fraction 

scheme or operation, the individual task scores were summed to calculate a total scheme or 

operation score (Wilkins & Norton, 2011). For each grouping containing four tasks, if a student 

had a score greater than or equal to 3 for each category, it was inferred that they possess that 

specific operation or scheme and was coded as 1 (Wilkins & Norton, 2011). If a student had a 

score less than or equal to 2, it was inferred that the student did not possess that particular 

operation or scheme and was coded as 0 (Wilkins & Norton, 2011). For students with scores 

between 2 and 3, their work was reviewed holistically for that operation or scheme, and each 

individual researcher made a final decision concerning whether they possessed the operation or 

scheme (Wilkins & Norton, 2011). In summary, each fraction scheme (i.e., PWS, MSUF, MSPF, 

GMSF) was coded 0 or 1 to indicate whether a student had constructed the scheme or not. A 

summary of the coding rubric for the operations/schemes is provided in Table 3.7.  
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Table 3.7  

Sample Coding Rubric for Overall Fraction Scheme Score 

 Initial Coding 

Each Fraction 

Task Score 

0– indicates no 

action 

constructed in 

relation to 

scheme/operation 

.4– leaning more 

towards no 

indication (less 

compatibility) 

.6– leaning more 

towards 

indication (more 

compatibility) 

1– indicates 

action 

constructed in 

relation to 

scheme/operation 

Sum of 4 tasks 

Sum less than or equal 

to 2 for each category, 

student does not 

possess 

operation/scheme 

Sum between 2 and 3, 

will be reviewed and 

then coded as 0 or 1 

Sum greater than or 

equal to 3, student 

possess operation/scheme 

Overall Code 0– does not possess  1– does possess 

 

 This coding resulted in a matrix of binary codes for each student, regarding each 

measurement scheme for fractions (i.e., PWS, MSUF, MSPF, GMSF; Table 3.8). For example, 

suppose Student 1 had a sum greater than 3 for the PWS and MSUF tasks, but a score less than 2 

for splitting, MSPF, and GMSF tasks. They would be given a binary code of 1 for PWS and 

MSUF, but a 0 for the others. Using this information each student received an ordinal code based 

on their overall scores for each scheme. This code was generated based on the highest scheme 

they possess. If a student received a code of 0 for all of the schemes, they were given a code of 0, 

and attributed PrePWS. This coding scheme is provided in Table 3.9. 

Table 3.8  

Example Matrix Coding Scheme for Measurement Schemes for Fractions 

 Each Scheme Code Overall Scheme Code 

Student PWS MSUF MSPF GMSF  

1 1 1 0 0 2 

2 1 0 0 0 1 

3 1 1 1 0 3 

4 0 0 0 0 0 
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Table 3.9 

Ordinal Coding Scheme for Each Measurement Scheme for Fractions. 

Overall Scheme Code 

0–PrePWS 1–PWS 2–MSUF 3–MSPF 4–GMS 

 

Quantifications of Angularity Instrument (QAI) Description  

 Each student who was present on the second day of data collection was given the QAI. 

The QAI was created by reviewing tasks in previous literature designed to elicit student thinking 

concerning angles, and was revised based on the results of the pilot study (Chapter 4). A total of 

23 tasks were used in the main study (Appendix C). A test blueprint of the final instrument is 

provided in Table 3.10.  

 These tasks were designed to assess students quantifications of angularity. We 

determined that the initial “gross” tasks did not validly provide indication of a gross 

quantification of angularity, since students would have to answer the questions incorrectly. This 

was inconsistent with the scoring of the other tasks. To maintain the consistency in the scoring 

the of tasks, the final version of the tasks did not include tasks designed to assess a gross 

quantification. A gross quantification of angularity was inferred if a student did not provide 

indication of a more sophisticated quantification. For example, if a student missed the intensive 

tasks we inferred they had a gross quantification.  

 In addition, an examination of the quantifications of angularity framework revealed a 

large jump between the extensive and ratio quantification. The idea that students jump directly 

from using additive units to using multiplicative units in relation to a circle seemed like a stretch. 

Therefore, we felt it was necessary to include two tasks to help determine if students could use 

multiplicative units, just not in relation to circles. Furthermore, to help align the measurement 
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schemes for fractions with the quantifications of angularity, and to help understand students’ 

transition from additive to multiplicative thinking about angles, we also included four splitting 

tasks in the context of angles. These 23 tasks were purposefully developed to specifically assess 

each stage of quantification and to help distinguish which quantification each student possessed. 

In addition, two different forms of the instrument were created and used in data collection. The 

same items were used in both forms of the survey, just in a different order. This helped control 

for testing effects. 

Table 3.10 

QAI Item Blueprint with Example Solutions 

Tasks Purpose 
Quantifications of 

Angularity 
Examples of Solutions 

1-4 
Assess intensive 

quantification 

Gross 
- Incorrectly draws/compares 

angle based on size of rays or arc 

Intensive 

- Correctly draws/compares angles 

with more, less, or same 

openness 

- Uses radial sweep, segment 

sweep, superimposition, or re-

presents opening to prove 

- Discusses amount of rotation or 

openness to prove 

- Uses benchmark angles for 

comparison 

5 

Determine how 

students compare 

angles 

N/A 

-Line is the largest vs. Circle is the 

largest 

-First angle is smallest because it 

is skinny vs. First angle is largest 

because it is long 

6-9 
Assess extensive 

quantification 

Not Extensive - Cannot partition/iterate angle 

Extensive 

- Partitions larger angle into 

smaller angles 

- Iterates smaller angle to 

determine how many times it 

will take to make the larger angle  
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Tasks Purpose 
Quantifications of 

Angularity 
Examples of Solutions 

- Superimpose smaller angle to 

determine how many times it 

will take to make the larger angle 

- Discusses additive relationship 

between angles 

10-13 
Assess splitting 

operation 
Splitting 

- Simultaneously partitions and 

iterates angle to draw their angle 

14-15 

Assess 

multiplicative 

thinking 

Multiplicative 

-Determine angles are fractions of 

one another (1/4 smaller and 4 

times larger) 

16-19 
Assess ratio 

quantification 

Not Ratio - No multiplicative relationship 

Ratio 
- Recognizes multiplicative 

relationship 

20-23 
Assess rate 

quantification 

Not Rate 

- Incorrectly compare angles 

- States angles are equal based on 

superimposition visual 

comparison 

- States angles are equal based on 

same units found during 

superimposition 

-No multiplicative relationship 

Rate 

 

- Correctly compares angles based 

on proportional relationship 

between ray, arc, and 

corresponding circle 

-Recognizes 

multiplicative/proportional 

relationship 

 

 To generally describe the instrument, the tasks were grouped based on the type of 

quantification they were designed to assess. Each task was designed to elicit particular ways of 

thinking and actions relative to the construction of the different stages of quantifications. For 

example, the first four tasks assessed whether a student had constructed an intensive 

quantification or not. Consider Task 2 in Figure 3.8. This task purposefully presented the smaller 

angle with longer rays. A student with a gross quantification would compare angles based purely 

on visual comparisons, and therefore would claim that Angle 1 is larger. A student with an 

intensive quantification would compare the angles using some non-additive measure, and state 

Table 3.10 Continued 
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that Angle 1 was larger than Angle 2. Other tasks within this category present similar situations, 

including examples where a larger angle was represented with a smaller arc and two congruent 

angles were presented with different length rays. If the student answered the questions correctly, 

it was inferred that the student had constructed at least an intensive quantification. 

Figure 3.8  

Task Designed to Assess an Intensive Quantification of Angularity 

 

 The next task, Task 5 asked students to order angles. This task helped determine how 

students were thinking about angles and how they were able to compare them. For example, 

given Task 5 in Figure 3.9 a student with a gross quantification would most likely say that the 

first angle was the largest because the rays are the longest. A student with an intensive 

quantification would likely be able to correctly order most of the angles using some measure for 

openness. This item was not included in the scoring to determine students’ quantifications of 

angularity. 

1. Circle one option below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 
          Angle 1            Angle 2 
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Figure 3.9  

Task Designed to Assess Students’ Comparisons 

5.  Order the angles below from smallest to largest (1-7). Label the SMALLEST ANGLE 

with a 1 and label the LARGEST with a 7. Explain your process. 

     

       

        

 

 The next four tasks (6-9) helped determine whether a student possessed an extensive 

quantification or not. These tasks focused on how students compared and related angles to one 

another. They were also designed to assess whether students used additive thinking. For 

example, Task 6 in Figure 3.10 asked students to make an angle that was three times bigger than 

the given angle. Even though this was written in a multiplicative manner, students with an 

extensive quantification could interpret this in an additive manner. The goal was to determine 
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whether students could correctly partition and iterate angles to create smaller/larger angles. If 

students created smaller/larger angles by drawing shorter/longer ray lengths or smaller/bigger 

arcs, then it was inferred that students did not have an extensive quantification. However, if 

students could properly partition and iterate to create the desired angle, it was inferred that they 

possessed at least an extensive quantification. Students’ explanations were also used to infer their 

understandings. For example, if a student noted that it took three of the smaller angle to make the 

larger angle, or something that conveyed additive thinking, it was inferred they had constructed 

at least an intensive quantifications. However, if students discussed the angles multiplicatively, it 

was inferred that these students had constructed at least an extensive quantification. Although 

they may have constructed a more sophisticated quantification, from these tasks it could only be 

inferred whether they had at least an extensive quantification.  

Figure 3.10  

Task Designed to Assess an Extensive Quantification of Angularity 

 

 Tasks 10 through 13 assessed students’ construction of a splitting operation in the context 

of angles (Figure 3.11). Although this was not part of the quantifications of angularity 

framework, these tasks provided a threshold between an extensive and ratio quantification, 

moving from additive thinking to multiplicative thinking. Also, since splitting is relevant to the 

measurement schemes for fractions, it was important to include such tasks in the angularity 

6.  Draw an angle that is four times larger than this angle. 

 Explain your process. 
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instrument for comparisons. These splitting tasks helped assess if a student was using additive or 

multiplicative reasoning for their quantifications.  

Figure 3.11  

Task Designed to Elicit Splitting 

 

 The next two tasks, Tasks 14 and 15, further helped assess if a student was using additive 

or multiplicative reasoning for their quantifications (Figure 3.12). If a student could solve these 

tasks and write their answers in fractions, it was inferred that they were using multiplicative 

thinking. If a student could not answer in terms of fractions, it was inferred that they were not 

using multiplicative thinking. These tasks were also used to aid in the inference of a ratio 

quantification.  

10. The angle below is five times as large as your angle. Draw your angle. 

 Explain your process. 
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Figure 3.12 

Task Designed to Assess Multiplicative Reasoning 

 

 To assess a ratio quantification, Tasks 16 through 19 were designed to elicit 

multiplicative reasoning. These tasks represented multiplicative relationships between angles and 

circles. For example, Task 16 (Figure 3.13) gave students a circle with a central angle. They 

were told the circumference was 49cm and the arc made by the angle was 7cm, and were asked 

to find the measure of the angle. It was not intended that students would respond with an answer 

in degree units, but that students with a ratio quantification would recognize the multiplicative 

relationship. For example, students may note that since it would take seven iterations to recreate 

the circle, the angle was 1/7 of the circle. If students responded with such explanations, it was 

inferred that they had constructed a ratio quantification. If students did not respond with a 

multiplicative explanation, it was inferred that they had not constructed a ratio quantification. 

The size of the angles for these tasks were intentionally not drawn to scale in order to keep 

students from obtaining an answer through iteration. These tasks were also worded so students 

would have to work forwards and backwards, either finding the measure of the angle given the 

14.  What fraction is Angle 2 of Angle 1? 

 What fraction is Angle 𝟏 of Angle 2? 

 
    Angle 1       Angle 2 
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arc length and circumference, or finding the circumference given the angle measure and arc 

length. 

Figure 3.13  

Task Designed to Assess a Ratio Quantification of Angularity 

 

 Finally, four tasks (20-23) were designed to assess a rate quantification given situations 

involving concentric circles. Three of these tasks helped determine if a student recognized that 

the relationship between the length of the ray, subtended arc, and circumference was invariant 

across all possible circles when the circles were centered at the angle’s vertex. For example, 

consider Task 23 in in Figure 3.14. Students with a rate quantification would recognize that 

although the circle changed size, the angle remained the same. They would also recognize that 

the multiplicative relationship between the arc of Circle 1 and its circumference is 1/8. Then, 

understanding the relationship between the arc, circumference, and angle, they would note that 

16. The circumference (total distance around the circle) is 49 cm. (Not drawn to scale)  

The GREEN part of the circle is 7 cm long.  

What is the measure of ∠ACB in relation to the circle? 
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the angle would be 1/8 of  Circle 2 as well, calculating the arc length of Circle 2 to be 12 cm. 

These tasks were intentionally not drawn to scale so that students could not obtain an answer 

through iteration. These tasks were also worded so students would have to work forwards and 

backwards, either finding the measure of the angle given the arc lengths and circumferences, or 

finding one of the circumferences given the angle measure and arc lengths. One task also 

involved two non-concentric circles, so that students would have to relate the proportional 

relationships of each circle without visually comparing them. 

Figure 3.14  

Task Designed to Assess a Rate Quantification of Angularity 

23. Circle 1 has a circumference (total distance around the circle) of 56 cm. 

 The GREEN part of Circle 1 is 7 cm long.  

 The circumference (total distance around the circle) of Circle 2 is 96 cm. 

 How long is the RED part of Circle 2?   

 (Figure is not drawn to scale) 

   

1 

2 
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Quantifications of Angularity Coding   

 Each angularity task used in the main study was evaluated by two coders, independently, 

using the coding guidelines (Table 3.11). Coders investigated responses for consistency with 

particular ways of thinking and actions used. For example, coders inferred students’ actions 

based on written responses including: visual judgements, partitioning/iterating, or possibly 

multiplicative reasoning. Coders also examined responses to infer each action as described by 

Hardison (2018): segment sweep, re-presented opening, radial sweep, and arc sweep. A coding 

scheme similar to that described for the fraction scheme coding (Table 3.7) was used. Each task 

was given a 0, .4, .6, or 1 based on students’ responses and the compatibility with the 

descriptions of the quantifications of angularity. After summing the scores for the grouping of 

tasks, if a student had a score greater than or equal to 3 for each category, it was inferred that 

they possessed that quantification and was coded as 1. If a student had a score less than or equal 

to 2, it was inferred that the student did not possess that particular quantification and was coded 

as 0. For students with scores between 2 and 3, their work was reviewed holistically for that 

quantification, and the researchers individually made a final decision concerning whether they 

possessed the quantification. Specifically for a ratio quantification, the two multiplicative tasks 

were used to help distinguish an extensive from a ratio quantification during the review.  
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Table 3.11  

Coding Guidelines for Quantifications of Angularity 

Description of Approaches Description of Actions 
Quantifications of 

Angularity 

 Use only visual judgments 

 Compare length of rays 

 Compare size of arcs 

 Compare size of wedges/sectors 
Gross 

 Measure attribute with non-

additive units 

 Rely on visual perceptions 

 Draw/use radial sweep to 

compare duration of sweeps 

 Draw/use segment sweep to 

compare openness (how fast 

angle grows) 

 Use re-presented opening to 

compare angles (hand motions 

for openness) 

 Use of superimposition to 

compare angles by visual 

comparisons 

 Visually compare angles to 

benchmark angles 

Intensive 

 Measure with additive units 

 Use partitioning/iterating 

operations in additive sense 

 Use operations of partitioning 

and iterating to compare angles 

 Use of superimposition to 

compare angles by units 

 Compare angles to benchmark 

angles using units 

Extensive 

 Use multiplicative reasoning 

 Use partitioning/iterating 

operations in multiplicative 

sense 

 Measure angles in units of one 

another 

 Use operations partitioning, 

iterating, and splitting to 

compare angles 

 Relate angles to circles for 

comparison (draw circles) 

 Draw radial sweep to compare 

arc length 

 Maintain multiplicative 

relationship between radius, 

circle, and arc 

 

Ratio 

 Use proportional reasoning to 

understand relationship of 

angles in all possible circles 

 Draw/use arc sweep 

 Recognize angle relationship in 

concentric circles 
Rate 
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 This coding resulted in a matrix of binary codes for each student, regarding each 

quantification of angularity (i.e., intensive, extensive, ratio, and rate; Table 3.12). For example, 

suppose Student 1 had a sum greater than 3 for the intensive and extensive tasks, but a score less 

than 2 for splitting, ratio, and rate tasks. They would be given a binary code of 1 for intensive 

and extensive quantification, but a 0 for the others. It is also important to reiterate that the gross 

quantification was not specifically determined based on the tasks on the QAI. Instead, if a 

student received a code of 0 for all stages of quantifications, they were attributed a gross 

quantification. We determined that if a student attempted to solve tasks on the QAI, then they at 

least had some understanding of angle and therefore possessed a gross quantification.  

 After creating a matrix of binary codes, each student was assigned a quantifications of 

angularity code representing their highest stage of quantification (Table 3.13). These codes were 

assigned based on the most sophisticated quantification each researcher determined the student 

had constructed. For example, Student 1 would be assigned a code of 2 because the highest 

quantification they possess is extensive. Student 4 would be assigned a 0 because based on the 

logic of not having possessed any quantification, we inferred they had only a gross 

quantification. 

Table 3.12  

Example Matrix Coding Scheme for Quantifications of Angularity 

 
Each Quantification Code 

Overall Quantification 

Code 

Student Intensive Extensive Ratio Rate  

1 1 1 0 0 2 

2 1 0 0 0 1 

3 1 1 1 0 3 

4 0 0 0 0 0 
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Table 3.13  

Ordinal Coding Scheme for Quantifications of Angularity 

Overall Quantification Code 

0–Gross 1–Intensive 2–Extensive 3–Ratio 4–Rate 

 

Interrater Reliability   

 About 10% of the students were randomly selected from both the MSFI and QAI. These 

instruments were used for calibrating rater scoring. The two coders independently scored 16 

MSFIs and 16 QAIs. The two coders then met to discuss and reconcile any disagreements 

concerning coding. This ensured that the scoring rubric was calibrated, as well as to promote 

accuracy and reliability in coding the surveys.  

 Next, the two coders independently coded the remaining 136 MSFIs and 136 QAIs. The 

number of agreements and disagreements were calculated between each scheme and each 

quantification code using the binary matrix for each construct. For students’ measurement 

schemes for fractions scores and quantifications of angularity scores, Cohen’s Kappa (𝜅; Cohen, 

1960, 1968) was calculated to assess interrater reliability. 𝜅 (Cohen, 1960, 1968) is a statistic that 

assesses “the level of agreement between observers that is corrected for levels of agreement that 

would be expected by chance” (Warner, 2013, p. 906). Since 𝜅 treats disagreements equally 

(Cohen, 1968), it was an appropriate statistics to use (Siegel & Castellan, 1988) for these 

dichotomous codes. 

Quantitative Data Analysis   

 To examine the relationship between students’ measurement schemes for fractions and 

their quantifications of angularity, Goodman and Kruskal’s Gamma (G) and Spearman Rank 

Correlation (rs) was calculated. Spearman Rank Correlation is similar to a Pearson Correlation, 

but it used when variables represent ordinal data (Siegel & Castellan, 1988). However, because 
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there was a possibility that there may be many ties in the codes between the two variables, 

Gamma was also used (Siegel & Castellan, 1988). Also, since the data was positively skewed, 

these non-parametric statistics were used.  

 Gamma and Spearman Rank Correlation assess the strength of association between the 

two variables (Berry et al., 1976; Hryniewicz, 2006; Somers, 1980; Siegel & Castellan, 1988), 

provided there is an association. In calculating G  and rs, there is the assumption that data must 

be ordinal (Siegel & Castellan, 1988). This assumption was met in this present study since 

students were given ordinal codes representing the different measurement schemes for fractions 

and quantifications of angularity, which progress from a least sophisticated to more sophisticated 

categorization (see Table 3.9 and Table 3.13). The second assumption is that the data has a weak 

monotonic association (Berry et al., 1976; Siegel & Castellan, 1988). This means that as one 

variable increases in value, the other variable should also increase in value.  

 Based on theory and literature, I hypothesized that a concept of measurement precedes 

the ability to quantify angularity using additive units, and therefore a measurement concept is 

necessary for the construction of more sophisticated quantifications of angularity. In other words, 

students who construct more sophisticated measurement schemes of fractions are able to 

construct more sophisticated quantifications of angularity. Since the most sophisticated concepts 

of angles involve understanding angle measurement as a fractional amount of a circle, students 

with a more sophisticated measurement scheme for fractions would potentially have a deeper 

understanding of angle and angle measurement, leading to a more sophisticated quantification of 

angularity. However, again, this is not a one-to-one correspondence, but rather a hypothesis that 

a concept of measurement precedes quantifications of angularity. Therefore, these two construct 

were correlated to measure their association.  
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 After this association was assessed, I further investigated my hypothesis concerning the 

relationship between student’s measurement schemes for fractions and their quantifications of 

angularity. For example, in Chapter 2 I hypothesized that a gross and intensive quantification of 

angularity does not involve any of the mental actions and operations associated with 

measurement (i.e., partitioning and iterating), and thus, may develop without a concept of 

measurement, as indicated by their measurement schemes for fractions. A PWS and MSUF are 

related to an extensive quantification by the partitioning and iterating operations. A MSPF is 

related to a ratio quantification by the splitting operation. A GMSF is related to a rate 

quantification by the units coordination operation. A developmental progression can be seen 

where a gross and intensive quantification precede a measurement concept. A measurement 

concept then precedes more sophisticated quantifications of angularity. Once students have a 

MSUF, they are able to construct an extensive quantification; once students have multiplicative 

reasoning, indicated by splitting, they are able to construct a ratio and rate quantification. 

However, it is unclear if the fractions schemes precede or co-develop with the quantifications of 

angularity.  

 To investigate these relationships, each individual scheme score, represented by nominal 

scores, were correlated with students’ overall quantifications of angularity, using G. Then, each 

individual fraction scheme score was correlated with each quantification of angularity score, 

using Phi coefficients. The goal was to provide a more thorough examination of the relationships 

between students’ measurement schemes for fractions and their quantifications of angularity. 

Phase Two: Validation Study 

 During Phase Two, qualitative data was collected through clinical interviews to gain 

insight into students’ ways of thinking and to further validate students’ quantifications of 
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angularity based on their classifications from the QAI. Oftentimes, it is difficult to tell from 

survey data exactly how students are thinking about a particular task. There may be evidence that 

they are operating at a certain level or with a specific scheme; however, upon inquiring into their 

thinking, they demonstrate different behaviors, which provides different insight into their 

knowledge. Therefore, the purpose of the clinical interviews was to investigate students’ ways of 

thinking about tasks and their related actions and operations. Clinical interviews allow for 

follow-up questions and provide opportunities for students to think aloud and describe their 

process for solving tasks. This enables the researcher to make more trustworthy inferences 

concerning students’ classifications.  

 The classifications based on the clinical interviews provide a criterion measure of 

students’ quantifications by which to compare students’ quantifications as determined by the 

written survey, the QAI, further evaluating the validity of the quantifications of angularity. The 

five main components for assessing and ensuring validity are: test content, response processes, 

internal structure, relations to other variables, and consequences of testing (AERA et al., 2014; 

Krupa et al., 2019). The purpose of the validation of students’ quantifications of angularity 

during Phase Two was used to assess relations to other variables; in other words, students’ 

classifications from the interview was treated as their “true” quantification of angularity and was 

compared to their QAI classification. This qualitative data was then combined with data from the 

pilot study and Phase One to provide a more informed description of students’ quantifications of 

angularity. 

Participants   

 Participants were selected by nested sampling (Creamer, 2017). A subsequent subgroup 

of students who participated in the QAI were recruited to participate in clinical interviews. 
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Participants were selected based on three criteria. First, students must have agreed to and 

participated in the QAI. Second, students must have agreed to participate in the clinical 

interviews and return a parent consent and student assent form. Third, students were selected 

from different grade levels, to hopefully provide variation in their quantifications of angularity.  

 On the day the QAI was administered, parental permission forms were sent home. All 

students were asked to return the signed parental permission form within the next week in order 

to participate in the clinical interviews. Only students who returned a parental permission form 

were asked to participate in the interviews. In total, 24 students returned signed parental 

permission forms granting permission for their child to be interviewed. However, on the days 

students were pulled to be interviewed, one student was absent, and one student did not want to 

participate. Therefore, a total of 22 interviews were conducted. This included 9 students from 

Math 6, 9 students from Math 7, and 4 students from Algebra (Table 3.14).  

Table 3.14 

Total Numbers of Students who Participated in Phase Two 

Course 

Possible 

Number of 

Students 

Number of 

Returned 

Signed 

Forms 

Number of 

Students 

Absent 

Student Opt 

Out 

Total 

Interviewed 

Math 6 36 9 0 0 9 

Math 7 67 9 0 0 9 

Algebra 49 6 1 1 4 

Total 153    22 

 

Qualitative Data Collection   

 Qualitative data was collected through the use of semi-structured clinical interviews. 

Clinical interviews are a data-collection and observational tool that enables the researchers to 

investigate students’ mathematical thinking (Cobb & Steffe, 1983, Zazkis & Hazzan, 1998), and 
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helps uncover student’s thinking, reasoning and development of mental structures (Clement, 

2000). The general purpose of a clinical interview is to gain insight into the mental structures, 

constructions, and processes students use in relation to a particular mathematical concept 

(Clement, 2000; Cobb & Steffe, 1983). Clinical interviews can also be used to discover, identify, 

and evaluate the competence of a child’s cognitive abilities (Ginsburg, 1981). 

 The clinical interview was influenced by Piaget’s (1975) clinical method for investigating 

children’s’ cognitive development (Clement, 2000; Ginsburg, 1981, 1997; Posner & Gertzog, 

1982). Piaget (1975) focused on asking various questions that would allow children to “talk 

freely” and encourage “spontaneous tendencies” (p. 4), thus capturing children’s true interests 

and reactions. The clinical interview helps uncover children’s natural mental inclinations, 

thought processes, as well as their mental context (Ginsburg, 1997). During the interview, the 

role of the researcher is not to teach the child how to solve the task or to play the game, but 

rather to observe the child’s behaviors and actions to better understand their way of thinking. 

These student observations allow the researcher to understand how a student thinks about a 

particular concept and what mental actions they perform in order to solve a task (Clement, 2000). 

Overall, the idea is to gain insight into how students think about and solve tasks to paint a clearer 

picture of their understanding of particular concepts.  

 The clinical interviews took place in one sitting, lasting approximately 30 minutes. 

During the semi-structured clinical interviews, I presented students with tasks from the QAI, as 

well as several new tasks. Some of these tasks and questions were derived from the interview 

questions used by Hardison (2018). I used a systematic, logical approach to determine which 

questions to ask during the interviews (Appendix E). For example, after some preliminary 

questions and sorting activity, students were presented with the splitting tasks. These tasks were 
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chosen to present first because they represented the transition between additive and 

multiplicative thinking. If students successfully solved these tasks, I moved to the ratio tasks. 

However, if they could not solve the splitting tasks, I moved to the extensive tasks. In this way I 

was able to potentially reduce the amount of time needed to determine students’ stage of 

quantification while at the same time maximize the time to differentiate among stages.  

 During the interview, I inquired into how they solved certain tasks and what they did to 

solve them. This provided better insight into their quantifications of angularity, helping to 

confirm their quantifications of angularity scores. These interviews were recorded for 

retrospective analysis, and written work was digitized. Field notes were also taken to document 

students’ behaviors or actions in the moment during the interview process. The main focus 

during the interview was to validate students’ quantifications of angularity scores, ultimately 

validating the instrument. These interviews were used to classify students’ quantifications of 

angularity. These classifications then served as the criterion measure for comparison to the 

results from the QAI, for evaluating the relation to other measures component of validity (Krupa 

et al., 2019). That is, the classifications from the interviews were correlated with classifications 

from the QAI to determine the magnitude of the association, which provided a measure of 

criterion validity for the classifications based on the QAI. Further details of the validation study 

are discussed later in the Validation Study section. 

Interview Coding   

 Clement (2000) discusses two different purposes of clinical interview studies: generative 

and convergent. Each of these purposes will lead to different types of analysis. A generative 

purpose leads to an interpretive analysis, in which the researcher open-codes the data. Here, there 

usually is not predetermined codes, but rather categories and themes develop from observation as 
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the researcher analyzes the data. Clement (2000) further explains that this interpretive analysis 

allows the researcher to develop “grounded theoretical models for learning processes” (p. 558). 

Different from the generative purpose, the convergent purpose of the clinical interview is to 

“provide reliable, comparable, empirical findings that can be used to determine frequencies, 

sample means, and sometimes experimental comparisons for testing a hypothesis” (p. 558). This 

purpose typically leads to coded analysis, in which predetermined codes or categories are used. 

Clement (2000) describes this as using criteria specific to a phenomenon and then coding all 

occurrences of that phenomenon in the transcript. This analysis is similar to using a framework 

or established model to categorize students’ behaviors as particular levels or stages.  

 Based on these two purposes, the purpose of the clinical interviews in this study was 

convergent. Therefore, pre-determined codes were used to analyze students’ responses and their 

quantifications of angularity. The pre-determined codes (i.e., gross, intensive, extensive, ratio, 

and rate) were derived from the quantifications of angularity framework described above. Each 

participants’ responses to the tasks was analyzed and compared to the descriptions of the 

quantifications of angularity. Every instance of a specific quantification (i.e., gross, intensive, 

extensive, ratio, and rate) was coded based on the criteria provided in Tables 3.10 and 3.11. 

Students’ responses were analyzed to investigate their approaches and actions relative to the 

different quantifications of angularity. During the interview, I recorded students’ responses and 

made notes about their preliminary quantifications based on their responses. After the interviews 

were over, two coders independently watched the interviews and evaluated student’s responses. 

Each coder assigned an overall quantification of angularity classification. The raters then met to 

reconcile these differences and reach consensus on a single classification.  
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 To evaluate interrater reliability, weighted Kappa (𝜅𝜔; Cohen, 1968) was calculated for 

the independent ratings. 𝜅𝜔 considers both the amount of agreement and disagreement that could 

occur by chance (Cohen, 1968). In this case, disagreements are not treated equally, which allows 

for a more precise assessment (Cohen 1968). Since the quantification codes are ordinal (e.g., 0-4) 

𝜅𝜔 is an appropriate statistic to use. The Kappa scores for the two coders’ agreements and 

disagreements are presented in Table 4.19.  

Validation Analysis   

 These classifications based on the interviews were also used to further assist with the 

assessment of validity. As discussed earlier, the five main components for assessing and ensuring 

validity presented in the Standards (AERA et al., 2014) are: test content, response processes, 

internal structure, relations to other variables, and consequences of testing (Krupa et al., 2019). 

The goal here was to examine the relation to other variables. This qualitative data was used to 

classify each student into a particular quantification of angularity. This classification served as a 

criterion to compare with each students’ quantifications based on the QAI. A validity coefficient, 

Gamma (G), was calculated between students’ classifications from the interview and the QAI, 

which provided a measure of criterion validity. A Spearman Rank Correlation was also 

calculated to help assess criterion validity.   
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Chapter 4: Results 

 This chapter presents the results from the different phases of the study and will be 

divided into three parts. The first part will describe the results of the pilot study. The second part 

will describe the results of the quantitative survey data. The third part will focus on the results of 

the validation of students’ quantifications of angularity, by combining the results of the pilot 

study and the final interviews. 

Pilot Study Results 

 The purpose of the pilot study was to conduct a small-scale validation of the QAI that 

focused primarily on test content, response processes, and consequences of testing. During pilot 

testing, I, along with one expert researcher in the mathematics education field, evaluated the 

tasks to help assess test content, face validity, and the quality of each task (AERA et al., 2014; 

Krupa et al., 2019). Interviews were then conducted with fifth through tenth grade students to 

provide an initial validation of the QAI to ensure that the tasks measured what they were 

intended to measure (Krupa et al., 2019). These interviews were also used to classify students’ 

quantifications of angularity.  

First Round of Interviews 

 For the first round of interviews during the pilot study, three students agreed to 

participate: a seventh grade girl, an eighth grade girl, and a tenth grade boy. These students, and 

the students from the second round of interviews, are described in Table 4.1 along with their 

quantifications of angularity. Overall, test content was not initially found to be balanced as some 

tasks were extremely easy for students and did not represent the intended range of 

quantifications. However, students did respond in the intended manner to the majority of the 
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tasks. There were some issues with a few tasks, which are described below. Also, there were no 

apparent negative consequences associated with testing.  

Table 4.1 

Description of Students who Participated in the Pilot Study 

Round of 

Interviews 
Student Gender Grade 

Quantification of 

Angularity 

1st 

Chloe Girl 7  Intensive 

Mia Girl 8 Extensive 

Max Boy 10 Rate 

2nd 
Nate Boy 5 Ratio 

Sara Girl 7 Rate 

 

 Looking at specific tasks, all three students said that Task 8 (Appendix A) was somewhat 

confusing. Two students asked if the line was supposed to be included in the ordering, because 

they did not know if it was supposed to be an angle or a divider on the page. Another problem 

with this task was that students did not understand the notation for the angle greater than 180o. 

They suggested using an arrow to denote the angle’s rotation above 180o. In addition, two 

students did not understand the angle within the circle. However, this was purposefully included 

to determine if students could recognize angles within circles. 

 All three students in the first round of interviews had issues with Tasks 17 and 18 

(Appendix A). Chloe and Mia stated that Tasks 17 and 18 did not make sense, and it was only 

after I explained the intent of the task that they were able to solve them. Even though Max could 

solve these two tasks, he suggested that younger students would not understand the intent of the 

task. All three suggested rewording these tasks to be more specific. For example, Max suggested 

asking “How many times will Angle 2 fit into Angle 1?” Chloe and Mia suggested asking 

something similar to “How many times smaller is Angle 2 than Angle 1?”  
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 Other tasks that the students thought were problematic were the tasks associated with the 

rate quantification of angularity. Chloe noted that she had been taught that when the circles get 

bigger, the angles remain the same, and relied on that knowledge to solve those tasks. For 

example, for Task 21, Chloe said the length of the rays did not matter because they are all the 

same angle. When I asked her how she knew that the ray length did not matter, she said that was 

just something she was taught. Chloe was unable to relate the proportional relationship between 

the circles and angles, but relied on something she had memorized. Similarly, Max noted that 

these were things he was taught early on when learning about angles and thought these tasks may 

be easy for students.   

 Furthermore, looking across the ratio and rate tasks it appeared that the tasks did not 

require the necessary conceptual understanding to successfully solve them. For example, Chloe 

did not think about angles multiplicatively, and only sometimes demonstrated additive thinking. 

Based on her thinking, I felt that she had constructed only an intensive quantification. Chloe 

struggled with partitions and iterations and relied on visual estimates and judgments. She did not 

draw any lines to represent her partitions or iterations. However, Chloe was able to obtain correct 

answers to the ratio and rate problems. She simply divided the numbers to obtain the answer. In 

contrast, Mia had constructed an extensive quantification and the splitting operation, but could 

not solve the ratio or rate problems. She drew partitions and iterations to figure out the 

relationship between angles and could easily solve the splitting tasks. However, she incorrectly 

solved the ratio and rate problems, stating that as circles get larger, angles get larger. Max was 

different in that he could relate angles to circles, providing evidence of having constructed a rate 

quantification. Max began the interview by defining an angle as “a measurement out of a circle.” 

He easily solved all tasks, drawing partitions and iterations, as well as recognizing the 
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multiplicative relationship between angles. He also recognized that the change in circle size does 

not change angle measure, representing a true rate quantification. When looking at the 

correctness of the tasks, Chloe and Max correctly solved the ratio and rate tasks but 

demonstrated completely different thinking. Furthermore, Mia demonstrated more sophisticated 

thinking than Chloe but could not solve the ratio and rate tasks. Taken in tandem, these examples 

provide evidence that these tasks did not provide information to make valid assessments of a rate 

or ratio quantification. These tasks violated the test content of validity, since they did not 

measure the construct they were intended to measure (Krupa et al., 2019). They also violated the 

response process component of validity because students did not respond to the tasks in the 

manner that I predicted (Krupa et al, 2019).  

First Round of Revisions 

 After the results of the first round of interviews, I and the expert researcher developed 

new tasks, hoping to address the students’ concerns and to be able to make more valid 

assessments of students’ quantifications of angularity. These revised tasks are presented in 

Appendix B. We revised six of the tasks to make them more visually pleasing and easier to read 

and understand. For example, we removed the box on Tasks 1 through 4 to make the questions 

less distracting. We also added an arrow to the item in Task 8 to help denote that it was an angle 

greater than 180o.  

 We struggled with revising old Tasks 17 and 18 because the goal of the tasks was to 

assess whether students could measure angles in terms of one another. However, based on the 

students’ responses, we changed the wording from “Use Angle 1 to measure Angle 2” to 

“Measure Angle 1 in terms of Angle 2.” Furthermore, after hearing students’ concerns about 

notation and not understanding what questions we were trying to ask, we thought it may be better 
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to change the wording in old Tasks 19 and 20 from the vagueness of “the thick arc” and “the 

measure of the angle” to “Arc AB” and “the measure of ∠ACB” and include labels on the 

pictures. Even though the students made no mention of a concern for these tasks, we felt this 

would help prevent students from incorrectly solving these tasks because they did not understand 

which part of the circle we were referencing. We also changed these tasks so that the pictures 

were not drawn to scale, to prevent students from visually comparing what fraction of the circle 

each angle was. We hoped that this change would prevent students from iterating the angle to 

figure out how many times it would fit into the circle, so we could assess if they truly recognized 

the multiplicative relationship. 

  Another revision we made is that we combined old Tasks 21 and 22 into one new task to 

eliminate redundancy. In this new Task 21 (Appendix B), we also removed the answer choice 

box, like in Tasks 1 through 4, to reduce distractions in the question. We also made the length of 

the ray on each side of an angle unequal in some cases. This was to help assess if students relied 

on the length of the rays or if they truly understood the relationship for angles within concentric 

circles.  

 Finally, we created three new tasks, Tasks 22 through 24 (Appendix B), to assess a rate 

quantification. Based on the theoretical description of rate quantification (see Figure 2.19) this 

quantification is truly an extension of ratio into the context of concentric circles, meaning that 

students apply the proportional relationship between the length of the ray, arc length, and 

circumference to multiple circles. Therefore, these new tasks needed to be related to the ratio 

tasks. These new tasks presented similar situations as new Tasks 19 and 20 (Appendix B), but 

involved multiple circles. For example, new Task 23 (Appendix B) presented two circles where 

students were given the circumference and arc length in Circle 2. They then had to apply this 
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multiplicative relationship to Circle 1 in order to figure out the relation of the angle to Circle 1. 

We felt that this was a more valid task for assessing rate than the earlier tasks because it required 

students to maintain this proportional relationship between the angle, arc, and circumference for 

two different circles. 

Second Round of Interviews 

 For the second round of interviews during the pilot study, students were purposefully 

recruited from fifth, sixth, and seventh grade to provide variability in students’ age, grade, and 

possibly depth of understanding. The two students who agreed to participate were a fifth-grade 

boy and a seventh-grade girl. During these interviews, I presented the original tasks (Appendix 

A) as well as the revised tasks (Appendix B) to see which ones students thought were easier to 

read and understand, helping to address test content and response process. I also used the new 

tasks to determine if they were useful for making more valid assessments of students’ 

quantifications of angularity. Evaluating the instrument, overall, test content was balanced and 

represented the intended range of quantifications. Students’ responded in the intended manner to 

the new tasks. Although there were no major issues with any of the tasks, students did make 

some suggestions for improvements. Also, there were no apparent negative consequences of 

testing.  

 Both Nate and Sara agreed that for Tasks 1 through 4 that the box made the questions 

easier to read, but felt the revised tasks were also fine. For Task 8, they both also stated that they 

were unsure if the line was supposed to be part of the ordering or if it was a divider. Sara stated 

that the arrow did not help her understand that the angle was greater than 180o, but Nate said he 

understood the arrow notation. 
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 For Tasks 17 and 18, both Sara and Nate stated that the question did not make sense. 

When compared to the original question, they claimed that neither question was appropriate. 

They did not understand what the task was asking them to do by saying “Use Angle 2 to measure 

Angle 1.” After I explained what I was trying to assess, they suggested rewording the question to 

ask, “What fraction of Angle 2 is Angle 1?” or “How much larger is Angle 2 than Angle 1?” 

 For Tasks 19 and 20, Nate and Sara were able to solve those tasks. They understood the 

notation used and said it was clear what the task was asking. However, Sara stated that using 

“size” and “measure” in different questions was a bit confusing. She knew that measure and size 

were meant to mean the same thing, but thought other students might confuse size with how 

much larger the angle was, and not relate it to angle measure. Therefore, she suggested using 

measure in both questions to help younger students understand. Nate also said that he knew 

measure and size meant the same thing, but said that using both words was not confusing. Sara 

also suggested asking “What fraction of the circle?” to help eliminate the confusion between 

measure and size. Nate also suggested including a clarifying statement to say the pictures were 

not drawn to scale to prevent confusion. These suggestions were considered in the next iteration 

of tasks. 

 For new Task 21, Nate and Sara said it was clearly written and easy to understand. They 

also stated that having different length rays was not confusing, because they knew the angles 

would remain the same even if the circle gets bigger. However, Nate thought that maybe this 

question may be too easy since this was something they had learned in fourth grade.  

 Finally, Nate and Sara thought that Tasks 22 through 24 were clearly written, and that 

they understood the notations used for arcs and angles. Nate again mentioned clarifying that the 

pictures were not drawn to scale to prevent potential confusion. When he solved the problem, he 
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noted that his answer was not consistent with the picture, and therefore he must be wrong. When 

I explained that the picture was purposefully not drawn to scale, he said that would be an 

important thing to note for students. Sara made another suggestion and claimed that using color 

may help some students. She thought the color would help students understand which arc and 

circle was being referenced in the questions, and may help with confusion about notation. 

 Based on the students’ responses, I felt that these tasks enabled me to make more valid 

assessments of students’ quantifications of angularity. For example, the ratio and rate tasks 

assessed students’ ratio and rate quantifications. Throughout the interview, Nate relied heavily 

on degrees as his standard unit of measure. When asked to draw angles that were five times 

smaller, or for the splitting tasks, he stated that he could not do so precisely because he did not 

know the degrees. However, when asked to estimate, he properly used his partitioning, iterating, 

and splitting operations.  

 On the ratio and rate tasks, he related angle measurement to a fractional amount of a 

circle. When working with the rate tasks, he became a bit confused. For example, on Task 23 he 

said the smaller Circle 1 looked to be about one half of the larger Circle 2, and therefore given 

the proportion of 10/60, he would divide that by two and get 5/30. He then reduced his fraction 

to 1/6 and claimed that the angle would be 1/6. However, he said that if Circle 1 was 3 times 

smaller, he would have divided the proportion by three. He went on to say that if the question 

simply asked about Circle 2, then the answer would just be 10/60 or 1/6. He did not recognize 

these were the same proportional relationship.  

 From his responses, I inferred that Nate had constructed a ratio quantification. He could 

relate angle measurement to a fractional amount of a circle, but struggled when relating to 

multiple circles. From Sara’s responses, I inferred that she had constructed a rate quantification. 
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She, like Nate, could use her iterating, partitioning, and splitting operations to solve the tasks. 

She also understood angle measurement as a fractional amount of a circle and could maintain the 

proportional relationship between multiple circles. Overall, I felt the new tasks provided more 

valid assessments of students’ quantifications of angularity. These new tasks were more balanced 

in terms of assessing the construct they were intended to measure. The new ratio and rate tasks 

provided information to make valid assessments of a rate or ratio quantification, also helping 

provide a more consistent internal structure. Students also responded in the manner I predicted 

they would, and there were no apparent negative consequences of testing.  

Final Iteration of Tasks 

 Based on the second round of interviews, the tasks were further revised. After thinking 

about how the tasks were evaluated, I and the expert researcher determined that the first four 

tasks intended to assess a gross quantification were not consistent with the assessment of the 

other quantifications. For example, in order to be categorized as a gross quantification, a student 

would have to respond incorrectly. However, if a student solved the tasks correctly, they would 

be coded as not having a gross quantification. Again, this was inconsistent with how the other 

tasks were designed for assessment. Therefore, we felt it would be better to combine the first 

seven tasks into four tasks that would elicit students thinking associated with an intensive 

quantification. Then based on logic, if a student attempted to solve any tasks, but did not score 

high enough to be categorized as intensive, extensive, ratio, or rate, they would by default be 

assigned a gross quantification. 

 Another revision I and the expert researcher made was that we revised the ordering task. 

We rearranged the order of the items within the new Task 5 to help students understand that the 

line was part of the ordering (Appendix C). We also kept the arrow to denote the angle greater 
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than 180o. We also changed new Tasks 14 and 15 (Appendix C) to make them clearer as to what 

we were asking students to do, because no student was able to understand the question. Based on 

students’ suggestions, we rewrote it to explicitly ask students to find what fraction is Angle 1 of 

Angle 2.  

 After we addressed the major issues brought up from students, I sent the tasks to the 

original expert researcher in the mathematics education field, along with two more experts. This 

was done again to assess test content and face validity (AERA et al., 2014; Krupa et al., 2019). 

The three experts evaluated the quality of each task, determined if the items were balanced, and 

evaluated the tasks for test content. Overall, they determined that the tasks were not balanced, 

some tasks did not provide a valid assessment of students’ quantifications of angularity, and 

therefore raised several concerns. 

 One thing that the expert reviewers brought up was that the partitioning tasks, Tasks 10 

and 12 (Appendix B), were too difficult; they felt that these tasks required the splitting operation 

and therefore assessed multiplicative thinking instead of additive for extensive. One expert 

reviewer also noted that asking students to draw an angle that is 1/7 of the given angle requires a 

multiplicative understanding, and that students who are additive would not be able to solve the 

problem. Therefore, we revised the extensive tasks to truly assess additive thinking and to also 

remove the issue of using multiplicative language. For example, we created two new tasks, Tasks 

7 and 9 (Appendix C) that asked students “How many times will Angle 1 fit into Angle 2?” 

These tasks required students to partition into an odd number (i.e. five and three times). We 

purposefully did this so students could not partition the angle in half and then half again to create 

four, as some students in the pilot study did. We then revised the new iterating tasks, Tasks 6 and 

8 (Appendix C) to require students to iterate an even number of times (i.e., four and six times) to 
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provide variability and balance. We also revised two splitting tasks, Task 12 and 13 (Appendix 

C) so students were not asked to split into thirds in two tasks and to provide variability with the 

number of splits required. 

 Another concern the experts brought up was that they did not think that Task 21 

(Appendix B) was valid for assessing rate. They felt this task was too simple for students to solve 

and did not emphasize the multiplicative relationship between the angle, arc, and circumference. 

They argued that some students would be able to correctly solve this task by using visual 

comparisons, as some did in the pilot study. They suggested creating a new task to maintain 

consistency between the four rate tasks. A new task, Task 20 (Appendix C) was created that 

involved nonconcentric circles to assess if students could maintain and transfer the proportional 

relationship between the angle, arc, and circumference between circles. 

 One final concern that one expert reviewer brought up was that the tasks involving formal 

mathematical language of “arc” would be too difficult for students. The term arc is not 

introduced into the middle school curriculum standards until Geometry. Therefore, it could be 

possible that some students would miss the problem because they did not understand the 

language. We felt that this situation might potentially lead to an underestimation of students’ 

quantification of angularity. It is possible that students might have the knowledge to solve the 

problem, but if they did not understand the language, they may get the answer wrong for the 

wrong reasons. Therefore, taking this suggestion, as well as Sara’s suggestion, we revised the 

ratio and rate questions to include color and to eliminate formal mathematical language and 

notations. We also included a statement in all of the tasks involving pictures of circles to note 

that the pictures were not drawn to scale.  
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 We also addressed the issue of item balance across the instrument. We felt that Tasks 14 

and 15 (Appendix C) were not valid for assessing ratio, since ratio emphasized the relationship 

between the angle, arc, and circumference However, we wanted to keep Tasks 14 and 15 since 

they assessed whether students were thinking multiplicative or not. We felt these would be good 

for helping discriminate between extensive and ratio. Then, to be consistent, with having four 

tasks per quantification, we created two new ratio tasks and two new rate tasks. These revisions 

resulted in a total of 23 tasks we then used in the QAI for the main study (Appendix C). A table 

of these revisions between the first iteration of tasks and the final version of tasks is provided in 

Appendix D. 

Phase One Results 

 During Phase One, quantitative survey data was collected through two different 

instruments. One instrument, the MSFI, was used to infer students’ construction of fractions 

schemes and categorize them by stage associated with the fractions schemes; and another 

instrument, the QAI, was used to infer students’ quantifications of angularity and categorize 

them by stage. These assignments were then used to attest for an association between students’ 

level of measurement scheme for fractions and their quantification of angularity. Results from 

Phase One will be presented in three sections. The first section will describe results from the data 

collected with the MSFI. The second section will describe results based on the data collected 

with the QAI. The third section will examine the relationship between students’ measurement 

schemes for fractions and their quantifications of angularity. 

 I first present evidence for the interrater reliability of the two instruments based on the 

remaining surveys after rater calibration was conducted using approximately 10% of the surveys. 

From the remaining 136 MSFIs and 136 QAIs, the number of agreements and disagreements 
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were calculated between each scheme and each quantification code using the binary matrix for 

each construct (Table 4.2). 𝜅 scores for PWS, MSUF, splitting, MSPF, and GMSF were .949, 

.821, .709, .606, and .428 respectively. Landis and Koch (1977) state that 𝜅 scores between .81 

and 1.00 are “almost perfect”, between .61 and .80 are “substantial,” and between .41 and .60 are 

“moderate” (p. 165). Accordingly, the 𝜅 scores for PWS and MSPF are almost perfect, Splitting 

and MSPF are substantial, and GMSF is moderate. It is important to note that in this sample of 

students, it was rare for students to have constructed a MSPF or a GMSF, with only five students 

classified as having constructed a MSPF and only six students classified as having a GMSF. Due 

to these low numbers of students in each category, Viera and Garrett (2005) claim that “Kappa 

may not be reliable for rare observations” (p. 362). Therefore, overall percent agreement was 

also calculated to display coder agreement (Table 4.2), and demonstrates almost perfect 

agreement (Landis & Kock, 1977) between coders for all fraction scheme classifications. 

Together these statistics provide evidence of high reliability between the raters. 

 𝜅 scores for intensive, extensive, splitting, ratio, and rate scores were .917, .684, .651, 

.891, and 1.00 respectively. The 𝜅 scores for intensive, ratio, and rate are almost perfect, and 

extensive and splitting are substantial (Landis & Koch, 1977). Overall percent agreement was 

calculated to further display coder agreement, and demonstrates a remarkably high percent 

agreement between coders for all quantifications of angularity classifications. Again, this 

evidence suggests high reliability between raters. 
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Table 4.2 

Kappa Scores for Fraction and Angle Coding 

Instrument 
Scheme/ 

Quantification 

Number of 

Disagreements 

Number of 

Agreements 

Kappa 

Score 

Percent 

Agreement 

MSFI 

PWS 3 133 .949 .978 

MSUF 8 128 .821 .941 

Splitting 15 121 .709 .890 

MSPF 7 129 .606 .949 

GMSF 5 131 .428 .963 

QAI 

Intensive 5 131 .917 .963 

Extensive 20 116 .684 .853 

Splitting 19 117 .651 .860 

Ratio 3 133 .891 .978 

Rate 0 136 1.00 1.00 

 

Measurement Schemes for Fractions 

 This part of the quantitative phase of the study involved 152 students in sixth, seventh, 

and eighth grade. The purpose of using the MSFI was to assign a fraction scheme to each 

student: PWS, MSUF, MSPF, or GMSF. In order to determine a student’s overall categorization, 

students were assigned to the highest scheme for which it was inferred they had constructed. For 

example, students who did not construct any measurement schemes for fractions, indicating that 

they were pre-fractional, were categorized as Pre Part-Whole Scheme (PrePWS). Based on the 

categorizations from the MSFI, the percentage of students for each scheme are presented in 

Table 4.3. Of the 152 students, 27.6% were PrePWS, 50.7% had constructed a PWS, 14.5% had 

constructed a MSUF, 3.3% had constructed a MSPF, and 3.6% had constructed a GMSF. These 

results show that the majority (78.3%) of these middle school students had constructed at most a 

PWS. This also indicates that less than one fourth of the students (21.8%) had constructed a more 
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sophisticated fraction scheme, that is, a measurement scheme for fractions, moving beyond PWS 

understanding.  

Table 4.3 

Students’ Overall Fraction Schemes  

 Frequency Percent 

PrePWS 42 27.6% 

PWS 77 50.7% 

MSUF 22 14.5% 

MSPF 5 3.3% 

GMSF 6 3.9% 

Total 152 100% 

  

 Looking at these results by grade level (Table 4.4), of the 37 sixth grade students, 37.8% 

were PrePWS, 54.1% had constructed at most a PWS, 8.1% had constructed at most a MSUF, 

and 0% had constructed a MSPF or a GMSF. Of the 77 seventh grade students, 27.3% were 

PrePWS, 58.4% had constructed at most a PWS, 10.4% had constructed at most a MSUF, 2.6% 

had constructed at most a MSPF, and 1.3% had constructed a GMSF. Of the 38 eighth grade 

students, 27.6% were PrePWS, 50.7% had constructed at most a PWS, 14.5% had constructed at 

most a MSUF, 3.3% had constructed at most a MSPF, and 3.9% had constructed a GMSF. 

Looking at the patterns within the data, it appears that as students progress in grade level, their 

fraction schemes advance developmentally. As students progress in grade level, the percentage 

of students who had constructed a more sophisticated fraction scheme increases, and the 

percentage of students who had constructed a less sophisticated fraction scheme decreases. 
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 Although all sixth graders were enrolled in Math 6, it is important to note that some 

seventh graders were enrolled in Algebra, and therefore it may be helpful to also look at the 

distribution of fraction schemes by course. Percentages by course are provided in Table 4.5. 

Results show that of the 69 students enrolled in Math 7, 29% were PrePWS, 60.9% had 

constructed at most a PWS, 10.1% had constructed at most a MSUF, and 0% had constructed a 

MSPF or a GMSF. Of the 46 students enrolled in Algebra, 17.4% were PrePWS, 32.6% had 

constructed at most a PWS, 26.1% had constructed at most a MSUF, 10.9% had constructed at 

most a MSPF, and 13% had constructed a GMSF. Again, looking at the patterns within the data, 

it appears that as students progress in course level, their fraction schemes advance 

developmentally. As students progress in course level, the percentage of students who had 

constructed a more sophisticated fraction scheme increases, and the percentage of students who 

had constructed a less sophisticated fraction scheme decreases. 

Table 4.4 

Overall Fraction Schemes by Grade 

 6th 7th 8th 

 Frequency Percent Frequency Percent Frequency Percent 

PrePWS 14 37.8% 21 27.3% 7 27.6% 

PWS 20 54.1% 45 58.4% 12 50.7% 

MSUF 3 8.1% 8 10.4% 11 14.5% 

MSPF 0 0% 2 2.6% 3 3.3% 

GMSF 0 0% 1 1.3% 5 3.9% 

Total 37 100% 77 100% 38 100% 
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Table 4.5 

Overall Fraction Schemes by Course 

 Math 6 Math 7 Algebra 

 Frequency Percent Frequency Percent Frequency Percent 

PrePWS 14 37.8% 20 29% 8 17.4% 

PWS 20 54.1% 42 60.9% 15 32.6% 

MSUF 3 8.1% 7 10.1% 12 26.1% 

MSPF 0 0% 0 0% 5 10.9% 

GMSF 0 0% 0 0% 6 13% 

Total 37 100% 69 100% 46 100% 

 

Quantifications of Angularity Results 

 This part of the quantitative phase of the study also involved 152 students in sixth, 

seventh, and eighth grade. The purpose of using the QAI was to assign a quantification of 

angularity to each student: gross, intensive, extensive, ratio, or rate. In order to determine a 

student’s overall categorization, students were assigned to the highest quantifications for which it 

was inferred they had constructed. For example, students who did not construct any 

quantifications were categorized as having a gross quantification. The percentage of students in 

each quantification are presented in Table 4.6. Results show that of the 152 students, 32.2% had 

constructed at most a gross quantification, 31.6% had constructed at most an intensive 

quantification, 24.3% had constructed at most an extensive quantification, 6.6% had constructed 

at most a ratio quantification, and 5.3% had constructed a rate quantification. These results 

indicate that the majority (88.1%) of these middle school students had constructed at most an 
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extensive quantification. This also indicates that only 11.9% of the students were able to 

understand the multiplicative relationship between angles and circles. 

Table 4.6 

Students’ Overall Quantifications of Angularity 

 Frequency Percent 

Gross 49 32.2% 

Intensive 48 31.6% 

Extensive 37 24.3% 

Ratio 10 6.6% 

Rate 8 5.3% 

Total 152 100% 

 

 Looking at these results in terms of grade level (Table 4.7), of the 36 sixth grade students, 

50% had constructed at most a gross quantification, 30.6% had constructed at most an intensive 

quantification, 19.4% had constructed at most an extensive quantification, and 0% had 

constructed a ratio or rate quantification. Of the 75 seventh grade students, 37.3% had 

constructed at most a gross quantification, 32% had constructed at most an intensive 

quantification, 20% had constructed at most an extensive quantification, 5.3% had constructed at 

most a ratio quantification, and 5.3% had constructed a rate quantification. Of the 41 eighth 

grade students, 7.3% had constructed at most a gross quantification, 31.7% had constructed at 

most an intensive quantification, 36.6% had constructed at most an extensive quantification, 

14.6% had constructed at most a ratio quantification, and 9.8% had constructed a rate 

quantification. Examining the patterns within the distribution of quantifications of angularity 

across courses, it appears that as students progress in grade level, their quantifications advance 
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developmentally. As students progress in grade level, the percentage of students who had 

constructed a more sophisticated quantification increases, and the percentage of students who 

had constructed a less sophisticated quantification decreases.  

 Again, it is important to note that some seventh graders were enrolled in Algebra, and 

therefore it may be helpful to also look at the distribution of quantifications of angularity across 

courses. Percentages for each quantification by course are provided in Table 4.8. Results show 

that of the 67 students enrolled in Math 7, 41.8% had constructed at most a gross quantification, 

32.8% had constructed at most an intensive quantification, 19.4% had constructed at most an 

extensive quantification, 3% had constructed at most a ratio quantification, and 3% had 

constructed a rate quantification. Of the 49 students enrolled in Algebra, 6.2% had constructed at 

most a gross quantification, 30.6% had constructed at most an intensive quantification, 34.7% 

had constructed at most an extensive quantification, 16.3% had constructed at most a ratio 

quantification, and 12.2% had constructed a rate quantification. Again, the patterns within this 

data indicate that as students progress in course level, their quantifications advance 

developmentally. As students progress in course level, the percentage of students who had 

constructed a more sophisticated quantification increases, and the percentage of students who 

had constructed a less sophisticated quantification decreases. 
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Table 4.7 

Overall Quantifications of Angularity by Grade 

 6th 7th 8th 

 Frequency Percent Frequency Percent Frequency Percent 

Gross 18 50% 28 37.3% 3 7.3% 

Intensive 11 30.6% 24 32% 13 31.7% 

Extensive 7 19.4% 15 20% 15 36.6% 

Ratio 0 0% 4 5.3% 6 14.6% 

Rate 0 0% 4 5.3% 4 9.8% 

Total 36 100% 75 100% 41 100% 

 

Table 4.8 

Overall Quantifications of Angularity by Course 

 Math 6 Math 7 Algebra 

 Frequency Percent Frequency Percent Frequency Percent 

Gross 18 50% 28 41.8% 3 6.2% 

Intensive 11 30.6% 22 32.8% 15 30.6% 

Extensive 7 19.4% 13 19.4% 17 34.7% 

Ratio 0 0% 2 3% 8 16.3% 

Rate 0 0% 2 3% 6 12.2% 

Total 36 100% 67 100% 49 100% 
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Relationship between Fraction Schemes and Quantifications of Angularity 

 Before I investigated the relationship between students’ measurement schemes for 

fractions and their quantifications of angularity, it was necessary to investigate the hypothesized 

hierarchy underlying both frameworks (see Figure 2.25). Although the results from the 

quantitative surveys provided preliminary evidence that there was a developmental progression 

for both the fraction schemes and quantifications of angularity, more investigation was needed. 

Therefore, students’ scores for each fraction scheme were correlated with one another. Students’ 

scores for each quantification of angularity were also correlated with one another. Results of the 

fraction schemes correlations are presented in Table 4.9. Results of the quantifications of 

angularity correlations are presented in Table 4.10.  

 Examining the correlations for both frameworks, the largest correlations occur closest to 

the main diagonal. Moving further away from the main diagonal, the correlations become 

smaller, indicating a simplex correlation structure (Davison et al., 1978; Guttman, 1955). This 

structure pattern provides evidence to indicate that there is an underlying order for these fraction 

schemes and quantifications of angularity, further indicating that these frameworks are 

hierarchical. Therefore, it was feasible to use students’ highest attributed fraction scheme and 

highest attributed quantifications of angularity in future analyses.  
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Table 4.9 

Correlation Between Each Fraction Scheme 

 PWS MSUF MSPF GMSF 

PWS 1 .171* .168* .136 

MSUF .171* 1 .486** .310** 

MSPF .168* .486** 1 .522** 

GMSF .136 .310** .522** 1 

Frequency 105 32 9 6 

Percentage 67.7% 20.6% 5.8% 3.9% 

**Indicates significance at 0.01 level 

*Indicates significance at 0.05 level 

 

Table 4.10 

Correlation Between Each Quantification of Angularity 

 Gross Intensive Extensive Ratio Rate 

Gross 1 -.971** -.490** -.237** -.163* 

Intensive -.971** 1 .446** .244** .167* 

Extensive -.490** .446** 1 .301** .145 

Ratio -.237** .244** .301** 1 .495** 

Rate -.163* .167* .145 .495** 1 

Frequency 49 101 51 16 8 

Percentage 31.6% 65.2% 32.9% 10.3% 5.2% 

**Indicates significance at 0.01 level 

*Indicates significance at 0.05 level  
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 To examine the relationship between students’ measurement schemes for fractions and 

their quantifications of angularity, student data from each instrument was paired to provide two 

data points for each student. As described above 152 students completed the MSFI and the QAI. 

However, these were not the same 152 students. A total of 155 unique students completed either 

the MSFI or the QAI. Of these 155, three students did not complete the MSFI and three different 

students did not complete the QAI. For this part of data analysis, students with missing data were 

removed. There were a total of 149 students with matching student data from both the MSFI and 

QAI. Earlier in Chapter 2, I hypothesized that a concept of measurement precedes the ability to 

quantify angularity using additive units, and therefore a measurement concept is necessary for 

the construction of more sophisticated quantifications of angularity. I also claimed that these 

measurement schemes for fractions could be used to categorize students’ concepts of 

measurement. Therefore, the fraction schemes are treated theoretically as the independent 

variable and quantifications of angularity are treated as the dependent variable.  

 The association between fraction schemes and quantifications of angularity was tested 

using the Goodman and Kruskal’s Gamma (G) statistic. This association was based on students’ 

highest attributed fraction scheme and quantification of angularity. It is important to note that 

students who had not constructed any fraction schemes were categorized as PrePWS and 

students who had not constructed any quantifications of angularity were attributed a gross 

quantification. Results indicate that there is a strong, positive and statistically significant 

association (G=.643, p<.001) between students’ fraction schemes and their quantifications of 

angularity. In addition, a Spearman Rank Correlation was also calculated. Results indicate, 

again, that there is a positive and statistically significant correlation (rs=.526, p<.001) between 

students’ fraction schemes and their quantifications of angularity. Based on these results, 
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students’ construction of more sophisticated fraction schemes relate to the construction of more 

sophisticated quantifications of angularity.  

 A contingency table, along with frequencies, is presented in Table 4.11 to show the 

distribution of students’ highest attributed fraction scheme and highest attributed quantification 

of angularity. Examining the distribution, consistent with the correlation coefficients, lower 

fraction schemes tend to be associated with less sophisticated quantifications of angularity, and 

the higher fractions schemes tend to be associated with more sophisticated quantifications of 

angularity. Looking at the patterns of data, no students who were PrePWS had constructed a ratio 

or rate quantification, and no students who had constructed a MSPF or GMSF had constructed a 

gross or intensive quantification. Furthermore, students who had constructed a MSUF or higher 

tend to construct more sophisticated quantifications of angularity.  

Table 4.11 

Frequencies and Associated Percentages by Overall Fraction Scheme and Quantification 

 Gross Intensive Extensive Ratio Rate Total 

PrePWS 
21 

52.5% 

15 

37.5% 

4 

10% 

0 

0% 

0 

0% 
40 

PWS 
26 

34.2% 

28 

36.8% 

16 

21.1% 

4 

5.3% 

2 

2.6% 
76 

MSUF 
2 

9.1% 

3 

13.6% 

11 

50% 

3 

13.6% 

3 

13.6% 
22 

MSPF 
0 

0% 

0 

0% 

3 

60% 

2 

40% 

0 

0% 
5 

GMSF 
0 

0% 

0 

0% 

2 

33.3% 

1 

16.7% 

3 

50% 
6 

Total 49 46 36 10 8 149 
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 It is important to note that the finding that four students were PrePWS but had also 

constructed an extensive quantifications suggested a developmental inconsistency. How could 

students without a MUSF construct an extensive quantification of angularity? The surveys of 

these four students were reexamined to investigate potential misclassification of these students. 

One student was able to correctly solve two PWS tasks, one MSUF, and one GMSF task. 

Although he completed all tasks on the survey, his work demonstrated inconsistency in his 

thinking and responses. Another student was able to correctly solve two PWS tasks, one MSUF, 

two splitting, and one MSPF task. Again, even though this student would solve the more 

complex tasks, he did not answer some of the tasks, and only drew pictures. The third student 

only correctly solve one MUSF and one splitting task. This student skipped many tasks on the 

survey; for example, he would solve two tasks then skip two more, but never skipped more than 

two pages. Since he did not answer many tasks, it is unclear that if he had completed the tasks 

this would have provided evidence that he had indeed constructed a more sophisticated fraction 

scheme. The fourth student was able to correctly solve one PWS task, three MSUF tasks, and 

two splitting tasks. She was similar to the third student and skipped several tasks. Again, it is 

unclear that if she had completed those tasks she would have provided evidence that she had 

constructed a more sophisticated fraction scheme. For these students, it appears that they were 

able to solve more complex tasks, but their thinking and effort was not consistent across the 

survey. Therefore, the fact that these students were classified as PrePWS might be explained as 

measurement error associated with the survey. 

 Based on my new reorganization hypothesis, students need to have constructed at least a 

MSUF, a measurement concept of fractions, to construct of an extensive quantification. Once 

students have a measurement concept, indicated by at least a MSUF, they are then able to 
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construct more sophisticated quantifications of angularity, implying that a MSUF precedes the 

construction of a ratio and rate quantification. In order to further examine the relationship 

between students’ fractions schemes and quantifications of angularity, each of the individual 

fraction scheme scores were correlated with students’ highest quantifications of angularity. This 

was done to potentially better pinpoint the developmental progression associated with the 

fraction schemes and the necessary precursors for the construction of a more sophisticated 

quantification of angularity. Frequencies were entered into 2x5 contingency tables, and G was 

calculated to examine the magnitude of the relationship between each fraction scheme and 

students’ highest quantification of angularity. A contingency table that shows the distribution of 

each fraction scheme and quantifications of angularity is provided in Table 4.12.  

 Results indicate that there is a positive and statistically significant correlation (G=.488, 

p<.001) between PWS and the quantifications of angularity. There is a strong, positive and 

statistically significant correlation (G=.778, p<.001) between MSUF and the quantifications of 

angularity. There is a strong, positive and statistically significant correlation (G=.702, p<.001) 

between splitting and the quantifications of angularity. There is a strong, positive and statistically 

significant correlation (G=.831, p<.005) between MSPF and the quantifications of angularity. 

There is a strong, positive and statistically significant correlation (G=.914, p<.05) between 

GMSF and the quantifications of angularity. These positive correlations indicate that students 

who construct more sophisticated fraction schemes tend to construct more sophisticated 

quantifications of angularity. Examining the distribution, results show that lower fraction 

schemes are associated with less sophisticated quantifications of angularity, and the higher 

fractions schemes are associated with more sophisticated quantifications of angularity. 

Moreover, no students who had constructed a PWS had constructed a ratio or rate quantification. 



 

160 

Of the students who had constructed a PWS, about 56% of them had not constructed an 

extensive quantification or higher. It can also be seen that MSUF and extensive are related; once 

students have constructed a MSUF, about 85% of them construct an extensive quantification of 

angularity or higher. Of the students who had not constructed a MSUF, 77% of them constructed 

an intensive quantification or below. This provides evidence that a measurement concept is 

necessary for the construction of at least an extensive quantification of angularity. Therefore, a 

MSUF is important for students to construct more sophisticated quantifications of angularity. 

Table 4.12 

Frequencies and Associated Percentages by Each Fraction Scheme and Overall Quantification 

  Gross Intensive Extensive Ratio Rate Total 

PWS 

Not 

Constructed 

22 

48.9% 

15 

33.3% 

8 

17.8% 

0 

0% 

0 

0% 
45 

Constructed 
27 

26.0% 

31 

29.8% 

28 

26.9% 

10 

9.6% 

8 

7.7% 
104 

MSUF 

Not 

Constructed 

47 

40.2% 

43 

36.8% 

20 

17.1% 

4 

3.4% 

3 

2.6% 
117 

Constructed 
2 

6.3% 

3 

9.4% 

16 

50% 

6 

18.8% 

5 

15.6% 
32 

MSPF 

Not 

Constructed 

49 

35.0% 

46 

32.9% 

31 

22.1% 

7 

5% 

7 

5% 
140 

Constructed 
0 

0% 

0 

0% 

5 

55.6% 

3 

33.3% 

1 

11.1% 
9 

GMSF 

Not 

Constructed 

49 

34.3% 

46 

32.2% 

34 

23.8% 

9 

6.3% 

5 

3.5% 
143 

Constructed 
0 

0% 

0 

0% 

2 

33.3% 

1 

16.7% 

3 

50% 
6 

 

 Based on these results indicating that a MSUF is necessary for the construction of at least 

an extensive quantification, each measurement scheme for fractions was correlated with each of 

the more sophisticated quantifications of angularity (i.e., extensive, ratio, and rate) to further 
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examine this relationship. Results of these correlations are presented in Table 4.13. Since these 

were dichotomous scores for each fraction scheme and quantification, it was necessary to 

calculate Phi coefficients. Results indicate that there is a strong, positive correlation between 

MSUF and extensive (Φ=.494, p<.001) which was also statistically significant. Although all 

other correlations, except for MSPF and rate, were also statistically significant, this correlation 

between MSUF and extensive was the strongest. This correlation provides evidence that MSUF 

is an important stage in this developmental progression for the construction of more 

sophisticated quantifications of angularity. Students who have not constructed a MSUF tend to 

not construct an extensive quantification. However, students who have constructed a MSUF tend 

to construct an extensive quantification. 

Table 4.13 

Correlation Between Each Fraction Scheme and Each Quantification of Angularity 

 Extensive Ratio Rate 

MSUF .494** .346* .238** 

MSPF .297** .276** .065 

GMSF .216** .370** .406** 

Frequency 50 16 8 

Percentage 33.6% 10.7% 5.4% 

**Indicates significance at 0.01 level 

*Indicates significance at 0.05 level 
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Transition from Additive to Multiplicative Reasoning in the Context of Angles 

 Based on the theoretical framework for the quantifications of angularity, an extensive 

quantification requires both the partitioning and iterating operations which enables students to 

reason additively when comparing angles. After students have developed an additive way to 

compare angles, they move to using multiplicative units for comparing of angles. However, the 

idea that students jump directly from using additive units to using multiplicative units seemed 

like a stretch. Therefore, I hypothesized that before students construct a ratio quantification, they 

need to construct the splitting operation in the context of angles (see Figure 2.25). For a ratio 

quantification, students rely on the multiplicative relationship between those partitions/iterations 

and the given angles, therefore splitting needs to be a precursor. Students must first be able to 

“split” in the context of angles, recognizing what it means to split the “openness” of an angle. In 

summary, an extensive quantification of angularity precedes the construction of the splitting 

operation in the context of angles. The splitting operation in the context of fractions precedes the 

splitting operation in the context of angles. Once students have this splitting operation 

concerning both fractions and angles, they are then able to think multiplicatively and construct a 

ratio quantification, which can also be extended to a rate quantification. However, angular 

splitting and a ratio quantification may co-develop, but angular splitting should precede a rate 

quantification. By examining the role that splitting in each context plays in this progression, we 

can better understand how students move from additive to multiplicative reasoning in the context 

of angles. 

 The first examination explored the relationship between splitting in the context of 

fractions, denoted Splitting F, and splitting in the context of angles, denoted Splitting A. 

Frequencies were entered into a 2x2 contingency table (Table 4.14), and G was calculated to 
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examine the magnitude of the relationship between fractional and angular splitting. Results 

indicate that there is a strong, positive and statistically significant correlation (G=.815, p<.001) 

between fractional splitting and angular splitting. Looking at the distribution of frequencies, only 

13.5% of students who had not constructed fractional splitting were able to construct angular 

splitting. However, 60.5% of students who had constructed fractional splitting were able to 

construct angular splitting. This indicates that students’ construction of fractional splitting is 

related to the construction of angular splitting.  

Table 4.14 

Frequencies and Associated Percentages by Fractional Splitting and Angular Splitting 

  Splitting A  

  Not Constructed Constructed Total 

Splitting F 

Not 

Constructed 

96 

86.5% 

15 

13.5% 
111 

Constructed 
15 

39.5% 

23 

60.5% 
38 

Total  111 38 149 

Note: G=.815, p<.001 

 The second examination explored the relationship between splitting in the context of 

angles, denoted Splitting A, and the quantifications of angularity. The goal was to determine if 

angular splitting was necessary for the construction of more sophisticated quantifications of 

angularity. Frequencies were entered into a 2x5 contingency table (Table 4.15), and G was 

calculated to examine the magnitude of the relationship. Results indicate that there is a strong, 

positive and statistically significant correlation (G=.913, p<.001) between angular splitting and 

the quantifications of angularity. Looking at the distribution of frequencies, 81% of students who 

had not constructed angular splitting had a gross or intensive quantification. No students who 
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had not constructed angular splitting had a rate quantification, and only 3 had a ratio. Of the 

students who had constructed angular splitting, 86.8% were extensive or above. This indicates 

that students’ construction of angular splitting is related to the construction of more sophisticated 

quantifications of angularity.  

Table 4.15 

Frequencies and Associated Percentages by Angular Splitting and Overall Quantification of 

Angularity 

  Gross Intensive Extensive Ratio Rate Total 

Splitting A 

Not 

Constructed 

49 

44.1% 

41 

36.9% 

18 

16.2% 

3 

2.7% 

0 

0% 
111 

Constructed 
0 

0% 

5 

13.2% 

18 

47.4% 

7 

18.4% 

8 

21.1% 
38 

Total  49 46 36 10 8 149 

Note: G=.913, p<.001 

 To help examine this developmental progression for students’ ability to construct more 

sophisticated quantifications, the extensive quantification was correlated with students’ angular 

splitting. The goal was to determine if an extensive quantification was necessary for the 

construction of angular splitting. Frequencies were entered into a 2x2 contingency table (Table 

4.16), and G was calculated to examine the magnitude of the relationship. Results indicate that 

there is a strong, positive and statistically significant correlation (G=.865, p<.001) between 

extensive quantification and angular splitting. Looking at the distribution of frequencies, only 

9% of students who had not constructed an extensive quantification had constructed angular 

splitting. Of the students who had constructed an extensive quantification, 42.0% had not 

constructed angular splitting. This indicates that students’ tend to construct an extensive 

quantification before they are able to construct angular splitting. 



 

165 

Table 4.16 

Frequencies and Associated Percentages by Extensive and Angular Splitting 

  Splitting A  

  Not Constructed Constructed Total 

Extensive 

Not 

Constructed 

90 

90.9% 

9 

9.1% 
99 

Constructed 
21 

42.0% 

29 

58.0% 
50 

Total  111 38 149 

Note: G=.865, p<.001 

 The second examination explored the relationship between angular splitting and a ratio 

and rate quantification of angularity. The goal was to determine if angular splitting was 

necessary for the construction of a ratio or rate quantification. Frequencies were entered into a 

2x2 contingency tables (Table 4.17 and Table 4.18), and G was calculated to examine the 

magnitude of the relationship. Results indicate that there is a strong, positive and statistically 

significant correlation between angular splitting and a ratio quantification (G=.899, p<.001) and 

between angular splitting and a ratio quantification (G=1.00, p<.001). Looking at the 

distribution of frequencies, only 2.7% of students who had not constructed angular splitting also 

had constructed a ratio quantification. Of the students who had constructed angular splitting, 

65.8% had not constructed a ratio quantification. This indicates that students’ construction of 

angular splitting precedes the construction of a ratio quantification of angularity. Exploring the 

relationship between angular splitting and a rate quantification, students who had not constructed 

angular splitting had not constructed a rate quantification. Of the students who had constructed 

angular splitting, 78.9% had not constructed a rate quantification. Again, this provides evidence 

that angular splitting is necessary for the construction of a ratio and rate quantification. 
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Table 4.17 

Frequencies and Associated Percentages by Angular Splitting and Ratio 

  Ratio  

  Not Constructed Constructed Total 

Splitting A 

Not 

Constructed 

108 

97.3% 

3 

2.7% 
111 

Constructed 
25 

65.8% 

13 

34.2% 
38 

Total  133 16 149 

Note: G=.899, p<.001 

Table 4.18 

Frequencies and Associated Percentages by Angular Splitting and Rate 

  Rate  

  Not Constructed Constructed Total 

Splitting A 

Not 

Constructed 

111 

100% 

0 

0% 
111 

Constructed 
30 

78.9% 

8 

21.1% 
38 

Total  141 8 149 

Note: G=1.00, p<.005 

Phase Two Results 

 Phase Two consisted of clinical interviews with students who participated in the QAI. 

The purpose of the clinical interviews was to investigate students’ ways of thinking about tasks 

and their related actions and operations and to classify students into stages of quantification of 

angularity with increased accuracy. These classifications then served as the criterion measure for 

comparison to the results from the QAI, for evaluating the relationship to other measures (Krupa 
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et al., 2019). That is, the classifications from the interviews were correlated with classifications 

from the QAI to determine the magnitude of the association, which provided a measure of 

criterion validity for the classifications based on the QAI. There were a total of 22 students who 

participated in these clinical interviews.  

 To evaluate interrater reliability, weighted Kappa (𝜅𝜔; Cohen, 1968) was calculated for 

the independent ratings based on independently observing the interviews. 𝜅 scores for the overall 

quantification of angularity classification for each student interviewed was .809 ( Table 4.19). 

Landis and Koch (1977) state that 𝜅 scores between .81 and 1.00 are “almost perfect”, between 

.61 and .80 are “substantial”, between .41 and .60 are “moderate” (p. 165). Accordingly, the 𝜅𝜔 

scores for the interview classifications were almost perfect. The two raters disagreed on only 

four students’ classifications. The two raters then reconciled these four disagreements and 

decided on a single classification. Results of the interview coding are presented in Table 4.20. Of 

the 22 students, 36.4% students were attributed a gross quantification, 31.8% were attributed an 

intensive, 22.7% were attributed an extensive, 0% were attributed a ratio, and 9.1% were 

attributed a rate. 

Table 4.19 

Weighted Kappa Scores for Interview Coding 

Instrument 
Number of 

Disagreements 

Number of 

Agreements 

Weighted Kappa 

Score 

QAI 4 18 .809 
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Table 4.20 

Interview Quantification of Angularity 

 Frequency Percent 

Gross 8 36.4% 

Intensive 7 31.8% 

Extensive 5 22.7% 

Ratio 0 0% 

Rate 2 9.1% 

Total 22 100% 

 

 These classifications from the interviews were then compared to students’ quantifications 

based on the QAI. A validity coefficient, Gamma, was calculated between students’ 

classifications from the interview and the QAI, which provided a measure of criterion validity. 

This provided a comparison between students’ QAI classifications and their interview 

classifications, the criterion (Kane, 2013). Results indicate that there is a statistically significant 

positive relationship between students’ interview quantification and their QAI quantification 

(G=.623, p<.05). A Spearman Rank Correlation was also calculated, indicating that there is a 

positive correlation between students’ interview quantification and their QAI quantification, 

which was statistically significant (rs=.546, p<.01). These validity coefficients represent a strong 

association between students’ classifications from the QAI and the interview (Cohen, 1992). This 

provides evidence that the scores from the QAI are valid for predicting students’ quantifications 

of angularity. 

 Further assessing this association, the difference between students’ interview 

quantifications and QAI quantifications was calculated to determine how the two classifications 
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differed. These differences are presented in Table 4.21. Negative scores indicate that students’ 

interview quantifications were lower than their QAI quantifications, and positive scores indicate 

that their interview quantifications are higher than their QAI quantifications. For example results 

show that for two students, students were attributed a quantification that was two stages higher 

than their attributed quantification from the interview. These two students were assigned a gross 

quantification from the interview, but their QAI indicated that they had constructed an extensive 

quantification. Overall, 59.1% of students’ interview quantifications were the same as their QAI 

quantification. Furthermore, 86.4% of students’ interview quantifications were equal or within 

one stage of their QAI quantification. Only 3 (13.6%) of the students’ interview quantifications 

were two stages different. 

Table 4.21 

Difference Between Interview and QAI Quantification 

 Frequency Percent 

-2 2 9.1% 

-1 2 9.1% 

0 13 59.1% 

1 4 18.2% 

2 1 4.5% 

Total 22 100% 

 

 A contingency table is presented in Table 4.22 to show the alignment between students’ 

interview quantification and their QAI quantification and to help further describe this 

association. Looking at the distribution, there were two students who were attributed ratio based 

on the QAI, but who were not attributed ratio from the interviews. As noted above, there were 
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two students who were assigned a gross quantification from the interview, but their QAI 

indicated that they had constructed an extensive quantification. Another student who was 

attributed a gross quantification in the interview was given an intensive quantification on the 

QAI. Two students who were attributed an intensive from the interview but two were given gross 

on the QAI. There was more variability in the extensive quantification, as one student was given 

gross, one an intensive, and another ratio based on the QAI. For rate, there was one student who 

had rate from the interview but ratio on the QAI. The relative consistency of these classifications 

can also be seen in Table 4.22 by the fact that the ratings lie close to the diagonal consistent with 

the overall Kappa score. Overall, the criterion measure, students’ interview classifications, had a 

strong association to the test scores, students’ QAI classifications. This provides evidence that 

the scores from the QAI are valid for predicting students’ quantifications of angularity (Kane, 

2013; Krupa et al., 2019). 

Table 4.22 

Frequencies Between Interview Quantification and QAI Quantification 

  QAI  

Interview 

 Gross Intensive Extensive Ratio Rate Total 

Gross 5 1 2 0 0 8 

Intensive 2 5 0 0 0 7 

Extensive 1 1 2 1 0 5 

Ratio 0 0 0 0 0 0 

Rate 0 0 0 1 1 2 

 Total 8 7 4 2 1 22 
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Chapter 5: Conclusions 

 The purpose of this study was to examine the relationship between students’ concepts of 

measurement and their concepts of angle measurement. Specifically, the goal was to document 

sixth, seventh, and eighth grade students’ measurement schemes for fractions and their 

quantifications of angularity and then investigate the relationship between them. This research 

was guided by the following question: What is the relationship between middle school students’ 

measurement schemes for fractions and their quantifications of angularity? This final chapter 

will present a summary of the findings and a discussion of the results from the study to provide 

an answer to the research question. Insights, contributions, and implications for the field of 

mathematics education will be offered to better understand the results of this study. Finally, 

suggestions for future work concerning the teaching and learning of angles will be provided. 

Students’ Measurement Schemes for Fractions 

 From the quantitative survey of 152 sixth, seventh, and eighth grade students, results 

show that the majority of these middle school students had only constructed at most a PWS (see 

Table 4.2). This also indicates that less than one fourth of the students had constructed a more 

sophisticated fraction scheme, moving beyond part-whole understanding. This result supports 

prior research that shows that most students typically develop a part-whole understanding by the 

fifth grade (Norton, 2008; Olive, 1999; Wilkins & Norton, 2018). For example, Boyce and 

Norton (2016) found that about 54% of the sixth graders they interviewed had not constructed a 

measurement meaning of fractions.  

 Students begin learning about fractions as parts of wholes in third grade (CCSSI, 2010). 

This understanding is then related to a measurement concept of fractions in third grade, where a 

fraction a/b is understood as “a parts of size 1/b” (CCSSI, 2010, p. 24). Research suggests that a 
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measurement concept of fractions is necessary for students’ to understand improper fractions, 

more sophisticated concepts of fractions, as well as more complex mathematical concepts and 

topics (Hackenberg et al., 2016; Kieren, 1980; Lamon, 2007; Thompson & Saldanha, 2003; 

Wilkins & Norton, 2018). However, looking at Virginia’s curriculum standards, students begin 

learning about fraction as parts of wholes in first grade (VDOE, 2016b). Although they note that 

fractions have different meanings, such as measurement (VDOE, 2016b), this measurement 

concept is not directly addressed in any of the standards and the notion of part-whole is 

emphasized. This could possibly be related to the results from this study, which indicate that 

most of these middle school students had not developed a measurement concept of fractions. 

Also, research shows that most textbooks in the United States emphasize the part-whole notion 

of fractions and typically do not move beyond that notion (Watanabe, 2007). This limited view 

of fractions as parts of wholes prevents students from understanding fractions as other constructs, 

such as measures (Hackenberg et al., 2016; Thompson & Saldanha, 2003; Wilkins & Norton, 

2018). Taken together, this focus on a part-whole understanding of fractions may be related to 

students’ lack of the development of a measurement concept of fractions. 

 Examining students’ fraction schemes by grade level, results show that the majority of 

each grade level was comprised of students categorized as PrePWS or PWS (see Table 4.4). In 

fact, 91.9% of sixth grade, 85.7% of seventh grade, and 78.3% of eighth grade students were 

PrePWS or PWS. Again, the fact that Virginia’s curriculum standards do not emphasize a 

measurement meaning of fractions may help explain why the majority of these middle school 

students were unable to construct a fraction scheme higher than PWS. However, what is 

concerning is that, 37.8% of sixth graders, 27.3% of seventh graders, and 28.6% of eighth 

graders were PrePWS. This indicates that almost a third of students in each grade level had no 
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concept of fraction, and could not understand fractions as parts of wholes. Overall, less than 10% 

of sixth graders, 15% of seventh graders, and 22% of eighth graders had a measurement concept 

of fractions.  

 Further examining these results, less than 10% of sixth graders had constructed a MSUF 

and could work with an iterable unit of 1. This percentage improved for seventh and eighth 

grade, but still was less than 15%. None of the sixth graders, and less than 5% of seventh and 

eighth graders were able to generalize their scheme from unit fractions to proper fractions to 

develop a MSPF. Also, none of the sixth graders, less than 2% of seventh, and less than 4% of 

eighth graders had constructed a GMSF. Comparing these results to other studies, Wilkins and 

Norton found that within four different studies, over 60% of sixth graders had constructed a 

MSUF (Norton & Wilkins, 2009, 2013; Norton et al., 2018; Wilkins & Norton, 2011). In two 

other studies, they found that 61% of one group of seventh graders and 65% of another group 

had constructed a MSUF (Norton & Wilkins, 2010, 2013). From their overall results of these six 

studies, Wilkins and Norton (2013, 2018) determined that students who had constructed a MSUF 

by the end of sixth grade were 13 times the odds of students who had not constructed a MSUF to 

construct the splitting operation. After the construction of the splitting operation, students are 

enabled to construct more sophisticated fraction schemes. Since most of the students in this study 

did not have a measurement concept of fractions, and had not constructed a MSUF, they are less 

likely to develop a more sophisticated fraction scheme by the end of their next grade level.  

  Looking at students’ fraction schemes by course, results also indicate that the majority of 

students enrolled in Math 6 and Math 7 were PrePWS or PWS, and 50% of students enrolled in 

Algebra were PrePWS or PWS (see Table 4.5). Again, these percentages indicate that the 

majority of students do not have a measurement concept of fractions, and have not moved 
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beyond a part-whole understanding of fractions. What is also concerning is that 17.4% of 

Algebra students were PrePWS (see Table 4.5), meaning they had no concept of fraction, and did 

not understand fractions as parts of wholes. Due to this lack in understanding, these students are 

significantly less likely to develop a more sophisticated fraction scheme by the end of their next 

grade level, possibly limiting students’ understanding of more complex mathematical concepts 

and topics (Hackenberg et al., 2016; Kieren, 1980; Lamon, 2007; Thompson & Saldanha, 2003; 

Wilkins & Norton, 2018).  

 Looking at the distribution of these results across grade level and course, it is evident that 

there is a developmental progression for these fraction schemes. Results indicate that as students 

progress in grade level and more advanced courses, their fraction schemes advance 

developmentally. Moving from sixth to seventh to eighth grade, the percentages of the lower 

fraction schemes (i.e., PrePWS and PWS) most often become smaller and the percentages of the 

higher fraction schemes (i.e., MSUF, MSPF, and GMSF) become larger. A similar pattern is 

seen when comparing Math 6 to Math 7 to Algebra. Further examining this progression, a 

hierarchy can be seen through the correlation table (see Table 4.9). Results indicate that the 

fraction schemes represent a simplex correlation structure, meaning there is an order for these 

fraction schemes (Davison, et al., 1978; Guttman, 1955), further indicating that they are 

hierarchical. This provides further support for Wilkins and Norton’s (2018) claim that these 

fraction schemes represent a hierarchy and learning progression. 

 Overall, the results of this study show that the majority of these middle school students 

do not possess a measurement concept of fractions. Also, there were many students who do not 

possess any fraction concepts. Even though Virginia’s curriculum standards do not emphasize a 

measurement meaning of fractions and focus mainly on part-whole understanding, it is alarming 
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that such a large percentage of students either do not have a measurement concept of fractions or 

do not have a fraction concept at all. Moving forward, these students are less likely to develop 

more sophisticated fraction schemes and therefore continue to lag behind (Wilkins & Norton, 

2013, 2018). 

Students’ Quantifications of Angularity 

 From the quantitative survey of 152 sixth, seventh, and eighth grade students, results 

show that the majority of these middle school students had constructed at most an intensive 

quantification (see Table 4.6). This indicates that about two thirds of the students did not use 

units when comparing angles; they used visual comparisons or nonadditive units. Less than one 

quarter of the students had constructed additive units for comparing angles, and about 12% of 

students had constructed multiplicative units and could relate angles to circles. This aligns with 

Bütüner and Filiz’s (2016) finding indicating that many high achieving sixth grade students 

limited a static conception of angles, with only 36% of students being able to correctly identify 

angles and 39% able to correctly compare the size of angles. This also aligns with prior research 

that shows that some students think that angle measurement can be determined by measuring the 

side lengths of the angles, comparing the size of the arc representing the angle, or simply 

measuring the linear distance between the sides of the angle (Barabash, 2017; Bütüner & Filiz, 

2016; Clements & Battista, 1989, 1990; Clements, 2003; Clements et al., 1996; Piaget et al., 

1981/1960).  

 Although standards documents emphasize understanding angles within the context of 

circles in fourth (CCSSI, 2010) and fifth grade (VDOE, 2016a), results of this study indicate that 

students are not making that connection and are unsuccessful in quantifying angularity. 

However, research indicates that quantifying angularity is no easy task for adults, let alone 
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children. For example, prior research shows that undergraduate and pre-service teachers struggle 

to connect angles to circles. Moore (2013) found that undergraduate precalculus students focused 

mainly on degrees for measuring and comparing angles, and struggled when no units were given. 

In another study, Hardison and Lee (2019) found that 59% of pre-service elementary teachers did 

not use units for comparing angles. Taken in tandem, these results indicate that although 

curriculum standards may emphasize angle measurement as a fractional amount of a circle 

(CCSSI, 2010; VDOE, 2016a), quantifying angularity remains a difficult concept for both adults 

and children.  

 Examining students’ quantifications of angularity by grade level, results show that the 

majority of students in sixth and seventh grade were categorized as gross or intensive: over 80% 

of sixth grade and about 70% of seventh grade; only  39% of eighth grade were categorized as 

gross or intensive (see Table 4.7). Surprisingly, 7.3% of eighth graders had constructed only a 

gross quantification. Although these results support prior work that demonstrates students often 

view angles as static figures (Barabash, 2017; Bütüner & Filiz, 2016; Clements & Battista, 1989, 

1990; Clements, 2003; Clements et al., 1996; Kontorovich & Zazkis, 2016; Piaget et al., 

1981/1960; Smith et al., 2014), it is concerning that these students are not using units for 

comparison. Without these conceptions of an angle as a dynamic construction, students are 

unable to develop a more abstract conceptualization of angles, thus preventing them from 

developing a better and deeper understanding of angle, as well as limiting their future 

performance and learning gains (Clements & Burns, 2000; Cullen et al., 2018; Mitchelmore & 

White, 1998, 2000; Smith et al., 2014).  

 Looking at the percentage of students who did use units, less than 20% of sixth graders 

had constructed an extensive quantification and therefore could work with additive units. This 
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percentage improved for seventh and eighth grade, but still was low (see Table 4.7). None of the 

sixth graders, and about 5% of seventh graders were able to develop multiplicative units for 

comparing angles, and construct a ratio quantification. This percentage improved for eighth 

grade, where about 15% of students had constructed a ratio quantification. Also, none of the 

sixth graders, about 5% of seventh graders, and less than 10% of eighth graders were able to 

extend their ratio quantification into the context of multiple circles. Taking these results together, 

all of the sixth graders, 89.3% of seventh graders, and 75.6% of eighth graders had not developed 

multiplicative units and could not relate angles to the context of circles.  

 Further examining the construction of additive and multiplicative units, it is beneficial to 

look at the distribution by course. Math 6 results were the same as the sixth grade results because 

all sixth graders were enrolled in Math 6. However, Math 7 and Algebra results were different 

than the seventh and eighth grade results. Over 40% of students in Math 7 were not using units to 

compare angles, but were simply comparing angles based on visual judgements (see Table 4.8). 

Of the students who could work with units, less than 20% of them were able to use additive units 

and only 6% were able to use multiplicative units. This distribution changed for Algebra, with 

only 6.2% of students who were not using units to compare angles. About 35% of Algebra 

students were able to use additive units and almost 30% were able to use multiplicative units.

 These results provide evidence for the claim that students’ understanding of angle 

measurement as a fractional amount of a circle is not being supported (Moore, 2013; Thompson, 

2008). The majority of students had neither constructed multiplicative units nor were using 

multiplicative thinking to compare angles. This indicates that these students were unable to 

understand the multiplicative relationship between their quantities of measures, specifically 

maintaining the relationship between the angle, subtended arc, and circle’s circumference 
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(Hardison, 2018; Moore, 2013). Based on prior work, these results make sense since most 

students most often have a static conception of angles (Barabash, 2017; Bütüner & Filiz, 2016; 

Clements & Battista, 1989, 1990; Clements, 2003; Clements et al., 1996; Kontorovich & Zazkis, 

2016; Piaget et al., 1981/1960; Smith et al., 2014).  

 Although these results support prior work demonstrating that students are often limited to 

a static conception of angles, these results raise several concerns. First, these students have not 

constructed an understanding of angles within the context of circles despite curriculum standards 

emphasizing this notion in fourth (CCSSI, 2010) or fifth grade (VDOE, 2016a). From Piaget et 

al.’s work (1981/1960), students within this age range should have moved past visual 

comparisons and focus on angular separation. Secondly, it is also surprising that 94% of Math 7 

and 71.5% of Algebra students were not thinking multiplicatively and could not relate angles to 

circles. If this trajectory continues, when these students move into Geometry and Trigonometry 

without multiplicative units, they will continue to lag behind. Having a conceptual understanding 

of angle measurement is a necessary component for pursuing further geometric topics such as 

right triangles, trigonometry functions, and radian measure (Moore, 2013; Yigit, 2014). Thirdly, 

these results also offer more evidence as to why students perform poorly on geometry and 

measurement tasks and assessments (Melo & Martins, 2015; Mullis et al., 2016; NCES, 2011), 

and further supports the claim that there is a disconnect between students’ measurement and 

geometry concepts. 

  A highlight from these results is that as students progress in grade level, their 

quantifications of angularity advance developmentally. As students move from sixth to seventh 

to eighth grade, the percentage of students who had constructed a more sophisticated 

quantification (i.e., extensive, ratio, and rate) increases, and the percentage of students who had 
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constructed a less sophisticated quantification decreases (i.e., gross and intensive). A similar 

pattern is seen when comparing Math 6 to Math 7 to Algebra. Further examining this 

progression, a hierarchy can be seen through the correlation table (Table 4.10). Results indicate 

that the quantifications of angularity represent a simplex correlation structure, meaning there is 

an order for these quantifications (Davison, et al., 1978; Guttman, 1955), further indicating that 

they are hierarchical. This supports my hypothesis that that these quantifications of angularity 

represent a hierarchy and learning progression. By combining Hardison’s (2018) quantifications 

with Piaget’s (1965/1952) and Steffe’s (1991) explanation of quantifications, I was able to 

develop a progression of schemes for quantifications of angularity, including the different mental 

actions and operations used to conceive angle measurement. Earlier, I claimed that an extensive 

quantification represented a transition from visual concepts of angle, to an additive manipulation 

of units to describe angle, which was necessary for the construction of more sophisticated 

quantifications (i.e., ratio and rate). Students needed to be able to use additive units before they 

could use multiplicative units. The results of the study support this claim, that there is a 

progression to these quantifications. 

 Overall, the results of this study show that the majority of these middle school students 

do not possess a measurement concept of angle. Most students had not constructed a 

quantification above intensive and did not use units for comparing angles. In addition, most 

students could not relate angles within the content of circles. Although curriculum standards do 

focus on angle measurement as a fractional amount of a circle (CCSSI, 2010; VDOE, 2016a), 

students are not understanding this concept. Furthermore, it is concerning that students were not 

using additive nor multiplicative units. If this trajectory continues, these students  will continue 

to lag behind as they progress into Geometry and Trigonometry, as this concept of angle 
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measurement is a necessary component for pursuing further geometric topics (Moore, 2013; 

Yigit, 2014). 

Examining the Relationship between Fraction Schemes and Quantifications of Angularity 

 Based on the theoretical framework, I hypothesized that students’ development of a 

measurement concept, as indicated by their fraction schemes, is positively related to their 

development of quantifications of angularity. Therefore, to investigate this hypothesized 

relationship, students’ overall fraction schemes were correlated with their overall quantifications 

of angularity. From the correlational analysis relating students’ highest fraction scheme and 

quantification, there was a statistically significant and strong positive correlation (G=.643, 

p<.001; rs=.526, p<.001) between students’ fraction schemes and their quantifications of 

angularity. This means that students’ construction of more sophisticated fraction schemes relates 

to the construction of more sophisticated quantifications of angularity. 

 Looking at the distribution of students’ highest attributed fraction scheme and overall 

quantification of angularity (see Table 4.11), lower fraction schemes tend to be associated with 

less sophisticated quantifications of angularity, and the higher fractions schemes tend to be 

associated with more sophisticated quantifications of angularity. For example, from the students 

who were PrePWS, 90% of them were attributed a gross or intensive, and only 10% were 

attributed an extensive quantification (recall that the classification of these 4 students’ were 

likely underestimated based on their inconsistent responses on the MSFI). For the students who 

had constructed a measurement concept of fractions, they tended to construct higher 

quantifications of angularity. For example, of the students who had constructed a MSUF, about 

73% had constructed at least an extensive quantification, and about 27% had constructed at least 

a ratio quantification of angularity. Of the students who had constructed a MSPF or a GMSF, 
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none of them were attributed a gross or intensive quantification and 40% and 67% of them, 

respectively, were attributed with at least a ratio quantification.  

 From the analysis of the overall distribution of fraction schemes, it was determined that 

the majority of these middle school students did not possess a measurement concept of fractions. 

Consistent with the hypothesis of the study and the positive correlation between schemes and 

quantification, it seems clear why the majority of these middle school students did not possess a 

measurement concept of angle (i.e., most did not possess a quantification above intensive). 

Because the majority of students were PrePWS or PWS; they had not constructed a concept of 

measurement and had not constructed an iterable unit of 1. Based on the theoretical framework, 

the construction of a concept of measurement precedes the ability to quantify angularity using at 

least additive units, and therefore a measurement concept is necessary for the construction of 

more sophisticated quantifications of angularity. However, due to the lack of a measurement 

concept of fractions, moreover an iterable unit of 1, they were unable to extend a measurement 

concept into the context of angles, further explaining why students did not use additive units in 

the context of angles. In other words, students did not possess a measurement concept and 

therefore could not quantify angularity using additive units. 

 In order to investigate the hypothesis that students need to construct at least a MSUF, 

corresponding to a measurement concept of fractions, to construct an extensive quantification of 

angularity (see Figure 2.25), each of the individual fraction scheme scores were correlated with 

students’ highest quantifications of angularity. Results indicated that there is a strong, positive 

and statistically significant correlation (G=.778, p<.001) between MSUF and the quantifications 

of angularity. Looking at the distribution of each fraction scheme with students’ highest 

quantification (see Table 4.12), the majority of students who had not constructed a MSUF had 
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constructed at most an intensive quantification (77%). Of these students, 17.1% had constructed 

an extensive quantification. However, once students had constructed a MSUF, the majority had 

also constructed at least an extensive quantification (84.4%). Recall that Kieren’s (1980) notion 

of fraction as a measure focuses on iterating a unit, resulting in an extensive quantity. The MSUF 

involves an iterable unit, a multiplicative quantity, and is therefore more advanced than Kieren’s 

(1980) notion. Therefore, it seems reasonable that some students who construct fractions as 

measures (in the Kieren sense) are developing extensive quantities before they are able to 

construct multiplicative quantities. 

  To further investigate this relationship between extensive and MSUF, each measurement 

scheme for fractions was correlated with each of the more sophisticated quantifications of 

angularity (i.e., extensive, ratio, and rate). Results indicated that there was a strong, positive 

correlation between each fraction scheme (i.e., MSUF, MSPF, GMSF) and the quantifications 

(see Table 4.13). However, MSPF was not related to a rate quantification. The strongest 

correlation was between MSUF and extensive (Φ=.494, p<.01), providing evidence that MSUF 

is an important stage in this developmental progression for the construction of more 

sophisticated quantifications of angularity. This provides evidence that a measurement concept, 

as indicated by a MSUF, is necessary for the construction of at least an extensive quantification. 

This further supports the hypothesis that once students have a measurement concept they are 

poised to construct more sophisticated quantifications. Once students have an iterable unit of 1, 

they are able to extend their measurement concept into the context of angles 

 Overall, these results indicate that the fraction schemes and quantifications of angularity 

frameworks are hierarchical and represent a developmental progression. The results of this study 

also support the notion that students’ measurement schemes for fractions are related to their 
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quantifications of angularity. As students construct more sophisticated fraction schemes, they are 

poised to construct more sophisticated quantifications of angularity. Since measurement precedes 

the development of more sophisticated quantifications, once students develop a measurement 

concept, as indicated by the measurement schemes for fractions, they are then able to construct 

more sophisticated quantifications of angularity. Once students have an iterable unit of 1, they 

are better enabled to work with units (Wilkins & Norton, 2018). This allows them to extend and 

transfer these operations into the context of angles. Therefore, once students develop a MSUF 

they tend to construct at least an extensive quantification.  

Transition from Additive to Multiplicative Reasoning in the Context of Angles 

 In the quantifications of angularity framework, students jump from an extensive 

quantification where they use additive units to a ratio quantification where they use 

multiplicative units in the context of circles. I hypothesized that splitting may help explain this 

developmental progression. Before students construct a ratio quantification, they need to 

construct the splitting operation in the context of angles (see Figure 2.25). For a ratio 

quantification, students rely on the multiplicative relationship between those partitions/iterations 

and the given angles, therefore splitting needs to be a precursor. Wilkins and Norton (2018) 

describe the transition from the construction of a MSUF to the construction of a MSPF as being 

associated with children’s construction of splitting. Splitting makes it possible for children to 

reverse their thinking which is necessary for the construction of a MSPF. This reversible 

thinking also seems necessary for students’ construction of a ratio understanding of angles. To 

examine the role of splitting in the construction of the different stages of quantification of 

angularity, I examined several relationships associated with splitting in the context of angles. 
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 First, I examined the relationship between fractional splitting and angular splitting. I 

thought students needed to be able to split in the context of fractions before they split in the 

context of angles. Results indicated that fractional splitting was strongly related to angular 

splitting (G=.815, p<.001). However, from an examination of the contingency table (see Table 

4.14) it is unclear if fractional splitting precedes angular splitting, but instead they appear to co-

develop. This is seen in the fact that the off-diagonal cases are evenly split, in some cases 

students seem to construct splitting in the context of angles first, and in other cases it was the 

opposite. However, when students construct angular splitting, they must recognize what it means 

to split the openness of an angle instead of merely splitting one of the rays, or the opening of the 

angle. Students must know what it means to split before they can reorganize their splitting 

operations to the context of angles. However, the transfer of the splitting operation from one 

context to the other may co-develop. 

 Next, I examined the relationship between angular splitting and all the quantifications of 

angularity. I thought that since splitting is necessary for the construction of more sophisticated 

fraction schemes (Wilkins & Norton, 2018), that angular splitting would be necessary for the 

construction of more sophisticated quantifications (see Figure 2.25). Results indicated that 

angular splitting was statistically significantly related to the quantifications of angularity 

(G=.913, p<.001). Looking at the contingency table (see Table 4.15) it appears that angular 

splitting precedes the construction of more sophisticated quantifications. For example, no 

students who had not constructed angular splitting were able to develop a rate quantification, and 

only three students had a ratio. Also looking at the contingency table, it appeared that extensive 

seemed be an important stage in this developmental progression. Of the students who did not 

construct angular splitting, 16.2% had an extensive quantification. On the flip side, of the 
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students who had constructed angular splitting, 47.4% had an extensive quantification. It appears 

as if students construct an extensive quantification prior to the construct of splitting in the 

context of angles. 

 To further investigate this, I examined the relationship between an extensive quantitation 

and angular splitting. I thought that an extensive would precede angular splitting since students 

move from basic partitions and iterations to the simultaneous coordination of these two 

operations, which is defined as the splitting operation (see Figure 2.25). Results indicated that 

the construction of an extensive quantification was strongly related to angular splitting (G=.865, 

p<.001). Looking at the contingency table (see Table 4.16) it appears that an extensive 

quantification precedes the development of angular splitting based on the increased number of 

students in the lower left cell and fewer students in the upper right cell. Again, this supports the 

theoretical framework suggesting that students need to develop additive units, working with 

partitions and iterations, before they can coordinate those partitions and iterations.  

 Finally, I examined the relationship between an angular splitting and a ratio and rate 

quantification of angularity. This was to provide further insight into the role that angular splitting 

plays in the construction of more sophisticated fraction schemes. I hypothesized that students 

would need to be able to split in the context of angles before they were able to work with 

multiplicative units (see Figure 2.25). Results indicated that angular splitting was statistically 

significantly related to a ratio (G=.899, p<.001) and a rate quantification of angularity (G=1.00, 

p<.001). Looking at the contingency tables (see Table 4.17 and Table 4.18) it is clear that 

angular splitting precedes the construction of a ratio and rate quantification. For example, only 

three (2.7%) students who had not constructed angular splitting were able to develop a rate 

quantification, and no students had a ratio. This seems to suggest that angular splitting is 
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necessary for the construction of a ratio and rate quantification. A ratio quantification comes 

about once a student is able to recognize a multiplicative relationship between the two quantities 

being compared (Hardison, 2018; Thompson, 1994). They also have to be able to maintain the 

multiplicative relationship between the arc length and circumference of the circle (Hardison, 

2018; Moore, 20103). Therefore, students must not only be able to work with multiplicative 

units, but also relate this relationship in the context of circles. This then makes sense that angular 

splitting, enabling the ability to work with multiplicative units, would occur before students 

transfer these multiplicative units into the context of circles. 

 To summarize, in my new reorganization hypothesis, I argue that the transition from an 

extensive to a ratio quantification appears to be a huge developmental jump. Students move from 

using additive units to maintaining multiplicative relationships between arc lengths and 

circumferences of circles. I argued that the splitting operation could help explain this 

developmental jump, and provide further insight into this transition. Results from this 

exploration indicates that fractional splitting and angular splitting are related. Students need to be 

able to relate their splitting operation in the context of fractions to a splitting operation in the 

context of angles. However, it is important to note that although these two operations are related, 

it is unclear whether one precedes another or they co-develop. Just as students co-construct units 

coordination with whole numbers and units coordination with fractions (Boyce, & Norton, 

2016), it may be that students co-construct splitting and angular splitting. Nonetheless, these 

results indicate that students need to have at least an extensive quantifications before they can 

construct angular splitting; that is, they need to be able to work with additive units before 

moving to working with multiplicative units. Once they have an extensive quantification, they 

can develop angular splitting, which enables them to construct a ratio and rate quantification. 
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Overall, angular splitting plays a major role in this developmental progression as students 

transition from an extensive to a ratio to a rate quantification.  

Validation of Students’ Quantifications of Angularity 

 The five main components for assessing the validity of an instrument are test content, 

response processes, internal structure, relations to other variables, and consequences of testing 

(AERA et al., 2014; Krupa et al., 2019). The validation of students’ quantifications of angularity 

was conducted in multiple parts: (a) the pilot study was used to assess test content, response 

process, internal structure, and consequences of testing; (b) Phase One provided insight into 

internal structure and reliability; and (c) Phase Two was used to assess relations to other 

variables. By combining the results from these three parts, better insight can be gained into the 

validity of the QAI. Each component for assessing validity will be discussed. 

Test Content 

 Test content was evaluated by combining results of the Pilot Study with results of the 

clinical interviews in Phase Two. When evaluating test content, one must examine the 

“relationship between the content of a test and the construct it is intended to measure” (AERA et 

al, 2014, p. 14). In this case, I evaluated the relationship between the content of the QAI to see if 

it could be used to assess students’ quantifications of angularity. The development of the QAI 

involved several different iterations of testing and revising. During pilot testing, interviews were 

conducted with five students to evaluate the tasks, and to ensure they measured what they were 

intended to measure (Krupa et al., 2019). Three expert researchers were also involved in 

evaluating the tasks. Results from the first round of interviews raised concerns about the quality 

of the tasks and indicated that some tasks were not valid for assessing a ratio and rate 

quantification. After these concerns were addressed, results from the second round of interviews 
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indicated that these revised tasks were more valid for assessing a ratio and rate quantifications. 

However, students still did not understand some tasks. After the tasks were revised, three expert 

researchers in the field of mathematics education evaluated the tasks, raising several concerns 

about test content. One thing the experts noted was that even though some tasks were designed to 

assess additive thinking, they were actually assessing multiplicative thinking. Through these 

multiple iterations of evaluations and revisions, I felt that I had enough evidence to believe that 

the final iteration of tasks were valid for assessing students’ quantifications of angularity. 

However, because the final iteration of tasks were not given to a group of students, only face 

validity was provided. 

 After the final iteration of tasks was given to the sample of students, 22 students 

participated in a clinical interview. Throughout these interviews, students did not appear to have 

any misunderstandings of the tasks; they fully understood what was being asked. Therefore, this 

QAI is related to the construct it was designed to measure, students’ quantifications of 

angularity.    

Response Process 

 Response process was evaluated through the clinical interviews conducted in the Pilot 

Study and during Phase Two. When evaluating response process, the researcher looks for 

“evidence that connects how test takers may respond to a test item and how they actually respond 

to the item” (Krupa et al., 2019, p. 6). In the development of the tasks, I used prior research that 

examined students’ actions and responses for solving tasks involving angles. For example, 

Hardison (2018) documented several motions that students use when comparing angles. I then 

used these descriptions to create a guide for assessing students’ quantifications (see Table 3.11). 

From this, I then created my tasks to assess those particular actions. 
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 During the first round of interviews in the Pilot Study, students did not respond to the 

tasks as I had hoped they would. Some students said that some tasks were confusing, or they did 

not understand the question. During the second round of interviews, after addressing these issues, 

students responded in the intended manner. There were no major issues with response process, as 

students understood what the tasks were asking and responded in a manner consistent with my 

hypotheses. During Phase Two interviews, again, students responded in the intended manner. 

Students understood what the tasks were asking and had no issues with understanding notation or 

language within the tasks. These results together provide evidence that this component of 

validity has been met for the QAI. 

Internal Structure 

 Internal structure was evaluated during the Pilot Study, Phase One, and Phase Two. 

Internal structure is “the degree to which the relationship among test items and test components 

conform to the construct on which the proposed test score interpretations are based” (AERA et 

al., 2014, p. 16). Therefore, the tasks on the QAI were evaluated for their consistency and 

relationship to the quantifications of angularity framework. During the Pilot Study, the final 

iteration of tasks involved four tasks per quantification. This was to ensure there were an equal 

number of tasks for each quantification to help provide a balanced internal structure. 

 Further exploring the internal structure of the QAI, it is beneficial to examine how the 

quantifications scores correlate with one another. Examining the quantifications of angularity 

correlations, presented in Table 4.10, the largest correlations occur closest to the main diagonal. 

Moving further away from the main diagonal, the correlations become smaller creating a simplex 

correlation structure. This structure provides evidence that the measures of different stages of 

quantification form a hierarchical structure as theorized. In other words, these correlations show 
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that measures that are closer together in the hierarchy tend to correlate more highly with one 

another, and measures that are further apart in the hierarchy tend to not be as correlated. This 

provides more evidence to support the internal structure validity component.  

 Results of interrater reliability also provide some evidence for internal structure. The 

Kappa scores for the two coders scoring of the QAI during Phase One (see Table 4.2) indicate 

almost perfect agreement between coders for all quantifications of angularity classifications 

(Landis & Koch, 1977). When looking at the Kappa scores for the Phase Two clinical interview 

coding, 𝜅𝜔 scores were .809, again indicating almost perfect agreement (Landis & Koch, 1977). 

This provides some evidence for the reliability of these scores, which also provides some 

evidence for the validity of these classifications (Kane, 2013).  

Relations to Other Variables 

 This component of validity was addressed by using the results of the 22 clinical 

interviews conducted in Phase Two. The goal is to “provide evidence about the degree to which 

these relationships are consistent with the construct underlying the proposed test score 

interpretations (AERA et al., 2014, p. 16). Therefore, I sought to compare students’ “true” 

quantification of angularity to their QAI classification.  

 Students’ classifications from the interviews, provided a criterion measure of students’ 

quantifications by which to compare students’ quantifications as determined by the QAI. These 

interviews provided a better representation of students’ quantifications of angularity, as they 

enabled me to better understand students’ thinking. As students worked through the tasks, I was 

able to ask follow up questions to truly understand their processes, providing a clearer evaluation 

of their quantifications of angularity. 
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  When comparing students’ quantifications based on the interviews to students’ 

quantifications based on the QAI, results indicated a statistically significant positive relationship 

between students’ interview quantification and their QAI quantification (G=.623, p<.05). A 

Spearman Rank Correlation was also calculated, indicating a positive correlation between 

students’ interview quantification and their QAI quantification, which was statistically 

significant (rs=.546, p<.01). These validity coefficients represent a strong association between 

students’ classifications from the QAI and the interview (Cohen, 1992). This indicates that the 

classifications based on the QAI are similar to those inferred from the interviews. 

Consequences of Testing 

 Consequences of testing were assessed by examining the results of the clinical interviews 

from the Pilot Study and Phase Two, and by observing students taking the QAI. This component 

assesses the “degree to which anticipated consequences from administering a test...align with an 

intended purpose of the test” (Krupa et al., 2019, p. 8). This study involved minimal risks, and 

per IRB guidelines, possible consequences of testing were limited in the design of this study. 

Students’ participation was voluntary, it had no effect on their grades in school, and all their 

information would be blinded to maintain anonymity. As students were interviewed, there were 

no apparent negative consequences of testing. Students responded to the tasks in a manner 

similar to the hypothesized responses, with no unexpected behaviors. However, it is often the 

case that actual consequences of testing may not be known until after time has elapsed since the 

administration of the instrument (AERA et al., 2014). For now, results indicate there were no 

negative consequences of testing. 
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Insights, Contributions, and Implications for the Field 

 Several insights, contributions, and implications are provided as a result of this work. 

First, the major contribution this study offers is the quantifications of angularity framework and 

its connection to the measurement schemes for fractions framework. Secondly, this study offers a 

new instrument that can be used to assess students’ quantifications of angularity. Finally, there 

are several curriculum and teaching implications that follow as a result of this study. 

A New Conceptual Framework 

 The quantifications of angularity framework was developed from a synthesis of related 

literature. Hardison (2018) developed an initial framework that only included gross, extensive, 

ratio, and rate quantifications. After reading Piaget’s (1965/1952) and Steffe’s (1991) distinction 

between gross and intensive quantities, it seemed theoretically important to include an intensive 

quantification. I thought that moving from a gross to extensive was large developmental jump for 

understanding students’ thinking. It can be difficult for students to move from using visual 

perceptions to compare angles to using units, especially when curriculum standards focus on the 

static image of angles as the intersection of two rays (VDOE, 2016b, 2016c). Therefore, I 

included the intensive quantification to help describe this developmental progression for how 

students quantify angularity. Instead of jumping from using visual comparisons to units, the 

intensive quantification describes a transitional stage where students have abstracted perceptual 

relationships and no longer rely on figurative material (Piaget, 1965/1952; Steffe, 1991).  

 In addition to creating new stages in the quantifications of angularity progression, this 

study also allowed for the exploration to distinguish the different stages of the quantifications of 

angularity. For example, in examining this developmental progression from extensive to ratio, it 

appeared that moving from additive units to multiplicative units in the context of circles was a 
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major leap for students to make. It seemed as if there should be a stage of transition where 

students began using multiplicative units. With an extensive quantification, students use the 

partitioning and iterating operation (Hardison, 2018; Piaget et al., 1981/1960). This allows them 

to work with additive units. By developing the splitting operation, students can simultaneously 

partition and iterate, enabling them to reverse their thinking and treat those two operations as one 

(Hackenberg, 2010; Hackenberg et al., 2016; Norton, 2008; Steffe, 2002; Wilkins & Norton, 

2011). With splitting, students are able to work with multiplicative units. Therefore, similar to 

the transition from an MSUF to MSPF, it seemed that the construction of splitting in the context 

of angles would be an important transitional stage between extensive and ratio. Results of this 

study show that splitting in the context of angles is necessary for the construction of a ratio and 

rate quantification. As a result, in this new framework, an angular splitting operation should be 

included and emphasized because it is an important developmental stage for helping describe 

students’ quantifications of angularity (see Figure 5.1). 

A Revised Reorganization Hypothesis 

 The purpose of this study was to investigate the relationship between students’ 

measurement schemes for fractions and their quantifications of angularity. Throughout the 

literature, there seemed to be a connection between measurement, fractions, and students’ 

notions of angle measurement. In the most conceptual sense, measurement involves the 

coordination of partitioning (a quantity into a unit) and iterating (that unit to recreate the whole) 

(Kieren, 1980; Piaget et al., 1981/1960). These are the same operations used for understanding 

and working with fractions (Hackenberg, 2007; Hackenberg et al., 2016; Lamon, 1996, 2012; 

Olive, 1999; Steffe, 2002, 2003; Steffe & Olive, 2010; von Glasersfeld, 1981; Wilkins & Norton, 

2011, 2018). Moving into the context of angles, students also use the same operations to help 
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conceptualize angle measurement as a fractional amount of a circle (Hardison, 2018; Moore, 

2013; Thompson, 2008). Therefore, in my new reorganization hypothesis, I presented a model to 

help connect the measurement schemes for fractions framework with the quantifications of 

angularity framework (see Figure 2.25).  

 Results of this study indicated that students’ measurement schemes for fractions are 

indeed related to their quantifications of angularity. As students construct a more sophisticated 

measurement scheme for fractions, they tend to construct more sophisticated quantifications of 

angularity. It was also determined that students need at least a MSUF, indicating a measurement 

concept, before they are able to construct an extensive quantification of angle. They also appear 

to construct an extensive quantification before they construct angular splitting (noted by the red 

arrows in Figure 5.1). Finally, they need angular splitting before they construct a ratio or rate 

quantification. All of these results provide support for the reorganization hypothesis and help to 

confirm the model. However, based on the results of this study, I revised that model to include 

angular splitting. In Figure 5.1, I have presented a preliminary revised model.  
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Figure 5.1  

A Revised Reorganization Hypothesis 

 

 Results of this study indicated that angular splitting was related to fractional splitting. 

Based on the results it appears that splitting may co-develop across contexts, instead of 

transferring from one to the other. However, in order to develop angular splitting, students must 

know what it means to split the openness of an angle. From examining student work (see Figure 

2.22 and 2.24), some students have constructed a splitting operation but are unable to then 

transfer this operation to the context of angles. I believe that students must first know what it 

means to split before they can split in the context of angles. Therefore, in the new model, the 

green circle surrounding the splitting and angular splitting operation represents this transfer 

between contexts. This also does not indicate that splitting and angular splitting are two separate 

operations, but it is used to help understand the role that angular splitting plays in this 

developmental progression of quantifications of angularity, to offer a better and more accurate 

classification of students’ quantifications. 
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 A New Instrument 

 In addition to a new conceptual framework to help describe students’ quantifications of 

angularity, this study has allowed for the development of an instrument, the QAI, that offers 

valid measures of students’ quantifications of angularity. To date, there are no quantitative 

assessments that specifically measure students’ quantifications of angularity. In his work, 

Hardison (2018, 2019) has only focused on the qualitative nature of how students quantify 

angularity. In addition, most of the previous work examining students’ concepts of angle and 

angle measurement have been qualitative (e.g., Clements & Burns, 2000; Hardison, 2018, 2019; 

Hardison & Lee, 2019; Kontorovich & Zazkis, 2016; Moore, 2013). Although qualitative work is 

necessary to understand how students quantify angularity, this quantitative survey offers an 

instrument that can be given in a single class period instead of individually interviewing each 

student. 

 The QAI has been evaluated and verified through the different phases of this study. The 

five components of validity have been addressed in the development of this instrument (see 

Validation section above for more details). Multiple iterations of task development was 

conducted to offer preliminary validity. Results from the main study offer more evidence for its 

validity and reliability. Overall, this instrument provides valid measures of students’ 

quantifications of angularity, including the new angular splitting stage, and opens the doors to a 

more efficient method for understanding and classifying students’ concepts of angle and angle 

measurement.  

Curriculum and Teaching Implications 

 There a many different conceptions of fractions that are emphasized throughout research 

and curriculum standards, for example part-whole, quotient, measure, ratio, and operator 
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(Kieren, 1980). The most common concept emphasized in curriculum standards and textbooks in 

the US is part-whole (Watanabe, 2007). Although this concept of fractions is important, there are 

limitations to this understanding (Hackenberg et al., 2016; Thompson & Saldanha, 2003; Wilkins 

& Norton, 2018). When students do not have a measurement concept, they are limited in their 

construction of more sophisticated fraction schemes (Norton & Wilkins, 2010), as well as limited 

in transferring this concept to other contexts, such as angles.  

  Furthermore, although curriculum standards do focus on angle measurement as a 

fractional amount of a circle (CCSSI, 2010; SCDOE, 2018; TEA, 2012; VDOE, 2016a), research 

indicates that students most often are limited to a static conception of angles and as a result are 

limited in their understandings of angle measurement (Bütüner & Filiz, 2016; Kontorovich & 

Zazkis, 2016; Smith et al., 2014). For example, many textbooks and curriculum standards begin 

by defining an angle as the intersection of two rays or lines (CCSSI, 2010; Charles, 2005; 

Greenberg, 2008; Henderson & Taimina, 2005; Long, 2009; VDOE, 2016b, 2016c). Due to this 

reliance on an angle as a figure or visual object, students may think that angles have different 

measures because one appears larger than the other (Thompson et al., 2014). Students may also 

think that angle measurement can be determined by measuring the side lengths of the angles, is 

related to the size of the arc drawn to represent the angle (not the subtended arc), or is related to 

the linear distance between the sides of the angle (Barabash, 2017; Bütüner & Filiz, 2016; 

Clements & Battista, 1989, 1990; Clements, 2003; Piaget et al., 1981/1960). It is only later, for 

example in fifth grade in Virginia, that students learn about angle measurement as a fractional 

amount of a circle (VDOE, 2016a). By this time, it may be too late to help students rethink their 

understandings. 
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 In mapping the CCSSI (2010) and VDOE  standards (2016a, 2016b, 2016c), students 

begin with basic concepts of fractions and angles and then build to the more conceptual 

understandings. The majority of students in this study had not constructed a measurement 

meaning of fractions and also did not understand angle measurement as a fractional amount of a 

circle. It seems that without this basic understanding they are unable to move to the more 

conceptual understandings. Therefore, it seems that when teaching students about fractions and 

angle measurement it would better to start with a more conceptual approach. For example, 

research shows that part-whole understanding is important for fractions, but understanding 

fractions as measures better prepares students to solve problems involving fractions and also 

develop a deeper understanding of fractions and rational numbers (Lamon, 2007; Norton & 

Wilkins, 2009, 2012; Wilkins & Norton, 2018). Concerning angles, in their study, Clements and 

Burns (2000) found that when fourth grade students use dynamic actions for angles, they develop 

schemes that can then be utilized in later situations, allowing students to gain a deeper 

understanding of angle measurement and better connections between concepts. Other studies 

have also documented the importance of emphasizing angles as turns, instead of encouraging 

students to develop a notion of angles as a static figure (e.g., Browning et al., 2008; Clements & 

Battista, 1989, 1990; Mitchelmore & White, 2000; Yigit, 2014). Therefore, it is important to 

realize that even though the curriculum standards focus on beginning with basic understandings 

of fractions and angles, it is also important to emphasize the more conceptual understandings 

early on. This will prevent students from developing limited concepts of fractions, angles, and 

angle measurement.   

 Furthermore, research shows that students often view geometry as a disconnected subject 

(Melos & Martins, 2015). However, I have highlighted an important connection between 
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measurement, fractions, and angles. This connection should be made explicitly for students, so 

they are better prepared to transfer their fraction operations into the context of angles. By 

understanding how measurement is related to fractions which is related to angle measurement, 

students may find it easier to solve tasks involving angles. They may also have a better 

understanding of the concepts, since they are all connected and not separate pieces of knowledge. 

Future Work 

 Results of this study show that students’ measurement schemes for fractions are related to 

their quantifications of angularity. Results also indicate that there is a developmental progression 

for the construction of fraction schemes and quantifications of angularity. As students progress in 

grade level, their fraction schemes and quantifications advance developmentally. As students 

move from sixth the seventh to eighth grade, the percentage of students who had constructed a 

more sophisticated fraction scheme or quantification increases, and the percentage of students 

who had constructed a less sophisticated fraction scheme or quantification decreases.  

 However, one limitation of this study is that it was correlational and cross-sectional. 

Therefore, we cannot draw causal inferences. While I was able to show a relationship between 

students’ fraction schemes and quantifications of angularity, which suggests the developmental 

progression, this was only correlational. To further strengthen this understanding, a longitudinal 

study would be necessary to see how this progression develops over time. This would allow 

researchers to track students over time and to assess the development of their fraction schemes 

and quantifications of angularity. In addition, a constructivist teaching experiment would be 

beneficial to further understand how students quantify angularity, the developmental progression 

involved, and the role that splitting plays. This would help researchers better understand the 

proposed reorganization hypothesis of how students relate their concepts of measurement to the 



 

200 

context of angles. A teaching experiment would also enable researchers to investigate the 

influence of the necessary underlying mental actions and operations. This future work should 

also examine the effects of curriculum standards, investigating how students interpret and 

understand angle measurement as a fractional amount of a circle in different curricular settings. 

 Finally, although this study demonstrated that the QAI provides a valid measure for 

assessing students’ quantifications of angularity, the validity of the instrument needs to be further 

investigated. It would strengthen the validity of the instrument if each group of tasks were 

correlated to assess internal validity. Future research should also involve implementing the QAI 

with more students to again provide more variability and more data points to help assess validity. 

Further validation of the QAI could eventually result in it being used in PK-12 schools to help 

teachers assess students’ quantifications of angularity and to provide insight into students’ 

strengths and weaknesses concerning angles. 
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Appendix A 

Quantifications of Angularity Instrument- Original Set of Tasks 

1. Circle one below:  

 

 
       Angle 1    Angle 2 

 

 

2. Circle one below:  

 

      
  Angle 1    Angle 2 
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3. Circle one below:  

 

 
         Angle 1     Angle 2 

 

 

 

4. Circle one below:  

 

  

  
  Angle 1      Angle 2 
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5. Draw an angle that is the same size as the angle below. How do you know your angle is 

the same size? 

 

 
           

  

 

6. Draw an angle that is larger than the angle below. How do you know your angle is 

larger?  

 

     
     

 

 

7. Draw an angle that is smaller than the angle below. How do you know your angle is 

smaller?  
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8. Order the angles below from smallest to largest (1-7). Label the SMALLEST ANGLE 

with a 1 and label the LARGEST with a 7. Explain your process. 
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9. Draw an angle that is three times larger than this angle: 

 Explain your process: 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

10. Draw an angle that is six times smaller than this angle: 

 Explain your process: 
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11. Draw an angle that is five times larger than this angle: 

Explain your process: 

 

 

 

 

 
 

 

 

 

 

 

12. Draw an angle that is 1/7 as large as this angle: 

 Explain your process: 
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13. The angle below is five times as large as your angle. Draw your angle: 

 Explain your process: 

 

   

 

 

 

 

 

 

 

14. The angle below is three times as large as your angle. Draw your angle: 

 Explain your process: 
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15. The angle below is six times as large as your angle. Draw your angle: 

Explain your process: 

 

 

 
 

 

16. The angle below is three times as large as your angle. Draw your angle: 

Explain your process: 
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17. Measure Angle 1 in terms of Angle 2. Write your measurement of Angle 1 below. 

Measure Angle 2 in terms of Angle 1. Write your measurement below of angle 2 below. 

 
    Angle 1       Angle 2 

 

 

 

 

 

18. Measure Angle 1 in terms of Angle 2. Write your measurement of Angle 1 below.  

Measure Angle 2 in terms of Angle 1. Write your measurement below of angle 2 below. 

 

 

 
 Angle 1       Angle 2 
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19. The circumference or total distance around the circle is 48cm. The thick arc is 8cm 

long. Determine the measure of the angle in relation to the circle. 

  
 

 

20. The thick arc is 9cm long. The circumference or total distance around the circle is 

72cm. Determine the measure of the angle in relation to the circle? 
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21. Compare the angles in the following diagram. Circle one answer. 

 
 

∠GBF is ∠IBD. How do you know? 

 

∠ IBD is ∠CBA. How do you know? 

 

∠HBE is  ∠GBF. How do you know? 

 

∠CBA is ∠HBE. How do you know? 
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22. Compare the angles in the following diagram. Circle one answer. 

 
 

∠PTV is   ∠RTX. How do you know? 

 

∠ WTS is  ∠UTQ. How do you know? 

 

∠XTQ is  ∠RTW. How do you know? 

 

∠UTP is ∠STV. How do you know? 
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23. Suppose you are given the angle below. If the smaller circle 1 was enlarged to the dark 

circle 2, what would happen to the size of the angle?  

 

 
 

24. Suppose you are given the angle below. If the larger circle 1 was shrunk to the dark 

circle 2, what would happen to the size of the angle?  

 

  

1 

2 

1 

2 
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Appendix B 

Quantifications of Angularity Instrument- Revised Set of Tasks 

1. Circle one below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 
       Angle 1    Angle 2 

 

 

2. Circle one below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 

      
 Angle 1              Angle 2 
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3. Circle one below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 

 
         Angle 1           Angle 2 

 

 

 

4. Circle one below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 

    
   Angle 1      Angle 2 
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5. Draw an angle that is the same size as the angle below. How do you know your angle is 

the same size? 

 

 
           

  

 

6. Draw an angle that is larger than the angle below. How do you know your angle is 

larger?  

 

     
     

 

 

7. Draw an angle that is smaller than the angle below. How do you know your angle is 

smaller?  
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8. Order the angles below from smallest to largest (1-7). Label the SMALLEST ANGLE 

with a 1 and label the LARGEST with a 7. Explain your process. 
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9. Draw an angle that is three times larger than this angle: 

 Explain your process: 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

10. Draw an angle that is six times smaller than this angle: 

 Explain your process: 
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11. Draw an angle that is five times larger than this angle: 

Explain your process: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

12. Draw an angle that is 1/7 as large as this angle: 

 Explain your process: 
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13. The angle below is five times as large as your angle. Draw your angle: 

 Explain your process: 

 

   

 

 

 

 

 

 

 

 

 

 

14. The angle below is three times as large as your angle. Draw your angle: 

 Explain your process: 
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15. The angle below is six times as large as your angle. Draw your angle: 

Explain your process: 

 

 

 
 

 

 

 

 

 

 

 

 

16. The angle below is three times as large as your angle. Draw your angle: 

Explain your process: 
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17. Use Angle 2 to measure Angle 1. Write your measurement of Angle 1 below. 

Use Angle 1 to measure Angle 2. Write your measurement of Angle 2 below. 

 
    Angle 1       Angle 2 

 

 

 

 

 

18. Use Angle 2 to measure Angle 1. Write your measurement of Angle 1 below. 

Use Angle 1 to measure Angle 2. Write your measurement of Angle 2 below. 

 

 

 
 Angle 1       Angle 2 
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19. The circumference or total distance around the circle is 48cm. Arc AB is 8cm long. 

Determine the measure of ∠ACB  in relation to the circle. 

  

 
 

20. Arc XZ is 9cm long. The circumference or total distance around the circle is 72cm. 

Determine the size of ∠XYZ  in relation to the circle. 
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21. Compare the angles in the following diagram. Circle one answer. 

 
 a. larger than  

∠GBF is b. smaller than ∠IBD. How do you know? 

 c. equal to  

   

 a. larger than  

∠IBF is b. smaller than ∠ABH. How do you know? 

 c. equal to  

   

 a. larger than  

∠HBE is b. smaller than ∠CBA. How do you know? 

 c. equal to  

   

 a. larger than  

∠GBD is b. smaller than ∠EBC. How do you know? 

 c. equal to  
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22. Circle 2 has a circumference of 36 cm and Arc QW is 9cm long. If Arc SU is 3cm long, 

what is the circumference of Circle 1? 

 
 

  

1 2 
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23. Circle 2 has a circumference of 60cm and Arc AE is 10cm long. What is the measure of 

∠BCD in relation to Circle 1?   

 
 

24. Circle 1 has a circumference of 56cm and Arc QS is 7cm long. If the circumference of 

Circle 2 is 91cm, how long is Arc PT?   

  

1 

2 

1 

2 
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Appendix C 

Quantifications of Angularity Instrument- Final Version 

1. Circle one option below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 

 
          Angle 1            Angle 2 

 

 

 

2. Circle one option below:  

 a. larger than  

Angle 1 is b. smaller than Angle 2. How do you know? 

 c. equal to  

 

     
        Angle 1        Angle 2  
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3. Draw an angle that is larger than the angle below. How do you know your angle is 

larger?  

 

 

     
     

 

 

 

 

 

 

4. Draw an angle that is smaller than the angle below. How do you know your angle is 

smaller?  
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5. Order the angles below from smallest to largest (1-7). Label the SMALLEST ANGLE 

with a 1 and label the LARGEST with a 7. Explain your process. 
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6. Draw an angle that is four times larger than this angle. 

 Explain your process. 

 

 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

 

 

7. How many times smaller is Angle 2 than Angle 1? 

  

 

  

    Angle 1        Angle 2 
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8. Draw an angle that is six times larger than this angle. 

Explain your process. 

 

 

 

 

 

 

 

    
 

 

 

 

 

 

 

 

9. How many times will Angle 1 fit into Angle 2? 

 Explain your process. 

 

 

 

 

 
 

  Angle 1       Angle 2 
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10. The angle below is five times as large as your angle. Draw your angle. 

 Explain your process. 

 

 

 

    

 

 

 

 

 

 

 

 

11. The angle below is three times as large as your angle. Draw your angle. 

 Explain your process. 
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12. The angle below is four times as large as your angle. Draw your angle. 

Explain your process. 

 

 

 

 

    
 

 

 

 

 

 

 

13. The angle below is six times as large as your angle. Draw your angle. 

Explain your process. 
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14. What fraction is Angle 2 of Angle 1? 

 

What fraction is Angle 𝟏 of Angle 2? 

 
    Angle 1       Angle 2 

 

 

 

 

 

15. What fraction is Angle 2 of Angle 1? 

 

What fraction is Angle 1 of Angle 2? 

 

 

 
 Angle 1       Angle 2 
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16. The circumference (total distance around the circle) is 49 cm. (Not drawn to scale)  

The GREEN part of the circle is 7 cm long.  

What is the measure of ∠ACB in relation to the circle? 

  
 

 

17. The circumference (total distance around the circle) is 96 cm. (Not drawn to scale) 

∠DEF is 1/8 of the circle.  

How long is the RED part of the circle? 
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18. The RED part of the circle is 8 cm long. (Not drawn to scale) 

The circumference (total distance around the circle) is 72 cm.  

What is the size of ∠XYZ in relation to the circle? 

 

  
 

 

19. The GREEN part of the circle is 7 cm long. (Not drawn to scale) 

∠RST is 1/6 of the circle.  

What is the circumference (total distance around the circle)? 

 

   



 

237 

20.   

  

  

 

 

The RED part of the circle is 5 cm long.  The GREEN part of the circle is 4 cm long. 

The circumference (total distance around  

the circle) is 45 cm. 
 

The circumference (total distance around 

the circle) is 24 cm. 

 

 

 

Given the figures above, choose one option below (figures are not drawn to scale): 

 

 a. larger than  

∠XYZ is b. smaller than ∠DEF. How do you know? 

 c. equal to  
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21. Circle 2 has a circumference (total distance around the circle) of 36 cm.  

The RED part of Circle 2 is 9 cm long.  

The GREEN part of Circle 1 is 3 cm long. 

What is the circumference (total distance around the circle) of Circle 1? 

(Figure is not drawn to scale) 

 
 

  

1 

2 
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22. Circle 2 has a circumference (total distance around the circle) of 50 cm.  

The GREEN part of Circle 2 is 10 cm long.  

What is the measure of the angle in relation to Circle 1?   

(Figure is not drawn to scale) 

 
 

23. Circle 1 has a circumference (total distance around the circle) of 56 cm. 

The GREEN part of Circle 1 is 7 cm long.  

The circumference (total distance around the circle) of Circle 2 is 96 cm. 

How long is the RED part of Circle 2?   

(Figure is not drawn to scale) 

  

1 
2 

1 

2 
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Appendix D 

Table of Revisions between First Iterations and Final Iteration 

Old Tasks New tasks 
Revisions: 

Numbers 
Classification/ 

Old Title 
Numbers 

Classification/ 

New Title 

1-4 Gross 

1-5 

Gross/ 

Intuitive 

(Intensive) 

We combined the old tasks 1-7 to 

create a new set of tasks designed to 

assess gross/confirm intensive, as well 

as to further confirm intensive. We 

felt that old 1-7 were repetitive and 

assessed similar concepts, so we kept 

old 3, 4, 6, & 7. We also thought that 

#8 assessed additional/special aspects 

of intensive, so we kept it. We 

rearranged the order of items and 

added some notation on new #5 so 

students would know the line was part 

of the ordering, and that one of the 

angles was an obtuse angle. 

5-8 Intensive 

9-12 Extensive 6-9 Additive 

We revised the old tasks to make 

partitioning and iterating clearer. For 

example, the new iterating tasks 

require students to iterate an even 

number of times (4 times and six 

times larger). The partitioning tasks 

require students to partition into an 

odd number (1/5 and 1/3 as large). We 

did not want students to have 1/6 or 

1/4 because some students in the pilot 

said to split it in half, and then split 

each half in half to create 4. 

13-16 Splitting 10-13 Splitting 

We revised old #16 to make new #13 

say four times a large, so we did not 

have three times as large in two tasks. 

17-18 Ratio 14-15 Multiplicative 

We revised old #17 & 18 because no 

student was able to understand the 

question. We rewrote it to explicitly 

ask students to find what fraction is 

Angle 1 of Angle 2. 
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Table of Revisions between First Iterations and Final Iteration Continued 

Old Tasks New tasks 

Revisions: 
Numbers 

Classification/ 

Old Title 
Numbers 

Classification/ 

New Title 

19-20 Ratio 16-19 Ratio 

We changed the formatting and 

wording of old #19 & 20 to make it 

more clearly written. We also created 

two new tasks to maintain consistency 

with the grouping of four tasks per 

quantification. We further changed the 

pictures so they were not drawn to 

scale so students could not simply 

iterate the angle to figure it out. We 

also included color to help students 

understand what parts of the circle we 

were referencing. 

21-24 Rate 20-23 Rate 

We combined old 21 & 22 into a 

single task. We included two 

comparisons where the side lengths 

were the same and two where the side 

lengths were not. We also revised the 

angles with different side lengths so 

that none of their arcs would line up. 

For example <EBI and <GBD would 

have the same arc at ID, causing some 

students to say they were equal. We 

later realized this task did not provide 

a valid assessment of rate and so it 

was eliminated. We also eliminated 

old 23 & 24 as they were too easy for 

students. We realized these tasks did 

not truly assess a rate quantification, 

so we created three new tasks. We 

finally created four new tasks to assess 

students’ rate quantification by 

including tasks similar to the ratio 

ones. 
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Appendix E 

Clinical Interview Questions 

1. How would you define an angle? 

 

2. Here is my angle [angle create with a pair of long sticks]. Can you make the same 

angle with your sticks? [student has short sticks]. How do you know? 

a. Can you make an angle that is larger than mine with your sticks? How do you 

know?  [Task 3] 

b. Can you make an angle that is smaller than mine with your sticks? How do you 

know?  [Task 4] 

 

3. Given this task [Task 5], how would you solve it?  

 

4. Given this task [Task 6], how would you solve it? 

 

5. Given this task [Task 9], how would you solve it? 

 

6. Given this angle [one green] and this angle [one orange piece], which angle is 

larger? By how much? (Use fraction circles for this task) 

a. Given this angle [one orange piece], how much larger is it than this angle [one 

light blue piece]? (Use fraction circles for this task) 

b. Given this angle [green piece] how much smaller is it than this angle [red 

circle]? (Use fraction circles for this task) 

 

7. Given this task [Task 10], how would you solve it?  

 

8. Given this task [Task 14], how would you solve it?  

 

9. Given this task [Task 17] how would you solve it?  

 

10. Given this task [Task 19] how would you solve it?  

 

11. Given this task [Task 20] how would you solve it?  

 

 

12. Suppose I handed you an angle and said that it had a measure of one degree. How 

would you check or prove it was in fact one degree? 
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Logical Order of Tasks: 

 

 

  

Questions 1 & 2

Question 7 

(splitting)

If correct, move 
to question 8 

(ratio)

If correct, move 
to following 
questions in 
order 9-11

Question 12

If incorrect, 
move to 

question 6 
through 3

Question 12

If incorrect, 
move to 

question 4 
(additive)

If correct, 
proceed to 
following 

questions 5 & 6

Question 12

If incorrect, 
move to 

question 3

Question 12
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