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Abstract

In future wireless systems, latency of information needs to be minimized to satisfy the requirements

of many mission-critical applications. Meanwhile, not all terminals carry equally-urgent packets given

their distinct situations, e.g., status freshness. Leveraging this feature, we propose an on-demand Medium

Access Control (MAC) scheme, whereby each terminal transmits with dynamically adjusted aggressive-

ness based on its situations which are modeled as Markov states. A Multi-Agent Reinforcement Learning

(MARL) framework is utilized and each agent is trained with a Deep Deterministic Policy Gradient

(DDPG) network. A notorious issue for MARL is slow and non-scalable convergence – to address

this, a new Situationally-aware MARL-based Transmissions (SMART) scheme is proposed. It is shown

that SMART can significantly shorten the convergence time and the converged performance is also

dramatically improved compared with state-of-the-art DDPG-based MARL schemes, at the expense of

an additional offline training stage. SMART also outperforms conventional MAC schemes significantly,

e.g., Carrier Sensing and Multiple Access (CSMA), in terms of average and peak Age of Information

(AoI). In addition, SMART also has the advantage of versatility – different Quality-of-Service (QoS)

metrics and hence various state space definitions are tested in extensive simulations, where SMART

shows robustness and scalability in all considered scenarios.
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I. INTRODUCTION

In the last few years, we have witnessed a shift in wireless communications from human-

based communications, e.g., voice and data, to Machine-Type Communications (MTC). Mas-

sively interconnected devices enable new applications such as factory automation, intelligent

transportation system, tactile internet [2], etc. Unfortunately, current networks are not optimized

to support a large number of devices per cell. In many cases, MTC devices transmit small data

packets coupled with low data rates which leads to a high volume of control signaling in the

network. Another challenge for the network is that devices transmit seldom and randomly. As

a consequence of such massive MTC (mMTC) characteristics, the design of new solutions on

how can devices access the wireless transmission medium is a necessity.

In this paper, we focus on enhancing Medium Access Control (MAC) by providing devices,

which from now on we refer to as terminals, with an ability to cooperate when accessing the

shared transmission medium. For terminals to successfully transmit a data packet, the terminals

have to, by relying on the MAC layer, gain access to time/frequency resources each terminal

requires. However, due to the large number of terminals allocating resource may lead to high

latencies. For example, the uplink MAC layer latency in cellular networks (based on 3GPP

Release 15) can be up to 10 ms, due to the fact that a terminal with a packet to be transmitted

in the uplink must request a downlink grant, which indicates the allocated resources, before

sending the packet. Note, that in our work, we consider only user-plane latency, which is defined

as the time between the first transmission of a data packet and the reception of a physical layer

acknowledgment. Enhancements such as grant-free schemes have been proposed to reduce the

MAC uplink latency [3]. However, such solutions still do not fully resolve one of the main

issues in mMTC; the high volume of control signaling. To that end, we propose the use of

Deep Reinforcement Learning (DRL) to enable the terminal to learn when to take the wireless

transmission medium without any additional control signaling messages from the Base Station

(BS).
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A. Contributions and Outline

By letting the terminals be situationally-aware, i.e., comprehend their urgency to transmit, the

uplink MAC can be made more efficient, and this improved efficiency can be captured through

application-oriented, flow-level metrics such as the Age of Information (AoI) [4]. In this paper,

we leverage Multi-Agent Reinforcement Learning (MARL) to design a decentralized medium

access solution that can be applied to latency-critical services in 5G, such as data collection from

sensors in closed-loop control for Industrial Internet-of-Things (IIoT). Our main contributions

include the following:

1. We propose a Situationally-aware MARL-based Transmissions (SMART) solution to address

the notorious convergence issue in MARL for the decentralized access procedure. Based on

SMART, terminals observe their local states and receive a common transmission tax signal from

the central controller to determine their transmit probabilities, such that much of the training can

be taken offline to improve robustness. This approach is shown to shorten the convergence time

and improve the performance significantly compared with state-of-the-art MARL schemes, at the

expense of an additional offline training stage wherein each terminal is trained and pre-stores

its set of Deep Deterministic Policy Gradient (DDPG) parameters.

2. We conduct extensive investigations of our proposed scheme. We compare SMART against

a conventional MARL scheme, which we implemented using a DDPG approach to highlight the

advantages of SMART, as well as the conventional Carrier Sensing Multiple Access (CSMA)

scheme, under various system parameters and Quality-of-Service (QoS) metrics. We show that

the MARL-based scheme outperforms CSMA significantly when considering metrics such as

AoI. In particular, SMART achieves the best performance and has the lowest complexity.

3. We provide detailed analysis of computation complexity, storage space, convergence time

and runtime, to support a thorough comparison between the proposed and conventional schemes.

The remainder of the paper is organized as follows. In Section II, we introduce the system

model and formulate the problem of utility maximization. For clarity, we present our main results

here and detailed proofs and explanations are conveyed in the subsequent sections. In Section

III, we present the proposed SMART scheme in detail. Section IV presents the main algorithm

used for comparison and simulation results. Finally, in Section VI, we discuss our conclusions

and directions for future work.
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B. Related Works

The MAC layer operation is a key component of wireless link performance. Most work in this

area has focused on throughput optimization – in particular, the notion of throughput optimality

and its corresponding achievability has been investigated extensively [5]–[7]. Recently, with the

advent of more delay-sensitive services, the focus has shifted to the issue of latency. It is well

known that contention-based random access schemes, including Aloha and all variants of CSMA,

suffer significant latency performance degradation under heavy traffic loads. To address this

issue, extensive research efforts have been made, either aiming to prioritize the access [8]–[10],

or to enhance the physical access capabilities [3], [11]. For the purpose of access prioritization,

one of the techniques proposed is called Extended Access Barring (EAB) [9]. This technique

randomly selects a certain set of terminals to transmit by broadcasting a threshold by the access

point; each terminal generates a random number that it compares against that threshold. IEEE

802.11e supports QoS enhancements by pre-defining four channel access categories, each with

a different priority in accessing the medium, achieved by adopting different contention window

sizes [10]. Sparse-Code Multiple-Access (SCMA) [3] and beamforming [11] techniques, in turn,

can be regarded as aiming to increase the number of concurrent terminals that can be supported

by strengthening the receiver capability in the code and spatial domains, respectively. In IIoT,

WISA [12] is one of the earliest wireless technologies that is based on a contention MAC. It is

built upon the IEEE 802.15.1 physical layer and modifies the MAC layer such that the latency can

be within 2 ms (without retransmissions). WISA supports up to 120 devices, but the reliability is

insufficient to support closed-loop control applications. Based upon WISA, the Wireless Sensor

Actuator Network for Factory Automation (WSAN-FA) standard [13], [14] was proposed for

the PROFIBUS and PROFINET automation protocols. WSAN-FA achieves sufficient latency

and reliability requirements, but with limited scalability of up to 40 devices.

On the other hand, cellular networks adopt a grant-based approach to avoid the collisions

introduced by contention-based random access. That is, the BS transmits a downlink grant and

allocates the resources centrally after it receives the Scheduling Requests (SRs) from terminals

with packets to send. Since the SR interval is typically set to 10 ms [15], this procedure introduces

latency that is unacceptable for mmMTC. Two approaches have been proposed to remedy this

issue. The first is for the BS to pre-allocate uplink resources to certain terminals, which is

referred to as fast uplink access [15]. This approach is based on predicting the uplink traffic
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using, e.g., machine learning techniques, and hence may suffer from prediction inaccuracy. The

other approach is grant-free uplink transmission [3], which is basically a contention-based scheme

and hence has the same issue discussed in the previous paragraph.

Recently, RL has been widely applied to wireless communication systems, such as edge com-

puting [16]–[18] and interference awareness [19]. Ref. [20] reviewed Deep RL-based methods

that address the problems in communication networks, e.g., dynamic network access, data rate

control, and wireless caching. Ref. [21] mainly applied DRL to solve the dynamic spectrum

access problem—in particular, terminals access the wireless channels based on the DRL scheme

with input being the previous feedback of transmission acknowledgments. In Ref. [22], authors

have developed the deep reinforcement learning multiple access protocol for heterogeneous net-

works, capable of learning to achieve a global objective such as maximizing the total throughput

or maximizing α-fairness among all terminals. However, none of the existing work has considered

the situation of the terminals themselves, which can be taken as states in the DRL framework,

allowing the terminals to adjust their transmission strategies accordingly. In many applications,

the situations of terminals reflect the transmission urgency of the messages, which can be utilized

to enhance the QoS. In [23], the authors reduce the duty cycle by compressing the activity time

in continuous intervals results in lower power consumption. In essence, it learns about traffic

trends, but it is not possible to make predictions about traffic in a real system. In [24], the

ALOHA-Q protocol uses the Q learning mechanism as an intelligent policy for slot selection

in frame-based ALOHAs to avoid conflicts with minimal additional overhead. However, in our

paper the distributed system guarantees low signaling overhead and we focus on optimizing the

user’s QoS rather than avoiding conflicts.

The approach we take in this paper relies on situational-awareness [25], a concept related

to the recent work on AoI [4], as well as Age of Synchronization (AoS) [26], Age upon

Decision (AuD) [27] and Inter-Delivery-Time (IDT) [28]. In this line of work, a terminal has

a time-varying sense of its state, which can reflect the value of its yet-to-be-sent packet; in

contrast, traditional CSMA-type schemes assume state-less terminals. In our previous works [29]–

[32], we have derived closed-form Whittle’s index-based policies and decentralized scheduling

schemes exclusively for AoI optimization. The scheduling problem for AoI optimization was also

investigated in [33]–[37], however not considering the distributed scheduling nature of the uplink

MAC. In this work, we build on our previous work [1]. Whereas the previous algorithm uses

Deep Q-Network (DQN), while our new proposed SMART framework uses a DDPG network,
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TABLE I

NOMENCLATURE

Notation Description Notation Description Notation Description

pn(t) Transmission probability ωn Terminal weight Sn(t) Markov state

Ūn Average utility function hAoI,n(t) AoI at the FC T Contention process time

µAoS(t)
Time passed since FC received

a new update from the terminal
rk

Arrival time of the

k-th packet
νk

Duration of the valid

update

µAoI(t)
Time passed since terminal

generated new packet
η

Target network update

coefficient
τ ′

Policy function of

the target network

gn(t)
AoI of the most up-to-date

packets at the terminal queue
Ap,k

Peak age of the

k-th update
ΘQ,Θτ

Parameterize function

approximators

R(0)
Sn

,R(1)
Sn

Expected reward function

for the transmit and silence

at/i, st/i,

rt/i
Action, state, reward Ntarget

Number of contending

terminals

ptx Transmission probability Ĵ∗ Average reward Dk IDT of the k-th update

sm/f Utility at the terminal/FC R Batch size ιk Transmission interval

T2

TN

···

Contention for 
Wireless Channel 

Real-time sensor: 

Energy harv. sensor:

p1

p2

pN

ACK/NACK

… Contention 
intensity

S1(t)
(urgent)

p1(t)
(high)

Real-time sensor: 

S2(t)
(non-urgent)

p2(t)
(low)

SN(t)
(low power)

pN(t)
(low)

ptx

FC

Fig. 1. Illustration of SMART framework, wherein heterogeneous QoS requirements can be simultaneously satisfied by learning-

based access strategies.

which is more stable due to the adoption of soft updates and actor-critic ideas. The SMART

solution we propose still adopts a distributed architecture, most of the training can be carried out

offline, and results in better convergence performance. This paper goes beyond AoI optimization,

considering arbitrary state definitions and QoS requirements of terminals by using a model-free

MARL framework. Tab. I illustrates the notation used in the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The SMART framework is illustrated in Fig. 1. In our system, the goal of each terminal is to

learn the probability pn(t) with which it should try to transmit status updates. Terminals compete

for the wireless channel and only one terminal in the time-slot can successfully transmit a status

update to the Fusion Center (FC) for collection. A multi-access network is considered, wherein
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Fig. 2. Illustration of the transmission frame. Each big block represents a data slot, and each small block represents a mini-slot.

an information FC collects information from N distributed terminals with possibly heterogeneous

QoS requirements. Time is slotted and we assume the terminals are synchronized – for instance,

the terminals can maintain synchronization by receiving the primary synchronization signal from

the FC but with no scheduling grants. The transmission model in the uplink is collision-based.

As shown in Fig. 2, a transmission frame consists of data slots and several contention mini-

slots. A data slot (of length Ts) is preceded by several contention mini-slots (of length δ).

In 5G New Radio (NR), the concept of mini-slots [11] is introduced: this is the minimum

scheduling time unit, occupying as little as a single Orthogonal Frequency Division Multiplexing

(OFDM) symbol. Given the scalable numerology of NR, wherein one slot, consisting of 14

OFDM symbols, can be 0.125 ms with 120 kHz Subcarrier Spacing (SCS), each mini-slot can

be quite short (δ = 1/56 ms or lower with larger SCS).

We assume a p-persistent CSMA framework [38], whereby terminal n transmits with a

probability pn in each contention mini-slot when it senses the channel as idle; otherwise, it

stays silent. Note that, different from homogeneous p-persistent CSMA, the persistence levels

of terminals can be different, i.e., pn differs among terminals. In this way, the terminals can

be situationally aware and thereby choose the appropriate pn. We note that in the Q-CSMA

scheme [6], pn is determined by the queue length of each terminal, which however only applies

to throughput optimization. Based on the definition of p-persistent CSMA, the terminal that has

won the contention transmits in the following data slot and the others sense that the channel

is busy and stay silent. After a data slot, the FC feeds back an acknowledgment (ACK) packet

indicating successful reception; otherwise, a Negative-ACK (NACK) packet is fed back. Note

that a p-persistent CSMA protocol closely approximates the IEEE 802.11 CSMA protocol, which

employs uniform backoff counters and binary exponential backoff, if p and the backoff window

size are chosen such that the average backoff intervals of the two protocols are identical.

In this work, we only consider access to a single channel. By using e.g., CSMA, beamforming

and multiple frequency sub-channels, it is certainly possible to enable multiple packet reception
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simultaneously. A straightforward approach to extend from single-channel to multiple packet

reception is to let the terminals choose one channel randomly or to uniformly pre-allocate the

channels.

Problem Formulation: The objective is to minimize the overall utility of all terminals over

time, i.e.,

min
pn(t),n=1,··· ,N

N∑
n=1

ωnUn, (1)

where ωn denotes the weight associated with the terminal n. pn(t) only depends on Markov state

Sn(t) and the average utility function Un, which is expressed as follows,

Un , lim inf
T→∞

1

T

T∑
t=1

Un(t), (2)

where T denotes the total time of the contention process and the utility function of terminal

n at time t is denoted by Un(t) which reflects the terminal’s QoS requirements and will be

further developed in the following section. In each time slot, the terminals choose their transition

probabilities pn(t), depending only on their own situation, i.e., Markov states Sn(t). They do

so using learning-based approaches that will be specified later – this decentralized approach

is especially important in future massive IoT systems, in order to avoid the prohibitively high

signaling overhead of centralized scheduling methods.

General Situation (Markov State) Characterizations: The situation that terminal n is in

at time t is denoted by its Markov state Sn(t), which is a real-valued vector. The definition is

quite general, encompassing arbitrary state space and transition dynamics. Note that even for

non-Markov states, we can define the state as the concatenation of several historical states as

approximated by Markov states.

Long-term Average AoI: The recently proposed concept of AoI [4] can be used to measure the

information delay at the destination, so as to describe the freshness of information. It is formally

defined as the time elapsed since the last-updated packet’s generation. This definition takes into

account the delays introduced by sampling the information source and data communication. The

state of terminal n is defined as SAoI,n(t) = (gn(t), hAoI,n(t)), where gn(t) is the age of the most

up-to-date packet at the terminal queue, and hAoI,n(t) denotes the AoI at the destination, which

is known to the terminal by keeping track of the receiver feedback. The AoI is formally defined

as

hAoI,n(t) , t− µAoI(t), (3)
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Fig. 3. An example that illustrates the evolution of AoI, AoS, IDT and PAoI. The transmission time of the k-th packet is

tk−1 and the reception time of the k-th packet is rk. ιk is the transmission interval, and νk is the effective update time. Here,

Ap,k denotes the k-th peak of age, Dk represents the IDT of the k-th packet and the change processes of AoI and AoS are

represented by the blue line and red line respectively.

where µAoI(t) is the generation time of the most up-to-date packet at the receiver side up to

time t. The AoI is helpful in control systems in which the control action stringently depends

on the timely arrival of status updates from sensors. However, a long-term average AoI better

characterizes the data freshness in the system. Therefore, the objective for each terminal is to

minimize the long-term average AoI, defined as follows:

ŪAoI , lim sup
τ→∞

1

τ

τ∑
t=1

E[hAoI,n(t)]. (4)

The access probability pn(t) is consistent with the definition in the p-persistent CSMA scheme

[38]. Conceptually, when the AoI of the terminal is high, meaning that the terminal has an aged

status update at the FC, the terminal should be eager to transmit and hence pn(t) should be

higher.

Long-term Average AoS: Similar to AoI, AoS is defined as the time difference between the

current time and when the terminal became unsynchronized with the FC, expressed as

hAoS,n(t) , t− µAoS(t), (5)

where µAoS(t) denotes the earliest time the FC received a packet since the last refresh of the

terminal. The concept of AoS is also graphically illustrated in Fig. 3. Minimizing long-term

average AoS is a QoS objective for some terminals, where the long-term average AoS is

ŪAoS , lim sup
τ→∞

1

τ

τ∑
t=1

E[hAoS,n(t)]. (6)
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Long-term Average PAoI: We also consider the Peak Age of Information (PAoI) [39], which

provides information about the maximum age value reached before an update was received. As

shown in Fig. 3, consider the k-th packet’s PAoI, represented by Ap,k. The peak age of the k-th

update is

Ap,k = ιk + νk, (7)

where ιk is the transmission interval and νk is the duration of the valid update. Therefore, the

long-term average PAoI [40] is defined as

ŪPAoI , lim
κ→∞

1

κ

κ∑
k=1

Ap,k. (8)

PAoI is closely related to the AoI previously considered, has a simple formula, and characterizes

the maximum age of information before receiving updates, which can be relevant in the context

of multiple applications.

Long-term Average IDT: In this work, we are interested in treating inter-delivery time as a

performance metric. IDT refers to the time between the kth and the (k+ 1)th packet of terminal

n is denoted by Dk.

Dk = rk+1 − rk. (9)

where rk is the arrival time of the kth packet. The terminal’s QoS objective is to minimize the

long-term average IDT with an energy constraint, i.e., the terminal can only transmit when its

energy buffer is non-empty. The long-term average IDT is defined as

ŪIDT , lim
κ→∞

1

κ

κ∑
k=1

Dk. (10)

Our approach to enhancing the MAC layer for mmMTC is by noticing the fact that in many

applications, e.g., sensors in CPS and autonomous driving vehicles, terminals have situational

awareness (represented as states), and hence can use this awareness when accessing the wireless

medium on-demand. In this work, the situation of a terminal is represented by a real-valued

vector, which can incorporate heterogeneous types of terminals and their QoS requirements.

An exemplary illustration is given in Fig. 1. For simplicity and concreteness, consider three

terminals contending for access to the information FC. One of the terminals is a real-time sensor

that updates its status and aims for AoI minimization [4]. In contrast, the second terminal is

also a real-time sensor with the objective of minimizing AoI but has lower AoI at the moment.

Therefore, its access probability p2(t) should be lower than p1(t). The third terminal is an
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energy harvesting sensor, which is envisioned to be ubiquitous in future IoT systems. This poses

a challenge for MAC for that not only the transmission urgency of each terminal should be

considered as in the AoI minimization case, the transmission capability should also be taken

into account. Fortunately, our general model is able to incorporate these considerations. We

introduce our proposed schemes in the next section.

III. PROPOSED SITUATIONALLY-AWARE MARL-BASED TRANSMISSIONS ACCESS SCHEME

When considering the general Markov state definition in the previous section, it is quite chal-

lenging to find a universal analytical solution for various types of states and QoS requirements.

For example, our previous works [30]–[32] found that, even for AoI optimizations alone, this

can be quite challenging, let alone for the co-existence of diversified types of states. In view of

this, we resort to the MARL framework.

RL [41] is a model-free control mechanism and therefore is applicable to arbitrary types of

states and state transitions. The unique property of this problem is that each terminal, or agent

in RL terms, can only observe its own states in order to make decisions – this is referred to as

a partially observable identical payoff stochastic game (POIPSG) [42], which is used to model

a problem wherein multiple agents learn simultaneously with a single objective (total utility

functions) and observations of only local state information. The game terminology reflects the

interplay among terminals, which is quite different from the conventional static environment

setting in RL, as agents can interfere with each other while learning, and is thus named MARL.

The MARL nature of the problem poses significant challenges to find a scalable and stable

solution. The challenging part, which is well-known for MARL problems, is that each agent

only observes its own states’ evolution over time, and its environment involves the actions of

other agents, thus making it non-stationary – like trying to learn from a moving target. At the

same time, all agents try to learn an optimal policy, which is the one that yields the highest

long-term reward. This is why it is very hard to design a stable and scalable (massive number

of terminals are common in IIoT) solution. In order to solve the above-mentioned problems, we

have experimented with several approaches, as described in the following sections, including

the state-of-the-art SMART scheme which combines the idea of Whittle’s index and RL. We

consider the set of stochastic reactive policies wherein the action of the terminal only depends on

the current states, and the dependence can be probabilistic. We show that our approach achieves

near-optimal performance consistently in various scenarios.
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A. Situationally-Aware MARL-Based Transmissions

The newly proposed SMART approach builds on our previously proposed Transmission Tax

(TT) based decoupled MARL approach [1]. TT is based on the idea of decoupled RL training to

avoid the convergence issue introduced by the interplay among agents in MARL. The challenge

the system is facing is to ensure that the trained policy using decoupled RL training also works

well under the multi-agent setting. In particular, if we naively trained each agent separately

with the objective of optimizing its own utility, then all agents would become selfish, causing

the channel to be jammed all the time because no agents are trained to cooperate with others.

We resolve this issue by introducing a universal transmission tax for all terminals when trained

separately. That is, when an agent is trained, a transmission tax (i.e., a cost m) is added whenever

the agent chooses to transmit; when it chooses to stay silent, no tax is added. By doing this,

agents are trained to be less selfish, and more conservative in transmissions, i.e., only when

an agent is in a situation where it has a high-value packet would it actually transmit, or else

the transmission tax would surpass the value of the transmission. This approach works well in

various scenarios. In fact, the transmission tax signal is broadcast from the FC at a very low

frequency. The terminal, whether it transmits or not, is determined by itself. Therefore, it is still a

distributed algorithm in general considering the signaling overhead. In the scenario of this paper,

compared with the centralized method, the distributed method has a small increase in signaling

overhead. This is caused by the difference between the signal sending cycle and the transmission

tax signaling sending cycle. In a period of time, the adjustment period of the transmission tax is

greater than the medium access period, so the decentralized method is especially important when

there are a large number of terminals, to avoid the high signaling overhead of the centralized

scheduling method. TT, while a very simple heuristic, is in fact based on Whittle’s index, which

is widely known to result in a near-optimal approach for this kind of problems, specifically

restless multi-armed bandit.

The connection with the Whittle’s index approach is illustrated as follows. In that approach,

the utility maximization scheduling problem is decomposed into N sub-problems, where each

subproblem can be formulated based on the Bellman optimality equations (average cost with

infinite-horizon and relative cost-to-go functions [43]) as

f(Sn) + Ĵ∗ = min

 R
(0)
Sn

+
∑

S′n
P(0)
SnS′n

f(S ′n),

m+R(1)
Sn

+
∑

S′n
P(1)
SnS′n

f(S ′n)

 , (11)
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wherein the top and bottom terms in the minimization operator represent the cost-to-go from

state Sn onward with the actions of remaining silent and transmitting, respectively. The expected

reward functions are denoted by R(0)
Sn

and R(1)
Sn

respectively for the two actions; the transition

matrices are denoted likewise. The relative cost-to-go function of state Sn and the average reward

(i.e., time average utility) are denoted by f(Sn) and Ĵ∗ respectively. The terminal index is omitted

for simplicity while one should note that the reward functions, transition matrices, and cost-to-go

functions can all be different among terminals to reflect heterogeneous states and QoS, except

for the transmission tax m, which is identical for all terminals.

There are two differences between TT and an exact Whittle’s index policy. First, the scheduling

decisions are centralized and deterministic in the Whittle’s index policy, i.e., the index policy

solves for the equivalent transmission tax for each state that makes the scheduling options of (11)

equally good, and compares among terminals to find the one with the largest index. In contrast,

the decentralized transmission strategy considered in our formulation is stochastic, which is

necessary in distributed settings. Second, the Whittle’s index approach seeks the maximum index

(equivalent transmission tax) among terminals, while our approach lets all terminals share an

identical m.

We also found in our experiments that when using the TT algorithm framework, the corre-

sponding network needs to be trained for each transmission tax of each agent, and then tested

in a multi-agent environment after training, to evaluate the reward resulting from the current m

and finally seek out the suitable m through the golden search method. The downside of this

is that as the number of terminals increases, the cost of training increases dramatically, so the

training speed is extremely slow. At the same time, a serious consequence of both training and

searching is that the final convergence results are unstable. The above two points indicate that

the algorithm must be improved so as to make it more robust and adaptable to the multi-agent

environment.

Specifically, the SMART scheme is divided into two parts: one is the generation of the

database, and the other is the adjustment of transmission tax m. In stage 1, we input m and the

state, and get an optimal transmission policy under the current transmission tax after training.

At this stage we made an offline database, which trained for each m to obtain and save the

corresponding network parameters Θ of DDPG, where the range of transmission tax m is chosen

based on the empirical values if obtained in our previous work [1]. Since stage 1 had to trains M

episodes for each m value, the formation of this database takes a long time. However, the benefit
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is that it saves a lot of time for stage 2 training. In stage 2, we first set an initial transmission tax

m0 and read the corresponding network parameters Θ from the database prepared in stage 1. After

that, the contention process is simulated and we seek out an optimal m. Specifically, all terminals

deploy the current model parameters to participate in the multi-agent training phase after single-

agent training, wherein each terminal would transmit with a probability calculated based on

[38] if it senses the channel as idle and its instantaneous DDPG output is to transmit based

on its current state. The FC feeds back an ACK/NACK after each data slot; the FC calculates

the average reward (i.e., time-average utility) in each iteration and updates the transmission tax

accordingly. If there are more than qfail consecutive collisions, the transmission tax will be greatly

increased; otherwise, it will be slightly reduced if there are more than qidle consecutive idle times.

The adjustment process will continue for a while until the average AoI is stable. In this paper,

the terminal can only observe its own state – the degree of urgency, and determine the optimal

strategy under the current state according to the transmission tax system. In our strategy, we

want to maximize the expectation of future returns and predict not the flow of the system but

the evolution of the state. We show the overall process in Alg. 1, wherein initialization part of

the algorithm, N is the total number of terminals, ρ controls how many terminals contend in

each iteration, and the final Ntarget is the number of contending terminals.

1) Details about state/action space: In RL, after an agent acts, the system will transit to a

new state and give a reward. Subsequently, on the basis of the new state and the reward, the

agent carries out a new action according to a certain strategy that is determined by the RL

algorithm. The state space of the algorithm is defined as S = {sm, sf}, where sm reflects the

utility at the terminal and sf is the utility at the FC. The action output of DDPG is whether

the terminal needs the contention channel to transmit information or not. Of particular note is

that since its action space is continuous and one-dimensional, we define it as transmitting when

the absolute value of action output is greater than 0.5 and remaining silent when it is less than

0.5. The reward indicates the cumulative utility of each terminal at the FC. Since one of the

problems to be solved is to minimize the cumulative utility at the FC, the reward is designed as

above. The entire framework is decentralized: as a consequence, we map the tradeoff between

the utility at the terminal and the utility at the FC, which reflects the system state definition, to

the transmit actions.

2) DDPG network framework and procedure: DDPG algorithm is an actor-critic algorithm

[44], combining a policy-based approach with a value-based approach. In a policy-based ap-
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Algorithm 1: SMART

1 Stage1: Decoupled Single-Agent Training

2 Initialization:

3 Terminals: Initialize model parameters Θn (n = 1, · · · , N ) following the normal distribution.

4 FC: Use mmax and mmin to denote the maximum and minimum transmission taxes, respectively. Set

mmin = 500, mmax = 10000, Ntarget = ρN , and ptx = min
{√

2δ
TsN2

target
, 1
Ntarget

}
.

5 for q = 1 :M do

6 for n = 1 : N do

7 a) DDPG training for terminal-n to solve the MDP expressed in (11) with given m to update their

model parameters Θn. The terminal’s action can only be to transmit or not (stay silent).

8 b) Save the mapping relationship between m and Θn in the database.

9 m = m+mi

10 Stage2: Multi-Agent Training

11 Initialization:

12 Terminals: Initialize model parameters Θn(n = 1, ..., N) (n = 1, · · · , N ) corresponding to m0 of stage1

training.

13 FC: Utilize m0 to denote the initial transmission tax.

14 for episode = 1 : T do

15 for n = 1 : N do

16 if Terminal-n senses the channel is idle and DDPG of terminal-n outputs transmit then

17 Terminal-n transmits with probability ptx in this time slot.

18 else

19 Terminal-n stays silent in this time slot.

20 Rk = average utility for all terminals.

21 if Consecutive transmission attempts fail qfail times then

22 m = m+mu

23 else if The idle channel is sensed qidle times in succession then

24 m = m−md

25 else

26 m remains unchanged and continues to the next episode.
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Fig. 4. Illustration of DDPG network framework and process. It is summarized as the process of iteratively training the network

through the interaction of environment, actor network and critic network under the condition of a cyclic episode.

proach, the agent learns by interacting with the environment and directly adjusts its policy.

In contrast, an agent adopting a value-based approach learns based on Q-functions and state

values. As such, the actor-critic design allows the actor’s neural network and the critic’s neural

network to learn according to their respective objective functions, resulting in faster convergence

in comparison to other RL algorithms. The critic’s neural network role is to approximate the

value functions, while the actor’s neural network’s task is to approximate the policy function.

We use θQ and θτ to parameterize function approximators. During the execution of the action,

the actor network θτ applies the action at to the environment and gets an observation (state) st.

During the training process, for each agent, the target network θτ ′ of the actor network θτ will

generate an action at+1 and obtain the observation value st+1. Then, the critic network θQ is

updated by minimizing the loss function as follows:

L(θQ) =
1

R

∑
i

(yi −Q(si, ai|θQ))2, (12)

where R is the batch size and Q(.) is the Q function of the evaluated network. The target value

is defined as

yi = ri + γQ′(si+1, τ
′(si+1|θτ

′
)|θQ)2, (13)

where ri denotes the cumulative utility of each terminal at the FC, γ is the discount factor,

whose value range is [0, 1], τ ′ and Q′(.) are the policy function and the Q function of target

network, respectively. At the same time, we optimize the actor network by maximizing the policy

objective function J :

∇θτJ ≈
1

R

∑
i

∇aQ(s, a|θQ)|s=si,a=τ(si)∇θτ τ(s|θτ )|si . (14)
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TABLE II

SMART NEURAL NETWORK COMPOSITION

Layers Input Hidden 1 Hidden 2 Output

Actor’s network size Ws Gs Gs Wa

Critic’s network size Ws +Wa Gs / 1

Actor’s network activation function ReLU ReLU Tanh ReLU

Critic’s network activation function ReLU ReLU / ReLU

Then, the running average method is utilized to soft update the parameters of the evaluated

network to the target network:

θτ
′ ← ηθτ + (1− η)θτ

′
, (15)

θQ
′ ← ηθQ + (1− η)θQ

′
. (16)

In Fig. 4 we illustrate the data flow between the actor and the critic in the DDPG. DDPG is a

deep learning algorithm and takes advantage of techniques introduced in the work proposed in

the design of DQN [45]. More specifically, DDPG is off-policy, meaning that it is trained using

a randomly selected batch R of past experiences saved in its memory, referred to as the replay

buffer. Additionally, DDPG relies on the use of target and evaluation neural networks combined

with batch normalization to stabilize the learning process.

3) Network architecture: For illustration purposes, we describe the network architecture in

Tab. II, where Gs denotes the number of neurons in a hidden layer, Ws is the dimension of the

state space, and Wa represents the dimension of action space. The actor network contains two

fully-connected hidden layers, and the critic network contains one fully-connected layer. The

actor outputs a specific action, while the critic network outputs a specific Q value.

IV. SIMULATION RESULTS

In this section, we test the performance of our proposed SMART scheme using simulation. We

compare SMART against conventional MAC schemes (TDMA and CSMA based) and a MARL

approach in a multi-terminal scenario, all presented in the first subsection. In the following

subsection, we focus on evaluating SMART performance using the AoI metric. In the third

subsection, we analyze the trade-offs between SMART and a conventional MARL approach in

the aspects of complexity, convergence speed, runtime, variance and mean value performance.



18

TABLE III

SIMULATION PARAMETERS

Parameter Value Parameter Value

Number of agents N 30 Tax interval mi 20

Packet arrival rate λ 0.1 [packet/ms] Initial tax m0 1500

Energy arrival rate λe 0.2 [packet/ms] Magnitude of increase mu 220

Episodes in stage1 M 300000 Magnitude of decrease md 40

Episodes in stage2 T 2000 Threshold of fail times qfail 5

Length of a data slot Ts 1.5 [ms] Threshold of idle times qidle 3

Length of a mini-slot δ 0.01 [ms] Number of neurons in SMART network Gs 30

Control contention ρ 0.03 Number of neurons in conventional MARL network Gm 75

Finally, in the last, fourth subsection, we assess the performance of SMART in a scenario with

multiple terminals with different QoS demands.

The empirical parameters we use throughout our simulation are shown in Tab. III. In Tab. IV

we list hyperparameters in the neural network and the test environment we used to implement

the DDPG. The computational complexity of the DDPG algorithm is an important issue, and

in our actual experiment, we also find that different library versions could affect the results.

Therefore, the test environment must be consistent when comparing the performance of various

algorithms. We train the SMART in two stages. In stage-1, we train 3× 105 episodes to prepare

the database, and test with 2000 episodes in stage-2. The packet arrival rate is 0.1 packets/ms

and the length of a mini-slot is 0.01 ms. Assuming that the size of the energy buffer is 1, the

energy arrival rate is 0.2 packets/ms and the arrival follows the Poisson process.

A. Conventional MAC and MARL Schemes for Comparisons

RR-ONE: In our previous work [31], we have demonstrated that in the set of Arrival-

Independent and Renewal (AIR) policies, a round-robin policy with one-packet (latest packet

only and others are dropped) buffers (RR-ONE) is the optimal strategy for minimizing time-

average AoI. Such an RR-ONE scheme is essentially a TDMA scheme, i.e., each terminal

occupies a dedicated time slot and takes turns in sending an update. In addition, RR-ONE is

asymptotically optimal in all strategies, in the sense that it can achieve the optimal scaling factor

in the regime of a large number of terminals. The average AoI achieved by RR-ONE can be



19

TABLE IV

DDPG HYPERPARAMETERS AND TESTING ENVIRONMENT

Hyperparameter / Item Value / Version Hyperparameter / Item Value / Version

Learning rate for actor LA 10−3 Learning rate for critic LC 2× 10−3

Discount factor γ 0.9 Soft replacement factor η 10−2

SMART Memory capacity B 104 Batch size R 32

Optimizer Adam

Learning rate for actor LA 10−3 Learning rate for critic LC 10−3

Discount factor γ 0.99 Soft replacement factor η 10−3

Conventional MARL Memory capacity B 105 Batch size R 512

Optimizer Adam

Python v3.6.9 Pytorch v0.4.1

Test Environments CPU
Intel(R) Core(TM)

i5-7500 CPU @3.40 GHz
Tensorflow v1.14.0

derived in closed-form as

h̄
(∞,N)
AoI,RR =

1

N

N∑
n=1

1

λn
+
N − 1

2
, (17)

where N is the number of terminals and λn is the status packet arrival rates of terminal-n.

p-persistent CSMA: In p-persistent CSMA, when a terminal n wishes to transmit data, it first

listens for the channel. If the channel is busy, the terminal keeps listening to the next contention

mini-slot. If the channel is free, it transmits with probability pn (selected to be pn = 1
N

in this

work [38]) and delays to the next contention mini-slot with probability 1− pn.

We also designed a conventional MARL approach as a baseline against which to assess the

benefits of employing our proposed SMART solution. We designed the conventional MARL

approach using the same RL algorithm (DDPG [44]) as in SMART to make the comparison

fair. The selected state space consists of the three most important aspects of the environment

for the terminal. The first state is the AoI value of the terminal’s status update (the time since

the terminal generated a new status update). The second state is the AoI value of the terminal’s

status update in the FC (the time elapsed since the terminal’s successfully transmitted status

update was generated). The third state captures the success of the last transmission attempt by

the terminal, i.e., a collision flag. The third state indirectly represents the terminal interplay with

other terminals in the environment. The action the terminal takes represents the transmission

probability at a given time instant and is a real value pn ∈ [0, 1]. The terminal can successfully
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TABLE V

CONVENTIONAL MARL NEURAL NETWORK COMPOSITION

Layer Input Hidden 1 Hidden 2 Hidden 3 Hidden 4 Output

Actor’s network size Wms Gm Gm Gm 1/3Gm Wma

Actor’s activation function ReLU ReLU ReLU ReLU ReLU Tanh

Critic’s network size Wms + Wma Gm Gm Gm 1/3Gm 1

Critic’s activation function ReLU ReLU ReLU ReLU ReLU ReLU

transmit a status update only when it is the only terminal in the system to do so. Terminals

have to learn to cooperate and avoid acting greedily, i.e., trying to transmit a new update at

every opportunity. The latter turns out to be particularly problematic as the number of agents

present in the system increases, as we verified during our simulations. The terminal obtains the

reward based on the state space. More specifically, the reward depends on the AoI value of the

terminal’s status update stored in the FC. The higher the AoI at the FC, the lower the reward is.

Deep-reinforcement Learning Multiple Access (DLMA): Finally, we also compared the

method proposed in the [22], and made appropriate modifications to the environment. The

framework is similar to the conventional MARL approach, where the network changes from

a traditional full connection to a Q neural network (QNN) with the first two hidden layers fully

connected, followed by two ResNet blocks. The setting of parameters is consistent with the work

of [22].

We implemented this conventional MARL approach using PyTorch [46], a Python library for

deep learning. In Tab. V, we list details of the neural network structure we used in our design.

Note that Wma denotes the dimension of the agent’s action, Wms denotes its state dimension,

and Gm represents the number of neurons in the layer. Additionally, between each hidden layer,

we applied a dropout layer, to prevent over-fitting. We also added batch normalization after

activation for the first hidden layer to improve the learning speed. As we demonstrate in Section

IV, terminals employing the conventional MARL approach can learn to cooperate to decrease

the AoI of status updates collected at the FC. Unfortunately, the policy agents’ learning is far

from optimal.

Remark 1 (Comparison of runtime): SMART requires significantly less computational power

to operate than conventional MARL. In SMART, a terminal has to adjust only m, which it

obtains from the database generated offline, i.e., Stage 1 in Alg. 1. In the conventional MARL
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scheme, the terminal is required to train continually; otherwise, its performance will deteriorate

over-time. Consequently, the simulation runtime is much shorter for SMART. In contrast, RR-

ONE and CSMA schemes require no learning processes and thus have much lower computational

overhead.

Remark 2 (Comparison of stability): In most cases, when using SMART, the terminals achieve

lower average AoI than in the conventional MARL scheme. However, the variation in the obtained

average AoI per episode is smaller in the case of conventional MARL. This drawback of SMART

stems from the fact that the offline training of SMART is more sensitive to online system changes.

The variation comparison indicates that conventional MARL is more stable than SMART. It

appears that when terminals adopt the conventional MARL scheme, they sacrifice performance

to achieve better stability.

Remark 3 (Comparison of scalability): Due to the fact that SMART adopts an offline training

stage that pre-trains the DDPG networks such that they are stable models in the online training

stage, it can maintain good performance even when there are many terminals and traditional

MARL methods have difficulty in converging. SMART is more scalable and, as we show in the

next section, with an increase in the number of agents, the performance degrades more slowly

than that of the conventional MARL approach.

It is worth stating that we believe that these three can represent the state-of-the-art MAC

schemes. In our previous work [31], we have shown that among a set of independent arrival and

update (AIR) strategies, the RR-ONE scheme is the best strategy to minimize the time-averaged

AoI. The CSMA protocol represents a traditional algorithm that improves on ALOHA by adding

carrier sense. At the same time, p-persistent CSMA mediates a compromise between reducing

conflicts such as non-persistent CSMA and reducing channel idle time with 1-persistent CSMA.

Finally, the conventional MARL scheme is used in the field of reinforcement learning, which

converges quickly and smoothly.

B. Comparison of SMART, Conventional MARL, RR-ONE, and CSMA Schemes in average AoI

To assess the performance of SMART, we first test it in a scenario of 30 terminals and

vary terminals’ packet arrival rate. As we show in Fig. 5, we observe that both the SMART

and conventional MARL schemes proposed are superior to DLMA algorithm and traditional p-

persistent CSMA. Overall, SMART performs better than conventional MARL in terms of average

AoI, and conventional MARL is still far from reaching the asymptotically optimal lower bound
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Fig. 5. Performance evaluations for AoI with different arrival rates.
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Fig. 6. Average AoI as a function of the number of terminals when (a) the arrival rate is 0.05 packets/ms; (b) the arrival rate

is 0.1 packets/ms; (c) the arrival rate is 0.2 packets/ms.

achieved by RR-ONE. It is of special note that when the arrival rate is low, there is a gap of

about 20 ms between the proposed SMART scheme and the asymptotically optimal RR-ONE.

As the arrival rate gradually increases, the gap shrinks, and eventually SMART outperforms

RR-ONE in terms of average AoI.

Fig. 6 presents the average AoI as a function of the number of terminals, for different arrival

rates. The three subfigures from left to right correspond to the results for arrival rates of 0.05

packets/ms, 0.1 packets/ms and 0.2 packets/ms, respectively. As can be seen from Fig. 6(b),

for a low number of terminals, the average AoI achieved by the traditional CSMA scheme,

DLMA scheme and conventional MARL scheme is similar to the proposed scheme, but as

the number of terminals increases, the performance deteriorates for all. This also highlights the

disadvantages of traditional solutions in high-density scenarios. The conventional MARL scheme
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Fig. 7. Training results of the SMART and conventional MARL schemes. The number of agents is 30, the packet arrival rate

is 0.1 packets/ms, and the length of a mini-slot is 0.01 ms.

and DLMA schemes perform better than the traditional p-persistent CSMA scheme for a low

arrival rate, but their performance is comparable when the arrival rate increases. For arrival rates

of λ = 0.1 and above, SMART outperforms RR-ONE. Such a result is expected because while

RR-ONE is an asymptotically optimal strategy for minimizing the average AoI in AIR policies,

but it is not optimal under other policies or QoS. An additional limitation of RR-ONE is that

terminals can only access a slot in a cyclical order, which means, that terminals can’t prioritize

access. In contrast, SMART can take advantage of terminals’ situation; thus, it can deliver better

performance in the conditions presented in our work.

The long-time average AoI of SMART is tested in comparison with the conventional MARL

approach which utilizes DDPG to train and feedback the entire contention process. The packet

arrival rate is 0.1 packets/ms, the length of a mini-slot is 0.01 ms, and the number of agents

is 30 in Fig. 7, and the plot shows the running average AoI over time. It is observed that the

conventional MARL scheme converges rapidly, and the average AoI reaches about 50 ms after

50 training steps. SMART requires more training steps for convergence, and the AoI has a larger

variation after convergence. The tradeoff is that the average AoI after convergence is about 20

ms for SMART, about 30 ms lower than that achieved by a conventional MARL approach.
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Fig. 8. Average utility when terminals have variable arrival rates.
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Fig. 9. Average PAoI with a different number of terminals and different arrival rates.

C. Scenarios with Variable Arrival Rates and Different QoS Requirements

We apply the schemes to a scenario with variable arrival rates for each terminal, whose value

is drawn from a uniform distribution in [0, 0.1]. Fig. 8 shows that the three schemes that employ

RL can learn and adapt to the arrival rate variation among terminals by employing the deep

neural network. The overall performance of the three is better than p-persistent CSMA, and

SMART outperforms the conventional MARL scheme and DLMA scheme. In this case, RR-

ONE outperforms due to the fact that RR-ONE utilizes every time slot, while SMART has more

idle slots at low arrival rates.

We show the impact of the different number of terminals and different arrival rates on
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Fig. 10. Performance evaluations for diversified QoS requirements. It illustrates that the proposed SMART scheme is adaptable

for heterogeneous QoS requirements.

the average PAoI for various schemes in Fig. 9. The results show that SMART yields the

lowest minimal PAoI compared to the conventional MARL, DLMA and p-persistent CSMA

schemes. RR-ONE also exhibits optimality in this case. Additionally, SMART is more robust

than conventional MARL and DLMA as the conventional MARL and DLMA performance

deteriorates significantly once more than 80 terminals compete for the same channel. The low

PAoI indicates that the proposed SMART approach enables all terminals equal access to the

transmission channel. An important quality to enable timely control to services relying on the

collected information.

In Fig. 10, the average utility—which in this case includes AoI, AoS and Energy Harvesting

(EH) sensors that are optimizing the IDT (described in details in Section II) and each type

contains the same number of terminals—shows that the proposed SMART scheme is scalable

and applicable to heterogeneous QoS requirements. The arrival rate is 0.1 packets/ms, the energy

arrival rate is 0.2 packets/ms and the energy buffer size is 1 for the EH sensor. The traditional

p-persistent CSMA, DLMA and conventional MARL schemes do not perform well compared to

SMART. SMART outperforms all, while the DLMA is superior to the conventional MARL and

the conventional MARL is better than p-persistent CSMA when the number of terminals is low.

In summary, SMART and conventional MARL virtually have the same computational com-

plexity and SMART can achieve better average performance in general, whereas conventional

MARL performs better in terms of convergence speed, stability and storage space. However, the
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TABLE VI

COMPARISON OF RUNTIME AND STORAGE SPACE

Runtime Storage space

SMART 22.908 s 50.9 MB

Conventional MARL 6265.923 s 55.7 KB

1. Runtime simulation is completed under the condition that the number of terminals is 30, the arrival rate is 0.1 packet/ms,

and the episode is 2000.

2. Occupied memory by the scheme contains the basic code and the database, where m ∈ [500, 10000],m =

520, 540, 560, ..., 10000.

TABLE VII

COMPARISON OF COMPLEXITY

Additions Multiplications Total

SMART 2MNGs + TNGs +M + T + 1 MN(WsGs +G2
s +WaGs) + 2TNGs O(MNG2

s )

Conventional MARL 10
3
LoLiGm + Li + 1 LoLi(WmsGm + 8

3
G2

m + 1
3
NmWma) + Lo O(LoLiG

2
m)

longer training process for SMART is a fair trade-off as it outperforms conventional MARL in

runtime performance and scalability.

V. ANALYSIS RESULT

In this section, we analyze the runtime, complexity, and variance of the algorithms for a more

comprehensive comparison.

Runtime: In order to evaluate the difference in the runtime, we conduct an experiment on the

time required by the two schemes to run 2000 episodes. We set the same environment parameters

for both schemes, i.e., the number of terminals is 30 and the arrival rate to 0.1 packet/ms. From

Tab. VI, we can observe that under the same condition, the runtime of conventional MARL is

about 273 times that of the SMART. This is due to the fact that in SMART, Stage 1 of the

database has been completed for most of the network training tasks. In order to store a database

with m ∈ [500, 10000], a large amount of storage space is required, and during the memory-

reading process, there is memory consumption. Therefore SMART occupies about 1, 000 times

as much storage as conventional MARL. In other words, SMART trains the majority of its neural

network offline, which sacrifices a part of the storage capacity in exchange for faster runtime.
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Fig. 11. Variance of AoI for different schemes.

Complexity: We analyze the algorithmic complexity of the two schemes. In a fully-connected

network, the output of a neuron can be formulated as

f

(∑
j

ωjxj + b

)
, (18)

where f is the activation function, ωj is the weight and xj is the input of the neuron-j respectively.

The bias is represented by b. We calculate the complexity of addition and multiplication separately

and get a relatively simple mathematical expression. In Section III, Tab. II specifies the network

architecture of DDPG in SMART, and Alg. 1 describes the overall process of the algorithm.

The network structure for conventional MARL is illustrated in Tab. V. We represent the number

of outer loops and inner loops of the conventional MARL code as Lo and Li, respectively.

From the above, we summarize the complexity of the two schemes in Tab. VII. As a result, the

two schemes are comparable in terms of algorithm complexity because the two schemes every

computational task use the same DRL framework.

Variance: Next, we analyze the variance of the converged values of AoI under the different

tested schemes and plotted in Fig. 11. As the number of terminals increases, the variance of the

AoI achieved by the traditional p-persistent CSMA scheme and the RR-ONE scheme increases

significantly. At the same time, the variances of the AoI for the conventional MARL, DLMA

and SMART schemes fluctuate within a much smaller range.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a scalable and robust MARL-based framework for decentral-

ized wireless access with general system states and QoS metrics. The framework is applicable

to many practical scenarios that demand situationally-aware status-based packet transmissions.

A new, common feedback-based distributed learning scheme, SMART, is designed to tackle the

slow and non-scalable convergence issue in MARL. Compared with a state-of-the-art DDPG-

based MARL scheme, SMART achieves consistently stable convergence to a better solution

with hundreds of terminals (in a single channel), at the expense of increased storage space to

store the DDPG network parameters. Based on extensive simulations, it is shown that SMART

outperforms conventional CSMA and state-of-the-art MARL schemes significantly when metrics

involving status-based packet transmissions are considered.

The proposed scheme is versatile, since the state space and reward function, i.e., QoS metrics

under consideration, are quite general. However, the design with a common feedback signal,

which is vital in our design to stabilize the MARL convergence, puts restrictions on the action

space, that is the action should be binary, e.g., transmit or not in this paper. It remains interesting

to design novel solutions for MARL with a more complicated action space. This is left for future

work.
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