
1

Energy Aware Deep Reinforcement Learning
Scheduling for Sensors Correlated in Time and

Space
Jernej Hribar, Andrei Marinescu, Alessandro Chiumento, and Luiz A. DaSilva

Abstract—Millions of battery-powered sensors deployed for
monitoring purposes in a multitude of scenarios, e.g., agriculture,
smart cities, industry, etc., require energy-efficient solutions to
prolong their lifetime. When these sensors observe a phenomenon
distributed in space and evolving in time, it is expected that
collected observations will be correlated in time and space. This
paper proposes a Deep Reinforcement Learning (DRL) based
scheduling mechanism capable of taking advantage of correlated
information. The designed solution employs Deep Deterministic
Policy Gradient (DDPG) algorithm. The proposed mechanism
can determine the frequency with which sensors should transmit
their updates, to ensure accurate collection of observations, while
simultaneously considering the energy available. The solution
is evaluated with multiple datasets containing environmental
observations obtained in multiple real deployments. The real
observations are leveraged to model the environment with which
the mechanism interacts as realistically as possible. The proposed
solution can significantly extend the sensors’ lifetime and is
compared to an idealized, all-knowing scheduler to demon-
strate that its performance is near-optimal. Additionally, the
results highlight the unique feature of proposed design, energy-
awareness, by displaying the impact of sensors’ energy levels on
the frequency of updates.

Index Terms—Deep Reinforcement Learning, Reinforcement
Learning, Low-Power Sensors, Internet of Things

I. INTRODUCTION

Millions of low-power devices are being deployed to pro-
vide services in smart cities [1], Industry 4.0 [2], smart
agriculture [3], and other Internet of Things (IoT) applications.
Many of these devices are low-cost sensors powered by non-
rechargeable batteries. Their role is to provide sensed informa-
tion to services, which use this information to make decisions.
For example, in smart agriculture, a service controlling an
irrigation system requires information from various sensors to
decide which fields to water. The main challenge is to provide
accurate and up-to-date information to services while keeping
the deployments of battery-powered devices functional for as
long as possible.

J. Hribar is with CONNECT, Trinity College Dublin, Ireland. Email:
jhribar@tcd.ie.

A. Marinescu is with Eaton’s Center for Intelligent Power, Dublin, Ireland.
Email: AndreiMarinescu@eaton.com.

A. Chiumento is with the University of Twente, The Netherlands, Email:
a.chiumento@utwente.nl.

and L. A. DaSilva is with the Commonwealth Cyber Initiative, Virginia
Tech, USA. Email: ldasilva@vt.edu.

This work was funded in part by the European Regional Development Fund
through the SFI Research Centres Programme under Grant No. 13/RC/2077
SFI CONNECT and by the SFI-NSFC Partnership Programme Grant Number
17/NSFC/5224. The corresponding author is Jernej Hribar.

In a system of multiple sensing devices observing the
same physical phenomenon, it is expected that the information
collected will be correlated in time and space. By relying on
this correlation, we have shown that it is possible to increase
the time between consecutive updates by each sensor, thereby
increasing its lifetime, without compromising the accuracy of
the information provided to the IoT service [4]. In the absence
of up-to-date information from one sensor, the system can rely
on more recent information obtained from a correlated sensor.
In this paper, we propose a Deep Reinforcement Learning
(DRL)-based scheduling mechanism capable of determining
how frequently each low-power sensor should transmit its
observations so as to furnish the service with accurate infor-
mation while maximising the lifetime of the network.

We consider an IoT system where low-power sensors trans-
mit periodic updates to a gateway. The gateway is able to
schedule when the next update by each sensor should occur.
The gateway relies on a data-driven approach to make this
determination, by considering the energy available to each
low-power sensor and the need for fresh updates, according
to concepts related to the Age of Information (AoI) [5].
We design a DRL solution capable of learning from past
experiences.

Multiple, often non-trivially connected, factors impact the
decision of when a particular low-power sensor should trans-
mit new information. These factors can be external to the
sensor, such as whether a nearby sensor has recently trans-
mitted updated information, changes in the observed physical
phenomenon, etc., or internal to the sensor, e.g., the remaining
energy, transmission power, or location. The use of DRL
enables us to design a scheduling mechanism capable of
determining when sensors should transmit updated sensed
information to a gateway, by weighing all relevant factors to
make an efficient decision.

In this paper, we use DRL to conserve battery-powered
sensors’ energy by leveraging the correlation exhibited in the
information they collect. In particular, we make the following
contributions:
• The main contribution of this paper is the design of

a DRL energy-aware scheduler that is capable of de-
termining when an IoT sensor should transmit its next
observation. We make use of Deep Deterministic Pol-
icy Gradient (DDPG), a DRL algorithm, to arrive at
an efficient transmission schedule for sensors based on
their available energy, the freshness of the information
collected, and the expected lifetime of all other sensors



2

in the network, without compromising the accuracy of
the information delivered to the application.

• A unique feature of our solution is energy balancing. Our
mechanism is capable of determining to what extent the
energy available to one sensor can be used to prolong
the lifetime of others. We benchmark our solution by
comparing it to an ideal scheduler that acts as an oracle
and is assumed to know the ground truth about the
phenomenon being observed.

• To validate our solution, we use more than five different
datasets to demonstrate its near-optimal performance in
a variety of scenarios. Note that we leverage real data to
model the environment in which our scheduler operates
as realistically as possible.

After briefly reviewing the relevant literature in Section II,
in Section III we describe how a system of sensors collecting
correlated information can estimate the accuracy of their
observations. We describe the decision-making problem that
our proposed scheduling mechanism is capable of assisting
with in Section IV. We present how we incorporated DDPG
into our proposed mechanism (Section V A), describe the
system dynamics using states, actions, and rewards from a
Reinforcement Learning (RL) perspective (Section V B), and
provide implementation details (Section V C). We utilize data
obtained from real deployments to show that the learned
behaviour significantly prolongs the sensors’ lifetime and
achieves near-optimal performance (Section VI A). Addi-
tionally, we demonstrate the scheduling mechanism’s energy
awareness when deciding on the sensors’ transmission times
(Section VI B). Finally, we summarise our main findings and
discuss our future work in Section VII.

II. RELATED WORK

Our work leverages the recently proposed AoI metric [6],
which quantifies the freshness of information. The AoI metric
measures the time since a status update generated by a source,
e.g., a sensor, was last received. Each status update contains
the latest information collected by the source and a timestamp.
The more recently the status update was generated, the more
relevant it is to the decision process. Finding the optimal
update rates with which sources should send information
is non-trivial [7], and considering correlation between sta-
tus updates adds to the complexity of the problem, as an
update from one source lowers the requirement for fresh
information on all other correlated sources. We were the
first to propose taking advantage of fresher information from
correlated sources to conserve the energy of battery-powered
sources by prolonging the times between sources’ consecutive
updates [4]. Subsequently, the authors in [8] and [9] analyzed
from different perspectives a system with correlated sources.
In [8], the authors consider a system in which multiple sources
may observe the same information captured by sensors, i.e.,
multiple sources can obtain the same status update. In [9], the
authors considered a one-dimensional static random field from
which multiple sources transmitted observations. The works in
[4], [8], [9] considered only the impact of correlation on the
timeliness of information to establish the desired frequency of

updates. This paper presents a solution that considers both the
timeliness of the information and the energy available to the
sources to arrive at a scheduling of information updates that
prolongs the lifetime of battery-powered sensors.

Our work is also related to, but differs in crucial aspects
from, the various approaches proposed for energy efficiency
in the context of wireless sensor networks (WSNs) [10]–
[14]. Most proposed works for WSNs rely on detection or
reconstruction of the observed phenomena, through data pre-
diction or model-based active sampling methods, to improve
the low-power sensors’ energy efficiency. In contrast, we
focus on the timeliness of updates, and in particular the AoI,
and then employ RL to determine how to utilize correlated
measurements to reduce the rate at which sources transmit
their updates.

RL has been applied to other energy-aware networking
solutions [15]–[24]. For example, in [16] the authors use Q-
learning to enhance the spectrum utilization of industrial IoT
devices. They demonstrate that devices are capable of learning
a channel selection policy to avoid collisions, thus reducing
retransmissions. The authors in [22] propose a channel-state
aware scheduling mechanism using a Deep Q-Network (DQN)
that enables a device to learn when to transmit and which
channel to use for transmission. The authors in [17] investigate
the use of a semi-supervised DQN to improve indoor users’
location estimation by leveraging information on Bluetooth
signal strength. The work in [19] relies on a no regret RL
approach, while the authors in [20] apply an actor-critic
algorithm to analyse how an energy-harvesting device will
collect energy and schedule its transmissions accordingly. In
both cases, the objective is more effective power management,
using RL to prevent power outages, i.e., to avoid the situation
where an energy-harvesting device completely depletes its
energy. The power control in an energy harvesting system
is also investigated in [24]. The authors, using a multi-agent
approach (with a DQN algorithm), designed a distributed
power control mechanism that maximises devices’ throughput.
The authors in [23] use a DQN algorithm to solve a task
offloading problem for vehicles. Their solution is capable
of saving energy by selecting more efficiently where in the
edge a task from a vehicle should be processed. In [21],
the authors apply a deep belief neural network to design
a data recovery mechanism for sensors that collect spatio-
temporally correlated information. Their mechanism is capable
of determining which observations from other sensors could
be used to replace missing or corrupted observations.

In [25], we first introduced a variant of the proposed
scheduling mechanism. In this paper, we extend our work by
designing an improved DRL-based mechanism (based on a
DDPG algorithm, while [25] relied on a DQN algorithm) and
providing a comprehensive evaluation of the effectiveness of
our solution. We compare our solution to one conventional
way of setting the sensors’ update intervals, and to the optimal
scheduler we designed specifically for evaluation purposes.
Furthermore, we test our mechanism over three additional real-
world datasets. Another extension of our work is in providing
new results that demonstrate the energy balancing aspect of
our solution.



3

Sn

dn,i

Z(Xi, t)

IoT Sensor

Gateway

Estimation Point

S1

SN

Fig. 1: A system of N randomly distributed sensor nodes, whose
observations are used to estimate the value of observed physical
phenomenon, Z(X, t), at location Xi at time t.

III. QUANTIFYING THE ACCURACY OF OBSERVATIONS

We consider a sensor network with N geographically dis-
tributed sensors transmitting observations to a gateway for
collection. The main purpose of these sensors, denoted as
{S1, . . . , SN}, is to observe a physical phenomenon Z(X, t)
distributed in space X and evolving in time t. In our work, we
perform the physical modeling of the observed phenomenon
using observations obtained in a real IoT deployment [26],
[27]. Sensors are deployed at positions Xn and transmit pe-
riodic observations with an update interval Tn, n = 1, . . . , N .
In our system, we assume that the latest received observation
from a sensor replaces the previously received information
as, according to the AoI paradigm, the freshest information
is the most relevant in the decision making process [6]. The
AoI metric measures the time elapsed since the sink, i.e.,
a gateway, received a new observation from the sensor. We
denote the AoI with ∆n(t). Whenever the system receives
an observation from location Xn at time tn, the system will
anticipate the arrival of the next observation from location
Xn at time instance t = tn + Tn. Additionally, the value
of AoI will drop to zero. Meaning, that the value of AoI
is limited to an interval between 0 and Tn. We write the
collected observations into a vector Y = [y1, . . . , yN ]

T with
yn = Z (Xn, tn) where tn is the latest time at which sensor
n has reported an observation.

The system can estimate the value of the observed physical
phenomenon at the desired location Xi at any time instant t
using the collected information, as presented in Fig 1. We
denote the Euclidean distance between sensor Sn and the
location of interest Xi as dn,i. With ∆n,i(t) we denote the
time elapsed since the system received the latest observation
from sensor Sn, i.e., the AoI, ∆n(t) := t− tn. To estimate the
observed process we apply a Linear Minimum Mean Square
Error (LMMSE) estimator which is commonly used for such
problems as demonstrated in [28]. One of the biggest advan-
tage of using LMMSE is that it provides a mathematically
tractable solution and to obtain it, we only require the expected
values, variances, and the covariance. In our system, all three
are available. Therefore, we can approximate the value of the
observed physical phenomenon at position Xi at time instant
t, as:

ŷi(t) =

N∑
n=1

wn,i(t)yn, (1)

where wn(t), n = 0, . . . , N are LMMSE estimator weights.
Following the analysis in [29], we obtain the LMMSE

estimator weight vector Wi(t) = [w0,i(t), . . . , wN,i(t)]
T as

follows:

Wi(t) =

(
CY Y (t)

)−1
ci,Y Z(t). (2)

The matrices CY Y (t), ci,Y Z(t) are covariance matrices, re-
quired to determine Wi(t):

CY Y (t) =

 C1,1(t) . . .C1,N (t)
...

...
CN,1(t) . . .CN,N (t)

 ; ci,Y Z(t) =

C1,i(t)
...

CN,i(t)

 ;

(3)
in which Cj,k(t); j, k = 1, . . . , N , is the covariance of obser-
vations yj and yk, and Cj,i(t) is the covariance of yj and the
observed process Z at the desired location of the estimation.
To obtain the required matrices we can rely on a covariance
model and utilize past observations to determine its values. We
adopt a separable covariance model defined in [30]. With it we
model how observations collected at different instants in time
and different locations relate to each other. We express the
covariance between two observations or one observation and
the estimation point, with AoI difference ∆j,k(t) and distance
dj,k apart as:

Cj,k(dj,k, t|θ1(t), θ2(t)) = exp(−θ2(t)dj,k − θ1(t)∆j,k(t)).
(4)

Note that θ1(t) and θ2(t) are scaling parameters of time and
space, respectively. With dj,k we denote the Euclidean distance
between sensor Sj and the location at which the system
estimates the value of the observed physical phenomenon, or
between sensor Sj and sensor Sk. Both scaling parameters
change over time and are extracted from the obtained obser-
vations. In our work, we follow a scaling extraction method
with Pearson’s correlation coefficient formula for samples, as
described in [31].

The selected covariance function provides a good fit to
model spatial and temporal variation for many physical phe-
nomena. For example, in [30], the authors showed that such
a covariance model could be applied to wind-speed data. We
demonstrated in [4] that the selected model is applicable to the
temperature and humidity sensor data used in the evaluation
section. Additionally, such spatio-temporal correlation can be
observed in many IoT sensor deployments: examples include
IoT systems in a smart city measuring air pollution, precipi-
tation, or noise [1], and smart farm applications in which an
IoT system monitors soil parameters [3].

Every time the system employs Eq. (1) to estimate the value
of the observed physical phenomenon it makes an error. By
using matrices CY Y (t) and cY Z(t) it is possible to determine
the Mean Square Error (MSE) in the estimation as:



4

εi(Xi, t|θ1(t), θ2(t)) = σ2
Z − cZY (t)Wi(t), (5)

where cZY is the transpose of cY Z defined above, and σ2
Z

represents the variance of the observed phenomenon. The
estimation error provides a measure with which the gateway
can quantify the quality of the information currently provided
by the sensing process: the lower the value of the estimation
error, the more accurate the estimated values and the lower
the need for an additional update. Hence, by measuring the
average estimation error between two consecutive updates the
gateway can assess how accurate and up-to-date the observa-
tions collected by the system are. In our work, we control the
accuracy of our sensing process by setting as a constraint the
maximum MSE of the estimator, ε∗. In short, the purpose of
our proposed updating mechanism is to set sensors’ update
intervals in such a way that the average estimation error will
not exceed the set target. In the next section, we describe the
optimisation problem that the gateway must solve: maximising
the network lifetime, constrained by the target accuracy in the
measurements.

IV. PROBLEM FORMULATION

The scenario of interest to our work is the use of in-
expensive battery-powered sensors, transmitting observations
to a gateway for collection. The gateway aims to schedule
the transmission of observations in such a way that the
accuracy of the information collected will satisfy the service
requirements, i.e., average estimation error below ε∗, while,
simultaneously, trying to prolong the lifetime of the deployed
sensor network. Whenever a sensor transmits an observation,
the updating mechanism residing in the gateway decides on
the low-power sensors’ next update time by evaluating the
accuracy of collected observations and the sensors’ available
energy. Each sensor’s lifetime depends on the frequency of
transmitted observations, i.e., the time between two consecu-
tive updates, and on the continuous power consumption, which
is independent of transmissions.

In this work, we assume that a non-rechargeable primary
battery powers the low-power sensors. In such a case, the
energy consumption depends on how often a sensor transmits
an observation and the energy it needs to function regardless
of the mode of operation. Therefore, we can model a sensor’s
lifetime Ln(Tn) as in [32]:

Ln(Tn) =
E0

Pc + Etr
Tn

, (6)

where E0 represents the sensors’ starting energy and Pc is
the continuous power consumption, and Etr represents the
energy required to acquire and transmit the observation. The
continuous power consumption is the power that the sensor
always consumes, for example, leakage current, and depends
solely on the sensor hardware components. For low-power
IoT sensors, Pc is in the range of a few µW or less. The
energy required to transmit the observation, i.e., Etr, depends
on many factors such as the size of the transmitted packet,
the energy required to take the measurement, and channel
conditions.

Rx	
slot	2

IoT sensor

Gateway

Rx	
slot	1

Hibernation

C
om

m
an

d 
2

C
om

m
an

d 
1

O
bs

er
va

tio
n

Sensor
wakes up

Sensor
wakes up

Sensor enters 
sleep mode 

~~
~~ O

bs
er

va
tio

n

Fig. 2: Message sequence of a low-power sensor using LoRaWAN.

Energy is not the only factor the updating mechanism has
to take into account. As described in [33], low-power sensors
are also constrained in terms of available computing power,
memory, communication capabilities, etc. Limited process-
ing power and memory prevent the use of a sophisticated
algorithm on the sensor itself. Therefore, computationally
demanding tasks when making a decision should be carried
out at the gateway. Additionally, these sensors rely on low
data rate transmission, meaning that communication messages
between sensors and gateway should be kept to a minimum.
Furthermore, to extend their lifetime, low-power sensors rely
on the use of sleep mode. When a sensor is in sleep mode, the
rest of the network cannot communicate with it. Consequently,
the gateway has to inform each sensor, while the sensor is still
in active mode, when it should wake up again and transmit the
next observation. Sleep mode is supported by most Low-Power
Wide-Area Network (LPWAN) standards, such as SigFox,
Weightless, Long Range Wide Area Network (LoRaWAN)1,
and Narrowband IoT (NB-IoT) [34]. The low-power sensor
is usually in active mode only after it has transmitted. For
example, a sensor using a LoRaWAN class A radio will
listen for two short time-windows after it has transmitted, as
illustrated in the LoRaWAN message sequence in Fig. 2 [35],
meaning that the updating mechanism only has a short time-
window to provide a response.

The gateway’s goal is to prolong the network lifetime. We
define the network lifetime as the lifetime of the sensor with
the shortest lifespan in the deployment. In other words, the
network lifetime expires the moment one sensor depletes all
of its energy. To that end, the gateway should aim to minimise
transmissions by all sensors, i.e., increase Tn, and, when
updates are required, favour sensors with higher remaining
energy, all while keeping the average estimation error of the
observed physical phenomenon at every location of interest
below the pre-specified value, i.e., ε∗. In a real deployment,
services dictate which locations are of interest for the system.
In this paper, we consider every sensor location, i.e., Xn,
to be a location of interest, meaning that system has to
make accurate estimations at the location of every sensor
while keeping sensors’ power consumption to a minimum. We
summarise the decision-making process in Fig. 3. The gateway
decides on each sensor’s next update time by evaluating the
accuracy of the collected observation and the sensors’ available

1For more information, the reader may visit http://www.sigfox.com;
http://weightless.org; http://www.lora-aliance.org, respectively.



5

Collect
Observation

Gateway

Estimation
Error

Calculation

Update
Covariance

Model

S1

SN

IoT Sensors

.

.

.

Ascertain
sensor's
energy 

Decide
When to
Transmit 
the next

Observation

Fig. 3: High level overview of the decision making process in the
gateway.

energy, which it can determine from the sensor’s reported
power supply measurement. The gateway can then decide
when the sensor should transmit its next observation.

Transmission from a sensor n̂ starts the decision-making
process at time tn̂: due to the energy-constrained nature of
the devices, the gateway has a limited time to determine the
sensor’s next update time, i.e., determine for sensor n̂ a new
sensor update interval Tn̂. In practice, the gateway usually
has around one second to reply with the new update interval.
Further, we discretise the possible update intervals in steps
of duration tS , up to a maximum update interval of Tmax,
an integer multiple of tS . Discretising time enables us to
formulate the problem the gateway faces as follows:

maximize
Tn̂

min

(
Ln(Tn)

)
,∀ n = 1, . . . , N

subject to εn(tn̂ + Tn̂) ≤ ε∗,∀ n = 1, . . . , N.,

Tn̂ ∈ {tS , 2tS , . . . , Tmax}.

(7)

At time step tn̂, when the gateway receives an observation
from sensor n̂, the gateway has to select the update interval
Tn̂ that will maximise the lifetime of the sensor (or sensors) in
the deployment with the shortest life expectancy. The gateway
has to ensure that the accuracy constraint, i.e., εn ≤ ε∗, is met
for all sensors until the next update is received at time tn̂+Tn̂.
In other words, until the system receives a new update from
sensor n̂, the value of the estimation error should not exceed
the set target on any of the sensors. Additionally, because
one sensor’s update time potentially affects the lifetime of all
other sensors, the gateway might have to select a lower update
time for sensor n̂. By doing so, the scheduler can prolong the
lifetime of another sensor, preferably one with less available
energy, to maximise the lifetime, i.e., Ln(Tn),∀n = 1, . . . , N .

To solve the problem, the gateway could turn to a numerical
solver. However, due to the matrix inversion in Eq. (2),
required to determine the MSE value using Eq. (5) for N
sensors, the expected computational complexity to solve the
proposed problem is of the order of O(N4 Tmax

tS
). The required

computational power for a conventional numerical solution
rises to the power of four with the number of sensors. In
practice, the gateway does not have enough time available to
determine the sensor’s new update interval. Additionally, if
conditions in the environment change, e.g., a sensor discon-
nects, the optimization problem becomes absolute. Everything

considered the most practical approach is to employ a DRL
algorithm. The DRL removes the constraint of a computa-
tionally intense on-line method as all the power is used in
off-line training. Consequently, the system can respond in
a few milliseconds. The use of Artificial Neural Network
(ANN) also allows the system to create a model, free of
human influence, for the complex relationships between the
energy and correlation. Thus the learned updating strategies
are not limited by design choices. Another advantage of DRL
is adaptability to environmental conditions changes due to its
on-line learning approach.

The system is highly dynamical, as each received obser-
vation impacts the covariance model’s scaling parameters. As
a result, the value of the MSE (Eq. (5)) continuously varies
over time. Intuitively, when a sensor has more energy available
than others, it should transmit more often, to enable other
sensors (which will transmit in the future) to increase their
update intervals. Such a problem is ideal for a RL approach
because the agent (in our case the gateway) can learn how
to take actions that might bring negative reward in the near
future but will ultimately increase the long-term reward [36] in
prolonging the network lifetime. In the next section, we show
how we model the decision making discussed using an RL
solution, describing the relevant states, actions, and rewards.
Then, by applying a DDPG algorithm, the gateway can arrive
at a long-term updating policy to collect accurate observations
and prolong the network lifetime.

V. DEEP REINFORCEMENT LEARNING APPROACH

In DRL, the agent learns its optimal behaviour, i.e., the best
long term action to be taken in every state, from interactions
with the environment. In our case, the learning agent resides in
the gateway. The agent follows a sequence of events. Once a
sensor transmits an update, the agent has to respond by setting
the sensor’s update interval, and by calculating the MSE value
it can assess the impact of the set update interval. The agent
must also consider the remaining energy available in each
battery-powered sensor and their current update intervals when
making the decision. To solve the decision-making problem
the agent is facing, we employ a DDPG algorithm. Using the
DDPG algorithm enables us to design a scheduling mechanism
with a high number of possible actions regarding setting
the sensor’s update interval. There are two main advantages
of using a DDPG algorithm over other DRL algorithms:
1) there is a high convergence guarantee even when using
non-linear function approximations, e.g., ANN [37] and 2)
DDPG is deterministic, meaning that the policy gradient is
integrated only over the state space, thus requiring much fewer
samples to find the optimal policy in comparison to stochastic
algorithms [38]. In our work we follow the DDPG algorithm
implementation as presented in [39].

A. Deep Deterministic Policy Gradient Algorithm

DDPG is an actor-critic algorithm and, as the name
suggests, consists of two entities/Artificial Neural Network
(ANN): the actor taking actions, and a critic that evaluates
them. The critic is implemented as a DQN and we denote



6

its ANN as Q(s, a|θQ) where θQ are weights of the critic’s
ANN, with a denoting the action the agent takes in state s.
Next, we define the actor as a parametric function µ(s|θµ) in
which θµ represents the actor’s ANN weights. In addition,
during the training process we initialize the target ANN
Q′(s, a|θQ′) and µ′(s|θµ′) with weights θQ

′
and θµ

′
for critic

and actor respectively. The agent selects actions according to
its current policy with added noise a = µ(s|θµ) +N , where
N represent added random noise. Note that exploration in a
DDPG algorithm is carried out by adding a random value, i.e.,
noise, to the actor’s selected value. Then the agent transitions
into a new state s′ and receives reward r. The transition
(s, a, r, s′), also referred to as experience, is stored in memory.
When the algorithm is training the ANN it first samples a
mini-batch of M experiences from the batch and calculates
the target values:

hm = rm + γQ′(s′m, µ
′(sm|θµ

′
)|θQ

′
), (8)

with m denoting the selected experience from the batch. After
determining hm we can update the critic by minimizing the
loss L as:

L =
1

M

M∑
m=1

(hm −Q(sm, am|θQ))2. (9)

With the loss function calculated, the algorithm then updates
the actor’s policy using the sampled policy gradient:

∇θµJ ≈
1

M

M∑
m=1

∇aQ(s, a|θQ)|s=sm,a=µ(sm)∇θµµ(s|θµ)|sm .

(10)
In the last step the DDPG algorithm updates the target ANNs:

θQ
′
← τθQ + (1− τC)θQ

′
, (11)

θµ
′
← τθµ + (1− τA)θµ

′
, (12)

where τA and τC represent the target networks update factor.
Note that the role of the target ANNs is to calculate hm. Using
separate target networks along with the replay buffer provide
stability during the training process as was established in [40].

Figure 4 illustrates how we adopt DDPG in our schedul-
ing algorithm. In our approach, the gateway performs every
computationally demanding task. A low-power sensor only
receives a command message that instructs the sensor for how
long it should enter sleep mode. By setting the duration of
each sensor’s sleep mode, the gateway effectively schedules
the sensors’ transmission of updates. In our mechanism the
actor’s actions are limited to increasing and decreasing the
sleep time, and the critic’s role is to evaluate whether the
selected change is beneficial to the system. The critic derives a
value representing the quality of the selected action using the
reward for the actor. The actor then uses the provided quality
of action value to adapt its policy accordingly.

Next, we define states, actions, and rewards, i.e., a tuple in
〈S,A, R〉 that enables the gateway to determine each sensor’s
optimal update interval.

Gateway

ActorCritic

Interpreter 

State

Take the
Observation 

PolicyEvaluate 
Actor's
Actions

Sensor

Temporal
Difference

Error

Decide 
on the
Action

Value
Function

Reward

E
S/R

New
Observation

Update
Interval

Go to Sleep

Learning Agent

Fig. 4: A high-level overview of the proposed scheduling mechanism
implemented with a Deterministic Policy Gradient Algorithm.

B. States, Actions, and Rewards

Upon the n-th sensor’s transmission the gateway constructs
the state sn ∈ S . The state must capture the critical aspects
of the decision-making process in the gateway: sensors update
interval, available energy, and the value of the estimation error.
To make the decision the gateway has to weight the n-th
sensor status (current update time, average estimation error,
and energy) against the state of all other sensors. The state sn
can be expressed as a six-dimensional vector:

sn = (Tn, En,
εn
ε∗

,

 N∏
i=1
i 6=n

Ti


1

N−1

,

 N∏
i=1
i 6=n

Ei


1

N−1

,

 N∏
i=1
i 6=n

εi
ε∗


1

N−1

)

(13)

with N representing the total number of sensors under the
agent’s control. The first three dimensions correspond to
the transmitting n-th sensor’s update interval (Tn), available
energy(En), and the ratio between MSE and target estimation
error (εn/ε∗). Relying on the ratio enables the learning agent
to perform well even if the target estimation error changes, as
we demonstrate in the next section. The last three dimensions
of the state vector reveal the state of all other sensors in the
system. Using the geometric mean enables us to reduce the
number of state inputs, while simultaneously making sure the
learning agent captures the most significant information about
the environment. For example, the geometric mean provides
information to the agent regarding whether the energy level
in the majority of the sensors is low or high. Note, that even
with a limited number of dimensions for the state input vector,
millions of possible different states exist. The gateway uses the
interpreter to construct the state vector for the sensor which
observation it has just received, and for which it is making the
decision.

The learning agent’s action is limited to either increasing
or decreasing the sensors’ current update interval. In our
implementation, the action value (an ∈ A) returned by the



7

DDPG algorithm is between −1 and 1, i.e., A = [−1, 1]. To
determine the sensors’ new update interval, we multiply the
received action value by a constant, representing the selected
maximum update interval change Umax. We calculate the new
update interval as follows:

Tn̂ = min

(
max (Tn + bUmaxane, 1), Tmax

)
, (14)

where Tn is the sensors’ previous update interval. Note that
the value of Umax can be relatively large, e.g., hundreds of
seconds, and our approach will still perform well. Additionally,
the selection of Umax dictates the number of possible actions
the agent has at is disposal, which is twice the value of Umax
in time-steps.

We form the reward with the learning agent’s goals in mind.
The learning agent has to ensure that information collection is
frequent enough to maintain the freshness of the information
and simultaneously try to prolong the sensors’ lifetime. We
express the reward as:

rn(εn, En) = φracc(εn) + (1− φ)ren(En). (15)

racc(εn) is the reward for accurate collection of observations
and ren(En) is the reward related to the energy aspect of the
problem. The weight φ ∈ [0.25, 0.75] controls the balance
between the reward for accurate collection of observations
and the sensors’ energy preservation. We restrict the range of
the weight φ to avoid the reward from being overly weighted
towards one goal or the other.

The accuracy reward depends on whether the set average
accuracy, ε∗, was satisfied since the n-th sensor’s last trans-
mission, as well as on the change in the estimation error since
the last transmission. We define the accuracy reward as:

racc(εn) =


when εn ≤ ε∗ :

( εnε∗ )
2

+ Υ ∆εn

when εn > ε∗ :

( εn−ε
∗

ε∗ )
2 −Υ ∆εn

(16)

where ∆εn represents the change in the average estimation
error since the previous transmission. The closer the estimation
error is to the target, the greater will be the reward from the
first term of the expression. The second term of the accuracy
reward steers the learning agent towards keeping the MSE as
close as possible to the target ε∗, without exceeding it. The
factor Υ is used to balance the contributions of the two parts
of the accuracy reward.

Our energy reward exploits the relationship between the
update interval and a battery-powered sensor’s lifetime. The
longer the time between the consecutive updates, the longer
the sensors’ lifetime will be. Therefore, the selected energy
reward is based on how the update interval is increased or
decreased, as follows:

ren(En) =


1− NEn∑N

i=1 En
, if Tn̂ > Tn

0, if Tn̂ = Tn
NEn∑N
i=1 En

− 1, if Tn̂ < Tn

, (17)

Tn

εn
ε∗

En(∏N
i=1
i 6=n

Ti

) 1
N−1

(∏N
i=1
i6=n

Ei

) 1
N−1

(∏N
i=1
i 6=n

εi
ε∗

) 1
N−1

...

...

...

... an

Hidden
Layer 2

Hidden
Layer 1

Input Hidden
Layer 3

Hidden
Layer 4 Output

Fig. 5: Actor’s ANN structure.

where En is the sensor’s available energy. If a sensor has above
average available energy, the energy reward should encourage
the learning agent to make sure that such a sensor updates
more often, and vice-versa if a sensor has below average
energy.

In the next subsection, we present our implementation of
the DDPG algorithm.

C. Artificial Neural Network Structure

To implement the learning agent using DDPG as described
in [39] we used Pytorch [41], a standard Python-based library
for implementing DRL algorithms. We employ similar ANN
structures for the actor and the critic. The actor’s ANN consists
of an input (state space), output (action value), and four hidden
layers with Feedforward Neural Network (FNN) structure, as
shown in Figure 5. We use 75 neurons in the first three hidden
layers and 25 neurons in the fourth layer. Between each hidden
layer, we implemented a 50% dropout layer. We use batch
normalization after activation in the first hidden layer. The
dropout layers prevent over-fitting, and batch normalization
improves the learning speed. We employ the same structure
for the critic’s ANN, with a slight difference in the activation
function used. We use a ReLU activation function for every
layer in both ANNs. The only exception is the output layer of
the actor’s ANN, where we use a Hyperbolic function. Such a
difference is required as the actor’s output value is limited to
values between −1 and 1 while the critic’s is not. To train the
ANNs we periodically perform batch learning. In each batch
training we use 128 experiences. Each experience consists of a
state, corresponding action and reward, and the state to which
our sensor transits after taking the selected action. Note that
128 experiences are randomly selected from a memory pool
of up to 100,000 experiences. While, the exploration in DDPG
algorithms is performed by adding noise, i.e., a random value,
to the actor’s output value. We use the Ornstein-Uhlenbeck
process [39] to generate a random value to be added to the
selected action value.

In the gateway, we deploy only one set of actor’s and critic’s
ANN for the DDPG algorithm to control the update times of
all N sensors in the deployment. The main benefit of using
only one set of ANNs is the faster collection of necessary
experiences for training. Additionally, the system experiences
a greater variety in the six-dimensional state vector values,
which means that the initial training period is much lower



8

than if the gateway relied on a separate set of ANNs for each
sensor under its control. Using only one set also has a practical
benefit as it requires much less computational power at the
gateway for the training process.

The interpreter has a crucial role in the operation of the
proposed scheduler. Its function is to determine the state(the
six dimension vector defined in Eq. (13)) and reward (Eq.
(15)) whenever the gateway receives an observation from
the n-th sensor. To determine both, the interpreter relies on
already gathered information regarding the environment stored
in the gateway. For example, by examining metadata in the
observations, the gateway can learn about the sensors’ energy
levels. Additionally, these observations are used to extract
the covariance model’s scaling parameters. The covariance
model is then used to determine the estimation error. In other
words, the gateway leverages collected observations to acquire
knowledge about the environment to make a more informed
decision. Such operational logic follows our discussion in the
previous section (problem formulation). In our design, the
obtained external information is passed to the learning agent
trough the interpreter’s in the form of the state and reward, as
illustrated in the Fig. 4.

We set the start of an episode to when a sensor transmits an
observation. When the gateway receives an observation, it uses
the interpreter to determine the sensor’s state and calculates
the reward for the action taken, i.e., the change in the update
interval. The sensor state information is then passed to the
learning agent to determine the new action; the learning agent
calculates the sensor’s new update interval and informs the
sensor. The sensor will enter sleep mode for the amount of
time determined by the learning agent. As soon as the sensor
wakes up, the episode ends, and the new episode starts as the
sensor transmits a new update.

In the next section, we evaluate the performance of our
proposed mechanism using data obtained from a real sensor
network deployment.

VI. EVALUATION AND RESULTS

In this section, we evaluate our proposed scheduling mech-
anism using observations provided by the Intel Berkeley Re-
search laboratory [26], as well as data collected from multiple
sensors deployed in the city of Santander, Spain, as part of the
SmartSantander testbed [27]. In our experiments, a simulated
sensor transmits an observation with the exact value as was
obtained by its real world counterpart. In other words, the data
enables us to realistically represent how the observed physical
phenomenon, i.e., Z(X, t), varies over time. We evaluate
our mechanism using five different datasets: two from Intel
(temperature and humidity), and three from SmartSantander
(temperature, humidity, and ambient noise). We split the
evaluation into three parts: In the first part, we demonstrate
that the proposed scheduling mechanism can learn the optimal
behaviour and that using our approach can significantly extend
the sensors’ lifespan. In the second part of our evaluation, we
perform complexity and run-time analysis. Finally in our third
part, we highlight the energy-aware aspects of our proposed
scheduling mechanism.

In our simulation, each sensor is assigned observations
obtained by a real sensor and location as it had in real
deployment. Meaning, that when a n-th sensor decides to
transmit an observation (Xn) at time tn, the gateway receives
a measurement, e.g., temperature reading, which the simulated
sensor real counterpart has obtained in the corresponding time
moment. The Intel laboratory dataset provides observations
collected over nine days of measurements from 50 sensors.
The observations are collected very frequently (every 31 sec-
onds), providing us with a ground truth of observed values for
the evaluation process. On the other hand, the Smart Santander
data represents a realistic deployment of sensors in a smart city
environment. In our analysis, we use data obtained in the first
nineteen days of April 2018. We rely on data from twenty
temperature, ten humidity, and eight ambient noise sensors. In
contrast to the Intel data, every sensor transmitted observations
at different time intervals, and sometimes there were a few
hours during which a sensor did not send any observation. We
use the Amelia II software program [42], a tool to generate
missing data, to produce the missing values. To generate these
values, we used observations from the sensor that collected the
highest number of observations; as a consequence, we had to
remove that sensor from each SmartSantander dataset, to avoid
adding bias in the evaluation.

Due to our use of real observations to model the environ-
ment, we had to insert an extra step at the evaluation stage.
The learning agent could recognise patterns in the collected
observations and adapt its behaviour accordingly. In other
words, the agent could overfit its policy to the dataset. To
avoid such a scenario, we have to ensure that the environment
the agent interacts with during evaluation is new. To that end,
we had to split each dataset into two parts. The first part is
used for exploration, during which the agent learns the policy.
The second part is used for the evaluation of its performance.
We split the Intel dataset into six days used for exploration
and three days for evaluation, while for SmartSantander we
use the last six days for evaluation and the rest to train the
agent.

TABLE I: Static Simulation Parameters

Parameter Value Parameter Value

Umax 250s Pc 15uW
E0 6696J Etr 78.7mJ
Tstart 900s Υ 10
ε∗ 0.01 φ 0.5
Tmax 7200s tS 10s

We list system parameters that are kept constant throughout
our evaluation process in Table I. We selected static simulation
energy parameters by assuming that each of the sensors is
powered by a single non-rechargeable Lithium coin battery
with a capacity of 620 mAh, which provides us with the value
for E0. The selected energy consumption parameters, i.e., Pc
and Etr, mimic the power consumption of an IoT sensor using
a LoRaWAN radio. We obtain the power parameters following
the analysis presented in [43]. The selected Umax yielded the
best average performance at the end of the training phase for
all five datasets. Altogether our agent can select among 51



9

10 20 30 40 50

2.5

3

3.5

4

4.5

5

N

L(years)

(a) Lifetime

Intel-Humidity
Intel-Temperature

10 20 30 40 50

35

40

45

50

55

60

N

η

(b) Lifetime Gain

Intel-Humidity
Intel-Temperature

Fig. 6: Lifetime of sensors and lifetime gain achieved by our updating
mechanism as the number of sensors under its control increases.

different actions, i.e., changes of update interval.
Tstart represents a suitable starting update time value, while

Tmax represents the maximal value that should be allowed
between two consecutive updates from one sensor. At the start
of every simulation, we set the same initial update time for
every sensor. φ and ε∗ are set to the value stated in the Table
unless they are parameters that we change in the presented
experiment. We perform simulations in ten-second time-steps.
In Table II we list the DRL solution hyperparameters we
determined through a grid search to be most suitable. Note
that we multiply the calculated rewards by a factor of 10 to
improve the training process, as higher reward values tend to
reduce the time required for the DDPG algorithm to arrive at
the optimal policy [44].

TABLE II: Hyperparameters

Hyperparameter Value

Learning rate 0.5
Discount factor 0.2
Explore rate 0.15
Target ANN soft update 10−3

DQN ANN Learning rate 10−3

Batch size 32
Memory size 2× 104

Optimizer Adam
Loss Function MSE
Actor’s ANN learning rate τA 10−4

Critic’s ANN learning rate τC 10−4

Target ANN soft update 10−3

Critic’s Discount factor 0.99
DDPG Batch size M 128

Memory size 105

Optimizer Adam
Loss Function MSE

A. Performance Evaluation

In this subsection, we evaluate our scheduling mechanism’s
ability to maintain accurate observations and compare it to
other scheduling approaches.

First, we test the updating mechanism performance as the
number of sensors, N , under its management increases. The
Intel datasets offer us a maximum of 50 sensors, and for
cases in which N < 50, we randomly selected a subset of
these sensors and then repeated the experiment several times.
As expected, increasing the number of sensors leads to more
correlated information available, and therefore, the gain of
using correlated information increases with the number of

sensors. The benefit of using correlated information is higher
when observing temperature, due to higher correlation exhib-
ited in the observations collected. We calculate the expected
lifetime using Eq. (6). In Fig. 6(a) we use both Intel datasets,
humidity and temperature, and calculate the expected lifetime
using the average update interval that sensors achieved in
the experiment. Additionally, to demonstrate the performance
improvement brought by our solution, we calculate the lifetime
gain η, plotted in Fig. 6(b). We define this gain as the ratio
between the lifetime achieved using our mechanism and that
achieved in the original datasets. The resulting high gains
arrive from the originally selected update intervals adopted in
the datasets, which would lead sensors to last only a month (a
time duration that coincides with the original time the sensors
in the Intel lab were deployed). By adopting our approach,
the same sensor deployment could last for five years, as the
average update interval our DRL solution has determined is
49 minutes.

In Fig. 7 we compare the performance of our DDPG-based
scheduling mechanism, in terms of achieved sensor lifetime,
to three different methods of obtaining update times:

1) Original: as a baseline, we take the update times
adopted in the Intel Lab and Smart Santander datasets.
The baseline case reveals the original expected lifetime
of deployments, if the sensors were battery-powered.
Note that for the SmartSantander datasets, we use the
update time of the sensor that collected the most obser-
vations.

2) DQN: update times we obtain by using the Deep Q-
Network approach we proposed in [25]. Note that the
reward function we use for the DQN approach is the
same as we defined in Eq. (15), while the action space
consists of five actions. The scheduling mechanism can
take an action to increase the sensor’s current update
interval by one or ten time-steps, decrease it for one or
ten time-steps, or keep it as it was.

3) Ideal Scheduler: in the ideal case, the network con-
troller acts essentially as an oracle that knows the ground
truth and can obtain observations from any sensor on
demand. With the ideal scheduler, sensors are asked to
transmit only when the average error of estimated values
(of temperature, humidity, ambient noise) exceeds the set
threshold ε∗. The lifetime the ideal scheduler obtains is
the maximal possible lifetime the sensors can achieve
while still maintaining the set accuracy constraint. In
other words, the ideal scheduler embodies the optimal
solution.

In Fig. 7, we show the expected lifetime we achieved using
all four approaches for all five datasets. We calculated the
lifetime using Eq. (6) and using values of average update
times that we obtained with each approach. The results show
that our mechanism is capable of finding update intervals that
are very close to the ideal one. The only exception is for
the case of Intel lab temperature data. In that case, a higher
Umax would enable the agent to get results closer to the
ideal case. However, by keeping the Umax constant throughout
our validation we can demonstrate the system’s robustness to



10

1% 2%

50% 51% 90%

75%

92% 88%
88%

95%

78%

90% 96%
88%

96%

Fig. 7: Achieved expected lifetime in years with every approach for all five datasets. The number on top of each bar plot reveals how close
each approach is to the Ideal case.

multiple different scenarios. Similarly, for the DQN solution,
we would have to increase the number of actions to be
able to improve the overall performance. However, with a
higher number of actions, the required training time increases
drastically, which limits the DQN solution’s applicability to the
proposed problem. Table III shows that the DDPG approach
achieves 91 − 92% of the error threshold, for every dataset,
while the DQN approach varies slightly more due to the
mechanism’s inability to adapt to the environmental changes
promptly.

The importance of faster adaptability to an ever-changing
environment is paramount in real deployments. In this cri-
terion, the DDPG solution greatly outperforms the DQN
approach even if results in Fig. 7 indicate very similar perfor-
mance in terms of achieved lifetime. Additionally, we noticed
that the DQN approach requires a longer exploration time, e.g.,
for the Intel dataset, we iterated over the exploration part of
the data three times, in comparison to two iterations required
to train the system using DDPG.

To improve the performance of the proposed DDPG ap-
proach in comparison to the ideal, the apparent solution is to
provide the agent with more information, i.e., expand the ANN
input state space. For example, adding information regarding
the average distance to neighbouring sensors would help.
However, adding the average distance as part of the state
information would decrease the generality of our solution.
Intuitively, providing the agent with direct information regard-
ing all sensors in the system (current update interval, average
estimation error, and energy level) should lead to better results.
Unfortunately, a significantly larger state space would lead to
longer computational time and even possibly a degradation in
performance, as an agent could have a hard time differentiating
between the more and the less relevant information, e.g., which
sensor’s updates are most relevant for the current decision.

The minimum and maximum expected lifetimes among all
sensors are shown as a solid line in the middle of each bar

TABLE III: Obtained ε per dataset.

Dataset ε∗ DQN DDPG Ideal

Intel-Tem 0.01 0.0088 0.0092 0.01
Intel-Hum 0.01 0.0093 0.0091 0.01
SmartSan-Tem 0.01 0.0091 0.0091 0.01
SmartSan-Hum 0.01 0.0094 0.0091 0.01
SmartSan-Amb 0.01 0.0098 0.0092 0.01

2.5 5 7.5 10 12.5 15 17.5

20

25

30

35

rn(m)

Tn(min)

Fig. 8: Sensor’s update interval change depending on the average
distance to other sensors in the network.

in Fig. 7. The variation is especially noticeable in the case
of Intel-Lab data, indicating that some sensors benefit more
from using correlated information than others. For this dataset,
sensors are deployed on the same floor, and those in the
middle of the room are able to benefit more from correlated
measurements collected from other nearby sensors.

We remind the reader that distances are not part of the infor-
mation explicitly furnished to the learning agent. As we show
in Fig. 8, in which we plot the achieved average update interval
as a function of the average distance to other sensors, some



11

sensors benefit more than others from information collected by
their neighbors. Note that in our system each sensor represents
the location at which we observe the physical phenomenon.
More specifically, it appears that the average distance to
other sensors is inversely proportional to the achieved update
interval. We obtained the result using temperature test data for
the Intel-lab dataset. The line in Fig. 8 is obtained using linear
regression. Such behaviour is interesting as the agent does not
have direct information regarding the distances, yet it can infer
it from other available information. However, these differences
appear only in the short term, as the energy-awareness ability
of our proposed scheduling mechanism will in the longer run
prevent one sensor from updating much more often than others
and avoid the depletion of one sensor’s battery much earlier
than the others.

B. Complexity and Run-time analysis

The computational complexity of our DRL solution depends
solely on the dimension of the action space, Da, the dimension
of the state space, Ds, number of layers L, and the number
of neurons in each hidden layer, W . Each invocation of
forward propagation, i.e., when the agent makes its decision,
is linear with respect to the ANN parameters. This means that
we can write the number of computations required for the
actor as O(DsLW ), and, similarly, as O((Da + Ds)LW )
for the critic. Considering that we employ ANNs with only
four hidden layers, i.e., L=4, and with 75 neurons (25 in
the fourth hidden layer) per layer, the resulting number of
computations is relatively small. Our agent can respond within
2 to 3 ms, thus satisfying the timing constraints set by
the sensors’ communications technology. For comparison, the
DQN solution as implemented consist of only one ANN, with
an input dimension DsQ (state-space), number of layers, LQ,
number of neurons in hidden layers, WQ, and actions space
DaQ. Note that the DQN implementation in [25], used in our
comparison, uses a ANN with two hidden layers, each with
24 neurons.

In Table IV, we list computations required for both DRL
solutions and on average response time. DDPG requires more
time due to the higher number of computation. However, the
computation time is well within the time the gateway has
at is disposal to respond. For comparisons, the same system
would need 7-12 seconds for N = 10 to numerically resolve
the optimisation problem. Furthermore, while for a numerical
solution to the optimisation problem, the complexity rises with
the number of sensors to the power of four, in our problem.

TABLE IV: Comparison of Complexity, Implementation Run-time

Computational Complexity Average response time

DQN O(DsQLQWQ) ∼ 2 ms
DDPG O(DsLW ) + O((Da +Ds)LW ) 2-3 ms

The goal of each DRL solution is to find an updating
strategy capable of prolonging the lifetime of battery-powered
sensors. Experimenting with the Intel Lab dataset, we estimate
that a DDPG based scheduler achieves 80% performance of the
fully converged solution. After the initial fast learning period,

100 200 300

10

20

30

40

episodes

T1(min)

(a) T for IoT Sensor 1

T
Tavg

50 100 150 200

10

20

30

40

episodes

T2(min)

(b) T for IoT Sensor 2

T
Tavg

100 200 300

0.0025

0.005

0.0075

0.01

episodes

ε1(%)

(c) ε for IoT sensor 1

ε
ε∗

50 100 150 200

0.0025

0.005

0.0075

0.01

episodes

ε2

(d) ε for IoT sensor 2

ε
ε∗

Fig. 9: Two IoT sensors with different battery levels learning over a
number of episodes. Sensor 1’s battery level is at 75% while sensor
2 has 25% of its battery life remaining.

the performance slowly improves over the next few days due
to on-line learning. In comparison, a DQN-based scheduler
requires almost three days to achieve a similar performance
a DDPG-based solution learns in one day. Furthermore, the
DQN solution requires almost twice as many days to converge
fully. Such behaviour indicates that the DDPG implementation
adapts faster to a changing environment.

C. Energy-aware Scheduling

In this subsection, we demonstrate the energy-aware capa-
bilities of the proposed mechanism. We evaluate the energy-
aware performance using Intel-laboratory temperature data,
and in all experiments the scheduling mechanism controls 50
sensors.

First, we show the changes in the update interval and εn
over a number of episodes for two sensors. In Fig. 9(a) we plot
the update interval over a number of episodes for a sensor with
above-average available energy (75% of remaining battery
life), while in Fig. 9(b) we plot update intervals of sensors
with below-average energy (25% of battery life). Note that
we set the energy levels for all other sensors to 50%, and
that the two sensors were randomly selected. As we show, our
updating mechanism sets the update interval of a sensor with
less remaining energy significantly higher in comparison to
the update interval of a sensor with more energy available. By
setting different update intervals, the mechanism can, in the
longer run, balance the energy levels among sensors. In other
words, the mechanism forces the sensor with more energy to
update more often than it would otherwise need to, in order
to help preserve the energy of the sensor with shorter battery
life. As we show in Fig. 9 (c) and (d), the set error threshold
is not exceeded.

Fig. 10 shows the ratios of update rates of sensors with
different energy levels. We set the energy level of 90 percent
of sensors (45 out of 50) in the dataset to a fixed value. Then
we change the energy level of the remaining ten percent of



12

1 25 50 75 100
0.1

0.25
0.5

1

3
5

10

25

E10%(%)

λ
1
0
%

λ
9
0
%

E90% = 75%

E90% = 50%

E90% = 25%

Fig. 10: The change in update rate ratio as the percentage of the
battery in sensors change.

sensors (5) in steps from 1% to 100% of remaining battery life.
In each step we iterate over the test data and report the ratio
between the achieved average update rate of the two groups,
i.e., λ10%

λ90%
. As expected, when sensors have the same energy

level, they will transmit with roughly the same update rate. We
can observe an intriguing behaviour when sensors are close to
depleting their energy. When a few sensors have much more
energy than others, they will transmit new observations much
more often, even 25 times more often when they have a full
battery and the other sensors’ energy level is at 25%. By doing
so, the mechanism effectively decides to use the energy of a
few sensors to prolong the lifetime of all others. Over time,
the tendency will be towards achieving more uniform energy
use throughout the network.

VII. CONCLUSION

In this paper, we have proposed a DRL-based energy-aware
scheduling mechanism capable of significantly prolonging the
lifetime of a network of battery-powered sensors without
hindering the overall performance of the sensing process.
We have demonstrated, using real-world observations, that
the performance of our proposed mechanism is near-optimal.
Additionally, the proposed mechanism is capable of setting
update intervals depending on the energy available on devices.
Such behavior ensures that battery-powered sensors deployed
at the same time will also expire at the same time, thus
enabling infrastructure providers to replace the entire sen-
sor deployment simultaneously. As such, the energy-aware
scheduling mechanism we proposed in this paper can have a
profound impact on the suitability of the future deployments
of IoT sensing devices.

In our future work, we will focus on a network of sensors
using diverse primary power sources, e.g., mains powered or
event-based energy harvesting. In such a case, the resulting
scheduling policy will depend on the type of power source
the low-power sensor relies on.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for Smart Cities,” IEEE Internet Things J., vol. 1, no. 1, pp.
22–32, Feb. 2014.

[2] L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Jan. 2014.

[3] S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt, “Big Data in Smart
Farming A review,” Agricultural Systems, vol. 153, pp. 69–80, May.
2017.

[4] J. Hribar, M. Costa, N. Kaminski, and L. A. DaSilva, “Using Correlated
Information to Extend Device Lifetime,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2439–2448, Apr. 2019.

[5] A. Kosta, N. Pappas, V. Angelakis et al., “Age of Information: A New
Concept, Metric, and Tool,” Found. Trends Netw., vol. 12, no. 3, pp.
162–259, Nov. 2017.

[6] S. Kaul, R. Yates, and M. Gruteser, “On Piggybacking in Vehicular
Networks,” in Proc. IEEE GLOBECOM. Houston, TX, USA, Dec.
2011, pp. 1–5.

[7] R. D. Yates, “Lazy is Timely: Status Updates by an Energy Harvesting
Source,” in Proc. ISIT. Hong Kong, Jun. 2015, pp. 3008–3012.

[8] A. E. Kalor and P. Popovski, “Minimizing the Age of Information from
Sensors with Common Observations,” IEEE Wireless Commun. Letters,
Oct. 2019.

[9] Z. Jiang and S. Zhou, “Status from a Random Field: How Densely
Should One Update?” in Proc. ISIT. Paris, France, Jul. 2019, pp.
1037–1041.

[10] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad hoc networks,
vol. 7, no. 3, pp. 537–568, May 2009.

[11] T. Rault, A. Bouabdallah, and Y. Challal, “Energy efficiency in wireless
sensor networks: A top-down survey,” Computer Networks, vol. 67, pp.
104–122, Jul. 2014.

[12] L. A. Villas, A. Boukerche, H. A. De Oliveira, R. B. De Araujo,
and A. A. Loureiro, “A spatial correlation aware algorithm to perform
efficient data collection in wireless sensor networks,” Ad Hoc Networks,
vol. 12, pp. 69–85, Jan. 2014.

[13] H. Yetgin, K. T. K. Cheung, M. El-Hajjar, and L. H. Hanzo, “A Survey
of Network Lifetime Maximization Techniques in Wireless Sensor
Networks,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 828–854,
2nd Quart., 2017.

[14] R. C. Carrano, D. Passos, L. C. Magalhaes, and C. V. Albuquerque,
“Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor
Networks,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 181–194,
1st Quart., 2014.

[15] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

[16] F. Li, K.-Y. Lam, Z. Sheng, X. Zhang, K. Zhao, and L. Wang,
“Q-Learning-Based Dynamic Spectrum Access in Cognitive Industrial
Internet of Things,” Mobile Networks Appl., vol. 23, no. 6, pp. 1636–
1644, Dec. 2018.

[17] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh, “Semisuper-
vised Deep Reinforcement Learning in Support of IoT and Smart City
Services,” IEEE Internet Things J., vol. 5, no. 2, pp. 624–635, April
2018.

[18] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, “Machine learning
in wireless sensor networks: Algorithms, strategies, and applications,”
IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1996–2018, 4th Quart.
2014.

[19] J. Zheng, Y. Cai, X. Shen, Z. Zheng, and W. Yang, “Green Energy
Optimization in Energy Harvesting Wireless Sensor Networks,” IEEE
Commun. Mag., vol. 53, no. 11, pp. 150–157, Nov. 2015.

[20] F. A. Aoudia, M. Gautier, and O. Berder, “RLMan: An Energy Manager
Based on Reinforcement Learning for Energy Harvesting Wireless
Sensor Networks,” IEEE Trans. Green Commun. Netw., vol. 2, no. 2,
pp. 408–417, Jun. 2018.

[21] J. Du, H. Chen, and W. Zhang, “A deep learning method for data
recovery in sensor networks using effective spatio-temporal correlation
data,” Sensor Review, no. 2, pp. 208–217, Mar. 2019.

[22] J. Zhu, Y. Song, D. Jiang, and H. Song, “A New Deep-Q-Learning-
Based Transmission Scheduling Mechanism for the Cognitive Internet
of Things,” IEEE Internet Things J., vol. 5, no. 4, pp. 2375–2385, Aug.
2018.

[23] Z. Ning, P. Dong, X. Wang, L. Guo, J. J. Rodrigues, X. Kong, J. Huang,
and R. Y. Kwok, “Deep Reinforcement Learning for Intelligent Internet
of Vehicles: An Energy-Efficient Computational Offloading Scheme,”
IEEE Trans. Cog. Commun. Netw., vol. 5, no. 4, pp. 1060–1072, Dec.
2019.

[24] M. K. Sharma, A. Zappone, M. Assaad, M. Debbah, and S. Vassilaras,
“Distributed Power Control for Large Energy Harvesting Networks:
A Multi-Agent Deep Reinforcement Learning Approach,” IEEE Trans.
Cog. Commun. Netw., vol. 5, no. 4, pp. 1140–1154, Dec. 2019.



13

[25] J. Hribar, A. Marinescu, G. A. Ropokis, and L. A. DaSilva, “Using Deep
Q-learning To Prolong the Lifetime of Correlated Internet of Things
Devices,” in Proc. IEEE ICC Workshops. Shanghai, China, May 2019,
pp. 1–6.

[26] P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux,
“Intel Lab Data,” Online dataset, Mar. 2004. [Online]. Available:
http://db.csail.mit.edu/labdata/labdata.htm

[27] V. Gutiérrez, E. Theodoridis, G. Mylonas, F. Shi, U. Adeel, L. Diez,
D. Amaxilatis, J. Choque, G. Camprodom, J. McCann et al., “Co-
Creating the Cities of the Future,” Sensors, vol. 16, no. 11, pp. 1971–
1997, Nov. 2016.

[28] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro,
“Consensus in Ad Hoc WSNs With Noisy LinksPart II: Distributed
Estimation and Smoothing of Random Signals,” IEEE Trans. Signal
Proc., vol. 56, no. 4, pp. 1650–1666, Apr. 2008.

[29] A. V. Oppenheim and G. C. Verghese, Signals, Systems and Inference.
Pearson, Mar. 2015.

[30] N. Cressie and H.-C. Huang, “Classes of Nonseparable, Spatio-Temporal
Stationary Covariance Functions,” J. Amer. Statis. Assoc., vol. 94, no.
448, pp. 1330–1339, Dec. 1999.

[31] T. Gneiting, “Nonseparable, Stationary Covariance Functions for Space-
Time Data,” J. Amer. Statis. Assoc., vol. 97, no. 458, pp. 590–600, Jun.
2002.

[32] Y. Chen and Q. Zhao, “On the Lifetime of Wireless Sensor Networks,”
Communications letters, vol. 9, no. 11, pp. 976–978, Nov 2005.

[33] C. Bormann, M. Ersue, and A. Keranen, “Terminology For Constrained-
node Networks,” Internet Engineering Task Force, Tech. Rep., May
2014.

[34] G. Tsoukaneri, M. Condoluci, T. Mahmoodi, M. Dohler, and M. K.
Marina, “Group Communications in Narrowband-IoT: Architecture, Pro-
cedures, and Evaluation,” IEEE Internet Things J., vol. 5, no. 3, pp.

1539–1549, Jun. 2018.
[35] SX1272/73 - 860 Mhz to 1020 MHz Low Power Long Range Transceiver

Datasheet, SAMTECH Corporation, Jan. 2019, revision 4. [Online].
Available: https://www.semtech.com

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, Oct. 2018.

[37] S. Bhatnagar, M. Ghavamzadeh, M. Lee, and R. S. Sutton, “Incremental
Natural Actor-critic Algorithms,” in Proc. NIPS. Vancouver, Canada,
2008, pp. 105–112.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms,” in Proc. ICML. Beijing,
China, Jun. 2014, pp. 1–9.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous Control With Deep Reinforcement
Learning,” arXiv preprint arXiv:1509.02971, Sep. 2015.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari With Deep Reinforcement
Learning,” arXiv preprint arXiv:1312.5602, Dec. 2013.

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in Proc. NIPS-Workshop. Long Beach, CA, USA, Dec. 2017,
pp. 1–4.

[42] J. Honaker, G. King, and M. Blackwell, “Amelia II: A Program for
Missing Data,” J. Statistical Software, vol. 45, no. 7, pp. 1–47, Dec.
2011.

[43] M. Costa, T. Farrell, and L. Doyle, “On Energy Efficiency and Lifetime
in Low Power Wide Area Network for The Internet of Things,” in Proc.
IEEE CSCN. Helsinki, Finland, Sep. 2017, pp. 258–263.

[44] J. Sorg, R. L. Lewis, and S. P. Singh, “Reward Design Via Online
Gradient Ascent,” in Proc. NIPS. Vancouver, Canada, Dec. 2010, pp.
2190–2198.

http://db.csail.mit.edu/labdata/labdata.htm
https://www.semtech.com

