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Abstract—The massive device deployments in the Internet of
Things (IoT) generate immense amounts of data that can be
leveraged to improve overall network performance. This work
outlines how data gathered from correlated sensor nodes can
be used to improve the timeliness of updates of another sensor
node in the network. We consider a system of two correlated
information sources, i.e. sensor nodes, which periodically send up-
dates to a gateway, regarding the observed physical phenomenon
distributed in space and evolving in time. The optimal use of
updates in such a system greatly depends on the correlation
between the two sources, and to explore this effect we investigate
three different models of the covariance between independently
obtained observations of the phenomenon of the interest. We
extract values for the parameters in the covariance models
from data coming from a real sensor network, to provide the
reader with a realistic feel for scaling parameters values and the
applicability of our analysis in a real scenario. We demonstrate
that using correlated information results in a significant increase
in device lifetime and compare our approach to others proposed
in the literature.
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I. INTRODUCTION

The Internet of Things (IoT) connects the physical world
with a digital one using ubiquitous computing, various commu-
nication technologies, and embedded devices with sensors and
actuators [1]. Many of the connected devices will be battery-
powered sensing devices, with the primary function to observe
phenomena (e.g. weather, vehicular traffic, etc.) to provide
a system with information regarding the physical world. A
gargantuan number of sensing devices inevitably leads to high
correlation in time and space between different observations of
the same phenomenon. By leveraging the correlation between
sensors, i.e. information sources, it is possible to improve
network performance. In this paper, we focus on devices with
limited available energy within an IoT network and show
that correlation can be used to improve the lifetime of those
devices.

In a network with correlated information sources, it is
possible to save energy by controlling the rate at which the
sources transmit messages to update the information available
about the observed phenomenon. These messages, called status
updates, contain a measurement of the observed process, and
a timestamp to indicate when the observation was made. The

information gathered at a given time or location can be used to
predict the phenomenon at a different position and at a future
time instant. Therefore, by taking advantage of correlation
between different observations of the same phenomenon, it is
possible to decrease the rate at which information sources send
status updates to a gateway. In our work, we demonstrate the
device lifetime gains that can be obtained by controlling the
frequency of status updates from two correlated information
sources.

The timeliness of a status update depends on the time
elapsed since the last update from the information source
and can be characterised through a metric called the Age
of Information (AoI) [2]. AoI is relevant in a network in
which the receiver is interested in fresh information, but
information sources are limited in how often they can send
updates, e.g. due to energy constraints or excessive contention
for the transmission channel. A network of battery-powered
devices is an example of such a network. By considering
correlation between observations made at different times or
locations, it is possible to use up-to-date information collected
from a correlated source instead of using outdated information
gathered at the point of interest. In our work, we examine
when fresher information from a correlated source can replace
information from the source of interest.

Our system model consists of one information source of
interest and one secondary correlated source. In such a case,
it is possible to use the updates from the secondary source to
reduce the frequency of updates from the source of interest.
The secondary source may exist because it collects information
on its own or it may have been placed in the network with
the sole intent to assist the source of interest. An example
of the first scenario is vehicular traffic monitoring sensors
installed at selected sites in a city. While the main purpose
of each sensor is to collect information from its own site, the
correlation between the information collected by all sensors
can be leveraged to reduce their update rates. An example of
the second scenario would be when the source of interest is
battery-powered, and the desire to extend its lifetime may limit
its update rate. In such a case, it may be possible to deploy
a secondary source capable of observing a correlated phe-
nomenon, but without the same stringent energy constraints.
Whenever a correlated source is present in the network, it is
possible to utilise it to improve the timeliness of information
regarding the phenomenon of interest.
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In this paper, we analyse the timeliness of updates in a sys-
tem comprising of a pair of correlated sources and determine
how the scheduling of updates from the secondary source may
be of use to the source of interest. We show that the time
difference between consecutive updates from the sources is
crucial. We derive the optimal time difference between the
two sources’ updates, for which the presence of correlated
sources will bring the highest benefits to the timeliness of
the information collected. Due to system dependence on the
correlation between the sources, we model the correlation
using three different covariance models, one separable and
two non-separable [3], [4], to illustrate how various covariance
models impact the timeliness of updates. In the last section,
we extract values for the parameters in the covariance models
from real IoT data and demonstrate that a system can extend
the lifetime of a source by relying on fresher information from
a correlated source.

II. RELATED WORK

The idea of using the correlation between neighbouring
sensor nodes that transmit information regarding the same phe-
nomenon has its roots in the area of wireless sensor networks
(WSNs) [5]. The initial intention was to use only a fraction of
all available sensor nodes to reconstruct the observed physical
phenomenon. This objective bears similarities to approaches
proposed in estimation and detection theory, where the primary
aim was to determine the necessary density to detect the ob-
served physical phenomenon correctly [6]. Our work is related
to both of these concepts, but differs in one crucial aspect:
we are not reconstructing the observed physical phenomenon.
Instead, our main contribution is analysing the timeliness of
updates, i.e. measuring how outdated the information is, and
then use correlated measurements to reduce the rate at which
sources transmit their updates.

Several data-driven techniques that utilise the correlation
between sensor nodes for energy conservation have been
proposed in the past [7]. Of these, the one most related to
our work is the data prediction technique, in which informa-
tion sources use mathematical models to estimate the value
of the observed physical phenomenon at a given time and
place. In some techniques, the sink estimates the value of
the observed phenomenon by aggregating information from
multiple sources. Sources transmit updates only when the
information available at the sink results in an error greater than
a certain threshold. The authors in [8] show that, by using this
approach, the sources can save energy by sending information
only when necessary. However, the approach requires that each
of the sources calculates the estimated value of the observed
phenomenon, which may present a challenge for sensors with
limited processing capability. Another option is a model-based
active sampling technique, which relies on models used only
at the sink. In this case, the sink has to control when sources
send an update. As demonstrated in [9], the energy savings
are two-fold: fewer transmissions and less energy needed to
capture the data. However, the downside of this approach is
that the source has to constantly listen to discover when to
send an update. In our work, we do not rely on any model

at the source or the sink, but rather focus on analysing the
timeliness of updates to improve the energy efficiency of the
system.

Recently a few approaches relying on correlated information
to preserve energy were proposed. In [10] and [11], the authors
propose updating mechanisms, developed independently of,
but closely related to, our work. In [10], the authors propose
an algorithm that clusters sources based on their spatial and
temporal correlation. Each time an update is required a differ-
ent source in a cluster will transmit it, thus conserving energy
and simultaneously maintaining real-time reporting. Similarly,
in [11], the authors propose a scheduling algorithm that groups
sources based on their physical locations to conserve energy. In
Table I we present key characteristics of the above-mentioned
updating mechanisms and compare them to our own. The most
noticeable difference is that we do not rely on a scheduling
algorithm. Instead, we calculate the optimal rate at which
each source should produce updates. Moreover, our approach
is data-driven, making it ready to utilise machine learning
methods. The trade-off is the same for all cases: the greater
the accuracy required in the data gathering, the more energy
sources will use. Additionally, our work provides new insights
for a network of correlated sources, using a metric called the
AoI.

TABLE I: Qualitative comparison with the state of the art

Our approach [10] [11]

Mechanism Calculating
update rates

Scheduling
algorithm

Scheduling
algorithm

Main
advantage Data-driven Real-time

reporting Adaptiveness

Main
drawback Requires data

Limited to
mesh

networks

Limited to
ZigBee

Technology

Trade-off
Accuracy

vs
energy

Accuracy
vs

energy

Accuracy
vs

energy

The concept of AoI was introduced in [12] to quantify the
freshness of information as a metric of interest in vehicular
networks. With age, it is possible to determine how the out-
datedness of information impacts the decision-making process
of services or applications using that information. Various
age-based metrics have been proposed to measure the impact
of outdated information on the system. Analysing a system
using even a basic metric such as the average age can lead
to interesting results. The work in [13] considers a pair of
sources with a first-come-first-serve M/M/1 queue and analyses
the average age. They establish the equilibrium in which both
sources achieve the optimal average age, given the update rate
of the other source. In [14], the authors demonstrate that when
considering age, the status updates should be processed on
a last-come-first-served basis because it is expected that the
packet at the end of the queue is the most up to date. The
peak age, the maximum value of age before the next update
from the source is received, was defined in [15]. The peak age
provides a better measure for a system as individual updates
may be very outdated, thus greatly impacting the decision-
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making process, while the average age may be low due to a
small number of fresh updates. An alternative is to introduce
a penalty function to represent dissatisfaction with out-of-date
updates, and propose a status update policy using an algorithm
which minimises this dissatisfaction as shown in [16]. The
AoI is relevant in any system in which sources are not able to
constantly provide fresh information, usually due to contention
for the transmission channel, and yet the system has to act
based on the available information.

In a system of correlated sources, the system can act on the
outdated information from a dedicated source or use fresher
information from a correlated source. In [17], we analysed a
pair of correlated sources using a separable covariance model
and established both the minimal and optimal time shifts
between sources’ updates, indicating when it is beneficial
for the system to use an update from the correlated source.
Moreover, we analytically calculated the maximum gain from
using correlated information and showed the trade-off between
reduced error gain and update rate, which must be considered
when setting the optimal updating strategy. In this paper,
we expand on our work by analysing the system with two
additional non-separable covariance models to show the impact
of different models of correlation on the optimal scheduling
of updates from correlated sources. Furthermore, we analyse
data, collected in a real sensor network, to provide intuition
regarding the use of covariance models, and compare the
energy savings achieved by our solution to related work in
the recent literature.

III. SYSTEM MODEL

A. System model
Our system consists of two sensor nodes periodically send-

ing updates to the gateway, regarding the observed physical
phenomenon distributed in space and evolving in time. We
represent the observed phenomenon at a position x in 3-
dimensional space, at a given time instant t, with Z(x, t). The
observations are made available to the gateway by means of
status update messages, which carry the observation and a time
stamp indicating when the observation was made. We quantify
the timeliness of the received updates using the AoI, denoted
as ∆(t).

The AoI is defined as the time that has elapsed at the gate-
way since the last update from a given source [15], meaning
that in a system where sources update deterministically, the
age will also be deterministic. For the i-th source the age is
as follows:

∆i(t) := t− ti, (1)

where i ∈ {1, 2}, and ti represents the time of the last update
generated by source Si. We assume that each sensor node
sends updates periodically at a rate λi, i.e. the interval between
consecutive updates is 1/λi. In such a case, the AoI is also
deterministic and varies between 0 and 1/λi.

The system can estimate the value of the observed physical
phenomenon at the desired location using aged information
originating from one of the two available information sources.

Fig. 1: Two correlated sources observing the same physical
phenomenon and sending the information back to the sink.

The accuracy of estimation also depends on the distance
between the desired location of estimation and the location
of the information source. With ri we denote the Euclidean
distance between the Si source and the exact location at
which the system estimates the value of observed physical
phenomena. Our system as represented in Figure 1 is inter-
ested in estimating the value of Z(x1, t) at the location of
information source S1, meaning that updates sent by S1 are
perfectly spatially correlated to the desired value of Z(x1, t),
i.e. r1 = 0. The only effect to be taken into account, in this
case, is the age of the available information, i.e. ∆1(t). The
information from the correlated source S2 may be outdated, i.e.
∆2(t) ≥ 0, and separated in space, i.e. r2 > 0. As a result, the
information sent by S2 is subject to the effects of spatial cor-
relation and aging. The system may use outdated information
Z(x1, t1) from source S1 or outdated and spatially correlated
information Z(x2, t2) from source S2, when estimating the
value of Z(x1, t). Given the most recent observation available,
the estimator which minimises the mean square error is the
conditional expectation:

Ẑi = E[Z(x1, t)|Z(xi, ti)], i ∈ {1, 2}. (2)

The conditional variance is proportional to 1 − ρi2, where
ρi is the correlation coefficient, defined assuming unit variance
as

ρi := cov
(
Z(x1, t), Z(xi, ti)

)
, (3)

which is a function of the age and the spatial separation
between the selected sources.

B. Covariance models
A covariance model can be used to describe how information

from two correlated sources observing the same physical phe-
nomena jointly varies over time and/or space. We consider that
the observed phenomenon can be represented by a stationary
Gaussian process. Therefore, the observations from the two
sources Z(x1, t1) and Z(x2, t2) are assumed to be jointly
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Gaussian. The covariance indicates how likely it is that if
the value of the observed phenomenon changed at the distant
correlated source, i.e. S2, the value at the point of interest,
i.e. S1, has also changed, and vice versa. In our analysis, we
consider a separable covariance model [4]:

ρI
i (ri, ti) = exp(−bri − a∆i(t)), (4)

and two non-separable models [3]:

ρII
i (ri, ti) =

a∆i(t) + 1(
(a∆i(t) + 1)2 + b2r2

i

)(d+1)/2
, (5)

ρIII
i (ri, ti) = exp(−b2r2

i − a∆i(t)− c∆i(t)r
2
i ). (6)

Note that d in (5) refers to dimensions: we consider 3-
dimensional space, i.e. d = 3. In the models above, a, b, and
c are the scaling parameters.

Covariance functions provide tractable mathematical mod-
elling for the spatial-temporal variation of the observed phys-
ical phenomenon. However, there is a significant difference
between the separable and the non-separable class regarding
mathematical tractability. With a separable covariance class, it
is possible to formulate the covariance as a separate product of
only the spatial covariance and only the temporal covariance,
while for non-separable classes the spatial and temporal com-
ponents are inseparable. In general, the non-separable class
models space-time interactions and is therefore applicable to
a broader range of data gathering scenarios in comparison to
the separable class. However, as we illustrate in Section VI,
all three covariance models defined above can be applicable
in realistic scenarios

With the correlation between the two sources established, it
is possible to determine the estimation error resulting from the
use of spatially and temporally correlated information.

C. System estimation error
Whenever the system uses outdated information to estimate

the current value of the physical phenomenon, it incurs an esti-
mation error, which depends on the age and the location of the
used information. We consider that the observed phenomenon
can be represented by a stationary Gaussian process. Therefore,
status updates sent from two information sources are assumed
to be jointly Gaussian. We can then define estimation error as:

εi(ri, t) = 1− ρ2
i (ri, ti). (7)

Note that ρi represents one of the covariance models defined in
previous subsection, i.e. ρI

i , ρII
i , or ρIII

i . With εi we calculate
the estimation error for the last update received from the i-
th source. The higher the error, the lower the value of the
information in the status update, and the less likely it is that
the system will use that update.

The system always uses the information from the source
which results in the lower estimation error, meaning that the
system estimation error is:

0 τp τ∆ T τ∆ +T 2T

ε2(r2, 0)

ε2max

ε1max

ε1
ε2

Fig. 2: Estimation error change over two status updates from
S1, for two correlated sources with equal update rates. At t =
0, S1 sends an update, followed by an update from S2 with
time shift τ∆. The dashed area is the system estimation error.
The covariance model adopted here is the one in Equation (4).

εsys(r, t) = min
(
ε1(0, t), ε2(r2, t)

)
. (8)

Figure 2 illustrates how the estimation error changes over
time when both sources have the same update rate, with (4)
describing the correlation between sources. Let T1 denote
the period of updates from source S1, i.e. T1 = 1/λ1.
Every time that S1 transmits an update, ε1 drops to zero.
As information becomes more outdated, the error slowly rises
according to the expression in (9). We denote T2 as the
status update period for S2. Updates for S2 are transmitted
at time instants τ∆ + jT2, j ∈ {1, 2, . . .}, at which times
∆2(t) = 0, and the error based on information received from
S2 is ε2(r2, 0) = 1 − exp(−2br2) and then slowly rises
according to the expression in (10). In Figure 2, the system
estimation error is zero every time S1 sends an update and
then increases along with expression (9) until an update from
S2 is received, after which the system estimation error equals
the error corresponding to the information from S2, until S1

updates again and repeats the cycle.

ε1(0, t) = 1− exp(−2a∆1(t)) (9)

ε2(r2, t) = 1− exp(−2br2 − 2a∆2(t)). (10)

In the next sections, we will analyse the proposed system
and determine when sources should send updates such that the
system estimation error will be minimal.

IV. EQUAL UPDATE RATES

In this section, we consider a system in which both sources
update with equal update rates, i.e. λ1 = λ2, meaning that
T1 = T2 = T . In such a case, the system estimation error
depends only on the time shift between the sources’ updates.
We denote this time shift as τ∆, which may take values in
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Fig. 3: The graph shows the increase of τp with the distance r2

between information sources, for all three covariance models.
The graph was obtained using scaling parameters a = 0.5,
b = 0.025, and c = 0.0125.

[0, T ). In Figure 2, when S2 sends its first update, the age of
information from S1 equals τ∆, i.e ∆1(t) = τ∆. Whenever
S2 produces an update, this update may incur a higher or
lower estimation error than that from the latest update from S1,
depending on τ∆ and the correlation between the two sources.
As seen in Figure 2, the error at the time of an update from
S2 equals ε2(r2, 0).

An update from the correlated source can replace only
sufficiently aged updates from the source of interest. We refer
to τp as the minimal age an update from S1 needs to have
so that an update from S2 can reduce the system estimation
error. When S2 updates with time shift τp, i.e τ∆ = τp, the
estimation error from S2 at ∆2 = 0 equals the error from
source S1 at time τp. Hence, we can calculate τp by setting:

ε2(r2, 0) = ε1(0, τp). (11)

τp results for ρI , ρII , and ρIII , respectively, are:

τpI =
br2

a
, (12)

τpII =
(1 + b2r2

2)
2
3 − 1

a
, (13)

τpIII =
b2r2

2

a
. (14)

τp is independent of update rates and depends only on the
scaling parameters for the covariance model and the spatial
separation between sources. Furthermore, it imposes a condi-
tion on the system, that for the information from the correlated
source to be beneficial in reducing the system estimation error,
the update period for the two sources has to be higher than τp,
i.e. T > τp.

With an increase in the distance between the information
sources, τp always increases, regardless of which covariance
model describes the correlation between the sources, as shown

T

1

Gmax(ρI )

Gmax(ρII )

Gmax(ρIII )

τpIτpII

τpIII τ∗
I

τ∗
II

τ∗
III

Time shift τ∆

ρI

ρII

ρIII

Fig. 4: Gain change for two correlated sources with equal
update rates, as the time shift between consecutive updates
from the two sources varies from zero to T , for three different
covariance classes. The graph was obtained using scaling
parameters a = 0.5, b = 0.025, c = 0.0125, and T = 1,
with distance r2 = 10.

in Figure 3. When the correlation can be described by the
separable model ρI , τp increases linearly, while with non-
separable covariance models ρII and ρIII the increase is
exponential. In the case depicted in Figure 3, the scaling
parameter a is larger than parameter b, meaning that sensors
are more temporally than spatially correlated. The scaling
parameters have a direct impact on the τp value. The more
spatially correlated sources are, i.e. b >> 0, the higher the
value of τp. However, regardless of the scaling parameter
values, the curve shape remains the same. The increase of τp
with distance illustrates how the shorter the update period, the
closer together the sources must be for the updates from S2

to be advantageous in reducing the system estimation error.
To calculate the system estimation error when two correlated

sources update with equal update rate, it is necessary to
integrate εsys(r, t) over one period T , which can be expressed
as:

εsys =
1

T

(∫ τ∆

0

ε1(0, t)dt+

∫ T

τ∆

ε2(r2, t)dt

)
, (15)

where, for 0 ≤ t ≤ T :

∆1(t) = t and ∆2(t) = t− τ∆,

and with the condition:

τ∆ ≥ τp.
The system estimation error varies with the time shift τ∆

between the updates from the two information sources. To
illustrate this effect, we define the error gain, which captures
the impact that the updates from S2 have on reducing the
system estimation error. We define the gain as the ratio between
the average error if the system relied solely on updates from
S1 to the system estimation error when updates from S2 are
also considered:
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Fig. 5: The graph shows the increase of τ∗ with the distance r2

between the two information sources, for all three covariance
models. The graph was obtained using scaling parameters a =
0.5, b = 0.1, c = 0.0125, and T = 50.

G(r, t) =
ε1(0, t)

εsys(r, t)
. (16)

Figure 4 depicts the change in the gain for different τ∆
values. For τ∆ < τp, the gain is one, and the graph exhibits
a plateau, meaning that an update from S2 does not reduce
the system estimation error. When τ∆ > τp, the update from
S2 reduces the error and the gain increases. At τ∆ = τ∗, the
system generates the lowest system estimation error and the
highest gain. When the time shift for the update from S2 is
greater than τ∗, the gain decreases again. The reason for such
behaviour lies in the fact that the error caused by outdated
information from S1 is no longer effectively compensated
by an update from S2. Furthermore, the scaling parameters
influence the values of τp and τ∗; however, they do not affect
the shape of the curve. Higher dependence on spatial separation
in the second non-separable covariance model ρIII causes
non-symmetrical behaviour as seen in Figure 4. For all three
covariance models, we can establish that there is always an
optimal time shift, i.e. τ∆ = τ∗, for which receiving an update
from a correlated source is most beneficial.

To determine τ∗ we calculate the derivative of (15), .i.e.
dεsys/dτ∆. For separable model ρI and non-separable model
ρIII , we are able to derive closed-form expressions for the
optimal time shift τ∗ (equations (17) and (18)). For the second
non-separable model ρII we cannot produce a closed form
expression, and instead used a numerical solution to obtain
Figure 5.

τ∗
I

=
r2b+ Ta

2a
, (17)

τ∗
III

=
(cr2

2 + a)T + b2r2
2

cr2
2 + 2a

. (18)

The optimal time shift depends on the update period, the
distance between sources r2, and the value of the scaling
parameters. With an increase in distance the value of τ∗

increases, but the value is always relative to T , as illustrated in

0 τ∆

τp

τ∆+2T2

τ ′
τ∆+4T2 τ∆+6T2 T1

0

ε2(r2, 0)

ε2max

ε1max

nT2mT2

ε1
ε2

Fig. 6: Estimation error change over one period of T1 for two
sources when S1 updates less often than S2, i.e. λ1 < λ2.
The dashed area represents the system estimation error. The
covariance model adopted here is the one in Equation (4).

Figure 5. For the separable model (4), it is clear from Equation
(17) that τ∗ is always larger than T/2. The same applies for
non-separable model (5), which we determined numerically.
The increase of τ∗ is linear with distance for both models.
The second non-separable model (6) has no such limitation
in the value of τ∗ and as the distance between the sources
increases τ∗ approaches T .

In summary, the observed system has two notable points
of interest, τp and τ∗, and a desirable condition: τ∆ > τp. τp
represents the minimal time shift the update from the correlated
source should have to reduce the system estimation error.
Furthermore, τp is independent of update rates. τ∗ denotes the
time shift at which a received update from the correlated source
would result in the minimal system estimation error. The
system dynamics change when sources update with different
update rates, as we explore in the next section.

V. DIFFERENT UPDATE RATES

Information sources observing the same physical phe-
nomenon in an IoT network may, for many reasons, update
with different update rates. For example, one of the sources
may transmit more frequently because the cost of its transmis-
sion is lower than the cost of transmission of the other (e.g. it
may rely on a more stable energy source). In this section, we
analyse two possible cases, namely when S1 updates more or
less frequently than S2.

A. S1 updates less frequently than S2

When S1 updates less frequently than S2, i.e. λ1 < λ2, the
system estimation error changes depending on the update rate
of S2 and the time shift τ∆. After S1 sends an update, there is a
time period during which any update sent from S2 is irrelevant,
because it does not reduce the error. As illustrated in Figure
6, the first m updates from S2 do not influence the average
error value. The time period during which updates from S2
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Fig. 7: The graph shows the decrease of Gmax with the dis-
tance r2 between information sources, for all three covariance
models. The graph was obtained using scaling parameters
a = 0.5, b = 0.025, c = 0.0125, and T1 = 50.

are irrelevant is described as τp. Note that τp is independent
of update rates and is calculated as shown in (11).
τ ′ represents the time shift between an update from S1 and

the first update from S2 which reduces the system estimation
error (see Figure 6). Before that update, the first m updates
from S2 are irrelevant as they do not reduce the error. The
number n represents the number of full transmissions from
S2 between τp and the next update from S1. For example,
in Figure 6, n = 4. It is necessary to integrate ε2(r2, t) n
times over one period of T2, as every time S2 sends an update
∆2(t) = 0. What remains is only part of an S2 update which
reduces the system estimation error only partially because an
update from S1 intervenes.

For the source of interest the benefit of using updates from
a correlated source is limited, as an update from correlated
source can reduce estimation only to a value of ε2(r2, 0). This
limit can be calculated by increasing k to infinity. The result
is the maximum possible reduction in the system estimation
error, as presented in Equations (20), (21), and (22), for each
covariance model. In all cases, the maximum gain falls rapidly
with distance as presented in Figure 7. Gmax depends only on
the scaling parameters and the distance between the sources.

Gmax(r, t) =
ε1(0, t)

limλ2→∞ ε(r, t)
, (19)

and the limits when sources are correlated according to models
ρI , ρII , and ρIII , respectively, are:

lim
λ2→∞
T2→0

ε
I
(r, t) =

1

T1

(
τpI +

exp(−2aτp)− 1

2a
+

(
T1 − τpI

)(
1− exp(−2r2b)

))
,

(20)

0 T1 2T1 3T1
τ∆

0

ε2(r2, 0)

ε2max

ε1max

ε1
ε2

Fig. 8: Estimation error change over one period of T2 for two
sources when S1 updates more often than S2, i.e. λ1 > λ2.
The dashed area represents the system estimation error. The
covariance model adopted here is the one in Equation (4).

lim
λ2→∞
T2→0

ε
II

(r, t) =
1

T1

(
τpII +

1

5a(aτpII + 1)5
− 1

5a
+

(T1 − τpII )(1− 1

(1 +−2b2r2
2)4

)

)
,

(21)

lim
λ2→∞
T2→0

ε
III

(r, t) =
1

T1

(
τpIII +

exp(−2aτp)− 1

2a
+

(T1 − τpIII )(1− exp(−2b2r2
2))

)
.

(22)

Whenever the correlated source updates more often, only
updates which effectively reduce the system estimation error
are beneficial to the system. In general, the more updates
S2 sends, the greater is the gain of using updates from the
correlated source. However, due to information being collected
at a different location, there is a limit to the gain, but as
demonstrated in this subsection, using multiple updates from
the correlated source can be useful to the overall performance
of the system.

B. S1 updates more frequently than S2

When S1 updates more frequently than S2, i.e. λ1 > λ2,
using correlated information becomes less beneficial. In such
a case, an update from from S2 reduces the system estimation
error only every few updates from S1, as illustrated in Figure
8, where updates from S2 reduce the system estimation error
every third update from S1. Furthermore, the update from the
S2 has to arrive when the error, due to outdated information
from S1, is higher than ε2(r2, 0), i.e. ε1(∆1(t), 0) > ε2(r2, 0)
with ∆1(t) = τ∆. In this case, the system estimation error
depends mostly on updates from S1.

An update from S2 can reduce only a fraction of the overall
system estimation error as depicted in Figure 8. The higher the
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update rate for S1, the lower the benefit of using updates from
S2 is. Furthermore, the timing of updates from the correlated
source plays a crucial part whenever the source of interest
updates more often than the correlated source. It may happen
that updates from S2 will not reduce the system estimation
error; in such a case, an update from S2 arrives with delay
smaller than τp after S1 sends update, i.e. τ∆ < τp. The higher
the frequency of updates from the source of interest is, the
lower the chance that an update from the correlated source will
arrive at the right time. However, updates from the correlated
source may still be beneficial to the system, provided they
arrive at the right moment.

VI. EVALUATION

In this section, we bridge the gap between the theoretical
analysis presented in the previous two sections and the real
world. In the first part of this section, we analyse data provided
by the Intel Berkeley Research laboratory [18] to extract
scaling parameters for the covariance models described earlier.
In the second part, we use the covariance model with the
extracted scaling parameters to demonstrate how the lifespan
of the source of interest, S1, can be extended by using updates
from a correlated source, S2. We conclude the section by
comparing our approach to a clustering algorithm presented
in the literature.

A. Data analysis
In our analysis, we use temperature and humidity measure-

ments collected from nine sensors deployed at Intel Berkeley
Research laboratory [18], University of California. The data
was gathered in March 2004. We focus on a subset of avail-
able sensors residing in one large open space office. Sensors
deployed in the same room are subject to roughly the same
environmental factors, e.g. air circulation, thus ensuring that
causation for humidity and temperature changes is the same for
every sensor we have selected in our analysis. Sensors transmit
an update twice in every minute. To ensure time domain
consistency, we average multiple temperature and humidity
readings reported by each sensor over an hour.

We calculate empirical space correlation for hourly averages
of measurements from the data set using Pearson’s correlation
coefficient formula for samples. We start by calculating the
spatial correlation for time lag zero. At time lag zero, we
compare measurements taken by each sensor at the same hour.
Each point in Figure 9(a) and 9(c) represents the empirical
spatial correlation coefficient for one pair of sensors separated
by distance r. Nine sensors yield 45 different pairs; of those,
nine pairs are a sensor paired with itself. For such a pair,
correlation at time lag zero is one. We repeat this process
for multiple time lags, i.e. compare measurements taken from
different sensors hours apart, to calculate temporal correlation.

To obtain temporal correlation, we calculate the average of
empirical spatial correlation coefficients for a specific time-lag.
For example, we obtain the temporal correlation at time zero
in Figure 9(b) by calculating the average of spatial correlation
coefficient points in Figure 9(a). As can be seen in Figure 9(b)
and 9(d), the higher the time lag between the data points, the
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(a) Spatial correlation for time lag zero (b) Temporal correlation

(c) Spatial correlation for time lag zero (d) Temporal correlation

Fig. 9: Empirical space and time correlation points plotted
alongside covariance models with scaling parameters extracted
from the data.

lower the empirical correlation. The empirical graphs show
better temporal correlation for humidity in comparison to
temperature. One noticeable difference is that humidity data
is correlated even when time lag is nine hours, in contrast to
temperature, which has negligible correlation after around six
hours.

With correlation coefficient points determined, the last step
in our data analysis is to fit models to calculated points.
All three covariance models (4), (5), and (6) provide a
reasonable fit to the data. In Figure 9 we plot all three
covariance models, with scaling parameters extracted from
the data, alongside the empirical space-time correlation points.
For example, the separable covariance model (4) should have
scaling parameter values a = 0.272 and b = 0.012 to describe
temperature spatial-temporal correlation. The pattern repeats in
non-separable covariance models where the temporal scaling
parameter, a, is also larger than the spatial scaling parameter,b.
The same is true for humidity, where the non-separable model
(5) scaling parameters are b = 0.016 and a = 0.062 to
best describe spatial-temporal correlation. In general, scaling
parameters describing humidity correlation have lower values
in comparison to scaling parameters describing temperature
correlation. In the next subsection, we adopt the separable
covariance model, i.e (4), for temperature and the first non-
separable model, i.e. (5), for humidity, with scaling parameters
values mentioned above.
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Fig. 10: (Left) The decrease in update rate for S1 when S2

update rate increases while the system estimation error is
fixed. (Right) The increase in expected device lifetime by
taking advantage of correlation as a function λ2, as the system
estimation error remains fixed. Both graphs were obtained by
using distance r2 = 4m.

B. Extending lifespan

Sensing devices consume energy to create information,
i.e. measure the observed physical phenomena. In particular,
battery-powered devices are of great concern as every update
brings the device closer to expiration. By using updates from
the correlated source, the source of interest, S1, can reduce its
update rate and consequently extend its lifespan at the expense
of the correlated source. The lifespan of a source is measured
from the moment the device is deployed in the network,
to the moment the source is considered non-functional. We
consider a source non-functional when the source depletes all
its available energy and ceases to transmit updates. We model
source lifetime L as in [19]:

E[L] =
E0

Pc + λE[Er]
. (23)

E0 represents the initial total non-rechargeable energy. Pc
is the continuous power consumption that the information
source uses for sensing and basic operations. E[Er] denotes
the expected energy needed to transmit a status update, and λ
represents the source update rate. In our case, we selected the
lifetime model parameters to reflect the power consumption in
a battery-powered device. We base our power consumption
parameters on the Mica2Dot board, a sensor board used
in Intel Berkeley Research laboratory deployment [18]. We
estimate that the sensor requires five milliseconds to produce
the measurements and that the sensor’s radio is active for one
millisecond to transmit the update. Using information from
the datasheet we determine that Pc = 45µW and 0.2mJ of
energy is required to obtain and transmit the measurement,
i.e. E[Er] = 0.2mJ . We consider that the sensor would be
powered by a 620mAh Lithium coin battery suitable for the
desired application and device type. Note that λ in our case
refers to the number of updates by a sensor transmitted in an
hour.

In our experiment, we focus on a system with a pair of
correlated sources as described in the previous sections. The

system has a primary interest in information gathered from one
source, S1, and can use updates from a correlated source, S2,
to prolong the lifetime of the source of interest. An example of
such a system would be a battery-powered sensor S1 deployed
directly at the center of the observed physical phenomenon,
with S2 deployed as a backup at a more distant location but
with a connection to the power grid. In such a case, the system
can use updates from S2 to reduce the number of updates
sent by S1 and prolong its lifetime while simultaneously
maintaining the required accuracy of information, i.e. keep
the system estimation error below a certain threshold. In
other words, the source of interest S1 can reduce its update
rate because information received from correlated source S2

is reducing the system estimation error. We set the system
estimation error value to 7.5% for observing temperature and
2% for humidity. To obtain results presented in Figure 10
we calculated the required update rate from source S1, λ1,
to satisfy the system estimation error requirement depending
on the S2 update rate, λ2.

The higher the rate of updates from the correlated source
S2 is, the lower the required rate of updates from the source
of interest and the longer its expected lifetime. Figure 10
shows the change of update rates and the lifetime increase
of the sensors by taking advantage of correlated updates, for
cases of temperature and humidity. In both cases, signifi-
cant improvement in the lifetime of sensors is achievable.
For humidity, benefits are more significant because humidity
exhibits better spatial-temporal correlation in comparison to
temperature. As noted in the previous subsection, covariance
scaling parameters for humidity were significantly smaller in
comparison to temperature, indicating that humidity variation
over time and space is much lower. Consequently, the gain of
using correlated information is much higher for humidity.

Translating our experiment into a real world deployment
where it is expected that information for temperature and
humidity are transmitted simultaneously, the correlated source
S2 should transmit 30 updates, while battery-powered source
S1 would transmit only three updates in a hour. Such a
system is capable of gathering information accurately for
three months. Our results show that even a small decrease
in the device update rate has a notable impact on the device
lifetime. The gain depends on the variation of the observed
physical phenomenon across time and space. In our example,
the temperature data exhibit high variation, yet sensor lifetime
increase is 20%. Whenever data is more highly correlated, e.g.
humidity, relying on more frequent updates from a correlated
sensor can more than double the source lifetime.

C. Energy Saving Comparison

In this subsection, we compare our energy savings approach
with the approach presented in [11]. Both approaches have to
meet the same accuracy constraint, meaning that the estimation
error threshold is equal in both cases. We set the accuracy
constraint to 95%, in other words, we set the maximum
estimation error to 5%. Note that we calculate estimation error
using Equation (7). For our approach, we calculate the update
rate such that each source satisfies the set accuracy constraint.



10

10 20 30 40 50

20

40

60

Number of sources

Energy savings (%)

Our approach

Yu el al.

Fig. 11: Average energy saved per source by using information
from correlated information sources in comparison to energy
saved used by clustering and scheduling algorithm proposed
in the literature.

In our implementation of the approach presented in [11] we
try to reproduce their scheduling and clustering algorithm as
it would work in our simulated sensor network. We achieve
that by clustering sources based on their proximity to cluster
heads; each source joins the cluster group of the cluster head
with the shortest distance to it. Once the clusters are formed,
we calculate the super cycle. A supercycle is a period within
which every source in a cluster sends one update to the sink,
while still meeting the information accuracy requirements. We
schedule the transmission of source updates evenly throughout
the super cycle. This means that sources’ update rate is the
reciprocal of the time of the supercycle, i.e. λc = 1/Tsc.
The first source to transmit in the cycle is the cluster head,
followed by the nearest source, followed by second nearest and
so forth. With such an implementation, we effectively mimic
the proposed approach.

The source’s energy consumption is directly related to
its update rate in both approaches. We calculate the energy
savings (Pes) as the ratio between P0 and Pn as follows:

Pes =
P0 − Pn
P0

× 100%. (24)

P0 represents the energy a source uses when transmitting with
an update rate that enables the source to meet the required
accuracy constraint on its own. Furthermore, P0 is the same
for every source in both cases. Pn is the energy sources use
when taking advantage of correlated sources or when using
the approach in [11]. We calculate Pn using an update rate
we obtain using simulation. We calculate both P0 and Pn as
Pc + λE[Er], with the values for Pc and E[Er] as we used in
the previous subsection.

Sources in our simulation are uniformly randomly dis-
tributed in a room of size 15 × 15 m. Such a room size
is comparable to the room size in the Intel lab deployment
where the sensor data was collected. Furthermore, we use
non-separable covariance model (5) with scaling parameters
extracted from humidity data. In [11] the authors showed that
three clusters yield a good result. Therefore we decided to
cluster sources into three groups. In our comparison, we use

the average energy consumption of sources in the deployment.
In both cases, we assumed no contention for the transmission
channel and instantaneous transmission of updates.

In Figure 11 we show the increase in energy savings as the
number of sources in the room increases. When the number of
sources is low, the clustering approach is very efficient due to
the evenly scheduled updates within the supercycle. However,
as the number of sources increases the same scheduling
becomes a handicap and reduces the efficiency of the clustering
approach. As the number of sources increases our approach of
taking advantage of correlated information proves to be better.
Our result indicates that energy savings can be improved much
more than what the current state of the art is offering.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we analysed two correlated information
sources and showed how the different spatial-temporal vari-
ation of the observed physical phenomenon influences the
optimal use of updates from the two sources. The system
employs information from the correlated information source
to minimise the system estimation error when estimating the
value of an observed physical phenomenon. We established
that there exists a minimal time shift between the two sources’
updates, for all three tested covariance models, so that the
arrival of an update from a correlated source will reduce the
system estimation error. We also derived the optimal time shift
between the two sources, for all three tested covariance models,
for which the system estimation error is minimal. We examined
some real data and extracted the covariance model parameters,
to provide the reader with a realistic feel for scaling parameters
values and the applicability of our analysis in a real scenario.
We demonstrated that using correlated information results in
a significant increase of device lifetime.

When billions of devices will be connected to one net-
work, as the IoT vision promises, using available correlated
information will become essential to improve the performance
of energy constrained devices. In our work we focused on
extending device lifespan; another gain of our approach is
reduced contention for the transmission channel. By relying on
the concept of AoI we offered an alternative take on the prob-
lem of accuracy, decision-making, and lifespan of devices in
a network of sensors. A more accurate decision requires more
frequent updates, and more updates lead to a shorter lifespan
for battery-powered devices. However, by sharing information
and making use of correlated information, benefits such as
more accurate decisions, or an increase in devices’ lifespan,
or reduction of contention for the transmission channel can be
obtained.
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