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Quantitative Metrics and Measurement Methodologies for System
Security Assurance

Salman Ahmed

(ABSTRACT)

Proactive approaches for preventing attacks through security measurements are crucial for prevent-

ing sophisticated attacks. However, proactive measures must employ qualitative security metrics

and systemic measurement methodologies to assess security guarantees, as some metrics (e.g.,

entropy) used for evaluating security guarantees may not capture the capabilities of advanced at-

tackers. Also, many proactive measures (e.g., data pointer protection or data flow integrity) suffer

performance bottlenecks. This dissertation identifies and represents attack vectors as metrics using

the knowledge from advanced exploits and demonstrates the effectiveness of the metrics by quan-

tifying attack surface and enabling ways to tune performance vs. security of existing defenses by

identifying and prioritizing key attack vectors for protection. We measure attack surface by quan-

tifying the impact of fine-grained Address Space Layout Randomization (ASLR) on code reuse

attacks under the Just-In-Time Return-Oriented Programming (JITROP) threat model. We conduct

a comprehensive measurement study with five fine-grained ASLR tools, 20 applications including

six browsers, one browser engine, and 25 dynamic libraries. Experiments show that attackers only

need several seconds (1.5-3.5) to find various code reuse gadgets such as the Turing Complete gad-

get set. Experiments also suggest that some code pointer leaks allow attackers to find gadgets more

quickly than others. Besides, the instruction-level single-round randomization can restrict Turing

Complete operations by preventing up to 90% of gadgets. This dissertation also identifies and pri-

oritizes critical data pointers for protection to enable the capability to tune between performance

vs. security. We apply seven rule-based heuristics to prioritize externally manipulatable sensi-

tive data objects/pointers. Our evaluations using 33 ground truths vulnerable data objects/pointers

show the successful detection of 32 ground truths with a 42% performance overhead reduction

compared to AddressSanitizer. Our results also suggest that sensitive data objects are as low as

3%, and on average, 82% of data objects do not need protection for real-world applications.
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(GENERAL AUDIENCE ABSTRACT)

Proactive approaches for preventing attacks through security measurements are crucial to prevent

advanced attacks because reactive measures can become challenging, especially when attackers

enter sophisticated attack phases. A key challenge for the proactive measures is the identifica-

tion of representative metrics and measurement methodologies to assess security guarantees, as

some metrics used for evaluating security guarantees may not capture the capabilities of advanced

attackers. Also, many proactive measures suffer performance bottlenecks. This dissertation iden-

tifies and represents attack elements as metrics using the knowledge from advanced exploits and

demonstrates the effectiveness of the metrics by quantifying attack surface and enabling the ca-

pability to tune performance vs. security of existing defenses by identifying and prioritizing key

attack elements. We measure the attack surface of various software applications by quantifying

the available attack elements of code reuse attacks in the presence of fine-grained Address Space

Layout Randomization (ASLR), a defense in modern operating systems. ASLR makes code reuse

attacks difficult by making the attack components unavailable. We perform a comprehensive mea-

surement study with five fine-grained ASLR tools, real-world applications, and libraries under

an influential code reuse attack model. Experiments show that attackers only need several seconds

(1.5-3.5) to find various code reuse elements. Results also show the influence of one attack element

over another and one defense strategy over another strategy. This dissertation also applies seven

rule-based heuristics to prioritize externally manipulatable sensitive data objects/pointers – a type

of attack element – to enable the capability to tune between performance vs. security. Our eval-

uations using 33 ground truths vulnerable data objects/pointers show the successful identification

of 32 ground truths with a 42% performance overhead reduction compared to AddressSanitizer, a

memory error detector. Our results also suggest that sensitive data objects are as low as 3% of all

objects, and on average, 82% of objects do not need protection for real-world applications.
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Chapter 1

Introduction

1.1 Problem Definitions

Despite the protections such as stack canaries [50], Write XOR execute or W⊕X (aka No-execute

(NX) [204] or Data Execution Prevention (DEP) [65]), and Address Space Layout Randomiza-

tion (ASLR) [199] deployed in modern computer systems, we have observed many advanced and

influential code reuse attacks (CRAs). Most of these CRAs utilize Return-Oriented Program-

ming (ROP) technique. These advanced and influential attacks include Just-In-Time ROP or JIT-

ROP [185], Blind ROP or BROP [18], Address Oblivious Code Reuse or AOCR [163], CrashRe-

sistant Oriented Programming or CROP [81], Position Independent ROP or PIROP [89], Return

to Zombie Gadget or ZombieG [186], Counterfeit Object-Oriented Programming or COOP [169],

Typed ROP or TROP [75], Control-Flow Bending or CFB [27], StackDefiler [46], Back To The

Epilogue or BATE [17], and others [28, 31]. Each of these attacks has unique capabilities. For

example, JIT-ROP [185] enables one to reuse code even under fine-grained address space layout

randomization (ASLR). JIT-ROP attacks can discover new code pages dynamically, by leveraging

control-flow transfer instructions, such as call and jmp.

To protect systems from these advanced attacks, researchers have proposed variants or fine-grained

version of existing defenses (e.g., fine-grained ASLR [47, 60, 62, 84, 92, 95, 97, 98, 108, 111, 151,

157, 213], re-randomization [16, 36, 38, 125, 216], execute-only memory(XOM) (aka destructive

read) [11, 53, 197, 215]) and Code Pointer Integrity (CPI) [12, 49, 115, 126, 130]. However, many

of these defenses focus on specific attacks, e.g., the XOM-based defenses aim to hinder the JIT-

1



2 Chapter 1. Introduction Salman Ahmed

ROP’s repeated memory disclosure capability. Thus, XOM-based defenses evaluate their security

guarantees only based on stopping disclosure attacks on executable binaries without rigorous and

metric-based evaluation. That is why we have observed a code inference attack [186] that can work

in the presence of XOM-based defenses.

Besides, some metrics used for evaluating security guarantees of defenses do not capture the ca-

pabilities of advanced attackers. As a result, new attacks emerge to bypass those defenses. For

example, both coarse-grained code randomizations (e.g., PaX ASLR [199]) and fine-grained code

randomizations (e.g., Selfrando [47], Compiler-assisted Code Randomization [111], Remix [38],

STIR [213], ILR [97] and ASLP [108]) use entropy to measure the effectiveness of hindering

code-reuse attacks. However, such an entropy measure is not useful under the JIT-ROP threat

model, as chunks of code are still available. Inclusion of distances between permuted functions or

basic blocks for computing entropy would not work either, because the code’s semantic connec-

tivity (e.g., through call and jmp) is still not captured. Code connectivity is what JIT-ROP attacks

leverage to discover code pages. Metrics and measurement methodologies that accurately reflect

JIT-ROP capabilities are more meaningful under the JIT-ROP model. Thus, the fundamental needs

are representative security metrics and methodologies for evaluating defenses. This is why recently

we have observed a new metric called tunable entropy [157] to measure security guarantee.

Another criterion to build robust and new defense mechanisms is to analyze the assumptions

and requirements of threats [39, 40]. This analysis can lead to developing robust and efficient

countermeasures. For example, a requirement for many typical and advanced code reuse at-

tacks [18, 169, 185] is memory disclosure or more specifically code pointer leak. To stop at-

tackers from fulfilling this requirement, researchers have proposed effective CPI-related counter-

measures [12, 49, 115, 126, 130]. The CPI-based countermeasures are effective because these

countermeasures incur as low as less than 1% overhead [126] and keep an application safe by pro-

tecting the integrity of a code pointer. Hardware-based techniques such as Intel’s CET [103], ARM

Pointer Authentication (PA) [158], and MPX [104]) can further reduce the overhead to make the

slowdown imperceptible. For example, ARM PA [158] costs on average less than 0.5% for code
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pointer authentication [121]. Thus, both software and hardware-based code pointer protection

countermeasures are practical.

Due to this practical code pointer protection countermeasures [12, 49, 103, 104, 115, 126, 130, 158]

as well as the advances towards practical CFI [24, 83, 124, 130, 132, 152, 222, 224], we anticipate

a shift towards the use of data object/pointer manipulation as the attack vector as the manipu-

lation works in the presence of these countermeasures. In recent years, we have also observed

data-oriented attacks (also known as non-control attacks) [35, 100, 101, 133, 168, 196, 219] that

manipulate data objects/pointers to exploit a system/application. While the software-based code

pointer protection countermeasures are practical, software-based data object/pointer protection can

cost a significant amount of overhead, from 48-116% [29, 134, 135]. Thus, software-based data

object/pointer protection, in general, is not practical due to a high runtime overhead. On the other

hand, hardware-based solutions can reduce the overhead significantly. For example, ARM pointer

authentication [158] and Intel’s MPX [104] cost on average around 19.5% [121] and 50% [145]

overhead, respectively, for protecting data pointers. The 19.5% overhead for a hardware-based

technique is still critical for performance-critical applications. Due to a huge number of data

objects/pointers in an application compared to code pointers, one source of the overhead for pro-

tecting data objects/pointers is protecting many data objects/pointers that do not need protection as

those objects/pointers do not lead to vulnerability. One way to reduce the performance overhead is

to figure out the sensitive (i.e., vulnerable) data objects/pointers and prioritize them for protection.

1.2 Contribution

The goal of this dissertation is to demonstrate the feasibility of methodologies for quantitatively

measuring the security properties of advanced system defenses. In particular, we quantify the im-

pact of fine-grained ASLR through attack surface measurement and improve the performance of

in-memory data integrity defenses by identifying, quantifying, and prioritizing key attack vectors
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extracted using knowledge from advanced exploits. To be specific, this dissertation aims to tackle

three problems: i) designing security metrics and measurement methodologies for evaluating de-

fense mechanisms, ii) analyzing the assumptions and requirements of advanced threats (e.g., data-

oriented exploits), and ii) designing a data object/pointer prioritization technique to improve the

existing defenses by reducing overhead by prioritizing sensitive data objects/pointers and filtering

out non-sensitive ones.

To address the first problem, we have proposed four security metrics and four measurement

methodologies to quantitatively evaluate the impact of fine-grained ASLR or code randomiza-

tion defenses on various applications (see details on chapter 3). Besides, we have addressed some

in-depth questions regarding the impact of fine-grained ASLR on code reuse attacks that have

not been addressed before. For example, what impact do fine-grained ASLR have on the Turing-

complete expressiveness of JIT-ROP payloads? How do attack vectors (e.g., code pointer leaks)

impact the code reuse attacks? How would one compute the re-randomization interval effectively

to defeat JIT-ROP attacks? We designed a measurement mechanism that allows us to perform JIT-

ROP’s code page discovery in a scalable fashion. This mechanism enables us to compare results

from many programs and libraries under multiple ASLR conditions (coarse-grained, fine-grained

function level, fine-grained basic block level, fine-grained instruction level, and register level).

Our evaluation involves up to 20 applications, including six browsers, one browser engine, and 25

dynamic libraries. Our key experimental findings and technical contributions are summarized as

follows.

• A multi-step attack workflow that captures the common tasks and goals in ASLR bypasses.

• We define multiple new concepts, e.g., minimum footprint gadgets, extended footprint gad-

gets, and quality of gadgets, and describe methods for evaluating important properties of

ROP gadgets, e.g., register corruption rate. We also summarize and experiment with com-

mon and specialized gadget types used in recent attacks. These contributions are useful

beyond this specific ASLR study.
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• We provide a methodology to compute the upper bound T for re-randomization intervals. If

the re-randomization interval is less than T , then a JIT-ROP attacker is unable to obtain var-

ious gadget sets such as the Turing complete gadget set, priority gadget set, MOV TC gadget

set, and gadgets from real-world payloads (see the definitions of gadget sets in Section 3.2).

We compute the upper bound T by measuring the minimum time for an attacker to find a

specific gadget set, i.e., the shortest time to reach gadget convergence for the gadget set. The

upper bound ranges from 1.5 to 3.5 seconds in our tested applications such as nginx, proftpd,

firefox, etc.

• Our findings show that starting code pointers do not have any impact (i.e., zero standard

deviations) on the reachability from one code page to another. Every code pointer leak is

equally viable for revealing an address space layout, suggesting that attackers’ discovered

gadgets eventually converge to a gadget set no matter where the starting pointer is.

• Our findings also show that the starting code pointers have an impact on the speed of con-

vergence. That means the time needed for a JIT-ROP attacker to discover a gadget set varies

with the locations of starting code pointers. In our experiments, the time for obtaining the

Turing-complete gadget set ranges from 2.2 to 5.8 seconds.

• We also present a general methodology for quantifying the number of JIT-ROP gadgets.

Our results show that a single-round instruction-level randomization scheme can limit the

availability of gadgets up to 90% and break the Turing-complete operations of JIT-ROP

payloads. Also, fine-grained randomization slightly degrades the gadget quality, in terms of

register-level corruption.

A stack has a higher risk of revealing dynamic libraries than a heap or data segment because

our experiments show that stacks contain 16 more libc pointers than heaps or data segments

on average. This finding indicates the necessity of randomizing stack over heap or global

variables.
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We systemized data-oriented attacks [35, 100, 101, 133, 168, 196, 219] with their assumptions/re-

quirements and attack capabilities to address the second problem. Our work provides a compre-

hensive description of the assumptions and requirements of data-oriented attacks and a comparison

of existing defenses known to prevent data-oriented attacks. Our analysis in this work offers new

directions to look at data-oriented attacks because these attacks do not tamper with the control flow

of a victim program and are far more advantageous than return-oriented programming. The main

contributions of this work are as follows.

• We systemized various data-oriented exploits by classifying their exploit techniques.

• We discussed various automatic data-oriented exploit generation tools [105, 154, 172] and

compared the tools in terms of their flexibility and practicality.

• We discuss various representative data-oriented exploits on real-world applications and ex-

isting defense approaches to prevent those exploits in different stages.

To address the third problem, i.e., prioritizing sensitive or vulnerable data objects/pointers, we

develop a prioritization framework (see details on chapter 5). The goal of the framework is to

prioritize data pointers that are sensitive and may potentially lead to vulnerability. Our goal is to

ensure security through data object/pointer protection through various security mechanisms (e.g.,

ARM PA [158], MPX [104], Softbound [134], etc.) while keeping the overhead low. The main

contributions of this work are as follows.

• We proposed a prioritization framework that is both i) generic and ii) adaptable. The generic

nature of the framework ensures that it does not rely on underlying operating systems, plat-

forms, or programming languages. The adaptability feature makes the framework adaptable

with minimum changes so that it can be used with other defenses such as ARM PA [158],

MPX [104], Softbound [134], AddressSanitizer [175], and many more. One key use case of

the framework is to tune the performance vs security in an application.
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• We extracted seven vulnerability- and exploit-driven rule-based heuristics to prioritize data

objects/pointers that are sensitive and could potentially lead to vulnerabilities.

• We implemented our framework using eight analysis passes (one for taint analysis and seven

for data object/pointer identification using our rules), and one instrumentation pass on top of

LLVM 12. We also implemented one instrumentation pass for instrumenting our prioritized

pointers using ARM PA [158] and modified AddressSanitizer [175] tool to support instru-

menting only the prioritized data objects/pointers in addition to AddressSanitizer’s default

behavior.

• To evaluate the prioritization framework, we constructed ground truths by manually ana-

lyzing vulnerable programs considering local/global data objects/pointers, inter-functional

analysis, and corner cases. We constructed 33 ground truths data objects from 18 programs

including real-world server applications and 10 test cases from Software Assurance Refer-

ence (SAR) dataset.

• We found that as low as only 3% of total data objects are needed to protect for real-world

applications. We achieved a 42% performance overhead reduction compared to Address-

Sanitizer while protecting 100% of the prioritized data objects. We can reduce the instru-

mentation size by around 62% and the number of pointers in Load/Store IR instructions (for

ARM PA) by 56% and 96%, respectively, without compromising security.

The structure of this report is as follows. Chapter 2 related work on defense mechanisms against

advanced ROP-based code reuse attacks, control-flow integrity, data-oriented attacks, pointer au-

thentication, and sensitive data protection approaches. Chapter 3 presents our work on quantify-

ing attack surface of various applications and libraries and assessing the impact of fine-grained

ASLR or code randomization on code reuse attacks under the JIT-ROP threat model using quan-

titative metrics and measurement methodologies. Chapter 4 systemizes the knowledge of various

data-oriented attacks by analyzing their requirements and assumptions. Chapter 5 presents our
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technique for a data pointer prioritization framework including motivation, design, and evaluation.

And, finally Chapter 6 outlines the guidelines and practical considerations that we need to make for

making our measurement results effective as well as the practical implication of the measurements.



Chapter 2

Literature Review

The war games between attackers and defenders have been prevalent for decades. Due to legacy

C/C++ code, memory corruption vulnerabilities are still prevalent in complex software such

as browsers (e.g., Internet Explorer, Mozilla Firefox, etc.) and servers (e.g., Nginx, Apache,

ProFTPD, etc.). Modern computer systems deploy various defenses (e.g., stack canaries [50],

Write XOR eXecute or W⊕X (aka No-eXecute (NX) [204] or Data Execution Prevention

(DEP) [65]), and Address Space Layout Randomization (ASLR) [199] to defend the attacks that

exploit the memory corruption vulnerabilities. These defenses prevent attacks such as stack smash-

ing [147] (e.g., return address overwrite), exception handler overwrite [122], and heap vulnerabil-

ities (e.g., heap unlinking).

Unfortunately, the deployment of these defenses (i.e., stack canaries, W⊕, NX, and ASLR) could

not repress advanced attackers because some attackers have proved their capabilities to bypass

modern defenses. For example, coarse-grained code reuse attacks [153] or fine-grained code reuse

attacks such as Return-Oriented Programming (ROP) [18, 28, 31, 62, 75, 81, 86, 161, 163, 178,

185, 186] can bypass the NX defense. At the same time, researchers have proposed various de-

fenses such as fine-grained ASLR, Continuous address space randomization, Code Pointer In-

tegrity (CPI), and Control Flow Integrity (CFI). Thus, the research conducted in the system security

area primarily has two themes: 1) demonstrating attacks and 2) discovering countermeasures.

9
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2.1 Attackers’ and Defenders’ Games

Attackers have primarily demonstrated two types of attacks: i) code injection attacks and ii) code

reuse attacks. Besides, attackers also demonstrated attacks against a defense solution (i.e., ASLR

or CFI) to disclose the limitation of the defense.

2.1.1 Code Injection Attacks and Defenses

Code injection attacks [122, 147] inject shellcode into a writable segment of memory (e.g., stack or

heap) of a program and redirect the control flow to the injected shellcodes, usually by overwriting a

return address or function pointer. Attacks that overwrite a return address are called stack smashing

attacks. Stack canaries [50, 72] protect a program from stack smashing attacks. Besides, counter-

measures such as StackGuard [50], Stack Shield [208], ProPolice [71] RAD [44], TRUSS [184],

IBMAC [78], StackGhost [79], and Binary-Rewriting [156] aimed to protect return address in-

tegrity through shadow stack-based, compiler-based, and instrumentation-based techniques. To

enforce canaries, compilers place a canary value before the stored return address in a stack and

add a canary verification routine to function epilogues. Whenever the verification routine finds a

mismatch in the function of a program, the program terminates by redirecting the control flow to a

developer-defined exception handler. If the developer-defined exception handler is not present, the

Operating System’s exception handler handles the exception. In a consequent fashion, attackers

overwrote the exception handler to construct an alternative control-flow hijack or the Structured

Exception Handler (SEH) attacks [122]. In response, Windows Operating System (OS) added an

overwrite protection feature called Structured Exception Handling Overwrite Protection (SEHOP).

However, the major response came as hardware support called no-execute or NX bit [204]. CPUs

segregate code and data regions based on the NX bit, and ensure the execution space protection.

DEP or W⊕X [65] utilizes the NX bit for marking some modules (i.e., heap, stack, etc.) as non-

executable. As a result, the writable segments of a binary are no longer executable. Thus, injecting
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shellcodes in a stack or heap no longer works. To circumvent this DEP or W⊕X security feature,

attackers invented code reuse attacks (e.g., return-to-libc).

2.1.2 Code Reuse Attacks and Defenses

Code reuse attacks (CRAs) can circumvent the DEP or W⊕X security feature. The first form of

CRAs utilizes the whole library functions to construct exploits. Since the GNU C library, com-

monly known as Glibc or libc, is one of the largest libraries known to have diverse functionalities

required by an attacker, attackers used the libc library for their attacks. This type of attack is called

return-to-libc [112, 139, 153, 217]. Hovav Shacham extended the idea of code reuse by introducing

a fine-grained code reuse technique called gadget chain. A gadget chain is a sequence of gadgets

that can express arbitrary program logic. A gadget is a set of short instructions ending with the ret

instruction. This technique is called Return Oriented Programming (ROP) [22, 155, 161, 178] and

the gadgets are called ROP gadgets. Soon attackers adopted this technique and conducted many

ROP-based code reuse attacks [18, 28, 31, 62, 75, 81, 86, 163, 185, 186] and its variants (i.e., Jump

Oriented Programming (JOP) [20]). Following are the four flavors of gadget-oriented CRAs.

• Return-Oriented Programming (ROP) attacks. Hovav Shacham first demonstrated the

capability of ROP gadgets to construct Turing-complete operations [178]. The Turing-

complete operations include memory operations, assignments, arithmetic operations, logical

operations, control flow, function calls, and system calls [161]. Due to the capability of

ROP gadgets, we have observed some influential ROP gadget-based attacks such as Just-In-

Time ROP or JIT-ROP [185], Blind ROP or BROP [18], Address Oblivious Code Reuse or

AOCR [163], CrashResistant Oriented Programming or CROP [81], Position Independent

ROP or PIROP [89], and others [28, 31].

• Jump-Oriented Programming (JOP) attacks. JOP-based attacks [20, 33, 109, 131, 164]

avoid the reliance of attacks on the stack and ret instructions by introducing JOP gadgets (a
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sequence of instructions followed by a jmp instruction) as the building blocks for exploits.

However, stack plays an important role in ROP-based attacks by allowing attackers to chain

the ROP gadgets. To achieve the same capability, JOP-based attacks require dispatcher

gadgets, in addition to the JOP gadgets.

• Call-Oriented Programming (COP) attacks. Carlini et al. [28] introduced and demon-

strated the COP-based attacks using COP gadgets. COP gadgets are similar to ROP gadgets

but end with call instructions. Unlike JOP-based attacks, COP attacks do not require dis-

patcher gadgets because call instructions usually use memory-indirect locations instead

of values from registers as the targets. By preparing the memory in advance, attackers can

chain the COP gadgets. Another COP-based attack is Pure-Call Oriented Programming or

PCOP [165].

• Counterfeit Object-Oriented Programming (COOP) attack. Schuster et al. [169] intro-

duced the COOP attack by demonstrating that C++ virtual functions can be chained together

like gadgets to achieve malicious program behavior.

Address Space Layout Randomization (ASLR). Code reuse or gadget-based attacks require the

locations of shared-library functions or gadgets in memory. The PaX team introduced Address

Space Layout Randomization (ASLR) [199] to make the code-reuse attacks difficult. ASLR, also

known as coarse-grained ASLR, randomizes the base addresses of code (i.e., .text) and data (i.e.,

stack, heap, etc.) segments. As a result, it becomes difficult for attackers to know the locations

of shared-library functions or gadgets without knowing how the locations of the modules are ran-

domized by ASLR. ASLR is the most efficient and widely deployed security feature in modern

operating systems. For example, OpenBSD added ASLR support in 2003, Linux in 2005, Android

from Android 4.0, DragonFly BSD in 2010, iOS in 2011, Windows in 2007, NetBSD in 2009,

macOS in 2007, and Solaris in 2012. The Position Independent Executable (PIE) option allows

the main executable to be run as position-independent code, i.e., PIE relocates the code and data

segments of the main executable.
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ASLR makes the code reuse attacks difficult, but ASLR is vulnerable to information leaks. Since

the coarse-grained ASLR only randomizes the base addresses of various segments and modules of

a program, the internal layout of the segments and modules remains unchanged. Thus, a single leak

can essentially reveal all the contents of a module. For example, the leak of a single function from

the libc library can reveal all the other functions in libc because the offset of a function from the

base address of libc is the same regardless of the different randomized base addresses of libc. An

adversary can launch a basic ROP attack [198] using gadgets given a leaked address from the code

segment of interest. The adversary only needs to adjust the addresses of pre-computed gadgets

w.r.t. the leaked address.

Defenses against ROP attacks. Due to the prevalence of ROP attacks, researchers have proposed

a wide range of countermeasures using both static software hardening and runtime monitoring

techniques to prevent ROP attacks. Table 2.1 shows the key solutions. These solutions restrict

the abnormal control flow transfers through return address protection, removing unaligned con-

trol transfer instructions, removing return address, ensuring the integrity of stack using shadow

stack [79, 208] and detecting gadget chains by counting ret instructions or measuring gadget

chain length.

Table 2.1: Countermeasures against ROP attacks. CRAs → Code Reuse Attacks.

Tool Technique
Protection
Against

Performance
Overhead

ROPGuard [80]
Performs runtime checks for ensuring integrity of stack
pointer, invocation of critical functions, return address,
and call stack when any critical function gets called.

ROP <5%

G-Free [146]
Eliminates unaligned free-branch instructions and protects
aligned free-branch instructions using alignment sleds,
return address encryption, frame cookies and code rewriting.

ALL CRAs 3%

DROP [32] Detects an unusually high frequency of ret instructions ROP 5.3x
ROPdefender [64] Ensures integrity of stack using shadow stack[79, 208] ROP 2x

Return-less [118]
Removes return instructions by replacing return addresses
to return indices.

ROP 4.6%

DyIMA [63] Detects an unusually high frequency of ret instructions ROP

ROPecker [43]
Detects ROP gadget chains by analyzing the past and
future execution flows of a process and extracting history
of taken branches from Last Branch Record (LBR) registers.

ALL CRAs 2.6%

kBouncer [150]
Detects abnormal control flow transfers by analyzing
executed indirect branches at critical points recorded
by Last Branch Record (LBR) registers.

ALL CRAs 4%
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Most of the defense solutions discussed above (Table 2.1) are applicable for only ROP-based at-

tacks. ROPecker [43] and kBouncer [150] are applicable for all control-oriented attacks but at-

tackers can circumvent them [28, 87] using manually crafted long gadgets. G-Free [146] is also

applicable for all control-oriented attacks, but it requires source code which is often unavailable.

Besides, some of the solutions have high performance overheads.

Leakage resilient defenses. One prime requirement of code reuse attacks is information leaks.

That means an attacker must derandomize the address space layout for mounting code-reuse or

ROP attacks. To do so, an attacker first exploits a memory corruption vulnerability to leak in-

formation [9, 82, 96, 190, 192, 196] about the memory layout of a program. Then the attacker

constructs an exploit leveraging the knowledge from the information leak and mount the attack

using the same or another memory vulnerability. Under coarse-grained ASLR, a single leak can

essentially reveal all the memory layout of a module. To stop revealing everything from a single

leak, researchers introduced various leakage-resilient defenses. The leakage-resilient defenses un-

lock only a small portion of the code region and seriously limit an attack’s ability to obtain gadgets

for code reuse purposes. The leakage-resilient defenses fall into the following five categories.

1) Fine-grained ASLR or code randomization. Fine-grained ASLR, aka fine-grained code ran-

domization or code diversification, relocates all the segments of the main executable of a process,

including shared libraries, heap, stack, and memory-mapped regions, and restructures the internal

layouts of these segments. Thus, simply adjusting the addresses of pre-computed gadgets (as in

the basic ROP) no longer works. The granularity of fine-grained randomization varies, e.g., at the

level of functions [47, 84, 108], basic blocks [38, 111, 213], instructions [97], or machine regis-

ters [52, 98]. Table 2.2 shows the summary of fine-grained code randomization defenses. However,

few advanced attacks demonstrated their capability to perform memory disclosure attacks at run-

time. For example, JIT-ROP [185] can recursively traverse code pages in an application using call

and jump links. Other techniques such as BROP [18] and CROP [81] attacks can read memory

contents dynamically using the so-called stack reading and memory probing techniques, respec-

tively.
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Table 2.2: Leakage-resilient defenses in four categories

Tools Techniques Performance
Overhead

Fine-grained code randomization

SBR [157]
- Limits the utility of any disclosed code address by partitioning a function
- Uses a configurable parameter to indicate partitions and offers tunable entropy

2.26% [157]

Selfrando [47] - Reorders functions at load time using metadata extracted by selfrando library <1% [47]

CCR [111]
- Reorders functions and basic-block based on extracted metadata during compilation
- Keeps the same layout unless re-randomized again

0.28% [111]

Zipr [95]
- Reorders the location of each instruction in an executable.
- Applies block-level instruction layout randomization during binary rewriting

<5% [95]

Multicompiler [98] - Reorders functions and machine registers during link time optimization 1% [98]
Isomeron [62] - Performs code randomization with execution path randomization. 19% [62]

ASLP [108]
- Permutes all sections, modules, and memory mapped regions by binary rewriting
- Reorders functions, data objects within their segments using relocation information

<1% [108]

ILR [97]
- Reorders the location of each instruction in an executable or library.
- A fall-through map guides the execution of instructions in the right order.

13% [97]

ORP [151]
- Reorders instructions within a basic block.
- Employs narrow-scope code transformations using in-place code randomization

∼0% [151]

Marlin [92] - Extracts function symbols and shuffles the symbols 0% [92]

XIFER [60]
- Transforms a control flow graph by randomizing contiguous basic blocks (bbls)
- Also, splits some bbls and injects dummy instructions in some bbls.

1.2% [60]

STIR [213]
- Transforms a binary into a self-randomizable form using binary rewriting
- Self-randomizable form triggers randomization of basic blocks at program start

1.6% [213]

ASR [84]
- Employs link-time transformation to randomize code and data for OSes
- Performs live re-randomization of a process’ layout by runtime state migration.

<5% [84]

Continuous randomization
TASR [16] - Randomizes a process’ memory layout when the process inputs or outputs something 2.1% [16]

Shuffler [216] - Loads itself as a user space program and shuffles a process’ functions continuously. 14.9% [216]
Remix [38] - Reorders the basic blocks within a function to avoid adjusting function pointers 2.8% [38]

CodeArmor [36]
- Maps a code pointer to any one of multiple diversified code spaces
- Periodically changes the mapping from pointers to code space at runtime

6.9% [36]

RuntimeASLR [125] - Re-randomizes the address space of a child process after fork() with parent state 0% [125]
STABILIZER [55] - Re-randomizes functions, stack frames, and heap objects periodically at runtime. <7% [55]

Memory protection

XnR [11]
- Executes code but restricts reading code as data by modifying page fault handlers
- Identifies bad code read through a CPU performance feature called demand paging

2.2-3.4% [11]

NEAR [215]
- Allows the reading code, but does not allow to execute the read code
- A data swap process replaces any read instructions with invalid opcode
- Also, the process recovers the original opcodes on legitimate read and execution.

4.7% [215]

Readactor [53]
- Enforces execute-only (XO) memory using Intel’s Extended Page Tables (EPT)
- Converts code pointers into direct branches and hides them in an XO trampoline

6.4% [53]

Heisenbyte [197]
- Marks code as execute-only and prevents reading after the execution of the code
- Allows legitimate reading of code by keeping a separate view of each page.

16.5-18.3% [197]

Code Pointer Integrity
CPI [115] - Identifies memory objects used to access code pointers and securely stores them 2.9-8.4% [115]

Oxymoron [12]
- Replaces all the direct references to other code and data into indices.
- Redirects calls and jumps through a translation table that store actual mappings

2.7% [12]

ASLR-Guard [126] - Protects the leakage of code pointers by separating sensitive code or data pointers <1% [126]

CCFI [130]
- Maintains the integrity of a CFG by ensuring the integrity of control-flow pointers
- Enforces integrity of control-flow pointers using cryptographic MACs for pointers.

3-18% [130]

PointGuard [49]
- Ensures the integrity of pointers
- Encrypts when a pointer is initialized or modified and decrypts before use.

0-20% [49]

2) Continuous code randomization. Re-randomization (aka continuous code randomization) tech-

niques [16, 36, 38, 55, 125, 216] continuously shuffle the address space at runtime. This continuous
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shuffling breaks direct and indirect memory disclosure. It also breaks the runtime code discovery

process by making the already discovered code pages obsolete. Re-randomization techniques are

similar to fine-grained randomization techniques. However, re-randomization techniques pose one

key challenge, which is the identification of all the pointer references and updating them at runtime.

Table 2.2 shows a summary of continuous code randomization defenses.

3) Memory protection. The memory protection-related leakage-resilient defenses [11, 53, 197,

215] are variant of the W⊕X defense. The key goal of the memory protection leakage-resilient

defenses is to prevent direct or indirect memory disclosure attacks [185]. The key goal of these

memory protection techniques is to ensure execute-only memory for code pages. Table 2.2 shows

a summary of memory protection-related leakage-resilient defenses.

However, attackers can still access zombie gadgets [186] that are available after applying destruc-

tive read defenses (i.e., XnR [11], NEAR [215], Readactor [52], and Heisenbyte [197]). Destruc-

tive read defenses only allow code execution. Any attempt to read code pages terminates a process.

In this way, destructive reads destroy the availability of gadgets to attackers. However, destructive

read defenses cannot completely eliminate all gadgets. For example, the runtime code generation

capability of JIT compilers allows the creation of multiple copies of the same code (e.g., two na-

tive code regions can be created from the same JavaScript code, one copy is used for disclosing

layout, and another copy is used for mounting attacks). Besides, loading and unloading features

of dynamic libraries allow attackers to load, disclose, destroy, and unload code pages. A fresh

loading of the destroyed code pages can be used in attacks utilizing the layout information of the

disclosed code pages. Similarly, attackers can infer code layout by creating new processes (e.g.,

creating new tabs in browsers using JavaScript) and making an informed guess about neighboring

bytes after disclosing a few bytes (i.e., implicit reads [186]). Thus, JIT compilers, load/unload fea-

tures, new process creation, and implicit reads allow attackers to get gadgets even in the presence

of destructive read defenses.

4) Code Pointer Integrity (CPI). CPI defenses aim to ensure the integrity of code pointers either



Salman Ahmed Chapter 2. Literature Review 17

from leaking through disclosure attacks or from modifying by attackers. To do so, code pointer

obfuscation techniques identify sensitive memory objects that could lead to code pointers, encrypt

the sensitive memory objects [49, 126, 130], store the memory objects in a translation table [12],

and hide the memory objects in a secure and isolated memory region [115, 126]. Table 2.2 shows

a summary of CPI-based leakage-resilient defenses. CPI is a powerful defense but there are few

attacks (e.g., Isomeron [62] and COOP [169]) that have demonstrated their capability to bypass

some CPI-based defenses.

5) Data Pointer Integrity (DPI) Recent attention on non-control-oriented or data-only attacks [101,

105] motivated researchers to develop practical Data-Flow-Integrity (DFI) [29] solutions (details

of non-control attacks in [40]). Currently, it is challenging to implement a practical DFI solution

considering the overhead of data-flow tracking.

2.1.3 Control-Flow Integrity

Completely orthogonal to defenses like ASLR, DEP, stack cookies, and leakage-resilient solutions,

Control Flow Integrity (CFI) [2] has gained interest due to its capability to prevent all control-

oriented attacks in its ideal form. However, the requirement of source code/debug information

and expensive performance overhead restrict CFI from being practical. In practice, imprecision

in resolving indirect control-flow transfers impacts CFI’s security guarantees. Besides, there are

trade-offs between using coarse-grained CFI (performance overhead is low when enforced) and

precise CFI (performance overhead is high when enforced). To make CFI fast and practical, many

researchers have focused on developing the coarse-grained version of CFI [54, 83, 130, 132, 140,

222, 224]. Table 2.3 shows several practical CFI defenses with their costs.

Even with the great promise of CFI for protecting control-oriented attacks, attackers may

find ways to launch new exploits such as control-oriented [46, 75, 86, 169] and non-control-

oriented [27, 101, 105] exploits as demonstrated before, where the exploits conform with CFI.

The latest advancement in control-flow transfers such as MLTA [124] significantly advances CFI
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that can prevent most control-oriented attacks.

Table 2.3: Practical CFI solutions with their average performance overhead

CFI Tools
bin-CFI

[224]

CCFIR

[222]

CFL

[19]

KCoFI

[54]

XFI

[70]

CCFI

[130]

O-CFI

[132]

MCFI

[140]

RockJIT

[141]

Lockdown

[152]

Avg. Performance

Overhead
8.54% 3.6% 4.5% 13-27% 5-10% 3-18% 4.7% 5% 14.6% 19.09%

2.1.4 Powerful and Influential Attacks

The deployment of defenses like stack canaries, W⊕X, ASLR, fine-grained ASLR, CPI, execute-

only memory (XOM), and CFI is not enough for some advanced attackers because some attack-

ers have proved their capabilities to bypass many modern defenses. For example, attackers have

demonstrated advanced exploits such as JIT-ROP [185], CROP [81], BROP [18], PIROP [89],

COOP [169], AOCR [163], ZombieG [186], CFB [27] and many more on the machines that are

equipped with the modern defenses. Table 2.4 shows these attacks along with their techniques and

capability.

Snow et al. demonstrated a Just-In-Time Code Reuse attack (JIT-ROP) that can bypass the fine-

grained ASLR defense [108, 151, 209] by leveraging a memory corruption vulnerability (e.g., heap

overflows, use-after-free, etc.) [185]. The attack is particularly strong because it starts with an

information leak and ends with generating an exploit payload by just-in-time compiling a custom

attack program.

Bittau et al. demonstrated that a remote unknown binary (equipped with the canary, NX, and

ASLR) can be exploited using a stack vulnerability and a 1-bit information leakage if the binary

restarts from a crash and does not re-randomize its address space [18]. More recently, Gawlik et al.

showed that the ASLR defense can be bypassed without the information leakage for fault-tolerant

programs [81]. They developed a memory probing technique (so-called memory oracles) to search

for reference-less sensitive data (e.g., Process Environment Block (PEB), Thread Environment

Block (TEB), etc. that contain addresses of the mapped modules, stack boundaries, and exception
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Table 2.4: Powerful and influential attacks demonstrated to bypass different countermeasures such
as coarse-grained ASLR, fine-grained ASLR, CPI, Destructive read (i.e., execute-only memory),
and CFI.

Attack Technique Used Ability to Bypass

JIT-ROP [185]
- ROP gadgets
- Repeated memory disclosures using

call and jump links

- Fine-grained ASLR
- Partial CPI
- Partial destructive read

BROP [18]

- Information about whether a process
crashes upon receiving an input

- Stack reading to read stack canaries
- Remote ROP gadget lookup

- Coarse-grained ASLR

CROP [81]

- Crash-resistance ability of applications
- No memory disclosure
- Memory probing technique
- Exploit by chaining functions

- Fine-grained ASLR
- CPI

Isomeron [62]
- virtual table pointers for repeated

memory disclosures
- Fine-grained ASLR
- Partial CPI

EHH [28] - Combination of ROP, JOP, and COP gadgets - ROPecker and kBouncher

PIROP [89]

- No memory disclosure
- Partial pointer overwrite to overwrite

LSB of a pointer
- ROP gadgets with relative offsets

- ASLR upto page-level granularity

CFB [27]
- Printf-oriented programming
- Controlling arguments of printf() to

achieve Turing-complete computation
- Fine-grained CFI

BATE [17]
- Pop-ret ROP gadgets
- Spiller JOP gadgets

- Coarse-grained CFI

StackDefiler [46] - Exploiting user-mode return addresses - fine-grained CFI

OOC [86] - Entry-point and call-site gadgets
- Coarse-grained ASLR
- Coarse-grained CFI

TROP [75] - Typed ROP or TROP gadgets - Runtime type checking based CFI
COOP [169] - Virtual functions as gadgets - Fine-grained CFI

AOCR [163]
- Profiling indirect code pointers by observing

the execution state of diversified code space
- CPI

MTP [73]

- Overwriting data pointers to launch timing
side channel

- Timing side channel leaks information about
safe memory region

- CPI

ZombieG [186]
- Zombie gadgets from JIT compilers, load/unload

features, new process creation, and implicit reads
- Destructive read

handlers) in a program’s address space. Once the sensitive data is read, attackers can perform

attacks by leveraging functions (or addresses) from the sensitive data.
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Many of these advanced attacks in Table 2.4 require assumptions and specific environments.

For example, AOCR [163] observes indirect code pointers (specially for library functions, e.g.,

open(), write(), etc.) in stack as a starting pointer to identify and chain AOCR gadgets and

perform position-independent code reuse. This indirectly means the necessity of enough library

code pointers in a stack. For CROP [81], a requirement is crash-resistance, i.e., an application

should progress even though the application produces memory corruptions and access faults. A

significant portion of the BROP attack [18] depends on the Procedural Linkage Table (PLT) en-

tries. The attack also requires restarting a process after a crash using fork instead of execve for

a PIE-binary.

2.2 Data-Oriented Attacks

The code reuse attacks dominated in the last decade due to their capability of bypassing DEP

or NX. However, researchers have put significant effort into developing practical security solu-

tions for preventing code-reuse attacks. As discussed above, the solutions are broadly in five cate-

gories: i) fine-grained address space randomization (ASR [84], ASLP [108], CCR [111], Selfrando

[47], etc.), ii) re-randomization (e.g., TASR [16], Shuffler [216], Remix [38], ASLR-Guard [126],

etc.), iii) memory leakage prevention (e.g., ASLR-Guard [126], XnR [11], Readactor [52], Heisen-

byte [197], etc.), iv) code pointer integrity (e.g., CPI [114], PointGuard [51], etc.), and v) CFI (e.g.,

BCFT [83], CCFIR [222], bin-CFI [224], etc.).

With the advances toward practical code pointer protection countermeasures [12, 49, 103, 104, 115,

126, 130, 158] and practical Control-Flow Integrity (CFI) [24, 83, 124, 130, 132, 152, 222, 224],

we anticipate a shift towards the use of data object/pointer-manipulation as the attack vector as

the manipulation works in the presence of code pointer protection and CFI countermeasures. This

is why in recent years, we observed a momentum in data-oriented attacks (also known as non-

control attacks) [100, 101, 106, 133, 162, 168, 196, 219] even though data-oriented attacks were
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introduced more than a decade ago [35].

2.3 Techniques for Protecting Object/Pointer Integrity

One fundamental requirement of the many abovementioned advanced attacks is memory disclosure

or information leak. Oftentimes, an attacker uses vulnerabilities in an application’s memory (e.g.,

user-after-free, type confusion, etc.) and weaknesses in system internals (e.g., vulnerabilities in

Glibc malloc implementation, Heap Feng Shui [190], etc.) to leak memory contents [9, 82, 96,

190, 192, 196], particular code and data pointers. For example, JIT-ROP [185] requires a code

pointer leak. On the other hand, some attacks require data pointers [73, 173]. That is why we have

observed Code Pointer Integrity (CPI) solutions [12, 49, 115, 126, 130] and Data Pointer Integrity

(DPI) solutions [29] for ensuring Pointer authenticity/integrity.

2.3.1 Pointer Integrity

Pointer integrity aims to ensure the validity of pointers, i.e., the value of a pointer (the address

of the target object) is not arbitrarily controllable by an attacker, even in the presence of memory

corruption vulnerabilities that may allow a manipulation over the pointer value. PointGuard [51]

encrypts all pointers at runtime by XORing them against a key generated at program initialization.

The encryption on each pointer must be reversed before dereferencing a pointer. PointGuard in-

curs a small to medium overhead (0%∼20%), but is vulnerable to information disclosure, e.g., if an

attacker learns the key or the XORed ciphertext of a pointer to a known address. Code-Pointer In-

tegrity (CPI) [115, 210] provides control-flow hijacking protection rather than the complete mem-

ory safety. Therefore, it incurs a very low performance overhead with around 1.9% (C program)

or 8.4% (C/C++ program) slowdown. Kuznetsov et al. [115, 210] also introduced a relaxation

of CPI with better performance properties, called code-pointer separation (CPS), to achieve better

security-to-overhead trade-off. However, this solution only protects code pointers with non-control
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data unchecked.

2.3.2 Pointer Authentication (PA)

PA [158] is a hardware pointer authenticity primitive introduced in the ARMv8.3-A processor ar-

chitecture to protect programs from exploiting memory vulnerabilities. PA introduces a set of new

instructions for calculating and verifying a Pointer Authentication Code (PAC) for pointers. The

use of an unauthenticated pointer would cause a memory translation fault. Each PAC is generated

using a key from a set of five different keys and a modifier. The kernel generates the five keys for

each process and stores them in internal CPU registers which are not accessible from userspace

code. These keys remain the same throughout the process’s lifetime. Out of the five keys, two

are used for generating PACs for code pointers, two for data pointers, and one for general purpose

uses. The modifier usually captures the contexts of pointer declarations and accesses. To store

PACs, PA uses the unused bits in the virtual address of 64-bit address space. In a 64-bit Linux

kernel, PA uses 24 bits for the PACs, but the size can vary based on memory scheme and address

tag usages.

However, PA has a few concerns regarding the PAC generation. Since PAC generation keys stay

the same for the lifecycle of a process, and modifiers may have repeatability, attackers may reuse

the previously generated PAC and pointer pair at a later stage to replace another PAC and pointer

that uses the same modifier [121]. If the modifier does not uniquely capture the context, it might

repeat in different contexts and allow such reuse attacks. For example, in return address signing

using the stack pointer (SP) values as modifiers, a return address authenticated for one function

can be used for another function if the SP values in both functions are the same.

To address these concerns, the Pointer Authentication Run-Time Safety (PARTS [121]) technique

augments the PA-based defense approach and compartmentalizes the PAC generations for different

pointers in different contexts. The key idea of the PARTS approach is to utilize a pointer’s type as a

modifier. The type potentially captures the context in which the pointer is created and dereferenced.
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PARTS provides a proof-of-concept implementation based on LLVM and incurs an overhead of

less than 20%.

2.3.3 Memory Safety Defenses

Memory-unsafe languages such as C/C++ lack built-in memory safety guarantees, hence memory

errors are prevalent in programs written in these languages. Nevertheless, C and C++ are still

widely used programming languages today [76]. Despite considerable prior research in retrofitting

memory-unsafe programs with memory safety guarantees, memory-safety problems persist due

to a trade-off between effectiveness and efficiency: approaches with low-overhead usually offer

inadequate protection/coverage, while comprehensive solutions either incur a high performance-

overhead or provide limited backward compatibility [183, 196]. SoftBound [134] and Hard-

Bound [66] perform data pointer safety by associating a lower and upper bound with each data

pointer, and verify the bound against metadata stored in shadow memory at runtime for C pro-

grams. SoftBound incurs an average performance overhead of 67% due to software-based bound

check while HardBound performs the check using hardware logic that lowers the overhead to

9% on average. Fat-pointer schemes store the associated bounds metadata [113] together with

pointers, e.g., by increasing their length [137] or by borrowing unused bits from pointers [113].

Re-purposing parts of a pointer to store validation data has the advantage of enabling fast re-

trieval of pointer metadata without a need for lookups from disjoint memory. But it changes the

representation of pointers in memory in ways that break both binary and source code compatibil-

ity. Fat-pointers have primarily been deployed in clean-slate ISA designs [116], and memory-safe

programming languages, e.g., Cyclone [56] and Rust [200]. BIMA [116] is a hardware-assisted

fat-pointer scheme for the SAFE secure computing platform [166]. BIMA limits the virtual ad-

dresses to 46 bits and restricts pointer alignment to powers of two. This frees 18 bits in 64-bit

pointers for encoding bounds information. BIMA demonstrates that on a clean-slate ISA design,

fat pointers can be realized without a performance penalty, and a 3% memory overhead due to
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segmentation caused by alignment restrictions on BIMA pointers. Low-fat-pointers [68, 69] are an

alternative to fat pointers compatible with commodity 64-bit hardware architectures, such as x86-

64. Low-fat-pointers require customized stack and heap allocators that restrict both stack frame

and heap memory allocation sizes to a fixed finite set and split the main program stack and heap

into several sub-stacks and sub-heaps, one for each possible allocation size. Pointer accesses are

then validated according to the allocation bounds associated with the corresponding sub-stack or

sub-heap. The improved compatibility comes at the cost of accuracy, as low-fat-pointers accesses

are only enforced at allocation bounds. On average, low-fat-pointers adds a performance penalty

of 54% (16% for out-of-bounds writes) and a memory overhead of 15% for stack data and incurs

a 56% performance (13% for out-of-bounds writes) and 11% memory overhead for heap data.

Unfortunately, software-based memory safety protection incurs a significant amount of overhead,

ranging from 48% to 116% [68, 69, 134, 135, 136]. Data-Flow Integrity also protects memory

safety issues but incurs overhead ranging from 44% to 103% [29, 187]. On the other hand, Point-

Guard [49] has relatively low overhead (up to 20%) for protecting pointers, but PointGuard’s

memory-related assumption that attackers cannot read arbitrary memory is no longer practical.

Thus, software-based pointer protection, in general, is not practical due to a high runtime over-

head.

2.3.4 Hardware-based Defenses

Hardware-based solutions can reduce the overhead significantly. HardBound [66] can lower the

overhead to 9% on average for pointers in C programs with architectural support. Intel’s Memory

Protection Extensions (MPX) incurs an average performance overhead of 50% due to the com-

plexity of storing and loading bounds metadata. Fortunately, the ARM pointer authentication

(PA) [158] offers a low cost (19.5% overhead for data pointer authentication [121]) and near-

practical pointer authentication in the ARMv8-A processor architecture.
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2.4 Sensitive/Critical Data Protection

The idea of protecting sensitive or critical data is not new. Palit et al. designed a compiler-level

defense that protects critical data [148, 149]. However, they manually annotate the sensitive data.

Similarly, FlowStitch [100] performed the automation of data-oriented attacks using predefined

critical data. Our work complements this work by identifying and prioritizing the sensitive data

automatically. A few automated techniques [106, 133] also determined the critical data. For exam-

ple, Jia et al. [106] determined the decision-making data by recording the execution of two traces

with normal execution and violated execution, and observing the data that get modified and change

executions. Access-driven trace data [133] are also useful to determine and understand the critical

data and their structures. However, these works are not scalable as we need huge and relevant

execution and access traces. On the other hand, Pathfinder [162] can automatically navigate to

sensitive data from a leaked data pointer. However, it does not indicate how to determine or label

sensitive data.



Chapter 3

Quantifying (Re-)Randomization Security

and Timing under JIT-ROP

3.1 Introduction

Just-in-time return-oriented programming (JIT-ROP) (e.g., [185]) is a powerful attack technique

that enables one to reuse code even under fine-grained address space layout randomization (ASLR).

Fine-grained ASLR, also known as fine-grained code randomization or code diversification, re-

orders and relocates program elements. Fine-grained randomization would defeat conventional

ROP code reuse attacks [178], as the attacker no longer has direct access to the code pages of the

victim program and its libraries. In other words, a leaked pointer only unlocks a small portion of

the code region under fine-grained code randomization, seriously limiting the attacker’s ability to

harvest code for ROP gadget purposes.

JIT-ROP attacks can discover new code pages dynamically [185], by leveraging control-flow trans-

fer instructions, such as call and jmp. Under fine-grained code randomization, the execution of a

JIT-ROP attack is complex, as code page discovery has to be performed at runtime. From the de-

fense perspective, re-randomization techniques (TASR [16], Shuffler [216], Remix [38], CodeAr-

mor [36], RuntimeASLR [125], and Stabilizer [55]) have the potential to defeat JIT-ROP attacks.

Besides, protections related to memory permission such as XnR [11], NEAR [215], Readactor [52],

destructive read such as Heisenbyte [197], and pointer indirection such as Oxymoron [12] specif-

ically aim to thwart JIT-ROP attacks. Precise implementation of Control-Flow Integrity (CFI)

26
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can protect applications from all control-oriented attacks. The recent Multi-Layer Type Analysis

(MLTA) [124] technique improves CFI precision greatly by improving the accuracy in identifying

indirect call targets.

Even though the great promise of CFI for protecting control-oriented attacks, attackers may

find ways to launch new exploits such as control-oriented [46, 75, 86, 169] and non-control-

oriented [27, 101, 105] exploits as demonstrated before, where the exploits conform with CFI.

A prime requirement of many of these exploits is information or pointer leakage. Thus, a mea-

surement mechanism aiding the design of risk heuristics-based pointer selection and prioritization

techniques is necessary for protecting pointers from leakage. Besides, from a defense-in-depth

perspective, a critical system requires to deploy multiple complementary security defenses in prac-

tice. A single defense may fail due to deployment issues such as implementation flaws or config-

uration issues. Thus, despite the strong security guarantees of CFI, our ASLR investigation is still

extremely necessary.

Re-randomization techniques continuously shuffle the address space at runtime. This continuous

shuffling breaks the runtime code discovery process by making the already discovered code pages

obsolete. However, the interval between two consecutive randomizations must satisfy both perfor-

mance and security guarantees.

Quantitative evaluation of how code (re-)randomization impacts code reuse attacks, e.g., in terms

of interval choices, gadget availability, gadget convergence, and speed of convergence has not been

reported. We define gadget convergence as the attack stage where an attacker has collected all the

necessary gadgets. For example, if an attacker has found at least one gadget for each type of

Turing-complete (TC) operations, then the gadget set is TC convergence. TC operations include

memory, assignment, arithmetic, logic, control flow, function call, and system call [161].

(Re-)randomization techniques make it difficult for current gadget finding techniques to discover

all gadgets. Thus, in-depth and systematic measurement is necessary, which can provide new

insights on the impact of code (re-)randomization on various attack elements, such as code pointer
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leakage, various gadget sets, and gadget chain formation. It is also important to investigate how to

systematically compute an effective re-randomization interval. Current re-randomization literature

does not provide a concrete methodology for experimentally computing an upper bound of re-

randomization intervals. Shorter intervals (e.g., millisecond-level) incur runtime overhead whereas

longer intervals (e.g., second-level) give attackers more time to launch exploits. An upper bound

would help guide defenders to make informed interval choices.

We report our experimental findings on re-randomization interval choices considering the speed of

gadget convergence, code pointer leakage, gadget availability, and gadget chain formation, under

fine-grained ASLR and re-randomization schemes.

Launching exploits is not a feasible measurement methodology to evaluate ASLR’s effectiveness,

due to i) low scalability – exploit payload is not platform or application portable, ii) failure to

exploit may not necessarily mean security, and iii) low reproducibility. Our evaluation involves up

to 20 applications, including 6 browsers, 1 browser engine, and 25 dynamic libraries.

We designed a measurement mechanism that allows us to perform JIT-ROP’s code page discovery

in a scalable fashion. This mechanism enables us to compare results from a number of programs

and libraries under multiple ASLR conditions (coarse-grained, fine-grained function level, fine-

grained basic block level, fine-grained instruction level, and register level). Our key experimental

findings and technical contributions are summarized as follows.

• We provide a methodology to compute the upper bound T for re-randomization intervals. If

the re-randomization interval is less than T , then a JIT-ROP attacker is unable to obtain var-

ious gadget sets such as the Turing complete gadget set, priority gadget set, MOV TC gadget

set, and gadgets from real-world payloads (see the definitions of gadget sets in Section 3.2).

We compute the upper bound T by measuring the minimum time for an attacker to find a

specific gadget set, i.e., the shortest time to reach gadget convergence for the gadget set. The

upper bound ranges from 1.5 to 3.5 seconds in our tested applications such as nginx, proftpd,

firefox, etc.
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• Our findings show that starting code pointers do not have any impact (i.e., zero standard

deviations) on the reachability from one code page to another. Every code pointer leak is

equally viable for revealing an address space layout, suggesting that attackers’ discovered

gadgets eventually converge to a gadget set no matter where the starting pointer is.

• Our findings also show that the starting code pointers have an impact on the speed of con-

vergence. That means the time needed for a JIT-ROP attacker to discover a gadget set varies

with the locations of starting code pointers. In our experiments, the time for obtaining the

Turing-complete gadget set ranges from 2.2 to 5.8 seconds.

• We also present a general methodology for quantifying the number of JIT-ROP gadgets.

Our results show that a single-round instruction-level randomization scheme can limit the

availability of gadgets up to 90% and break the Turing-complete operations of JIT-ROP

payloads. Also, fine-grained randomization slightly degrades the gadget quality, in terms of

register-level corruption. A stack has a higher risk of revealing dynamic libraries than a heap

or data segment because our experiments show that stacks contain 16 more libc pointers than

heaps or data segments on average.

Besides, we distill common attack operations in existing ASLR-bypassing ROP attacks (e.g., [18,

28, 62, 185]) and present a generalized attack workflow that captures the tasks and goals. This

workflow is useful beyond this specific measurement study.

3.2 Threat Model and Definitions

Coarse-grained ASLR (or traditionally known as only ASLR [199]) randomly relocates shared

libraries, stack, and heap, but does not effectively relocate the main executable of a process. This

defense only ensures the relocation of the base address of a segment or module. The internal layout

of a segment or module remains unchanged. The Position Independent Executable (PIE) option
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allows to relocate the main executable in random locations in each run. For comparison purposes,

we performed experiments on coarse-grained ASLR with PIE enabled on a 64-bit Linux system.

Fine-grained ASLR, aka fine-grained code randomization or code diversification, relocates all the

segments and dependencies of the main executable of a process and restructures the internal layouts

of the segments. The granularity of the randomization varies, e.g., at the level of functions [47, 84,

108], basic blocks [38, 111, 213], instructions [97], or machine registers [52, 98]. We evaluated

randomization schemes at various levels of granularities using Zipr1 [95], Selfrando2 (SR) [47],

Compiler-assisted Code Randomization3 (CCR) [111], and Multicompiler4 (MCR) [98]. We also

evaluated Shuffler [216], a re-randomization tool. We are unable to test other tools due to various

robustness and availability issues.

We assume standard defenses such as W⊕X and RELRO are enabled. W⊕X specifies that no

address is writable and executable at the same time. RELRO stands for Relocation Read Only.

It ensures that the Global Offset Table (GOT) entries are read-only. RELRO is now by default

deployed on mainstream Linux distributions.

Layered defenses. CFI and Code Pointer Integrity (CPI) solutions are very powerful techniques.

Yet, it is still necessary for one to experimentally measure the effectiveness of various defense

implementations in practice (e.g., CPI enforcement with spatial and temporal guarantees and CFI

effectiveness in different granularities [24]). From a measurement perspective, it is useful and

necessary to isolate various defense factors. Decoupling them helps one better understand the

individual factor’s security impact. Otherwise, it might be too complicated to interpret the experi-

mental results. This is the reason we chose to focus on ASLR defenses in this work and omit other

defenses (e.g., CFI [2, 54, 83, 130, 132, 140, 152, 222, 224] and CPI [12, 51, 73, 114, 115, 126].

For similar reasons, we also omit memory permission protections (e.g., XnR [11], NEAR [215],

1https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
2https://github.com/immunant/selfrando
3https://github.com/kevinkoo001/CCR
4https://github.com/securesystemslab/multicompiler
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Readactor [52], Heisenbyte [197], and Execute-only-Memory (XOM5) [120]) for this paper. We

also discuss the need for measuring code pointer protection solutions under the JIT-ROP model in

Section 3.6.

We assume attackers have already obtained a leaked code pointer (e.g., a function or a virtual table

pointer) through remote exploitation of a vulnerability. Such an assumption is standard in exist-

ing attack demonstrations. Also, fine-grained code randomization is applied in every executable

and associated library in a target system (unless specified otherwise). A JIT-ROP attacker knows

nothing about the applied fine-grained randomization.

Native vs. WebAsm vs. JavaScript version of JIT-ROP. While the original JIT-ROP attack

was demonstrated in a browser using JavaScript, the attack approach has general applicability in

both native and scripting environments. Our experiments are focused on the native execution of

JIT-ROP attacks. We conducted the experiments for measuring the re-randomization upper bound

using the native JIT-ROP code module. The execution time of WebAssembly is within 2x of na-

tive code execution [93]; JavaScript is on average 34% slower than WebAssembly [93]. Thus, our

re-randomization intervals measured using the native execution would be conservatively applica-

ble for the scripting environments as well. Besides, JIT-ROP is not related to the JIT compilers

of JavaScript (JS) engines and does not use any flaws of JIT compilers to perform a code-reuse

attack, though some work [10] uses such flaws. JIT-ROP harvests gadgets from a target binary’s

static code, which is finely randomized; it does not harvest gadgets from dynamically generated

code (e.g., scripts). Thus, JS or WebAsm versions do not make substantial differences in gadget

availability.

Next, we discuss the terms Turing-complete gadget set, priority gadget set, MOV TC gadget set,

re-randomization upper bound, minimum footprint gadgets, and extended footprint gadgets.

Definition 1. Turing-complete gadget set refers to a set of gadgets that covers the Turing-complete

operations including memory operations (i.e., load memory LM and store memory SM gadgets),
5XoM is now supported natively at the hardware level on x86 systems with memory protection keys (MPK) support

and Armv7-M or Armv8-M processors.



32 Chapter 3. Quantifying (Re-)Randomization Security and Timing Salman Ahmed

assignments (i.e., load register LR and move register MR gadgets), arithmetic operations (i.e.,

arithmetic AM, arithmetic load AM-LD, and arithmetic store AM-ST gadgets), logical operations

(i.e., logical gadgets), control flow (i.e., jump JMP gadgets), function calls (i.e., CALL gadgets),

and system calls (i.e., syscall SYS gadgets) [161].

Definition 2. The upper bound T A
P of a re-randomization scheme P under a JIT-ROP attacker A

is the maximum amount of time between two consecutive randomization rounds that prevents A

from obtaining a Turing-complete, priority, MOV TC, or payload gadget set, i.e., for any interval

T ′A
P < T A

P , the gadgets obtained under T ′A
P does not converge to any of the four gadget sets.

Extended and Minimum footprint gadgets: A gadget is an extended footprint (EX-FP) gadget if

it is an instance of the four gadget sets. An EX-FP gadget may contain additional instructions that

may cause side effects in an attack payload. EX-FP gadgets include the longer memory addressing

expressions. A minimum footprint (MIN-FP) gadget is also an instance of the four gadget sets

without causing any side effects.

Our definition of the Turing-complete gadget set represents our best efforts, by no means the only

way. For example, a pair of load (LM) and store (SM) gadgets may potentially replace a move

(MR) gadget. However, they may not be directly equivalent due to possibly mismatching memory

offsets of EX-FP load gadgets or the scarcity of MIN-FP load gadgets. Excluding load-n-store

from the Turing-complete gadget set might underestimate attackers’ capabilities, while including

them might overestimate attackers’ capabilities. We perform our measurements considering the

Turing-complete gadget set that enables the highest expressiveness of ROP attacks. However,

under this condition, our results might underestimate the attackers’ capabilities. To balance an

attacker’s capabilities, we further break down the Turing-complete gadget set into two smaller

gadget sets: i) priority gadget set and ii) MOV TC gadget set. The priority gadget set includes

10 most frequently used gadgets in 15 real-world ROP chains from Metasploit. The MOV Turing-

complete gadget set [67] requires six MOV gadgets and four unique registers. Besides, we also

include three real-world ROP payloads from Metasploit in our measurement.
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New metrics proposed by Brown and Pande’s [21] work – functional gadget set expressivity and

special-purpose gadget availability – are new leads that will help relax the expressiveness condition

of the Turing-complete gadget set in the future.

Our security definition of the upper bound in Definition 2 is specific to the JIT-ROP threat, and

is not applicable to other threats (e.g., side-channel threats). A shorter interval may still allow

attackers to gain information. However, as our Section 3.3 shows, without gadgets that information

may not be sufficient for launching exploits.

3.3 JIT-ROP vs. Basic ROP Attacks

We manually analyze a number of advanced attacks to extract common attack elements and iden-

tify unique requirements. We illustrate the key technical differences between JIT-ROP and con-

ventional (or basic) ROP attacks. This section helps one understand our experimental design in

Section 3.4 and findings in Section 3.5. We analyze various attack demonstrations with a focus on

attacks (e.g., [18, 28, 62, 185]) in our threat model.

Figure 3.1: An illustration of the commonalities and differences between a conventional (or basic)
ROP attack (bottom) and a JIT-ROP attack (top). The top gray-box highlights the key steps in
JIT-ROP to overcome fine-grained ASLR.

To overcome both coarse- and fine-grained ASLR and conduct an attack using privileged opera-

tions, an attacker needs to perform the tasks presented in Figure 3.1. The attack workflow has three

major components: memory layout derandomization, system access, and payload generation.
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3.3.1 Memory Layout Derandomization

Derandomizing an address space layout is the key for mounting code-reuse attacks. Due to the

W⊕X defense, attackers need to derandomize the memory layout to discover gadgets (steps 2 - 4

for JIT-ROP and steps 2′ and 4′ for basic ROP in Figure 3.1). Usually, attackers leverage memory

corruption vulnerabilities to leak memory [192] and derandomize an address space layout using

the leaked memory. This step requires overcoming several obstacles.

Memory disclosure. The most common way of derandomizing memory layout is through a

memory disclosure vulnerability. Attackers use vulnerabilities in an application’s memory (e.g.,

heap overflows, use-after-free, type confusion, etc.) and weaknesses in system internals (e.g.,

vulnerabilities in the glibc malloc implementation or its variants [9, 96], Heap Feng Shui [190], and

Flip Feng Shui [160]) to leak memory contents (Steps 2 and 2′ ). Details on memory corruption

can be found in [82, 196] and an example in [192].

Code reuse. Due to W⊕X defense, adversaries cannot inject code in their payload. ROP [178] and

its variants Jump-Oriented Programming (JOP) [20] and Call-Oriented Programming (COP) [86]

can defeat this defense. These techniques use short instruction sequences (i.e., gadget) from the

code segments of a process’ address space and allow an adversary to perform arbitrary compu-

tations. ROP tutorials can be found in [64, 185]. The difference between basic ROP [178] and

JIT-ROP [185] is described next.

Basic ROP. Coarse-grained ASLR only randomizes the base addresses of various segments and

modules of a process. The content of the segments and modules remains unchanged. Thus, it is fea-

sible for an adversary to launch a basic ROP attack [198] using gadgets given a leaked address from

the code segment of interest. The adversary only needs to adjust the addresses of pre-computed

gadgets w.r.t. the leaked address. Step 4′ in Figure 3.1 is about this task.

Just-in-time ROP. Since adjusting the addresses of pre-computed gadgets (as in the basic ROP)

no longer works under fine-grained ASLR, an attacker needs to find gadgets dynamically at the
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time of an exploit. Scanning a process’ address space linearly for gadgets from a disclosed code

pointer may not be effective because this linear scanning may lead to crash the process due to

reading an unmapped memory. A powerful technique introduced in JIT-ROP [185] is the recursive

code page harvest, which is explained next.

The recursive code harvest technique exploits the connectivity of code in memory to derandom-

ize and locate instructions (step 3 in Figure 3.1). The technique identifies gadgets at runtime

by reading and disassembling the text segment of a process. The technique computes the page

number from a disclosed code pointer and reads the entire 4K data of that page. A light-weight

disassembler converts the page data into instructions. The code harvest technique searches for

chain instructions, such as call or jmp instructions to find code pointers to other code pages.

An illustration is shown in Figure 3.2. The code harvest process starts from the disclosed pointer

(0x11F95C4), reads 4K page data (0x11F9000-0x11F9FFF), disassembles the data, searches for

call and jmp instructions to find other pointers (0x11FB410 and 0x11FCFF4) to jump to those code

pages. This process is recursive and stops when all the reachable code pages are discovered.

Snow et al. demonstrated the JIT-ROP attack in a browser. Since exploiting a memory corruption

bug remotely covers a wide variety of exploits, a browser is an ideal interface for JIT-ROP attacks.

The scripting environment of a browser enables easy interfacing of a JavaScript-based JIT-ROP at-

tack payload. Similarly, JIT-ROP attack payload can be embedded into a PDF reader that supports

JavaScript (e.g., Adobe Reader). However, an attacker must convert any non-scripting attack code

to script for the scripting environment. For example, the original JIT-ROP framework was written

in C/C++ and was transpiled to JavaScript to demonstrate on Internet Explorer.

Gadget identification. In step 4 of Figure 3.1, attackers identify gadgets by scanning for byte

values corresponding to ret opcodes (e.g., 0xC2, 0xC3) from the read code pages and perform a

narrow-scoped backward disassembly. The adversary performs step 3 and 4 repeatedly to find

required gadgets for the target exploit.
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Figure 3.2: An illustration of the recursive code harvest process of JIT-ROP [185]. An adversary
discloses an address from the main executable or libraries (in this case from the main executable)
of an application through a vulnerability.

3.3.2 System Access

Attackers need to issue system APIs or gadgets to perform privileged operations. If the CFI de-

fenses (e.g., BCFT [83], CCFIR [222] and bin-CFI [224]) are not enforced, adversaries do not

need to invoke the entire functions to ensure legitimate control flow. An adversary can just chain

together enough gadgets for setting up the arguments of a system call and invoking it. This obser-

vation is particularly true for Linux, which is the focus of this paper. In Windows exploits [185],

the approach can be slightly different, as adversaries commonly invoke a system API instead of

invoking a system call directly. Syscall gadgets can be found in an application’s code or dynamic

library. For basic ROP attacks, attackers can adjust pre-computed system gadgets from dynamic

libraries, given that she manages to obtain a code pointer from a dynamic library (e.g., libc). Step

9 in Figure 3.1 is for this task. This task is performed manually and offline. The attacker may

obtain the library code pointer from an application’s stack or heap or data segment. One can find

system gadgets through step 4 in JIT-ROP.

3.3.3 Payload Generation

Attackers generate payloads by putting many pieces (e.g., gadgets, functions, constants, strings,

etc.) together. This process must ensure a setup for calling system APIs or system gadgets. An
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attacker generates a payload dynamically at step 5 under fine-grained code randomization or man-

ually at step 5′ under coarse-grained code randomization and stores the payload in a stack/heap.

Because a payload is primarily a set of addresses that point to some existing code in an applica-

tion’s address space, attacks do not execute anything stored in a stack/heap, which is protected by

W⊕X. An attacker may utilize the same vulnerability as in step 2 or a different vulnerability to

hijack a program’s control flow at step 6 to redirect the flow to the stored payload. A payload usu-

ally targets to achieve an attack goal, e.g., memory leak or launching a malicious application/root

shell.

Attack chains with minimal side effects are desirable for attackers, i.e., having a payload that fulfills

attack goals without generating any unnecessary computations. However, this property may not be

guaranteed if code randomization limits gadget availability. We refer to the side effects of gadgets

as footprints. We defined the minimum and extended footprint gadgets in Section 3.2.

For ROP attacks (e.g., [28]) that bypass control-flow integrity (CFI) defenses, the attackers also

need to prepare specialized payloads in addition to the previous tasks. For example, the Flashing

(FS) and Terminal (TM) gadgets in Table 3.1 were designed by Carlini and Wagner [28] to bypass

specific CFI implementations (namely, kBouncer [150] and ROPecker [43]).

3.4 Measurement Methodologies

We describe our measurement methodologies for evaluating fine-grained ASLR’s impact on the

memory layout derandomization, system access, and payload generation of JIT-ROP. One major

challenge is how to quantify the impact of fine-grained code randomization. Our approach is to

count the number of available gadgets under the JIT-ROP code harvest mechanism. Other chal-

lenges are how to quantify i) the difficulty of accessing privileged operations and ii) the quality of

gadget chains. For the former, our approach is to measure the number of system gadgets and count

libc pointers in a stack or heap or data-segment of an application. To quantify the quality of gadget
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chains, we design a register-level measurement heuristic by computing the register corruption rate.

3.4.1 Methodology for Derandomization

Gadget selection. We manually extracted 21 types of gadgets from various attacks [18, 27, 28, 86,

185]. These gadget types include load memory (LM), store memory (SM), load register (LR), move

register (MR), arithmetic (AM), arithmetic load (AM-LD), arithmetic store (AM-ST), LOGIC, jump

(JMP), call (CALL), system call (SYS), and stack pivoting (SP) gadgets. In addition to these, the

gadget types also include some attack-specific gadgets such as call preceding (CP), reflect (RF),

call site (CS2) and entry point (EP) gadgets. Table 3.1 shows those gadget types in more detail.

These 21 types of gadgets include the Turing-complete gadget set (see Definition 1). These gad-

gets also include the priority and MOV TC gadget sets (Table 3.2). We use the Turing-complete,

priority, and MOV TC gadget sets for our evaluation because we can precisely identify those gad-

gets. We also include gadgets from three real-world ROP payloads from Metasploit [58, 59] and

Exploit-Database [25]. We leave the attack-specific gadgets out of our evaluation due to the lack

of their concrete forms and attack goals. Attackers used the attack-specific gadgets to trick defense

mechanisms. We also discuss the evaluation of the block-oriented gadgets used for Block-Oriented

Programming (BOP) [105].

Methodology for single-round randomization experiments. In our experiments, we measure

the occurrences of gadgets from the Turing-complete gadget set under fine-grained code random-

ization schemes. To enforce the code randomization schemes, we used four relatively new code

randomization tools: Zipr [95] (instruction-level randomization), SR [47] (function-level random-

ization), CCR [111] (block-level randomization), and MCR [98] (function + register-level random-

ization), because of their reliability. Table 3.3 shows the key differences between these schemes.

We compile and build a coarse- and a fine-grained version of each application or dynamic library

for each run using each of the four randomization tools, i.e., each run has a different randomized

code. We use LLVM Clang 3.9, Clang 3.8 and GCC 5.4 as the compilers for CCR, MCR and SR,
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Table 3.1: Gadgets used in advanced ROP attacks [18, 27, 28, 86, 185] .
a

indicates an addi-
tion/subtraction/multiply/division. ϕ indicates logical operations such as and, or, left-shift, and
right-shift.

`
indicates any operation that modifies stack pointer (SP). SN → Short name. TC?

indicates whether a gadget is included in the Turing-complete gadget set or not.

Gadget types Purpose Minimum footprint Example TC? SN Source
Move register Sets the value of one register by another mov reg1, reg2; ret mov rdi, rax; ret ✓ MR [185]
Load register Loads a constant value to a register pop reg; ret pop rbx; ret ✓ LR [27, 185]

Arithmetic
Stores an arithmetic operation’s result of
two register values to the first

a
reg1, reg2; ret add rcx, rbx; ret ✓ AM [185]

Load memory Loads a memory content to a register mov reg1, [reg2]; ret mov rax, [rdx]; ret ✓ LM [27, 185]

Arithmetic load
a

a memory content to/from/by a
register and store in that register

a
reg1, [reg2]; ret add rsi, [rbp]; ret ✓ AM-LD [185]

Store memory Stores the value of a register in memory mov [reg1], reg2; ret mov [rdi], rax; ret ✓ SM [185]

Arithmetic store
a

a register value to/from/by a memory
content and stores in that memory

a
[reg1], reg2; ret sub [ebx], eax; ret ✓ AM-ST [185]

Logical Performs logical operations

ϕ reg1, reg2; ret
ϕ reg1, const; ret
ϕ [reg1], reg2; ret
ϕ [reg1], const; ret

shl rax, cl; ret; ✓ LOGIC [161]

Stack pivot Sets the stack pointer, SP
`

sp, reg xchg rsp, rax × SP [185]
Jump Sets instruction pointer, EIP. jmp reg jmp rdi ✓ JMP [185]

Call
Jumps to a function through a register
or memory indirect call

call reg or call [reg] call rdi ✓ CALL [185]

System Call Invokes system functions syscall or int 0x80; ret syscall ✓ SYS [161]

Call preceded Bypasses call-ret ROP defense policy
mov [reg1], reg2;
call reg3

mov [rsp], rsi;
call rdi

× CP [27]

Context switch
Allows processes to write to Last
Branch Record (LBR) to flash it

long loop.
3dd4: dec, ecx
3dd5: fmul, [BC8h]
3ddb: jne, 3dd4

× CS1 [27]

Flashing
Clears the history of LBR
(Last Branch Record)

Any simple call
preceded gadgets with
a ret instruction

jmp A
...
A: mov rax, 3; ret;

× FS [28]

Terminal Bypasses kBouncer heuristics
Any gadgets that are
20 instructions long

N/A × TM [28]

Reflector
Allows to jump to both call-preceded
or non-call-preceded gadgets

mov [reg1], reg2;
call reg3; ... ; jmp reg4

mov [rsp], rsi;
call rdi; ... ; jmp rax

× RF [27]

Call site
This gadget chains the control to go
forward when we have the control
on the stack and ret

call reg or call [reg];
...
ret;

call rdi;
...
ret;

× CS2 [86]

Entry point
This gadget chains the control to go
forward when we have the control
of a call instruction

pop rbp;
...
call/jmp reg or
call/jmp [reg]

pop rbp
...
call/jmp reg or
call/jmp [reg]

× EP [86]

BROP Restores all saved registers

pop rbx; pop rbp;
pop r12; pop r13;
pop r14; pop rsi;
pop r15; pop rdi;
ret;

pop rbx; pop rbp;
pop r12; pop r13;
pop r14; pop rsi;
pop r15; pop rdi;
ret;

× BROP [18]

Stop Halts the program execution Infinite loop
4a833dd4: inc rax
3ddb: jmp 3dd4

× STOP [18]

respectively. We run, load or rewrite each application or library 100 times to reduce the impact of

variability on the number of gadgets in each run or load.

We use ropper [167], an offline gadget finder tool, under coarse-grained ASLR. Under fine-grained
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Table 3.2: Gadgets with gadget types in the priority and MOV TC gadget sets.

Priority MOV TC
Type Gadget Type Gadget

LR
1. pop reg
2. pop reg; pop reg MR 1. mov reg, reg/const

AM 3. add reg, const ST 2. mov [reg], reg
LM 4. mov reg, [reg]; ret STCONSTEX 3. mov [reg+offset], reg/const
JMP 5. jmp reg STCONST 4. mov [reg], const
ST 6. mov [reg], reg; ret LM 5. mov reg, [reg]
SP 7. xchg rsp, reg LMEX 6. mov reg, [reg+offset]

LOGIC
8. xor reg, reg
9. xor reg, const SYS 7. syscall

MR
10. mov reg, reg
11. mov reg, const

CALL
12. call reg
13. mov reg, reg, call reg

SYS 14. syscall

Table 3.3: Key differences in various randomization and re-randomization schemes evaluated.

Tools
Randomization
Scheme(s)

Randomization
Time

Compiler
Assistance
Required?

Techniques
Performance
Overhead

Shuffler [216]
Function-level
re-randomization Runtime No

- Loads itself as a user space program
- Contains a separate thread for shuffling
the functions continuously

14.9% [216]

Zipr [95]
Instruction-level
randomization

Static
rewriting No

- Reorders all instructions and generates ILR
static rewrite rules

- Executes randomly scatter instructions
using a process-level virtual
machine (PVM) utilizing static rewrite rules

or a fall-through map
- Keeps the same layout unless rewrite again

<5% [95]

SR [47]
Function-level
randomization

Load time
reorder No

- Adds a linker wrapper that intercepts calls to
the linker and asks the
selfrando library to extract the necessary
information to reorder functions

- Reorders functions every time when a binary
is loaded into memory

<1% [47]

MCR [98]
Function- and
register-level
randomization

Compile & Link
time reorder Yes

- Reorders functions and machine registers
during link time optimization

- Implements compile-time randomization but
defers compilation until
all translation units have been converted

to bitcode
- Keeps the same layout unless compiled and
built again

1% [98]

CCR [111]
Function and
block-level
randomization

Installation
time Yes

- Extracts metadata during compilation
- Reorders functions and basic-block based
on the metadata

- Keeps the same layout unless re-randomized
again

0.28% [111]

ASLR, we write a tool to recreate the JIT-ROP [185] exploitation process, including code page

discovery and gadget mining. Our tool can search for gadgets of a specific type. We scan the

opcodes of ret (0xC3) and ret xxx (0xC2) and perform a narrow-scoped backward disassembly
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from those locations to collect ROP gadgets. Similarly, we scan the opcodes of int 0x80 (0xCD

0x80), syscall (0x0F 0x05), sysenter (0x0F 0x34) and call gs:[10] (0x65 xFF 0x15 0x10 0x00

0x00 0x00) for system gadgets. We consider the gadgets only from the legitimate instructions, not

from instructions within overlapping instruction bytes.

Methodology for re-randomization experiments. For code re-randomization schemes, we at-

tempted to use six re-randomization tools. However, some of the tools are unavailable and some

have runtime and compile-time issues6; in the end, we were able to obtain only Shuffler [216]. To

evaluate the impact of re-randomization, we take 100 consecutive address space snapshots from an

application/library re-randomized by Shuffler [216]. Then, we manually analyze the address space

snapshots.

The choice of re-randomization intervals is important for a re-randomization scheme. An effective

re-randomization interval should hinder attackers’ capabilities while ensuring performance guar-

antees. Our measurement methodology determines the upper bound (see definition 2) of effective

re-randomization intervals by considering the fastest speed of gadget convergence, i.e., the mini-

mum time for convergence. To measure the time of gadget convergence, we run the recursive code

harvest process for an application and record the times it takes to converge to different gadget sets

such as Turing-complete, priority, MOV TC, and payload gadget sets. We record the number of

leaked gadget types that the code harvest process covered so far, while recording the convergence

time. The code harvest terminates upon gadget convergence. We record multiple convergence

times by starting the code harvesting process from multiple pointer locations to capture the vari-

ability. To select multiple starting pointers, we choose a random code pointer from each code

page of an application. Choosing a single random code pointer from each code page allows us to

identify all instructions and pointers on that code page.

6Remix [38] & CodeArmor [36] are not available. TASR [16] is not accessible for policy issues. Runtime
ASLR [125] & Stabilizer [55] have run & compile time issues, respectively.
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3.4.2 Methodology for System Access

We measure the difficulty of accessing privileged operations through the availability of system

gadgets and vulnerable library pointers in a stack, heap or data-segment. For system gadgets,

we compare the number of system gadgets under the coarse- and fine-grained randomization and

compute the reduction in the gadget quantity. For the measurement of vulnerable pointers in a

stack/heap/data-segment, we examine the overall risk associated with a stack/heap/data-segment by

identifying the number of unique libc pointers in that stack/heap/data-segment. For the evaluation

purpose, we do not exploit vulnerabilities to leak libc pointers from the stack/heap/data-segment.

Rather, we assume that we know the address mapping of libc and can find the libc pointers through

a linear scanning of the stack/heap/data-segment. We discuss the existence of libc pointers in

popular applications in Section 3.5.6.

3.4.3 Methodology for Payload Generation

We focus on measuring the quality of individual gadgets to approximate the quality of a gadget

chain. The quality of a set of gadgets for generating payloads is essential, as attackers need to

use gadgets to set up and prepare register states. To measure the quality of individual gadgets, we

perform a register corruption analysis for each gadget, which is discussed next.

Typically, a gadget contains a core instruction (other than ret) that serves the purpose of that gadget.

For example, the core instruction of the gadget in Listing 3.1 is mov eax, edx and the gadget serves

as a move register (MR) gadget. The core instruction is the instruction that an attacker needs. All

the instructions (except ret) before or after the core instruction are usually unnecessary. However,

these extra instructions may modify the source or destination register of a core instruction. If these

extra instructions modify the registers of a core instruction, we treat the gadget as a corrupted gad-

get. In Listing 3.1, the instruction (mov edx, dword ptr [rdi]) before the core instruction modifies

the source register (edx) of the core instruction and the instructions (shr eax, 0x10; xor eax, edx)
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after the core instruction modify the destination register (eax). We identify three scenarios when

core instructions get corrupted as follows:

1 mov edx, dword ptr [rdi]; mov eax, edx; shr eax, 0x2; xor eax, edx; ret;

Listing 3.1: An example gadget where the core instruction is “mov eax, edx;".

Scenario 1: A core instruction is only affected by the instruction(s) before the core instruction,

Scenario 2: A core instruction is only affected by the instruction(s) after the core instruction, and

Scenario 3: A core instruction is affected by both the instruction(s) before or after the core instruc-

tion.

We identify three types of gadgets considering the three scenarios above where the core instruc-

tions get corrupted. Figure 3.3 shows the three types of gadgets. Each gadget has one or more

instructions before or after the core instruction. For example, the Type 1 gadget in Figure 3.3 has

a core instruction in the middle and one or more instructions before or after the core instruction.

The core instruction has two registers for this kind. One or more instruction(s) before the core in-

struction may modify the source register (rdx) in Figure 3.3a. Similarly, one or more instruction(s)

after the core instruction may modify the destination register (rax) in the figure.

(a) Type 1 gadget (b) Type 2 gadget

(c) Type 3 gadget

Figure 3.3: A set of gadget types for measuring the quality of individual gadgets through the
register corruption analysis

However, for the Type 2 gadget in Figure 3.3b, the core instruction has just one register. That

means that the additional instructions before the core instruction cannot affect the register of the
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core instruction. Thus, we do not care about the instructions before the core instruction. For Type

3 gadget in Figure 3.3c, the core instruction writes the value of rdi to a memory location pointed

by rax. That is why we do not care if the register (rax, rdi) values get modified by the instructions

after the core instructions.

A gadget is corrupted if registers in the core instruction get modified. We perform our register

corruption analysis by identifying the corrupted registers in the core instructions of a gadget as

follows.

First, we identify the set of instructions (before or after the core instruction) that can modify the

source or destination register of the core instruction. We find that 17 instructions (mov, lea, add,

sub, imul, idiv, pop, inc, dec, xchg, and, or, xor, not, neg, shl, and shr) can modify a register value

of a core instruction. That means that these instructions use the source register of a core instruction

as its destination register or the destination register of a core instruction as its source register. We

treat the registers of such instructions as conflicting registers.

Second, we extract the conflicting registers (RegSet1) for Types 1 and 3 gadgets and RegSet2

for Types 1 and 2.

Third, if the RegSet1 and/or RegSet2 contain more than one conflicting registers, we treat the

core instruction of that gadget as corrupted, i.e., the gadget itself is corrupted.

In this way, we measure the register corruption rate for MV, LR, AM, LM, AM-LD, SM, AM-ST, SP,

and CALL gadgets by dividing the number of corrupted gadgets by the number of all gadgets.

Next, in the following paragraphs, we discuss the code randomization and re-randomization tools

briefly.

Shuffler [216] runs itself alongside the user space program that it aims to protect. It has a sepa-

rate asynchronous thread that continuously permutes all the functions to make any memory leaks

unusable as fast as possible.

Zipr [95] reorders the location of each instruction in an executable or library (an example in Fig-
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ure 3.4). Zipr works directly on binaries or libraries with no compiler support. Zipr [95] is based

on the Intermediate Representation Database (IRDB) code. Zipr shuffles code during the rewriting

process, which is called block-level instruction layout randomization.

Figure 3.4: Instruction location randomization. This figure is adopted from ILR [97].

Selfrando (SR) [47] is compiler-agnostic and applies code diversification at the load time using

function boundary-metadata called Translation and Protection (TRaP) and inserting a dynamic

library called libselfrando. At the load time, libselfrando takes control of the execution, reorders

the position of each function in an executable utilizing the TRaP information, and relinquishes the

control to the original entry point of the executable.

Multicompiler (MCR) [52, 98] applies the code diversification at the link time. This tool random-

izes functions, machine registers, stack-layout, global symbols, VTable, PLT entries, and contents

of the data section. The tool also supports insertion of NOP, global padding, and padding between

stack frames. We choose the function and machine register level randomization for our evaluation.

MCR uses the Clang-3.8 LLVM compiler.
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Compiler-Assisted Code Randomization (CCR) [111] applies the code diversification at the instal-

lation time, i.e., rewrites an executable binary by reordering the functions and basic blocks of the

executable. This tool collects metadata for code layout, block boundaries (i.e., the basic block,

functional block, and object block boundaries), fixup, and jump table of an executable during com-

pilation and linking phases. A Python script rewrites the executable binary utilizing the collected

metadata. In our experiments, CCR uses the clang-3.9 LLVM compiler.

Availability and robustness of fine-grained ASLR tools. We found that the majority of code diver-

sification implementations, including ASR [84], ASLP [108], Remix [38], and STIR [213], are not

publicly available. Some available tools (e.g., MCR [52, 98], CCR [111] and SR [47]) operate on

the source code level that requires recompilation. We experienced multiple linking issues while

using CCR and SR to compile Glibc code. The tool authors confirmed the limitations (discussed

in Section 3.6). ORP [151] was the randomization tool used in Snow et al.’s JIT-ROP demonstra-

tion [185]. It operates on Windows binaries, incompatible with our setup.

3.5 Evaluation Results and Insights

Experimental setup. We implemented a JIT-ROP native code module. All experiments are per-

formed on a Linux machine with Ubuntu 16.04 LTS 64-bit operating system. We write Python

and bash scripts for automating our measurement process. Our code and data are available at

https://github.com/salmanyam/jitrop-native.

We perform our experiments on the latest and stable versions of applications including bzip2,

cherokee, hiawatha, httpd, lighttpd, mupdf, nginx, openssl, proftpd, sqlite, openssh, thttpd, xpdf,

and mupdf, browsers including firefox, chromium7, tor, midori, netsurf, and rekonq and browser

engines such as webkit. We also perform our experiments on dynamic libraries. Dynamic li-

7Due to the incompatibility of the LLVM compiler version and the use of custom linkers with custom linking flags,
we are unable to randomize the Chromium browser using SR, CCR, and MCR. Zipr also fails to randomize chromium
possibly due to the large size of the executable (∼944MB). However, we include a non-randomized version of the
chromium browser in our re-randomization experiments.

https://github.com/salmanyam/jitrop-native
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braries include libcrypto, libgmp, libhogweed, libxcb, libpcre, libgcrypt, libgnutls, libgpg-error,

libtasn1, libz, libnettle, libopenjp2, libopenlibm, libpng16, libtomcrypt, libunistring, libxml2, lib-

mozgtk, libmozsandbox, libxul, libmozsqlite3, liblgpllibs, libwebkit2gtk-3.0, and musl. We select

these applications or dynamic libraries based on their popularity for attack demonstrations. Also,

these applications or libraries are from diverse areas such as Web Server, Browser, PDF reader,

networking, database, and cryptography, math, image, and system.

Table 3.4: Numbers of the applications and dynamic libraries for experiments.

Experiment Applications (20 Total) Libraries (25 Total)
Re-randomization interval 17 15
Instruction-level rand. 15 14
Function-level rand. 17 21
Function + register-level rand. 12 13
Basic block-level rand. 15 15

Table 3.4 shows the numbers of applications/libraries used for measuring the upper bound

for re-randomization intervals and evaluating instruction-level [95], functional-level [47],

function+register-level [52, 98], and basic block-level [111] randomizations. Each experiment

evaluates a different set of applications and libraries because no (re-)randomization tool is capable

of (re-)randomizing all of our selected applications (20 in total) and libraries (25 in total). How-

ever, we also conduct our experiments and report results using the common set of applications and

libraries.

We measure a total of 11 types of gadgets for the Turing-complete set, 10 types for the priority set,

and 7 types for the MOV TC set. Different payloads have different types and numbers of gadgets.

3.5.1 Re-randomization Upper Bound

We determine the upper bound of re-randomization intervals by measuring the fastest speed of

gadget convergence across the Turing-complete, priority, MOV TC, and payload gadget sets, i.e.,

measuring the minimum time that an attacker needs to collect all gadget types from any of the four

gadget sets. Table 3.5 shows the minimum (i.e., fastest speed) and the average time to leak all gad-
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get types in a set. The minimum and the average time is calculated over 17 applications/browsers.

From the table, we notice that the re-randomization upper bounds, i.e., the minimum time, range

from 1.5 to 3.5 seconds. We observe some variability (σ = 0.8) in the minimum time, having

the priority and MOV TC gadget sets the lowest (1.5s) and highest (3.5s) time, respectively. Intu-

itively, the reason for this variability could be related to the number of gadget types necessary for

each gadget set. However, we observe that the minimum time for the MOV TC gadget set is larger

than the TC or priority gadget set even though the MOV TC has fewer gadget types. To under-

stand more about this variability, we analyze how gadget types are leaked over time for individual

applications/browsers across the four types of gadget sets.

Table 3.5: Minimum and average time to leak all gadget types from TC, priority, MOV TC, and
payload gadget sets. The percentage (%) of time is spent for leaking gadgets versus analyzing
gadgets. The minimum, average, and percentages for each set are calculated using 17 applications
including browsers. Payload* −→ average of three payload sets.

Time to leak all gadget types Gadget analysis

Gadget set Minimum (s) Average (s) Leak (%) Analysis (%)
TC 2.2 4.3 17 83

Priority 1.5 3.5 13 87
MOV TC 3.5 5.3 16 84
Payload* 2.1 4.8 12 88
Average 2.3s 4.5s 14.5% 85.5%

Figure 3.5 shows the minimum time to obtain the Turing-complete gadget set from an individual

application or browser along with a timeline for new gadget type leaks. Each gray mark with a

number n on top of it represents the time to leak n gadget types. The bold mark represents the

time to leak 11 gadget types from the Turing-complete gadget set. For example, it takes roughly 1

and 4.3 seconds to leak 6 and 11 gadget types, respectively from cherokee.

The number of leaks increases as time increases. However, the effect of the increase may not be

immediate. For example, in Figure 3.5, the code harvest process takes roughly 0.7 seconds to leak

8 distinct gadget types from netsurf. If the time increases to 1 or 2 seconds, the number of leaked

gadgets is still the same, i.e., 8 distinct gadget types. However, if the time is more than 3 seconds,

the number of leaked gadgets starts to increase. We call the time between 0.7 to 3 seconds as
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non-reactive.

Figure 3.5: Minimum time to obtain the Turing-complete gadget set with a timeline for new gadget
type leaks. Each gray filled circle ( ) with a number n on top of it represents the time to leak n
gadget types. The bold filled circle ( ) indicates the time to leak all gadget types. Applications and
browsers are randomized with a function-level scheme [47].

We observe a number of long non-reactive times for some other applications such as chromium

(0.89–3.44s), hiawatha (1.7–3.6s), mupdf (0.18–1.52s and 1.6–2.88s), openssh (0.08–1.61s),

proftpd (0.74–2.37s), and xpdf (1.19–2.14s). Most of these non-reactive times are towards the end

of their timelines. These non-reactive times indicate that a few missing gadget types prevent the

discovered set from being Turing-complete quickly. That is, a few types of gadgets are very scarce.

The scarcest gadgets are Load-Memory (LM), Arithmetic-Load (AM-LD), and System Call (SYS)

gadgets. The fundamental reason for the scarcity is that some applications (including libraries)

have a few register-based memory accesses. Besides, the main executable of an application does

not have SYS gadgets in most cases.

We also observe similar non-reactive times for obtaining the priority and MOV TC gadget sets. The

variability in the minimum time of the four gadget sets is due to the Arithmetic-Load (AM-LD)
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gadget type. Since the priority gadget set does not include AM-LD, its code page harvest process

is the fastest. The time for the MOV TC gadget set is relatively longer than the TC and priority

gadget set, even though MOV TC does not include AM-LD. The reason for this long time is that

the MOV TC set includes several specialized Load-Memory (LM) and Store-Memory (ST) gadget

types.

The MOV TC gadget set is powerful since it takes only a few mov instructions with four register

pairs to perform the Turing-complete operations. To observe to what extent MOV TC gadgets

are prevalent in applications, we count the numbers of six MOV gadgets (MR, ST, STCONSTEX,

STCONST, LM, and LMEX described Table 3.2 in the Appendix) and the System Call (SYS) gadget

while measuring the minimum time to find these gadgets. STCONSTEX, STCONST, and LMEX

gadgets are variants of ST and LM gadgets. The average number of gadgets for MR is 51, ST is 14,

STCONSTEX is 35, STCONST is 2, LM is 3, LMEX is 15, and SYS is 23. As expected, the number

of Load-Memory (LM) gadgets is low, which indicates the scarcity of these gadgets. Besides, we

observe the number of Store-Constant (STCONST) is also low, which is necessary for performing

comparison and conditional operations.

Our re-randomization upper bound calculation includes the gadget analysis overhead. Thus, we

perform additional analyses to investigate the time spent to leak address space versus gadget anal-

ysis. We find that on average around 15% of the time is spent on leaking address space, while

the rest for gadget searching (Table 3.5). This result indicates that a JIT-ROP attacker spends a

significant amount of time searching for gadget types. Thus, the upper bound of re-randomization

intervals is subject to change based upon an optimized gadget search strategy.

Clearly, the upper bound for the re-randomization intervals also depends on the machine (e.g.,

CPUs, cache size, memory, etc.) where the measurement is conducted. Using our methodology,

defenders can perform the measurement on their machines to determine what intervals are appro-

priate for their applications, while satisfying overhead constraints. In Section 3.6, we discuss the

implications of re-randomization intervals in real-world operations.
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We call the upper bound of re-randomization intervals as the “best-case” re-randomization interval

from a defender’s perspective because the defender has to re-randomize by the time of the interval,

if not sooner. This raises the question regarding the effectiveness of “best-case” intervals over

“worst-case” intervals. The “worst-case” interval indicates the time required to build a useful

gadget chain using a minimal set of gadgets. In reality, attackers’ goals vary. It is difficult to

determine a minimum set of gadgets common and necessary across all attack chains. Besides, our

“best-case” interval includes the time for discovering SYS gadgets that are scarce. Some attack

scenarios may not require the SYS gadgets, but the necessity of SYS gadgets or system APIs in

attack chains have been shown by previous work [18, 20, 28, 62, 185].

Table 3.6: Impact of locations of pointer leaks on gadget availability. The same application has
different numbers of address leaks for different schemes due to different backends (i.e., compil-
ers) that produce different sized executables of the same program. The size of an executable is
proportional to the number of code pages. Also, the numbers of gadgets from the function-level
scheme [47] and function + register-level scheme [52, 98] are not comparable due to their different
backends.

Instruction-level scheme [95] Function-level scheme [47] Function + register-level scheme [52, 98] Block-level scheme [111]

Program
# of leaked

addresses

# of

MIN-FP

# of

EX-FP

# of leaked

addresses

# of

MIN-FP

# of

EX-FP

# of leaked

addresses

# of

MIN-FP

# of

EX-FP

# of leaked

addresses

# of

MIN-FP

# of

EX-FP

hiawatha 41 9 223 42 41 1259 47 44 1042 39 31 793

httpd 91 16 634 91 141 4453 MCR produces linking error for httpd 86 176 4764

lighttpd 53 8 235 53 103 2512 68 118 2544 45 74 1783

nginx 114 26 788 121 222 5277 49 111 1731 114 204 4822

proftpd 131 17 523 187 96 7395 131 115 4466 131 125 3986

thttpd 10 8 172 17 22 583 16 31 535 15 24 428

3.5.2 Impact of the Location of Pointer Leakage

We measure the impact of pointer locations on JIT-ROP attack capabilities, by comparing the

number of gadgets harvested and the time of harvest under different starting pointer locations. We

aim to find out whether or not the number of gadgets and the time depend on the location of a

pointer leakage when a fine-grained randomization scheme is applied.

Impact of pointer locations on gadget availability. To measure the impact of pointer locations on

gadget availability, we collect the number of minimum and extended footprint gadgets by leaking
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a random code pointer from each code page of hiawatha, httpd, lighttpd, nginx, proftpd, and thttpd

and starting the code harvesting process from that leaked code pointer. Then we calculate the

average number of gadgets for each leaked pointer. We leak a single code pointer from a single

code page randomly because choosing any single random code pointer from a code page allows

us to identify all instructions and all code pointers on that code page. Table 3.6 shows the number

of leak code pointers or addresses and the numbers of minimum and extended footprint gadgets.

We restrict the code harvest process to harvest gadgets from the main executable of an application

to find how well the code of that application is connected. We exclude the dynamic libraries for

this experiment because many applications use a common set of libraries and the gadgets from this

common set of libraries (if not excluded) would dominate the total number of gadgets.

For all applications, we observe that the pointer’s location does not have any impact on the to-

tal number of minimum and extended footprint gadgets. For example, regardless of the location

of starting point in nginx, we observe 26 minimum and 788 extended gadgets when randomized

by the instruction-level randomization scheme; 222 minimum and 5277 extended footprint gad-

gets when randomized by the function-level scheme; 111 minimum and 1731 extended footprint

gadgets when randomized by function + register-level scheme; and 204 minimum and 4822 ex-

tended footprint gadgets when randomized by block-level scheme. These findings indicate that

an application’s code segment is very well-connected, making JIT-ROP attacks easier.

The numbers of leaked addresses in Table 3.6 are different for different randomization schemes

because we use different backends (i.e., compilers) to enforce the schemes. Different backends

optimize the same application differently. This increases/decreases the number of code pages.

Since we leak a random address from each code page, the number of leaked addresses varies with

tools.

Impact of pointer locations on code harvest time. To measure the impact of code pointer loca-

tions on the time, we measure the time required to leak all gadget types from the Turing-complete

gadget set. We start the code harvest process from a random code pointer leaked from each code
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page of an application or browser and record the time to collect all gadget types. Figure 3.6

shows the minimum, maximum, and average time to leak all gadgets for different applications and

browsers. For a few code pointers from several applications/browsers (e.g., 3 out of 111 code point-

ers for nginx or 8 out of 40 code pointers for openssl or 2 out of 41 for tor), the code harvest process

takes significantly shorter time than the average. We analyze the reason for this phenomenon.

Figure 3.6: Impact of starting code pointer locations on gadget harvesting time. Each indicates
the time for harvesting the Turing-complete gadget set. The minimum, maximum, and average
time is calculated by starting code harvest process from multiple code pointer locations. A small
amount of jitter has been added to the x-axis for each application/browser for better visibility of
times along the y-axis.

We find that most applications/browsers have some code pages that contain a diverse set of gadgets.

For example, nginx contains 9 code pages that have at least 5 distinct gadget types from the Turing-

complete gadget set. Whenever the code harvest process accesses those code pages sooner, the

discovered gadgets quickly converge to Turing-complete.

Future directions. Our findings imply that any valid code pointer leak is equally viable with regards

to the coverage of gadgets. This observation reasserts that disrupting the code connectivity is an

effective defense strategy, utilized in Oxymoron [12], Readactor [52], XnR [11], NEAR [215],

Heisenbyte [197], and ASLR-Guard [126] tools. Thus, a large-scale quantitative assessment on

the effectiveness of these security tools is necessary to find out the practicality and feasibility

for deployment. Also, the design of risk heuristics-based pointer selection and prioritization for
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protecting pointers from leakage would be an interesting direction. The idea is to prioritize code

pointers based on the convergence time and data pointers based on their sensitivity (e.g., data

pointers used in loops).

3.5.3 Impact on the Availability of Gadgets

Impact of Single-round Randomization Schemes. Table 3.7 summarizes the impact of fine-

grained code randomization schemes on the availability of gadgets in various applications (i.e.,

the main executables) and dynamic libraries. We measure the numbers of the various gadgets (as

mentioned in Section 3.4.1) for each application and library before and after enforcing the four

fine-grained randomization schemes. We run each application or library 100 times after random-

izing each time when necessary8. The numbers of gadgets are averaged over 100 runs for each

application or library. Then the numbers of gadgets are averaged over all applications and libraries

for each randomization scheme. Table 3.7 shows the overall gadget reductions in application and

library categories for each randomization scheme.

On average, the number of gadgets is reduced (by 18%–28% for minimum footprint and 37%–45%

for extended footprint gadgets) when applications are randomized using function-, block-, and

function+register-level schemes. For dynamic libraries, the reductions range from around 21%–

47% for minimum footprint gadgets and around 37%–44% for extended footprint gadgets. How-

ever, instruction-level randomization reduces the overall gadget amount significantly by around

80%–90% for both minimum and extended footprint gadgets. Table 3.7 also shows the reduction

of gadgets in seven Turing-complete (TC) operations and indicates whether the Turing-complete

expressiveness is preserved after applying the code randomization. The numbers before and after

a vertical bar (|) indicate the reduction of minimum and extended footprint gadgets for a TC opera-

tion. Since the numbers of applications/libraries are different for different randomization schemes,

we validate the schemes using a common set of applications and libraries where the result shows a
8One compilation with 100 runs, 100 times randomization, 100 times compilation, and 100 times rewriting are

required for SR, CCR, MCR, and Zipr, respectively.
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consistent reduction.

Table 3.7: Impact of fine-grained single-round randomization on the availability of gadgets in
various applications and dynamic libraries. Instruction-level randomization scheme [95] is applied
on 15 applications and 14 dynamic libraries, function-level scheme [47] on 17 applications and
21 dynamic libraries, function + register-level scheme [52, 98] on 12 applications and 13 dynamic
libraries, and basic block-level scheme [111] on 15 applications and 15 dynamic libraries. The
data of each application or library is the average result of 100 runs/loads/rewrites. The standard
deviations vary between 0.3∼3.4 for minimum footprint and 5.04∼22.85 for extended footprint
gadgets. ⇓ indicates reduction.

Reduction (%) of TC gadgets in 7 TC operations (MIN-FP | EX-FP)

Randomization schemes Granularity
⇓ (%)

MIN-FP

⇓ (%)

EX-FP
Memory Assignment Arithmetic Logical

Control

Flow

Function

Call

System

Call
TC?

Applications

Inst. level rando. [95] Inst. 79.7 82.5 97.4 | 82.7 58.8 | 81.7 95.9 | 64.9 85.8 | 85.4 49.4 | 80.1 67.4 | 83.9 83.3 | 0 7*

Func. level rando. [47] FB 27.63 36.55 0.8 | 29.2 10.6 | 43.5 19.3 | 15.1 35.1 | 35.9 21.1 | 29.1 18.2 | 46.9 0 | 0 3

Func.+Reg. rando. [98] FB+Reg. 17.62 42.37 -8.3 | 35.0 -5.1 | 35.2 26.1 | 44.9 21.3 | 38.1 34.0 | 60.2 11.8 | 64.9 80.0 | 0 3

Block level rand. [111] BB 19.58 44.64 5.5 | 40.9 6.1 | 47 26.1 | 33.7 20.4 | 37.4 41.2 | 63.1 23.3 | 56.3 0.0 | 0 3

Libraries

Inst. level rando. [95] Inst. 81.3 92.2 93.7 | 96.1 60.7 | 93 91.8 | 84.9 84.5 | 90.4 59.8 | 93.5 51.8 | 92.9 66.7 | 0 *

Func. level rando. [47] FB 46.5 43.8 24.2 | 71.1 15.9 | 31 41.2 | 65.4 56.9 | 25 34.5 | 78.7 23 | 75.8 3.5 | 14.5 3

Func.+Reg. rando. [98] FB+Reg. 44.2 43.9 35.5 | 44.8 35.3 | 43.4 63.2 | 61.8 44.8 | 49.0 36.4 | 52.1 43.1 | 35.3 66.7 | 0 3

Block level rand. [111] BB 20.98 37.0 7.3 | 36.3 8.1 | 32.1 13.9 | 55.9 24.8 | 31.6 22.2 | 52.1 18.1 | 44.6 50.0 | 0 3

* For instruction-level randomization scheme [95], TC is not preserved for minimum footprint gadgets, but TC is preserved for extended footprint gadgets.

The Turing-complete expressiveness of ROP gadgets is preserved in the randomized applications

or libraries when the schemes are function, block, and function+register-level randomizations.

However, instruction-level randomization scheme [95] does not retain the Turing-complete ex-

pressiveness for minimum footprint gadgets. The Turing-complete expressiveness is hampered

when there is no gadget in one of the Turing-complete operations. For example, in Table 3.7, the

reduction of minimum footprint gadgets in memory and arithmetic operations is almost 100% for

applications. That means there is no gadget to do memory and arithmetic operations, which are

required for reliable attacks. The reductions for libraries in the two categories (i.e., memory and

arithmetic) are 93.7% and 91.8%, respectively. For both application and library cases, the reduc-

tions are not exactly 100%, because some applications/libraries contain a few gadgets. When the

numbers of gadgets are averaged over all applications or libraries, the average is close to zero.

Most of the applications and libraries do not contain any syscall gadgets (as expected), as applica-

tions and libraries usually make syscalls through libc. This is why the number of syscall gadgets
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is low (2-3) and one gadget loss leads to around 33% reduction.

We also assess the gadget availability under a single randomization pass of Shuffler [216] by an-

alyzing 100 consecutive address space snapshots from nginx after each re-randomization with an

interval of 30 seconds. On average, we observe a 24% and 3% reduction in gadget availability for

minimum and extended footprint gadgets compared to a non-randomized nginx, respectively. The

low reductions are expected, as Shuffler’s security relies on continuous randomization, not a single

randomization pass.

Ideally, function-level randomization does not break gadgets, only shifts the gadgets from one

location to another. Basic-block or machine-register-level randomization may break some gadgets

due to the memory layout perturbation and register allocation randomization. It is not surprising

that the function, block, or register-level randomizations have low gadget reduction. However,

instruction-level randomization perturbs the memory layout significantly as we observe a large

gadget reduction by Zipr.

Future directions. Redefining traditional ROP gadgets into smaller (e.g., one line) building blocks

and demonstrating new gadget chain compilers (e.g., two-level construction) by tackling the

instruction-level perturbations are interesting new attack directions.

3.5.4 Impact on Performance Overhead

We measure the performance overhead of the five (re-)randomization tools to evaluate the overhead

in our measurement environment. To measure the performance overhead, we use 8 applications

in domains such as web servers, FTP servers, browsers, security protocols, and file compression

tools. The applications are nginx, httpd, proftpd, hiawatha, lighttpd, openssl, firefox, and bzip.

Applications are randomized using the five (re-)randomization tools. We use criteria such as HTTP

request latency, FTP upload speed, browser page-load time, compression time, and effectiveness

of cryptographic algorithms to measure the performance overhead.
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We measure HTTP request latency by running an HTTP benchmark using wrk [85] for 30 seconds

to read an HTML page from a server. The benchmark includes 12 threads and 400 HTTP open

connections. To measure FTP upload speed, we run a benchmark using ftpbench [211]. The

benchmark runs 10 concurrent operations for 10 seconds. We use OpenSSL speed to test the

performance of aes-128-gcm, aes-256-gcm, aes-128-cbc, and aes-256-cbc algorithms. We use the

Linux time command to measure compression time. Finally, we use a website speed test tool [203]

to measure a browser’s page load time. For Shuffler, we measure the overhead for three different

re-randomization intervals: 10ms, 100ms, and 1s.

We run each measurement for five times and calculate the average for each application. Then, we

average the overheads over the 8 applications. For Shuffler, we observe 3% overhead with 1s re-

randomization interval, 5% for 100ms, and 12% for the 10ms interval consistent with the reported

result [216]. We observe 23% overhead for Zipr, 10% for SR, 3% for CCR, and 10% for MCR

which are comparable to or higher than what’s reported. The reported overheads for Zipr, SR,

CCR, and MCR are around 5% [95], 1% [47], 0.28% [111], and 1% [98], respectively.

3.5.5 Impact on the Quality of a Gadget Chain

The purpose of this analysis is to estimate the quality of a gadget chain. We measure the quality of

a gadget through the register corruption analysis for individual gadgets, following the procedure

described in Section 3.4.3. We measure the register corruption rate for MV, LR, AM, LM, AM-LD,

SM, AM-ST, SP, and CALL gadgets. Some gadgets such as CP, RF, and EP (described in Table 3.1

in the Appendix) are special purpose gadgets that are used to trick defense mechanisms, such as

CFI [2], kBouncer [150], and ropecker [43]. Thus, we omit these gadgets from the quality analysis.

We found that the overall register corruption rate is slightly higher (∼6%) in the presence of fine-

grained randomization. This slightly higher register corruption rate indicates that the formation

of gadget chains is slightly harder in fine-grained randomization compared to the coarse-grained

randomization.
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We present the detailed results in Table 3.8, including the average number of unique registers used

in each gadget. We observe the number of unique registers used in each gadget ranges from 1 to 4

in our register corruption measurement.

Table 3.8: Register corruption for various gadgets. The numbers before and after the vertical bar
(|) represent the average number of unique register usage and register corruption rate in a gadget,
respectively. CG → Coarse-grained. FG → Fine-grained. Fine-grained versions prepared using
SR [47].

C
G

Program MV LR AM LM AM-LD SM AM-ST SP CALL Avg

Nginx 4 | 11% 2 | 0.3% 3 | 21% 3 | 44% 3 | 6% 2 | 47% 2 | 13% 2 | 6% 2 | 9% —

Apache 4 | 16% 2 | 0.5% 3 | 37% 2 | 26% 3 | 10% 2 | 24% 2 | 5% 2 | 3% 2 | 7% —

ProFTPD 3 | 69% 2 | 0.6% 3 | 7% 2 | 24% 2 | 20% 2 | 16% 2 | 11% 4 | 1% 1 | 6% —

Average 4 | 32% 2 | 0.5% 3 | 21.7% 2 | 31.3% 3 | 12% 2 | 29% 2 | 9.7% 3 | 3.3% 2 | 7.3% 3 | 16.3

FG

Nginx 3 | 9% 1 | 0.1% 2 | 0.1% 3 | 15% 2 | 45% 2 | 13% 2 | 47% 1 | 7% 2 | 4% —

Apache 3 | 27% 1 | 1% 3 | 41% 3 | 27% 2 | 19% 2 | 41% 2 | 0% 2 | 2% 3 | 27% —

ProFTPD 3 | 14% 2 | 1% 3 | 4% 2 | 19% 2 | 22% 2 | 35% 2 | 6% 3 | 11% 3 | 28% —

Average 3 | 16.7% 1 | 0.7% 3 | 15% 3 | 20.3% 2 | 28.7% 2 | 29.7% 2 | 17.7% 2 | 6.7% 3 | 19.7% 2 | 17.3 ∼5.7%⇑

Sometimes, fine-grained randomization decreases the register corruption rate. For example, for

Nginx, the corruption rate of the load memory (LM) gadgets is reduced from 44% to 15%, when

fine-grained randomization is in place. This reduction is likely due to the relatively smaller number

of gadgets in the presence of the fine-grained randomization.

Future directions. Designing randomization solutions to increase the register corruption rate in

gadgets would be interesting as a high register corruption rate would make attacks unreliable.

3.5.6 Availability of Libc Pointers

This experiment measures the risks associated with an application’s heap, stack, or data-segment

for revealing a library location. For simplicity, we consider only the risk associated with revealing

the libc library w.r.t. the basic ROP attacks. We count the number of unique libc pointers in a

target application’s stack, heap, and data-segment when the application reaches a certain execution

point. We define the execution points for the target applications. For example, the execution point

for proftpd is when proftpd is ready to accept connections. We assume that i) coarse-grained ran-
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domization is enforced, and ii) adversaries cannot perform recursive code harvest to find gadgets.

This experiment targets a weak attack model where an adversary leaks a (known) library pointer

and adjusts pre-computed gadgets based on the leaked pointer. We regard a library pointer (e.g.,

libc pointer) as known if the pointer is loaded in the same location in the stack of an application

for multiple runs. A pointer in a stack, heap, or data-segment may point to a non-library function,

which in turn points to a library (e.g., libc).

Figure 3.7: Libc pointers in the stack, heap and data segment of a program. Stacks contain more
pointers, carrying higher risks of pointer leakage.

Figure 3.7 shows the number of unique libc pointers in the stack, heap, and data-segment of 11

applications including web servers, PDF reader, cryptography library, database, and browser. Ac-

cording to the observations in Figure 3.7, heap or data-segment contains only one libc code pointer

(on average) while stack contains 17 libc code pointers. This finding indicates that higher risk

is associated with stack than heap or data-segment. It also suggests that the safeguard and (re-

)randomization of stack is more important than protecting/randomizing heap or global variables.

Future directions. Protecting a stack/heap/data-segment from leaking data pointers that contain

code pointers is an interesting research direction. A similar risk assessment for C++ binaries may

indicate the importance of protecting the read-only sections that include many pointers to virtual

methods.
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3.6 Discussion

Metrics for evaluating fine-grained randomization. Traditionally, both coarse-grained (e.g.,

PaX ASLR [199]) and fine-grained (e.g., SR [47], CCR [111], Remix [38], Binary stirring [213],

ILR [97] and ASLP [108]) randomizations use entropy to measure the effectiveness of hindering

code-reuse attacks. However, such an entropy measure is not useful under the JIT-ROP threat

model, as chunks of code are still available. Inclusion of distances between permuted functions or

basic blocks for computing entropy would not work either, because the code’s semantic connec-

tivity (e.g., through call and jmp) is still not captured. Code connectivity is what JIT-ROP attacks

leverage to discover code pages. In comparison, our measurement methodology more accurately

reflects JIT-ROP capabilities and is more meaningful under the JIT-ROP model. How to design an

entropy-like metric to capture the degree of code isolation or the semantic connectivity in code is

an interesting open problem.

Availability of Block-Oriented Programming (BOP) gadgets. We measure the numbers of

BOP functional blocks for register assignments/modifications, memory reads/writes, system/li-

brary calls, and conditional jumps using the BOP compiler (BOPC) [105]. We observed almost

no change in the numbers of BOP functional blocks in randomized versions compared to the non-

randomized versions for CCR [111] and MCR [52, 98]. As BOPC operates on a static binary, we

could not use Shuffler [216] and SR [47] because they randomize a memory layout at runtime.

BOPC does not seem to run on binaries rewritten by Zipr [95].

Impact of the compiler optimizations on gadget availability. We assess the impact of code

transformations and optimizations (-O0, -O1, -O2, -O3, -Ofast, -Os) on the availability of gad-

gets. We compare the unoptimized and optimized versions of nginx, apache, proftpd, openssh, and

sqlite3 to assess the impact. We find a smaller number of LM, SM, and MR gadgets in unopti-

mized code than optimized code. The reason is the tendency of mov and ret instructions staying

together in optimized code, but not in unoptimized code. Besides, compilers sometimes emit extra

instructions for optimizations that may increase gadgets.
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Reachability of gadgets. We design our experiments based on the availability of various kinds

of gadgets. However, in reality, attackers need to conduct a series of operations including finding

a vulnerability or leaking memory for the actual invocations of gadgets. In Section 3.2, we as-

sume that an attacker has already overcome the initial obstacles, especially finding a memory leak.

Our experiments are focused on comparing gadget availability of various code (re-)randomization

schemes using the leaked memory.

Operational re-randomization intervals. Our methodology helps guide software owners (e.g.,

server owners) to set the appropriate re-randomization intervals. For example, if the owners priori-

tize performance over security, they can set an interval just below T A
P (Definition 2). If the owners

prioritize security over performance, they can set an interval much shorter than T A
P .

Need for randomizing Glibc. Unfortunately, SR, CCR, MCR, and Zipr were all unable to

randomize Glibc. For CCR and MCR, the LLVM Clang compiler (backend of CCR and MCR)

does not have support for compiling some Glibc’s GCC specific extensions such as ASM GOTO.

SR also cannot randomize some parts of Glibc. That is why we evaluate a lightweight standard C

library musl-libc [119]), but only SR can randomize musl-libc. Shuffler can reorder Glibc

by disabling manual jump table construction.

Key Takeaways

¶ Effective re-randomization upper bound. Our methodology for measuring various gadget sets

systematically by considering the gadget convergence time helps compute the effective upper

bound for re-randomization intervals of a re-randomization scheme. Our results show that this

upper bound ranges from 1.5 to 3.5 seconds. Applying our methodology on their machines will

help re-randomization adopters to make informed configuration decisions.

· All leaked pointers are created equal for gadget convergence, but not for the speed of gadget

convergence. Regardless of the location of pointer leakage, we obtained the same number of

minimum and extended footprint gadgets via JIT-ROP. This observation indicates that any pointer

leak from an application’s code segment is equally useful for attackers. However, the time for
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obtaining the gadgets varies for different leaked pointers.

¸ Turing-complete operations. Function, basic-block, or machine register level fine-grained ran-

domization preserves Turing-complete expressive power of ROP gadgets, however, instruction-

level randomization does not.

¹ Connectivity. Code connectivity is the main enabler of JIT-ROP. As the conventional entropy

metric does not capture code connectivity, it should not be used to measure ASLR security under

the JIT-ROP threat model.

º Gadget quality. Our findings suggest that current fine-grained randomizations do not impose

significant gadget corruption.

3.7 Related Work

The related research has two themes: 1) demonstrating attacks and 2) discovering countermea-

sures. Attack demonstrations range from stack smashing [147], return-to-libc [112, 153, 217], to

ROP [28, 31, 107], JOP [20], DOP [101], ASLR bypasses [18, 62, 81, 88, 101, 185], and CFI

bypasses [17, 27, 28, 86, 105].

Researchers have also proposed a range of defenses for ROP attacks [2, 19, 32, 43, 52, 54, 63, 64,

70, 80, 87, 140, 146, 150, 151, 152, 170, 205, 222, 224], CFI bypass [222], and ASLR bypass [11,

12, 16, 38, 52, 62, 84, 97, 108, 111, 126, 128, 151, 197, 213, 215, 216]. A categorical representation

of these defenses is given in our attack-path diagram (Figure 3.8). Binary analysis tools are also

available to understand [181] and mitigate [206] these ROP or code-reuse attacks.

Most of the above-mentioned defenses are variants of W⊕X (e.g., NEAR [215] and Heisen-

byte [197]), memory safety (e.g., HardScope [143], Memcheck [138], AddressSanitizer [176], and

StackArmor [37]), ASLR (e.g., fine-grained randomization [16, 38, 111, 174, 213, 216]), and CFI

(e.g., CCFIR [222] and bin-CFI [224]). These defenses are capable of preventing most code-reuse



Salman Ahmed Chapter 3. Quantifying (Re-)Randomization Security and Timing 63

CFI

ASLR

Re-randomization (TASR [16],
Shuffler [216], Remix [38])

AC1 : Vulnerable to
simple ROP attacks

AC2 : Vulnerable to simple ROP
attacks if re-randomization time

window is longer than the attack time

Memory protection + CPI or
DPI (XnR [11], NEAR [215],

Readactor [52], Heisenbyte [197],
Oxymoron [12], ASLR-Guard [126])

Re-randomization (TASR [16],
Shuffler [216], Remix [38])

AC3 : Vulnerable to JIT-ROP [185]
and BROP [18] type attacks

AC4 : Vulnerable to JIT-ROP [185] type attacks if re-randomization
time window is longer than the attack time

AC5 : Vulnerable to AOCR [163]
and CROP [81] type attacks

AC6 : Prevents ROP-based
attacks but vulnerable to

data-only attacks [101, 105]

No Yes

Coarse Fine

No Yes
No Yes

No Yes

Figure 3.8: High-level view of the types of ROP attacks and attack-paths based on various security
measures. Each rectangle and circle indicate security measures and attack types, respectively.
AC stands for attack condition. All the attack conditions have W⊕X, PIE, Canary, and RELRO
implicitly.

attacks [18, 62, 81, 185] except a few cases such as inference attacks that are performed using zom-

bie gadgets [186] or relative address space layout [89, 163]. The latest advancement in control-flow

transfers such as MLTA [124] significantly advances CFI that can prevent most control-oriented

attacks. Recent attention on non-control-oriented or data-only attacks [101, 105] motivated re-

searchers to develop practical Data-Flow-Integrity (DFI) [29] solutions (details of non-control at-

tacks in [40]). Currently, it is challenging to implement a practical DFI solution considering the

overhead of data-flow tracking.

From the defense-in-depth perspective, it is desirable to have some degree of redundancy (e.g., CFI,

ASLR, or complementary solutions like anomaly detection [220]) in system protection. A single

deployed defense may be compromised due to unknown implementation flaws or configuration

issues. Thus, investigations in multiple directions [24, 99, 179, 205] are necessary for gauging the

feasibility of existing defenses. Our work investigates various aspects of ASLR – including timing

– by evaluating security metrics such as various gadget sets, interval choices, and code pointer

leakages. We also assess how security tools in the ASLR domain impact on these security metrics,

quantitatively.



Chapter 4

Data-Oriented Attacks: Exploitation

Techniques and Defenses

4.1 Introduction

Memory-corruption vulnerabilities are one of the most common attack vectors used to compromise

computer systems. Attackers exploit these vulnerabilities in different ways to perform arbitrary

code execution and data manipulation. Existing memory corruption attacks are broadly two types:

i) control-flow attacks [77, 161, 178] and ii) data-oriented attacks (also known as non-control

attacks) [35, 100, 101, 133, 196]. Both types of attacks can cause significant damages to a victim

system [27, 74].

Control-flow attacks corrupt control data (e.g., return address or code pointer) in a program’s

memory space to divert the program’s control flow, including malicious code injection [77], code

reuse [153], and Return-Oriented Programming (ROP) [178]. Defenses such as stack canaries [50],

Data Execution Prevention (DEP) [8], Address Space Layout Randomization (ASLR) [199],

Control-Flow Integrity (CFI) [3], Intel’s CET [103] and MPX [104] can prevent most control-flow

attacks. In particular, CFI-based defenses [24, 83, 152, 222] have received considerable attention

in the last decade. The idea is to ensure that the runtime program execution always follows a valid

path in the program’s Control-Flow Graph (CFG), by enforcing policies on indirect control transfer

instructions (e.g., ret/jmp).

In contrast to control-flow attacks, data-oriented attacks [35] change a program’s benign behav-

64
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ior by manipulating the program’s non-control data (e.g., a data variable/pointer which does not

contain the target address for a control transfer) without violating its control-flow integrity. The

attack objectives include: 1) information disclosure (e.g., leaking passwords, private keys or ad-

dress space layout); 2) privilege escalation (e.g., by manipulating user identity data) [35]; 3)

performance degradation (e.g., resource wastage attack) [13]; and 4) bypassing security mitiga-

tion mechanisms [219]. As launching control-flow attacks becomes increasingly difficult due

to many deployed defenses, data-oriented attacks have received much attention in the litera-

ture [100, 101, 133, 142, 168, 219].

Data-oriented attacks can be as simple as flipping a bit of a variable. However, they can be equally

powerful and effective as control-flow attacks [100, 105]. For example, arbitrary code-execution at-

tacks are possible if an attacker can corrupt parameters of system calls (e.g., execve()) [27]. Re-

cently, Hu et al. [101] have proposed Data-Oriented Programming (DOP), a systematic technique

to construct expressive (i.e., Turing-complete) non-control data exploits. Ispoglou et al. [105] also

presented a code-reuse technique called Block-Oriented Programming (BOP) that utilizes basic

blocks as gadgets along valid execution paths in the target binary to generate data-oriented ex-

ploits. Though data-oriented attacks have been known for a long time, the threats posed by them

have not been adequately addressed due to the fact that most previous defense mechanisms focus

on preventing control-flow exploits.

The motivation of this paper is to systematize the current knowledge about exploitation tech-

niques of data-oriented attacks and the current applicable defense mechanisms. Unlike prior pa-

pers [117, 189, 196] related to memory corruption vulnerabilities, our work specifically focuses on

data-oriented attacks. In addition to generic memory corruption prevention mechanisms discussed

in [117, 189, 196] such as memory safety, software compartmentalization, and address/code space

randomization, we mainly discuss recently proposed defenses against data-oriented attacks. Our

technical contributions are as follows.

1. We systematize and categorize the current knowledge about data-oriented exploitation tech-
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niques with a focus on the recent DOP attacks. We demystify the DOP exploitation tech-

nique by using the ProFTPd DOP attack [100] as a case study, and provide an intuitive and

detailed explanation of this attack by analyzing its constituent steps. We discuss the automa-

tion of data-oriented attacks, e.g., the Block-Oriented Programming (BOP) compiler [105],

STEROIDS [154], and LIMBO [172]. We also discuss representative data-oriented exploits

including their assumptions/requirements and attack capabilities (Section 4.2).

2. We present a three-stage model for data-oriented attacks and discuss recent defense tech-

niques according to different stages. Then, we provide a comparative analysis of the ap-

proaches focusing on data-oriented attacks (Section 4.3).

3. We also discuss some open research problems and unsolved challenges (Section 7).

4.2 Data-oriented Attacks

In this section, we first describe why data-oriented attacks have received attention among secu-

rity researchers in recent years (Section 4.2.1). Then we discuss two categories of data-oriented

exploitation techniques (Section 4.2.2) and automatically generating data-oriented exploits (Sec-

tion 4.2.3). We also provide a brief overview of the BOP attack technique in Section 4.2.4. We dis-

cuss the similarity and difference between DOP and BOP and the generality and practicality (diffi-

culty) of both DOP and BOP exploits in Section 4.2.5. Then, we map representative data-oriented

exploits in the literature to their assumptions/requirements and capabilities (Section 4.2.6).

4.2.1 Why Do Data-oriented Attacks Receive Attention?

The Data Execution Prevention (DEP) or No-Execute (NX) defense prevents stack smashing [147]

and related attacks such as overwriting Structured Exception Handler. A new class of attacks,

namely the code-reuse attacks such as ROP [178], dominated in the last decade due to their capa-
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bility of bypassing DEP or NX. However, researchers have put significant effort to develop prac-

tical security solutions for preventing code-reuse attacks. The solutions are broadly in five cate-

gories: i) fine-grained address space randomization (ASR [84], ASLP [108], CCR [111], Selfrando

[47], etc.), ii) re-randomization (e.g., TASR [16], Shuffler [216], Remix [38], ASLR-Guard [126],

etc.), iii) memory leakage prevention (e.g., ASLR-Guard [126], XnR [11], Readactor [52], Heisen-

byte [197], etc.), iv) code pointer integrity (e.g., CPI [114], PointGuard [51], etc.), and v) CFI (e.g.,

BCFT [83], CCFIR [222], bin-CFI [224], etc.). The enforcement of the above defenses makes most

code-reuse attacks unreliable. Thus, many attackers have shifted their focus from control-oriented

attacks to data-oriented attacks in recent years [101, 105].

4.2.2 Classification of Data-Oriented Attacks

We classify data-oriented attacks into two categories based on how attackers manipulate the non-

control data in the memory space: 1) Direct Data Manipulation (DDM), and 2) Data-Oriented

Programming (DOP).

1) DDM refers to a category of attacks in which an attacker directly/straightforwardly manipulates

the target data to accomplish the malicious goal. It requires the attacker to know the precise

memory address of the target non-control-data. The address or offset to a known location utilized

in the attack can be derived directly from binary analysis (e.g., global variable with a deterministic

address) or by reusing the runtime randomized address stored in memory [100]. Several types

of memory corruption vulnerabilities, e.g., format string vulnerabilities, buffer overflows, integer

overflows, and double free vulnerabilities [189], allow attackers to directly overwrite memory

locations within the address space of a vulnerable application.

1 void do_authentication(char *user, ...) {

2 ...

3 int authenticated = 0;

4 ...

5 while(!authenticated){
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6 type = packet_read();//Corrupt authenticated

7 /*Calls detect_attack() internally*/

8 switch(type){

9 ...

10 case SSH_CMSG_AUTH_PASSWORD:

11 if(auth_password(user, password)){

12 authenticated = 1;

13 break;}

14 case ...

15 }

16 if(authenticated) break;

17 }

18 do_authenticated(pw);

19 /*Perform session preparation*/

20 }

Listing 4.1: DDM attack in a vulnerable SSH server [35]

Chen et al. [35] revealed that DDM attacks can corrupt a variety of security-critical variables in-

cluding user identity data, configuration data, user input data, and decision-making data, which

change the program’s benign behavior or cause the program to inadvertently leak sensitive data.

Listing 4.1 illustrates an of attacking decision-making data in the SSH server, first reported in [35].

A local flag variable authenticated indicates whether a remote user has passed the authentica-

tion (line 3). An integer overflow vulnerability exists in the detect_attack() function, which

is internally invoked whenever the packet_read() function is called (line 6). When the vul-

nerable function is invoked, an attacker can corrupt the authenticated variable to a non-zero

value, which bypasses the user authentication (line 16). DDM allows attackers to manipulate the

benign data flows in a program execution without changing its control flow. FlowStitch [100] is a

technique to stitch data flows in a vulnerable program to automatically construct data-oriented ex-

ploits. It takes a pair of source (e.g., private key buffer) and target (e.g., a publish output buffer) in

a vulnerable program as the input. The goal is to stitch the source data-flow to the target data-flow,
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which could leak passwords, private keys, or randomized values, and cause privilege escalation.

There also exists multi-step DDM attacks, where an adversary exploits memory corruption vulner-

abilities multiple times to write data to adversary-chosen memory locations. For example, suppose

an attacker needs to change two decision-making variables while the vulnerability only allows the

attacker to change one value each time. It requires a 2-step DDM. Morton et al. [133] recently

demonstrated a multi-step DDM with Nginx (listed in Table 4.1). The attack leverages memory er-

rors to modify global configuration data structures in web servers. Constructing a faux SSL Config

struct in Nginx requires as many as 16 connections (i.e., 16-step DDM) [133].

Due to the widespread deployment of ASLR, attackers may exploit DDM to infer knowledge about

the address space layout of a process to bypass ASLR defenses. Data manipulation can also cause

some events that result in software side-channels—typically timing side-channels—that can leak

information about the address space. To infer information about an application’s address space,

attackers analyze the output and execution time of a portion of code. They then correlate the

output and timing information by running the same portion of code locally [73, 173]. In contrast

to traditional DDM attacks with direct malicious goals, e.g., leaking sensitive data or modifying

program behavior, inferring randomized addresses serves as the first step towards malicious goals.

For example, attackers need to derandomize the address space layout before performing code reuse

attacks using DOP gadgets. To do so, an attacker may overwrite a data pointer (ptr in Listing 4.2)

to point to some byte sequences and infer knowledge about the byte sequences by observing the

output, i.e., the variable result in Listing 4.2. By pointing the data pointer to different locations

of an address space and observing the output behavior, an attacker can distinguish the mapped and

unmapped code pages.

1 struct mystruct {

2 int value;

3 };

4 void vuln_function()

5 {
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6 char buf[64];

7 int result=0, length, input;

8 struct mystruct * ptr;

9 recv(socket, buf, input);

10 ptr−>value = strlen(buf);

11 while (result < ptr−>value) result++;

12 send(socket, &result, length);

13 }

Listing 4.2: Data pointer manipulation to infer knowledge about address space layout. This figure

is adopted from [173].

2) DOP constructs expressive data-oriented exploits [101]. It allows an attacker to perform arbi-

trary computations in program memory by chaining the execution of short instruction sequences

(referred to as DOP gadgets). DOP gadgets are similar to ROP gadgets that can perform arith-

metic/logical, assignment, load, store, jump, and conditional jump operations. However, unlike

ROP gadgets, the execution of DOP gadgets follows valid paths in a CFG. We consider Block-

Oriented Programming (BOP) [105] as a form of DOP because BOP also constructs exploits using

a set of gadgets (details are in Section 4.2.4). However, instead of using short instruction sequences

as gadgets, BOP [105] constructs exploits by chaining basic blocks as BOP gadgets. Both DOP

and BOP adhere to CFI. Without loss of generality, we use DOP to represent this exploitation

technique, which misinterprets multiple gadgets and chains these gadgets together by one or more

dispatchers to achieve the desired outcome. A dispatcher is a fragment of logic that chain gad-

gets. A typical example of a dispatcher is a loop within the influence of a memory corruption

vulnerability.

Typically, a DOP attack corrupts several memory locations in a program and involves multiple

steps. We differentiate the DOP exploitation technique from a multi-step DDM attack. 1) Gadgets

and code reuse. Both DOP and BOP attack techniques involve reusing code execution through

CFI-compatible gadgets. Multi-step DDM hinges on direct memory writes and does not involve
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any gadget executions. 2) Stitching mechanism and ordering constraint. In DOP and BOP attacks,

how to orderly stitch gadgets to form a meaningful attack is important. Multi-step DDM attacks,

e.g., crafting and sending multiple attack payloads to manipulate memory values, do not need any

special stitching mechanism and thus there is no ordering constraint.

4.2.3 Automatically Generating Data-oriented Exploits

Research efforts have been undertaken to automate the process of generating data-oriented exploits.

However, identifying how to corrupt memory values for a successful data-oriented exploit is non-

trivial due to the large space of memory state configurations and attackers cannot inject malicious

code of their choice. FlowStitch [100] is a tool to automatically construct DDM from memory

errors. It identifies the influence range of the memory errors from the error-exhibiting trace (by

triggering memory errors) and generates constraints on the program input to reach memory errors.

FlowStitch then performs data-flow analysis and security-sensitive data (e.g., system call parame-

ters or configuration data) identification using benign traces, and selects stitch candidates from the

identified security-sensitive data flows. It finally checks the feasibility of creating new edges with

the memory errors and produces the input needed to mount a data-oriented attack. Figure 4.1(a)

presents an example of a web server wu-ftpd with the format string vulnerability (skipped on

line 5). Figure 4.1(b) shows the corresponding two-dimensional data-flow graph (2D-DFG), where

numbers on the time-axis are the line numbers in Figure 4.1(a). The seteuid(pw->pw uid)

on line 9 is intended to drop the process’ root privilege. Suppose attackers want to retain root

privilege by exploiting the format string vulnerability on line 5. One straightforward approach,

demonstrated by Chen et al. [35], is to use DDM to directly modify the value of pw_uid. In

FlowStitch, the target flow pw->pw_uid is first identified as a security-sensitive data flow. Then,

it automatically finds another source data-flow and stitches the target flow to the source flow to

achieve the same attack goal. As illustrated in Figure 4.1(b), attackers may change the base pointer

pw to an address of a structure with a constant 0 at the offset corresponding to the pw_uid. The
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vulnerable code then reads 0 and uses it as the argument of seteuid, achieving a privilege esca-

lation attack.

0

0

pw1

0
100

b2

b2

b1

&pw

&arg
pw1

Address

Source flow

Time (line #)0 2 4 9

Stitch

5

1 struct passwd { uid_t pw_uid; ... } *pw;
2 ...
3  int uid = getuid();
4  pw->pw_uid = uid;
5 ... //format string error
6 void passive(void) { ...
7 seteuid(0); //set root uid
8 ...
9 seteuid(pw->pw_uid); //set normal uid
10  ... }

(a) (b)

Target flow

Figure 4.1: Example of FlowStitch [100].

STEROIDS [154] is a compiler which automates the process of payload preparation in a DOP

exploit, but which leaves the gadget search and DOP instance setup unaddressed. However, it is

unclear how practical STEROIDS is for automating the construction of end-to-end DOP exploits

since it assumes DOP gadgets are arbitrarily stitchable and work for all inputs. Constructing DOP

or BOP exploits still requires a lot of manual work. Ispoglou et al. [105] presented a Block

Oriented Programming Compiler (BOPC), a mechanism to automatically evaluate a program’s re-

maining attack surface under strong control-flow hijacking mitigations. BOPC provides an exploit

programming language, called SPL, that enables defenders and software developers to define ex-

ploits independent of the target program or underlying architecture. BOPC assumes that the target

binary has an arbitrary memory write vulnerability. It finds basic blocks from the target program

that implement individual SPL statements, and chains these basic blocks together. Finally, BOPC

simulates the BOP chain to produce a payload that implements the SPL payload.

LIMBO [172] maps the automatic exploit generation problem into the software model checking

problem. Similar to software model checking, LIMBO looks for possible state transitions from

an input state to the goal state, i.e., the reachability from an input state to the goal state. To find

the reachability, LIMBO employs concolic execution [30] with heuristics. The heuristics make the

search space small by focusing on the promising paths that likely lead to the goal states. Similar

to the BOPC [105], LIMBO [172] allows users to specify the input and goal states. In case users

are unable to find vulnerabilities for an input state, LIMBO provides an option to make a synthetic
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buffer overflow by calling a function that triggers a stack buffer overflow. The goal expressions can

be setting a register (e.g., %ebx = 0x0804a010), writing to a memory (e.g., Memory[0x0804842f]

= 0xB), reading from a memory to a register (e.g., %eax = Memory[0x0804a018]) or executing

commands (e.g., system("/bin/sh")). Both BOPC and LIMBO use concolic execution and heuris-

tics to make state transitions. However, the key difference between these two techniques is how

the two techniques look for the goal state. BOPC divides an exploit goal into several smaller goals,

confirms the reachability of the smaller goals, and combines the smaller goals to achieve the tar-

geted goal. On the other hand, LIMBO considers the exploit goal as a single state and searches for

the exploiting state through the concolic execution.

The difficulty of attack generation using data-oriented exploit generation tools depends on whether

the tools support the end-to-end exploit generation. If the exploit generation tool does not generate

end-to-end exploits, then attackers must manually set up the initial phase of an exploit, e.g., finding

vulnerabilities to control memory. Also, attackers must interpret the output of the automatic exploit

generation tools. The interpretation of a tool’s output can be straightforward. However, the setup

of the initial phase can be challenging and varies between tools. For example, BOPC requires

arbitrary memory read/write primitives and an entry point for the initial phase. Similarly, LIMBO

requires control over a program state by triggering vulnerabilities (e.g., triggering stack buffer

overflow to control a stack frame). On the other hand, STEROIDS requires the gadget lookup and

gadget stitching methodologies to be provided by attackers. STEROIDS also requires the attackers

to trigger a memory corruption vulnerability. Thus, in most cases, the initial phase of automatic

exploit generation tools requires the discovery and triggering of vulnerabilities to control and leak

memory.

Address space layout randomization can exacerbate the setup of the initial phase. In the presence

of coarse-grained ASLR [199], attackers require one or more vulnerabilities to control a program’s

flow as well as to leak memory. The memory leak is necessary for obtaining knowledge about the

address space of a program. Moreover, a single memory leak is not sufficient in the presence of

fine-grained ASLR (ASR [84], ASLP [108], CCR [111], Selfrando [47], etc.).
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4.2.4 Block-Oriented Programming (BOP) Attack

Unlike DOP, BOP [105] constructs data-oriented exploits by chaining the basic blocks together

instead of instructions. The core of BOP is the Block-Oriented Programming Compiler (BOPC).

BOPC searches for the necessary basic blocks for an exploit. An exploit is written in a high-level

C like language called SPloit Language (SPL) (Figure 4.2(a)). BOPC maps each SPL statement to

a functional block and chains the functional blocks using a set of dispatcher blocks. The single-

and double-bordered rectangles in Figure 4.2(b) represent dispatcher and functional blocks. A

functional block executes the semantics of an SPL statement whereas a set of dispatcher blocks

links between two functional blocks.

rax = 101

rbx = 202 rcx = 103

rcx = 304 rax = 205 rdx = 206 rdx = 307

r0
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Figure 4.2: Four major components of a BOP Compiler. The double and single border boxes (2)
indicate functional and dispatcher blocks. The number inside a circle (⃝) represents the functional
block number. The 5 represents irrelevant basic blocks.

To search and select functional blocks for SPL statements, BOPC creates a bipartite graph by

associating each SPL statement with a set of functional blocks that may potentially serve the SPL

statement. Figure 4.2(c) shows a bipartite graph for the SPL statements in Figure 4.2(a) where

functional blocks À and Â can serve SPL statement #1; functional blocks Á, Ä, and Å can serve

SPL statement #2; and functional blocks Ã and Æ can serve statement #3. BOPC selects an

association from many possible associations. Figure 4.2(c) shows one such association (r0 → rax,

r1 → rbx, and r2 → rcx).

BOPC selects a set of dispatcher blocks by constructing a delta graph as an arbitrary selection of

the dispatcher blocks may also clobber the SPL state. A delta graph is a multipartite graph that

has functional blocks as nodes. An edge of the graph represents the basic blocks that are necessary
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for moving from one functional block to the next one with the numbers of basic blocks as edge

weights. Figure 4.2(d) shows a delta graph for the SPL statements in Figure 4.2(a). A recursive

version of Dijkstra’s [48] shortest path algorithm minimizes the set of basic blocks required for

moving from one functional block and another. This minimization process produces a sub-graph

of the delta graph indicated by bold edges in Figure 4.2(d).

Once the subgraph is created, BOPC selects a functional block and translates the basic blocks

between the selected and the next functional blocks into constraints by leveraging concolic exe-

cution [171]. Once the last functional block is reached, BOPC checks for satisfying assignments

for these constraints. If satisfying assignments are possible, BOPC produces a BOP gadget chain.

BOPC does not produce an end-to-end exploit program. BOPC requires an entry point where the

execution of the exploit payload should start and outputs a set of “what-where" memory writes to

indicate the memory initialization and memory setup to execute the exploit payload.

4.2.5 Comparison Between DOP and BOP

Both DOP and BOP are data-oriented attacks. However, DOP is focused more on the generaliza-

tion side of data-oriented attacks, whereas BOP is focused on the automation side of data-oriented

attacks. Thus, BOP has a few key differences from DOP in terms of i) automatic exploit gener-

ation, ii) exploit writability and iii) granularity. In DOP, one must analyze and construct exploits

manually, whereas one can write BOP exploits using SPL, an easily understandable high-level C-

like language. In terms of granularity, DOP works at the gadget level whereas BOP works at the

basic block level. Note that BOPC is not fully automated. BOPC’s output is a set of address-value

pairs for memory writes. An attacker requires to modify an address with the corresponding value

from the address-value pairs to launch an attack.

The authors of DOP [101] also defined a mini-language called MINDOP to express DOP exploits,

in which the attacker’s payload can be specified. SPL specifies BOP exploits and allows the explicit

access of virtual registers, library functions, and APIs to call OS functions. MINDOP uses a set
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of virtual instructions and virtual register operands. Both MINDOP and SPL are Turing-Complete

languages. That means both languages support memory read/write, assignment, arithmetic opera-

tions, logical operations, control-flow transitions (e.g., jump), function call, and system API calls.

It is easier to construct a BOP-based exploit than a DOP-based exploit because the gadget stitching

for DOP-based exploits may depend heavily on the target program. Since the DOP gadget space is

a superset of the BOP gadget space (a BOP gadget is a DOP gadget within a single basic block),

it is relatively easy to find the necessary DOP gadgets from a program. But the construction of

an exploit through stitching the gadgets is a challenging manual effort. Both types of exploits

require memory-write primitives to stitch gadgets. However, BOPC writes memory with respect

to the stack pointer and base pointer whereas we observe that the ProFTPd DOP exploit requires

addresses from the address space of the ProFTPd server. The key challenge for BOP-based exploits

is to find entry points. When a program’s execution reaches the entry point, the BOP exploit

takes over and executes the BOP payload. But, to reach the entry point, an attacker must find a

vulnerability that allows the attacker to control the program control flow. Attackers usually craft

external inputs with the exploit payload to trigger the vulnerability and to set up the memory for

executing the exploit payload.

Although BOPC is not designed to implement a complete end-to-end attack, we provide an ex-

ample to illustrate how BOPC makes the construction of a BOP exploit easier than that of a DOP

exploit. To assess the difficulty of constructing a BOP exploit, we constructed a BOP exploit using

the following SPL program (Listing 4.3) to invoke the execve() system call with ‘/bin/sh’

as the argument. To construct the exploit, we ran the BOPC tool in Nginx (version 1.3.9) web

server. BOPC took around 30 minutes for the basic block abstraction process and around 5 min-

utes to find a solution for the exploit. We ran the BOPC tool in an Ubuntu 18.04 machine with

16 GB of memory and an 8-core CPU. We ran the Nginx web server and used GDB to avoid the

complication of finding and triggering a vulnerability to divert Nginx’s control flow and set up an

entry point for the exploit. We manually crafted the entry point of the exploit with the entry point
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of the Nginx program obtained through GDB. Now, when we ran the Nginx program, we observed

the invocation of the execve() system call and execution of the dash program. However, it

requires non-trivial manual efforts to stitch the gadgets for constructing a DOP exploit to achieve

the same attack purpose.

1 void payload() // execve('/bin/sh') payload

2 {

3 string prog = "/bin/sh\0";

4 int argv = {&prog, 0x0};

5 __r0 = &prog;

6 __r1 = &argv;

7 __r2 = 0;

8 execve(__r0, __r1, __r2);

9 }

Listing 4.3: SPL payload for invoking execve() system call.

4.2.6 Data-oriented Attacks on Real-World Applications

The existence of single-step DDM attacks [35, 100] in programs is not new. However, the ad-

vanced data-oriented attacks are new and pose serious threats to real-world programs.

Jia et al. [106] utilized data-oriented attacks to bypass the same-origin policy (SOP) enforcement

in the Chrome browser. By manipulating the values of in-memory flags related to SOP security

policy checking (which requires an arbitrary read/write privilege), the SOP enforcement can be

undermined in Chrome. Davi et al. [61] showed that a data-only attack on page tables can under-

mine the kernel CFI protection. By manipulating the memory permissions in kernel page entries,

the attack makes kernel code pages writable and subsequently enables malicious code injection to

kernel space.

Rogowski et al. [162] introduced a new technique, called memory cartography, that an adversary

can use at runtime to reach security-critical data in process memory, and then modify or exfil-
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trate the data at will. They demonstrated the feasibility of data-oriented exploits against modern

browsers such as Internet Explorer and Chrome, where possible attacks range from cookie leakage

to bypassing the SOP. Morton et al. [133] demonstrated the potential threat of data-oriented attacks

against asynchronous web servers (e.g., Nginx or Apache). By manipulating only a few bytes in

memory, an attacker can re-configure a running asynchronous web server on the fly to degrade or

disable services, steal sensitive information, and distribute arbitrary web content to clients. The

attack consists of multiple steps (i.e., a multi-step DDM). It starts with locating the security-critical

configuration data structures of the server and exposing their low-level state by leveraging memory

disclosure vulnerabilities. Then, an adversary constructs faux copies of security-critical data struc-

tures into memory by exploiting memory corruption vulnerabilities. By redirecting data pointers to

faux structures, a running web server instance can be re-configured by the attacker without corrupt-

ing the control-flow integrity or configuration files on disk. However, in the end-to-end exploits,

authors in [133] simulated the arbitrary write vulnerability in the recent version of Nginx, rather

than exploiting a real-world vulnerability.

Table 4.1 summarizes these recent data-oriented attacks targeting real-world applications. Because

existing CFI-based solutions are rendered ineffective under data-oriented exploits, such threats

are particularly alarming. To construct a data-oriented exploit, attackers must have an in-depth

knowledge of the vulnerable program’s exact memory layout at runtime. In comparison to the

DDM attack, a DOP attack requires non-trivial engineering efforts to chain gadgets for malicious

effect.

4.3 Existing Defenses Against Data-Oriented Attacks

We describe a three-stage model for data-oriented attacks, a taxonomy of existing defenses, and a

comparative analysis of existing defenses against data-oriented attacks in this section.
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Table 4.1: Recent data-oriented attacks pose serious threats against real-world programs.

Targeted Applica-
tion and Year Type Assumption/Requirement Capability/Attack Purpose

Chrome [106],
2016 DDM Identified security-critical variables,

and arbitrary read/write capability Bypass the same-origin policy

Linux Page Ta-
ble [61], 2017 DDM Kernel code writable, and arbitrary

read/write capability Bypass the kernel CFI

Internet Explorer,
Chrome [162],
2017

DDM Identified security-relevant variables,
and arbitrary read/write capability

Information leakage, bypass the
same origin policy, etc.

Nginx [133], 2018
Multi-
step
DDM

Identified security-critical data struc-
tures, known unused portion of the
data section, and arbitrary read/write
capability

Disable or degrade services, in-
formation leakage, etc.

Nginx [73], 2015 DDM A stack vulnerability that allows an
attacker to corrupt a data pointer

Leakage of safe code pointers
stored in secret locations, i.e.,
bypassing the CPI [115] protec-
tion.

Apache HTTP
Server &
Glibc [173],
2014

DDM
A stack-based buffer overflow that al-
lows attackers to corrupt data vari-
ables, data pointers, and code pointers

Derandomize code layout by
learning how code is diversi-
fied without a memory disclo-
sure vulnerability

Nginx & Sudo
& Httpdx &
Orzhttpd & Null
Httpd & Ghttpd
& Sshd & Wu-
ftpd [100], 2015

DDM
(Flow-
Stitch)

Identified source and target data
flows, and arbitrary read/write capa-
bility

Automatic construction of
DDM exploits by stitching dis-
joint data-flows via exploiting
memory errors (information
leakage or privilege escalation
attacks)

ProFTPd [101],
2016 DOP

Memory addresses of multiple in-
volved data, identified gadgets/dis-
patchers, and arbitrary read/write ca-
pability

Private key leakage w/ ASLR

ProFTPd, Nginx,
Sudo [105], 2018

DOP
(BOPC)

Attack payload written in SPloit Lan-
guage (SPL), and arbitrary read/write
primitive

Automatic construction of BOP
gadget chain or exploit payload

4.3.1 Three-stage Model for Launching Data-oriented Attacks

Figure 4.3 illustrates the abstract view of three stages in data-oriented attacks. To launch such

attacks, it starts with triggering a memory error of a vulnerable program (i.e., Stage S1), which

empowers an attacker with control of the memory space, e.g., read/write capability. In Stage S2, the

targeted non-control-data is modified (through either DDM or DOP). In Stage S3, the manipulated

data variable is used and takes effect to change the default program behavior. Note that S3 does

not necessarily happen immediately after the data manipulation. The back edges pointing from

S3→S1 and S2→S1 indicate that an attacker may need to corrupt non-control-data multiple times
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to achieve the malicious goal.

S1: Trigger a
memory error

S3: Use the
corrupted data

S2: Manipulate non-control data

DDM: Direct data manipulation

DOP: Data manipulation by
misinterpreting existing gadgets
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Attack 
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Defenses
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Figure 4.3: Stages in data-oriented attacks and mitigation in different stages

We discuss requirements in different stages (i.e., the threat model) that are essential to launching a

successful DOP attack. The first three requirements apply to DDM exploits.

1. The presence of a memory corruption vulnerability (such as a buffer or heap overflow) in

the target program, which allows attackers to modify the content of the program’s memory

(i.e., write capability). This assumption is reasonable since memory-unsafe languages (e.g.,

C/C++) are still widely used today for their interoperability and speed.

2. Knowing the exact location of target non-control data in memory. Due to the wide deploy-

ment of exploit mitigation technologies such as DEP and ASLR, it is likely attackers need

to first leverage memory disclosure vulnerabilities to circumvent the address space random-

ization [133]. In this case, an exfiltration channel to achieve information leakage is needed

(i.e., read capability), such as reading data from arbitrary addresses of the target program.

3. Knowing exactly the impact of an exploit on the memory space of the target program. For

example, a continuous buffer overflow exploit may generate side effects that cause the pro-

gram to crash. When launching a data-oriented exploit, attackers need to avoid any CFI

violation and program crash.

4. Availability of DOP gadgets that are reachable using a memory corruption and triggerable

using an exploit
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5. Stitchability of disjoint DOP gadgets. A gadget dispatcher dispatches and executes the func-

tional DOP gadgets. However, it is non-trivial to find gadget dispatchers in a program since

they require loops with suitable gadgets and selectors controlled by a memory error.

Overall, constructing DOP exploits imposes some restrictions on the nature of the vulnerability, the

context of the execution, and the defenses under deployment. Next, we discuss applicable defenses

focusing on preventing these requirements from being satisfied at different points/stages. More

generic memory corruption prevention mechanisms (in Stages S1 and S2) can be found in [117,

189, 196]. These defense techniques can prevent general types of memory corruption attacks,

which apply for both control-flow attacks and data-oriented attacks. In addition to generic memory

corruption prevention mechanisms, a number of detection and prevention techniques specially

focusing on data-oriented attacks have been proposed in the literature. We then discuss these

defensive mechanisms in Section 4.3.5.

4.3.2 S1 Defense – Preventing the Exploitation of Memory Errors

Memory safety enforcement is the first line of defense, which aims to prevent both spatial and tem-

poral memory errors, such as buffer overflow, use-after-free, etc. It ensures the low-level integrity

of a program’s data structures and avoids invalid memory accesses. Memory-safe programming

languages have built-in mechanisms to protect memory errors. In contrast, memory-unsafe lan-

guages such as C/C++ lack built-in memory safety guarantees, hence memory errors are preva-

lent in programs written in these languages. They allow direct access to memory using pointers,

which is a common cause of memory corruption. Nevertheless, C and C++ are still widely used

programming languages today [76]. Despite considerable prior research in retrofitting memory-

unsafe programs with memory safety guarantees, memory-safety problems persist due to a trade-

off between effectiveness and efficiency: approaches with low-overhead usually offer inadequate

protection/coverage, while comprehensive solutions either incur a high performance-overhead or

provide limited backward compatibility [183, 196]. The majority of existing memory safety solu-



82 Chapter 4. Data-Oriented Attacks: Exploitation Techniques and Defenses Salman Ahmed

tions can be generally classified into two categories: pointer safety (i.e., pointer-based approaches

focusing on pointer dereference operations, including pointer-based bounds checking and pointer

integrity/authenticity) and object safety (i.e., object-based approaches focusing on pointer arith-

metic operations).

Pointer-based bounds checking Pointer safety is typically realized by associating a lower and

upper bound with each data pointer, and adding a check at runtime that verifies that memory

accesses via the pointer fall within those bounds. Numerous pointer safety mechanisms based on

such pointer bounds checks have been proposed. SoftBound [134] and HardBound [66] perform

pointer bounds checks against metadata stored in a shadow memory area. The bounds information

for each pointer must be frequently retrieved from the shadow memory. SoftBound adds software

checks to applications hardened with it, but breaks cache locality when retrieving pointer bounds.

As a result, it leads to additional cache misses which hurt program performance. SoftBound incurs

an average performance overhead of 67% in standard benchmarks. HardBound is a hardware-

assisted scheme where the processor checks associated pointer bounds implicitly when a pointer is

dereferenced. As the check is performed by hardware logic, the average performance overhead is

reduced to ∼10%. Both schemes have a worst-case memory overhead of ∼200%.

Intel’s Memory Protection Extensions (MPX) is an Instruction Set Architecture (ISA) extension

for pointer safety introduced to Intel x86-64 processors in the late 2015 Skylake microarchitecture

(MPX support was deprecated and removed from GCC and the Linux kernel [45]). MPX adds

four new 128-bit registers for storing upper and lower pointer bounds and new instructions for

managing the bounds registers and performing bounds checks on pointers. Bounds checks using

the bounds registers are highly efficient. But since the number of bounds registers is limited,

bounds information is also stored in tables with an index derived from the pointer address, similar

to a two-level page table structure in x86. A 2GB intermediate table (bounds directory) is used

as a mediator to the actual 4MB-sized bounds tables, which are allocated on-demand by the OS

when bounds are created. The hardware performs a table walk of the bounds directory and bounds

tables when bounds information is fetched to the registers. Oleksenko et al. [145] found that MPX
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incurs an average performance overhead of 50% and a memory overhead of ∼90%, largely due to

the complexity of storing and loading bounds metadata.

Fat-pointer schemes store the associated bounds metadata [113] together with pointers, e.g., by

increasing their length [137] or by borrowing unused bits from pointers [113]. Repurposing parts

of a pointer to store validation data has the advantage of enabling fast retrieval of pointer metadata

without a need for lookups from disjoint memory. But it changes the representation of pointers in

memory in ways that break both binary and source code compatibility. Fat-pointers have primarily

been deployed in clean-slate ISA designs [116], and memory-safe programming languages, e.g.,

Cyclone [56] and Rust [200]. BIMA [116] is a hardware-assisted fat-pointer scheme for the SAFE

secure computing platform [166]. BIMA limits the virtual addresses to 46 bits and restricts pointer

alignment to powers of two. This frees 18 bits in 64-bit pointers for encoding bounds information.

BIMA demonstrates that on a clean-slate ISA design, fat pointers can be realized without a perfor-

mance penalty, and a 3% memory overhead due to segmentation caused by alignment restrictions

on BIMA pointers. Low-fat-pointers [68, 69] are an alternative to fat pointers compatible with

commodity 64-bit hardware architectures, such as x86-64. Low-fat-pointers require customized

stack and heap allocators that restrict both stack frame and heap memory allocation sizes to a fixed

finite set, and split the main program stack and heap into several sub-stacks and sub-heaps, one for

each possible allocation size. Pointer accesses are then validated according to the allocation bounds

associated with the corresponding sub-stack or sub-heap. The improved compatibility comes at the

cost of accuracy, as low-fat-pointers accesses are only enforced at allocation bounds. On average,

low-fat-pointers adds a performance penalty of 54% (16% for out-of-bounds writes) and memory

overhead of 15% for stack data, and incurs a 56% performance (13% for out-of-bounds writes)

and 11% memory overhead for heap data. Yong et al. [221] presented a security-enforcement tool

for C programs preventing unchecked pointer dereferences. The proposed method uses static anal-

ysis to identify unsafe pointers in the program, as well as the memory locations that can be the

legitimate targets of these pointers. To reduce the runtime overhead, only write instructions via

unsafe pointers are instrumented to check for violations. An attack involving an attempt to write
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to non-allocated storage, or to an inappropriate location on the stack (e.g., the return address) will

be detected.

Write-Integrity Testing (WIT) [6] uses points-to analysis to compute the control-flow graph and

the set of objects that can be written by each instruction in a program. Then it generates code

instrumented to enforce write integrity, which prevents instructions from modifying objects that

are not in the set computed by the static analysis. To achieve a low runtime overhead, WIT only

instruments writes without instrumenting reads, and thus is considered an S1 defense. It does not

prevent out-of-bounds reads. The authors also developed several optimizations to reduce the space

and time overhead in the implementation. WIT achieves a low average overhead of 7%, and the

maximum overhead is 25% across a set of CPU intensive benchmarks. It is an approximation of the

spatial memory safety (e.g., preventing out-of-bound writes) in terms that the data write integrity

typically maintains bounds based on static points-to analysis. Before each write dereference, it

checks whether the location is within its valid points-to memory region. WIT mitigates use-after-

free (UAF) vulnerabilities to a certain extent, because the attacker cannot use a dangling pointer to

write to an object of a different equivalence class.

Pointer Authenticity/Integrity. Pointer authenticity/integrity aims to ensure the validity of point-

ers, i.e., the value of a pointer (the address of the target object) is not arbitrarily controllable by an

attacker, even in the presence of memory corruption vulnerabilities that may allow a manipulation

over the pointer value. PointGuard [51] encrypts all pointers at runtime by XORing them against

a key generated at program initialization. The encryption on each pointer must be reversed before

dereferencing a pointer. PointGuard incurs a small to medium overhead (0%∼20%), but is vulnera-

ble to information disclosure, e.g., if an attacker learns the key or the XORed ciphertext of a pointer

to a known address. Code-Pointer Integrity (CPI) [115, 210] provides control-flow hijacking pro-

tection rather than complete memory safety. Therefore, it incurs a very low performance overhead

with around 1.9% (C program) or 8.4% (C/C++ program) slowdown. Kuznetsov et al. [115, 210]

also introduced a relaxation of CPI with better performance properties, called code-pointer sepa-

ration (CPS), to achieve better security-to-overhead trade-off. However, this solution only protects
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code pointers with non-control data unchecked.

Pointer Authentication (PA) [158] is a hardware pointer authenticity primitive introduced in the

ARMv8.3-A processor architecture to protect programs from exploiting memory vulnerabilities.

PA introduces a set of new instructions for calculating and verifying a Pointer Authentication Code

(PAC) for pointers. The use of an unauthenticated pointer would cause a memory translation fault.

Each PAC is generated using a key from a set of five different keys and a modifier. The kernel

generates the five keys for each process and stores them in internal CPU registers which are not

accessible from userspace code. These keys remain the same throughout the process lifetime. Out

of the five keys, two are used for generating PACs for code pointers, two for data pointers, and

one for general purpose uses. The modifier usually captures the contexts of pointer declarations

and accesses. To store PACs, PA uses the unused bits in the virtual address of 64-bit address

space. In a 64-bit Linux kernel, PA uses 24 bits for the PACs, but the size can vary based on

memory scheme and address tag usages. However, PA has a few concerns regarding the PAC

generation. Since PAC generation keys stay the same for the lifecycle of a process, and modifiers

may have repeatability, attackers may reuse previously generated PAC and pointer pair at a later

stage to replace another PAC and pointer that uses the same modifier [121]. If the modifier does

not uniquely capture the context, it might repeat in different contexts and allow such reuse attacks.

For example, in return address signing using the stack pointer (SP) values as modifiers, a return

address authenticated for one function can be used for another function if the SP values in both

functions are the same. To address these concerns, the Pointer Authentication Run-Time Safety

(PARTS [121]) technique augments the PA-based defense approach and compartmentalizes the

PAC generations for different pointers in different contexts. The key idea of the PARTS approach

is to utilize a pointer’s type as a modifier. The type potentially captures the context in which the

pointer is created and dereferenced. PARTS provides a proof-of-concept implementation based on

LLVM and incurs an overhead of less than 20%.

Pointer-based approaches generally suffer from poor scalability in terms of increased execution

time and memory consumption as the number of protected pointers increases. They also require a
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comprehensive understanding of a program’s memory layout at individual pointer granularity over

time in order to differentiate between benign (within bounds) memory accesses from malicious

(out-of-bounds) memory accesses. Another concern is the compatibility problem with unprotected

modules, which could modify or dereference signed pointers and result in false alarms.

Object-Based Approaches. Instead of enforcing bounds checking with pointers, object-based

approaches detect out-of-bounds memory accesses to objects. It solves the compatibility issues

caused by pointer-based approaches. AddressSanitizer (ASan) [176] is a memory error detector

for Linux available in GCC and Clang/LLVM. It can detect out-of-bounds memory accesses to

global, stack, and heap objects. In addition, it can detect a number of temporal memory errors,

such as use-after-free and double free conditions. ASan tracks objects stored in application mem-

ory by storing metadata on each object in a disjoint shadow memory area that occupies a fraction

of the application’s virtual memory space. The shadow memory records which memory regions in

the application memory are allocated and used, and therefore safe to access. However, these mem-

ory safety guarantees do not preclude erroneous memory accesses in which a corrupted pointer

dereferences a valid, but unintended memory object. In addition, ASan places blocks of "poi-

soned" memory between adjacent objects in the stack, heap and global storage (i.e., blacklisting

unsafe memory regions). Different from approaches that whitelist safe memory regions, poisoned

memory is marked as invalid in the application’s shadow memory, and acts as "red-zones", which,

if accessed, indicates a contiguous overflow, e.g., beyond the array boundary. However, memory

errors that enable non-contiguous accesses or accesses with a larger step distance than the size

of the red-zone can violate spatial safety without setting off the tripwire. Hardware-assisted Ad-

dressSanitizer (HWASAN) [94] is a tool similar to AddressSanitizer, but based on partial hardware

assistance. It relies on address tagging support which is only available on ARM’s 64-bit architec-

ture (AArch64).
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4.3.3 S2 Defense – Providing a Barrier to Access to Data or Guess Memory

Layout

The purpose of S2 defenses is to mitigate the consequences of attacks in the presence of memory

vulnerabilities, including software compartmentalization [70, 129, 212] and address randomiza-

tion (diversification) [15, 199] techniques. They serve as the second line of defense, which creates

a barrier for attackers trying to access target data or infer memory layout.

Software Compartmentalization. Software compartmentalization isolates software components

into distinct protection domains in order to limit the utility of existing memory errors (i.e., when the

memory error and data to be manipulated exist in different protection domains), but also limit the

abilities of a compromised software component. For example, Software Fault Isolation (SFI) [212]

compartmentalizes software in a single address space by sandboxing distrusted modules into sepa-

rate fault domains, which are arranged to occupy a distinct portion of the program’s address space.

SFI-enforcement ensures code in the fault domain is unable to directly access memory or jump

to code outside the reserved portion of address space. It can only interact with code outside its

domain through well-defined call interfaces.

XFI [70] is a SFI variant for Microsoft Windows for isolating shared libraries within an application,

or drivers within the kernel. However, XFI does not protect against confused deputy attacks, where

a distrusted module abuses an over-permissive kernel routine that the module is allowed to invoke.

LXFI [129] extends SFI to Linux kernel modules, which exhibits a more complex interface, e.g.,

callbacks invoked by the kernel make manual interposition more difficult. LXFI also enables

compartmentalization between different instances of a single module, e.g., a kernel driver which

may instantiate server module principals, such as block devices or sockets. CHERI [218] is a

hardware-assisted capability model for the 64-bit MIPS ISA that can support different protection

models, such as pointer safety and software compartmentalization [202, 214].

Address Randomization. Address randomization aims to hide attack targets by randomizing the
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location of program segments [117], layout of the code (instruction set) [52], or layout of data [15]

so that attackers are unable to predict the target data or code location from an address space. In

particular, data space randomization [14, 15, 84] aims to randomize the locations of data stored in

program memory at runtime to make the locations unpredictable, and thus reducing the possibility

that attackers can leak security-critical memory addresses or manipulate the content of targeted

data. ASLR [199], also known as coarse-grained ASLR, randomly relocates only the base ad-

dresses of the stack, heap, code segments, and shared libraries on each execution of a program.

However, the internal layout of a segment or module remains unchanged. Also, to relocate the

code and data segments of the main executable of a program, it is necessary to run the program

as position-independent code (i.e., with the PIE feature enabled). Fine-grained ASLR techniques

relocate the internal layout of a segment or module up to different granularities such as function-

level [47, 84, 108], basic block-level [38, 111, 213], instruction-level [97], and machine register-

level [52, 98]. Attackers can still figure out the fine-grained address space layout of a program

within a few seconds [5] using advanced attack techniques [185].

Though strong randomization can stop memory corruption attacks with a high probability, the

protection is confined to all data/addresses that are randomized/encrypted. In practice, to avoid

a significant performance degradation, not all data/addresses are protected by randomization de-

fenses [196]. On the other hand, information leaks can undermine randomization techniques [185].

ASLR-Guard [126] can add an extra layer of protection for randomization techniques suffering

from information leaks. Besides, ASLR-Guard [126] can render the code pointer leak through

a data pointer useless by separating the data and code using a custom linker that generates new

relocation information to fix the offset between the data and code. In addition, data/address en-

cryption based solutions are not binary compatible (i.e., protected binaries are incompatible with

unmodified libraries) [196].
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4.3.4 S3 Defense – Preventing/Detecting Use of Corrupted Data

Data-Flow Integrity (DFI) [29] mitigates data corruption before the manipulation takes effect. Be-

fore each read instruction, DFI ensures that a variable can only be written by a legitimate write

instruction which can be derived by reaching definitions analysis. For each read instruction for

reading a value, it statically computes the set of write instructions that may write the value, and

assigns an identifier to each definition. DFI enforces a simple safety property, i.e., whenever a

value is read (used), the definition identifier of the instruction that wrote the value should be in

the set of reaching definitions for the read. DFI is different from the data write integrity checking

in S1 defense (such as WIT [6] ) in that it enforces data integrity for memory reads. Thus, the

enforcement of DFI happens in Stage 3. WIT prevents data manipulation by protecting against

invalid/unintentional memory writes, but with reads left unchecked. In addition, since DFI could

potentially limit the DOP gadget availability, it is active at both S2 and S3 in our three-stage model.

DFI enforcement can prevent both control-data (e.g., overwriting the return address) and non-

control-data attacks. However, DFI usually overestimates the set of valid write instructions since

the set is statically determined without runtime information. Moreover, Software-based DFI incurs

a high performance overhead [101] due to the frequent read instruction checking. Intra-procedural

DFI incurs 44% and inter-procedural DFI incurs 103% runtime performance overhead, respec-

tively, and approximately 50% space overhead for instrumentation [29]. Hardware-based DFI,

e.g., HDFI [188], is efficient, but limited by the number of simultaneous protection domains it can

support. Carlini et al. [27] have recently revealed fundamental limits on the effectiveness of CFI,

and presented the Control-Flow Bending (CFB) which allows an attacker to "bend" the control-

flow of a program but adheres to CFI’s security policies, i.e., modifying indirect branch targets

that are valid based on a CFI policy. Depending on the granularity of compartmentalization and

the boundaries of the security domain, software compartmentalization can also function as a de-

fense in S3. It can prevent the use of corrupted data. For example, when a corrupted pointer is

referencing memory in another protection domain, it thwarts the dereference operation. Besides,
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some techniques [62, 197] can prevent the execution of code pointed by corrupted data or mem-

ory. Heisenbyte [197] is such a technique that utilizes “destructive code read”. The “destructive

code read” allows the execution of code as part of the normal flow of a program and restricts

the execution of the same code when used in a dynamic code-reuse attack. Another technique

called Isomeron [62] tackles the usage of existing code pointed by corrupted data or memory by

randomizing the execution paths.

Data Space Randomization (DSR) [15] encrypts data (i.e., randomizes the representation of data

objects with a unique random mask) stored in memory, rather than randomizing the location of

data objects. When a variable is used, its value will be first derandomized by using the unique

random mask associated with the variable. By using different masks for different variables, DSR

ensures that even if the attacker manages to overwrite a target variable, the attacker is only able

to write a random value into it rather than the intended value. Instead of using a different mask

for each data object, Data Randomization [26] groups data objects into different classes, assigns a

random mask for each class, and generates instruments code to XOR data read from or written to

memory with the corresponding mask. As a result, accesses that violate the read or write integrity

have unpredictable results. Another recent DSR technique called CoDaRR [159] continuously re-

randomizes the masks used in variables with load and store instructions while being transparent

to program execution. The dynamic nature of CoDaRR prevents disclosure attacks. DSR [15,

159] and Data Randomization [26] are effective against non-control data attacks by preventing

attackers from using the corrupted data in the memory space (although they can overwrite target

data variables). And thus they actually take effects at Stage 3. Nevertheless, masking/unmasking

every memory access inevitably incurs nontrivial runtime overheads, which hinders their practical

deployments.

Szekeres et al. [196] highlights in their paper that real-world software exploits are still possible

because memory vulnerabilities continue to grow and currently deployed defenses are being by-

passed. Thus, program anomaly detection [42, 182, 220, 223] may complement the aforementioned

mitigation techniques, and may serve as the last line of defense against data-oriented attacks. As
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shown in Figure 4.3, passive monitoring based program anomaly detection has the potential to

detect anomalous program behaviors exhibited in all the three stages.

4.3.5 Defense Mechanisms Especially Against Data-oriented Attacks

Besides the generic memory corruption prevention mechanisms which can be applied to defeat

data-oriented attacks, here we discuss detection and prevention techniques explicitly focusing on

data-oriented attacks.

YARRA [168] is a C language extension that validates a pointer’s type for critical data types an-

notated by developers. It guarantees that critical data types are only written through pointers with

the given static type. YARRA is suitable for hardening access to isolated pieces of critical data,

such as cryptographic keys stored in program memory at runtime. However, when applied for the

whole program protection, it incurs performance overhead around 400%–600%. Besides, YARRA

relies on the programmers’ manual annotations, which is undesirable for complicated programs.

HardScope [142] is a hardware-assisted variable scope enforcement approach to mitigate data-

oriented attacks. It performs intra-program memory isolation based on C language variable visibil-

ity rules derived during program compilation. On each memory access (i.e., load/store), HardScope

enforces that the memory address requested is in the accessible memory areas. Nyman et al. [142]

demonstrated the effectiveness of HardScope for the RISC-V architecture, by introducing a set of

seven new instructions. HardScope instruments instructions at compile-time and enforces mem-

ory access constraints at runtime. HardScope’s performance overhead is reasonable with 3.2% in

embedded benchmarks. Although HardScope significantly reduces the usefulness of DOP gadgets

and thwarts Hu et al. [101]’s example attacks, HardScope cannot guarantee the absence of DOP

gadgets in arbitrary programs.

PrivWatcher [34] is a framework for monitoring and protecting the integrity of process credentials

(i.e., task_struct that describes the privileges of a process in the Linux kernel) against non-control
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data attacks. PrivWatcher provides non-bypassable integrity assurances by relocating process cre-

dentials into a safe region, code instrumentation and runtime data integrity verification. It incurs

more than 94% overhead for applications that involve installing new task_struct structures to pro-

cesses.

Hardware-Assisted Data-flow Isolation (HDFI) [188] extends the RISC-V architecture to provide

an instruction-level isolation by tagging each machine word in memory (also known as the tag-

based memory protection). The one-bit tag of a memory unit in HDFI is defined by the last in-

struction that writes to this memory location. At each memory read instruction, HDFI checks if

the tag matches the expected value. However, unlike software-enforced DFI, HDFI only supports

two simultaneous protection domains.

PT-Rand [61] aims to protect a data-oriented attack against kernel page tables to bypass CFI-based

kernel hardening techniques. To mitigate the manipulation of page tables, PT-Rand randomizes the

location of the page tables. PT-Rand incurs a low overhead of 0.22% for common benchmarks on

Debian. However, it is still possible attackers undermine these schemes if the secret information

(e.g., randomization secret) is leaked or inferred [142].

Both C-FLAT [4] and eFSA [41] identify non-control-data attacks through their effects on the

control-flow of a program in embedded systems, such as Internet of Things (IoT) or Cyber-Physical

Systems (CPS). C-FLAT [4] enables remote attestation of an application’s control-flow path, which

allows a verifier to detect control-flow deviations launched via code injection, code-reuse, and

certain non-control-data attacks. Since C-FLAT computes an aggregated authenticator of the pro-

gram’s control flow, including branches and function returns, it can detect non-control-data at-

tacks that affect a program’s sequence of executed instructions or the number of loop iterations.

eFSA [41] is an event-aware finite-state automaton model for detecting non-control-data attacks

against programs in CPS. It takes advantage of the event-driven nature of CPS control programs

and incorporates event checking in anomaly detection. It detects non-control-data attacks if a spe-

cific physical event is missing along with the corresponding event dependent executed instructions.
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CVI (Critical Variable Integrity) [194] verifies define-use consistency of critical variables for em-

bedded devices. The define-use consistency enforces that the value of a variable cannot change

between two adjacent define- and use-sites. After identifying critical variables (either automati-

cally identified or manually annotated), the compiler inserts instrumentation at all the define- and

use-sites for these critical variables, to collect values at runtime and send them to an external mea-

surement engine. CVI checking compares the current value of a variable at every use-site and

the recorded value at the last legitimate define-site. However, like DFI [29], CVI is based on

compile-time instrumentation and frequent runtime checking, which incurs a high overhead for the

complete protection.

Hardware-based detector I. This detector [201] utilizes Hardware Performance Counters (HPCs)

to collect hardware events related to instructions retired, cache-misses suffered, and branches miss-

predicted for detecting data-only exploits. The authors collect 12 hardware events during the nor-

mal and abnormal executions of OpenSSL and train a multi-class support vector machine model

to classify normal and abnormal behaviors. Two fundamental limitations of this HPC-based detec-

tor is that i) the co-executing programs significantly affect HPC-based events and ii) HPC-based

events are dependent on instruction set architectures (ISAs).

Hardware-based detector II. This detector [123] utilizes the HPC events as short time series by

monitoring various execution regions of a vulnerable program. Especially, the samples include

the region before, during, and after executing a vulnerable region of a program. This time series

approach enables more fine-grained detection than using only hardware events. Classification

algorithms such as the Stacked Denoising Autoencoder and Echo State Network classifiers are

around 98% accurate for detecting data-oriented exploits.

In summary, HDFI [188], PrivWatcher [34], PT-Rand [61], and CVI [194] protect specifically non-

control data. HardScope [142] can protect against all DOP attacks that violate variable visibility

rules at runtime. However, its main drawback is that the new hardware extensions [188] set a high
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bar for deployment. On the other hand, the two general approaches DFI [29] and YARRA [168]

incur a high performance-overhead at runtime. In general, the HPC-based hardware events are

significantly affected by co-existing programs. Thus, the filtration of the hardware events that are

produced by co-existing programs is a critical step for obtaining accuracy and reliability by HPC-

based detectors. The time-series approach used by the hardware-based detector II [123] makes the

detector less independent of the underlying applications. Different from the above works focusing

on traditional programs, C-FLAT [4] and eFSA [41] target at detecting non-control-data attacks in

embedded systems by monitoring their side-effects on control-flow behavior.

4.3.6 Anti-specification Database for Detecting Data-Oriented Attacks.

Anti-specifications – a specification-based technique that describes the violation of legal data

flows–can aid the detection of data-oriented attacks. Specifications are what a program should

do, whereas anti-specifications [207] are what a program should not do. Anti-specifications aim

to capture events that may be part of an exploit. For example, attackers trigger most exploits

using unguarded external inputs. Anti-specifications provide a characterization of the impact of

a program’s use of unguarded external input on the downstream data-flow of the program. The

impact analysis of a program’s external input is a key step for preventing the gateways of data-

oriented exploits. Besides, anti-specifications can also capture input-dependent predicates used

in loops or conditions. These controllable predicates can alter program behavior. Other types of

anti-specifications may capture data leaks [23] or data pointer corruption. Thus, anti-specifications

can help improve the detection of data-oriented exploits by identifying the gateways and generic

components used in those exploits.

One key benefit of anti-specifications is the construction of an anti-specification database. This

database is a collection of anti-specifications in a specific format, which helps screen programs

against the anti-specifications stored in the database. It could also be used to generate new

anti-specifications by merging two or more anti-specifications. The key difference of this anti-
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specification-based approach from a signature-based approach is that anti-specifications are not

specific to an exploit. The approach attempts to produce anti-specification by breaking an exploit

into its modular events or components and extracting anti-specifications from them. Even though

the same or similar exploits vary from one program to another, we may observe many common

components (e.g., exploit entry, gadget lookup, gadget stitching, and triggering) when unfolding

the exploits. As a result, anti-specifications built from such common components can be more

generally applied across multiple programs. We manually constructed one such a database that is

available at https://github.com/salmanyam/antispec.

https://github.com/salmanyam/antispec


Chapter 5

Data Object/Pointer Prioritization

5.1 Introduction

With the advances toward practical code pointer protection countermeasures [12, 49, 103, 104, 115,

126, 130, 158] and practical Control-Flow Integrity (CFI) [24, 83, 124, 130, 132, 152, 222, 224],

we anticipate a shift towards the use of data object/pointer-manipulation as the attack vector as

the manipulation works in the presence of code pointer protection and CFI countermeasures. This

is why in recent years, we observed a momentum in data-oriented attacks (also known as non-

control attacks) [100, 101, 106, 133, 162, 168, 196, 219] even though data-oriented attacks were

introduced more than a decade ago [35].

Data object/pointer manipulation has become an appealing attack technique for data-oriented at-

tacks. Data-oriented attacks confirm CFI and achieve malicious goals by changing program behav-

ior. Ideally, DOAs [13, 35, 100, 106, 219] can modify all kinds of data objects to change program

behavior to leak sensitive information [23] or perform privilege escalations [57]. However, data

pointer overwrite is preferred because it allows attackers to corrupt data pointers to point to ar-

bitrary and unintended locations [49]. For example, data pointer manipulation can leak critical

information about an application’s address space layout [73, 173]. Data-Oriented Programming

(DOP) [101] requires the address of some con-control data pointers to accomplish DOP-based at-

tacks. Chen et al. [35] corrupts a data pointer in the ghttpd HTTP server through a stack buffer

overflow to bypass security checks of input strings. Besides, heap-based exploitations such as the

House of Spirit attack [180] on Glibc also manipulate a data pointer returned by malloc().

96
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To stop attackers from manipulating data objects/pointers (and data variables in general), re-

searchers have proposed both software and hardware-based countermeasures. Software-based

countermeasures such as Data-Flow-Integrity (DFI) [29], Data Space Randomization (DSR) [15,

26, 159], and memory tagging [134, 135]. DFI can block data-oriented attacks, but it usually over-

estimates the set of valid write instructions due to its static analysis. This overestimation incurs

high overhead (e.g., intra-procedural DFI about 44% and inter-procedural DFI around 103% [29]).

DSR encrypts data by changing representation of every variable [15] and a group of variables [26]

by adding masks for a single round or continuously changing the masks [159]. Though the effec-

tiveness of DSR, masking/unmasking every memory access inevitably incurs nontrivial runtime

overheads. Software-based memory tagging countermeasures also cost a significant amount of

overhead, from 48-116% [134, 135].

On the other hand, hardware-based countermeasures (e.g., HDFI [188], Intel’s CET [103], ARM

Pointer Authentication (PA) [158], and MPX [104]) is efficient, but in general, limited for one

or a few platforms. Furthermore, the overhead is non-negligible. For example, ARM pointer au-

thentication [158] and Intel’s MPX [104] cost on average around 19.5% [121] and 50% overhead,

respectively, for protecting data pointers. The 19.5% overhead for a hardware-based technique

is still critical for performance-critical applications. Due to a huge number of data objects/point-

ers in an application compared to code pointers, one source of the overhead for protecting data

objects/pointers is protecting many data objects/pointers that do not need protection as those ob-

jects/pointers do not lead to vulnerability. One way to reduce the performance overhead is to figure

out the sensitive (i.e., vulnerable) data objects/pointers and prioritize them for protection.

The idea of protecting sensitive or critical data is not new. Palit et al. designed a compiler-level

defense that protects critical data [148, 149]. However, they manually annotate the sensitive data.

Similarly, FlowStitch [100] performed the automation of data-oriented attacks using predefined

critical data. Our work complements this work by identifying and prioritizing the sensitive data

automatically. A few automated techniques [106, 133] also determined the critical data. For exam-

ple, Jia et al. [106] determined the decision-making data by recording the execution of two traces
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with normal execution and violated execution, and observing the data that get modified and change

executions. Access-driven trace data [133] are also useful to determine and understand the critical

data and their structures. However, these works are not scalable as we need huge and relevant

execution and access traces. On the other hand, Pathfinder [162] can automatically navigate to

sensitive data from a leaked data pointer. However, it does not indicate how to determine or label

sensitive data.

The goal of this work is to develop a data object/pointer prioritization framework that is both

i) generic and ii) adaptable. The generic nature of the framework ensures that it does not rely

on underlying operating systems, platforms, or programming languages. The adaptability feature

makes the DPP framework adaptable with minimum changes so that it can be used with other

defenses (e.g., ARM PA [158], Intel MPX [104], AddressSantizer [175], memory tagging [134,

135], etc.).

Our prioritization framework uses rule-based heuristics to detect sensitive data objects/pointers.

We analyze existing data-oriented exploits [100, 101], vulnerabilities (CVE-2001-0820, CVE-

2006-5815, CVE-2006-5815, CVE-2017-9430, CVE-2018-6151, CVE-2018-10111, CVE-2021-

23017, etc.), and exploit description [1, 35, 73, 100, 173] to extract seven generalized rule-based

heuristics in four categories. We apply the heuristics on top of a tainted data/value flow graph of a

program to detect/prioritize data objects/pointers. To construct the data flow graph, we utilize the

interprocedural Static Value Flow (SVF) analysis [193]. We identify the taint sources and propa-

gate the tainted data through the SVF graph. The seven rules detect vulnerable tainted data (i.e.,

taint sinks). To manipulate any data in a program, attackers must use the input channels/streams

(e.g., network, file system, or keyboard) to pass their crafted commands or packets. Thus, we taint

all data from input channels and propagate the tainted value throughout the SVF graph.

We implemented the taint analysis and rule-based heuristics as LLVM analysis passes in LLVM

12 1. To perform the pointer analysis and data-flow construction, we utilize the latest version of

1https://releases.llvm.org/12.0.0/docs/ReleaseNotes.html
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SVF [193] compatible with LLVM 12. For performance evaluation, we have modified the Address

Sanitizer tool [175] to add an option to instrument data objects/pointers prioritized by our rules. We

have also implemented one instrumentation pass to instrument LLVM IR to include ARM pointer

authentication instructions.

A key requirement to evaluate the effectiveness of our prioritization technique is ground truth vul-

nerable data objects/pointers. To the best of our knowledge, there exists no such dataset. We

manually construct the ground truths vulnerable data objects by identifying 23 vulnerable data

objects/pointers from 18 programs including 5 real-world applications. We used eight real-world

applications and one benchmark program to evaluate the performance of our prioritization tech-

nique utilizing AddressSantizer [175] and ARM PA [158].

Our key contributions of this work are as follows.

• We proposed a prioritization framework that is both i) generic and ii) adaptable. The generic

nature of the framework ensures that it does not rely on underlying operating systems, plat-

forms, or programming languages. The adaptability feature makes the framework adaptable

with minimum changes so that it can be used with other defenses such as ARM PA [158],

MPX [104], Softbound [134], AddressSanitizer [175], and many more. One key use case of

the framework is to tune the performance vs. security in an application.

• We extracted seven vulnerability- and exploit-driven rule-based heuristics to prioritize data

objects/pointers that are sensitive and could potentially lead to vulnerabilities.

• We implemented our framework using eight analysis passes (one for taint analysis and seven

for data object/pointer identification using our rules) on top of LLVM 12. We also im-

plemented one instrumentation pass for instrumenting our prioritized pointers using ARM

PA [158] and modified AddressSanitizer [175] tool to support instrumenting only the prior-

itized data objects/pointers in addition to AddressSanitizer’s default behavior.

• To evaluate the prioritization framework, we constructed ground truths by manually ana-
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lyzing vulnerable programs considering local/global data objects/pointers, inter-functional

analysis, and corner cases. We constructed 33 ground truths data objects from 18 programs

including real-world server applications and 10 test cases from SAR dataset.

• We found that as low as only 3% of total data objects are needed to protect for real-world

applications. We achieved a 42% performance overhead reduction compared to Address-

Sanitizer while protecting 100% of the prioritized data objects. We can reduce the instru-

mentation size by around 62% and the number of pointers in Load/Store IR instructions (for

ARM PA) by 56% and 96%, respectively, without compromising security.

5.2 Background and Threat Model

5.2.1 Pointer Manipulation

Arbitrary memory read/write capability is the gateway of control-oriented [18, 28, 169, 185] or

data-oriented [35, 100, 101, 105, 172] attacks. Due to the prevalence of memory-corruption vul-

nerabilities (e.g., user-after-free, type confusion, etc.) in C/C++ code, attackers demonstrated their

capability to read/write arbitrary memory. The capability to manipulate arbitrary pointers is often

targeted as it allows attackers to corrupt the pointers to point to arbitrary locations as their interests.

Attackers utilize two kinds of pointers: i) code pointers and ii) data pointers.

Code pointer leaks serve two purposes for attackers: i) one kind of code pointer enables attackers

to infer a program’s layout, and ii) another kind of code pointer enables it to subvert a program’s

control flow. The first type of code pointers can help attackers to leak memory contents [9, 82, 96,

190, 192, 196] or help repetitively disclose information about a program’s address space (e.g., JIT-

ROP’s dynamic code harvest technique [185]). Attackers use the second type of code pointers to

divert a program’s flow to the attacker’s chosen location (e.g., modifying a function pointer pointing

to shell-code). These two kinds of code pointers include function pointers, return addresses, data
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objects (that point to composite data structures that contain function pointers), and virtual table

pointers. Code pointers are practically feasible to protect within an insignificant overhead, e.g.,

less than 1% overhead for C and 9% for C++ [115, 121].

Data pointers as attack vectors have gained attackers’ interests with the advancement in protecting

code pointers in relative low overhead. DOP [101] used the address of some con-control data point-

ers to accomplish DOP-based attacks. Chen et al. [35] corrupted a data pointer in the ghttpd HTTP

server through a stack buffer overflow to bypass security checks of input strings. COOP [169]

utilized a C++ object to hijack the virtual table pointer of a C++ object and constructed an exploit

using the virtual functions as gadgets. BOP [105] used arbitrary memory read/write primitives

and LIMBO [172] used to control over a program state by triggering vulnerabilities (e.g., trigger-

ing stack buffer overflow to control a stack frame). Besides, heap-based exploitations such as the

House of Spirit attack [180] on Glibc also manipulate a data pointer returned by malloc().

Attackers leak code/data pointers utilizing memory disclosure vulnerabilities through buffer over-

read [192], heap spray [177], and heap feng shui [190]. Attackers also use software side-channels

such as guessing [18, 179], pointer probing [73], and timing side channel attacks [173]. Hard-

ware side-channels (e.g., Load-evict-load [102], exploiting page walk in the page table hierarchy

of Memory Management Unit [90], and exploiting the prefetch side-channel [91]) have become

also popular in recent years for leaking code pointers.

Due to the widespread deployment of ASLR, attackers exploited data pointer manipulation to

infer knowledge about the address space layout of a process to bypass ASLR defenses. Data

pointer manipulation can cause some events that result in software side-channels—typically timing

side-channels—that can leak information about the address space. To infer information about

an application’s address space, attackers analyze the output and execution time of a portion of

code. They then correlate the output and timing information by running the same portion of code

locally [73, 173]. For example, an attacker may overwrite a data pointer (ptr in Listing 5.1)

to point to some byte sequences and infer knowledge about the byte sequences by observing the
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output, i.e., the variable result. By pointing the data pointer to different locations of address

space and observing the output behavior, an attacker can distinguish the mapped and unmapped

code pages.

1 struct mystruct {
2 int value;
3 };
4 void vuln_function()
5 {
6 char buf[64];
7 int result=0, length, input;
8 struct mystruct * ptr;
9 recv(socket, buf, input);

10 ptr−>value = strlen(buf);
11 while (result < ptr−>value) result++;
12 send(socket, &result, length);
13 }

Listing 5.1: Data pointer manipulation to infer knowledge about address space layout. This
figure is adopted from [173].

All these exploits indicate that data pointers are as equally important attack vectors as code point-

ers. Unfortunately, software-based memory safety protection incurs a significant amount of over-

head, ranging from 48% to 116% [68, 69, 134, 135, 136]. Data-Flow Integrity also protects mem-

ory safety issues but incurs overhead ranging from 44% to 103% [29, 187]. On the other hand,

PointGuard [49] has relatively low overhead (up to 20%) for protecting pointers, but PointGuard’s

memory-related assumption that attackers cannot read arbitrary memory is no longer practical.

Thus, software-based pointer protection, in general, is not practical due to a high runtime over-

head.

Hardware-based solutions [66, 103, 104, 158, 188] can reduce the overhead significantly. How-

ever, the overhead is still non-negligible. This is due to the abundance of data pointers compared

to the code pointers. This abundance of data pointers makes it difficult to build a CPI-like so-

lution for protecting the integrity of data pointers. Thus, data pointer prioritization is extremely

important and necessary to protect sensitive data objects/pointers. It is important to mention that

over-approximation in prioritizing data objects/pointers is acceptable as long as the approximation
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includes all sensitive data pointers and the overhead is in an acceptable range.

5.2.2 Memory Safety Defenses

Memory-unsafe languages such as C/C++ lack built-in memory safety guarantees, hence memory

errors are prevalent in programs written in these languages. Nevertheless, C and C++ are still

widely used programming languages today [76]. Despite considerable prior research in retrofitting

memory-unsafe programs with memory safety guarantees, memory-safety problems persist due

to a trade-off between effectiveness and efficiency: approaches with low-overhead usually offer

inadequate protection/coverage, while comprehensive solutions either incur a high performance-

overhead or provide limited backward compatibility [183, 196]. SoftBound [134] and Hard-

Bound [66] perform data pointer safety by associating a lower and upper bound with each data

pointer, and verifying the bound against metadata stored in shadow memory at runtime for C pro-

grams. SoftBound incurs an average performance overhead of 67% due to software-based bound

check while HardBound performs the check using hardware logic that lowers the overhead to

9% on average. Fat-pointer schemes store the associated bounds metadata [113] together with

pointers, e.g., by increasing their length [137] or by borrowing unused bits from pointers [113].

Re-purposing parts of a pointer to store validation data has the advantage of enabling fast re-

trieval of pointer metadata without a need for lookups from disjoint memory. But it changes the

representation of pointers in memory in ways that break both binary and source code compatibil-

ity. Fat-pointers have primarily been deployed in clean-slate ISA designs [116], and memory-safe

programming languages, e.g., Cyclone [56] and Rust [200]. BIMA [116] is a hardware-assisted

fat-pointer scheme for the SAFE secure computing platform [166]. BIMA limits the virtual ad-

dresses to 46 bits and restricts pointer alignment to powers of two. This frees 18 bits in 64-bit

pointers for encoding bounds information. BIMA demonstrates that on a clean-slate ISA design,

fat pointers can be realized without a performance penalty, and a 3% memory overhead due to

segmentation caused by alignment restrictions on BIMA pointers. Low-fat-pointers [68, 69] are an
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alternative to fat pointers compatible with commodity 64-bit hardware architectures, such as x86-

64. Low-fat-pointers require customized stack and heap allocators that restrict both stack frame

and heap memory allocation sizes to a fixed finite set and split the main program stack and heap

into several sub-stacks and sub-heaps, one for each possible allocation size. Pointer accesses are

then validated according to the allocation bounds associated with the corresponding sub-stack or

sub-heap. The improved compatibility comes at the cost of accuracy, as low-fat-pointers accesses

are only enforced at allocation bounds. On average, low-fat-pointers add a performance penalty

of 54% (16% for out-of-bounds writes) and memory overhead of 15% for stack data and incurs a

56% performance (13% for out-of-bounds writes) and 11% memory overhead for heap data.

Unfortunately, software-based memory safety protection incurs a significant amount of overhead,

ranging from 48% to 116% [68, 69, 134, 135, 136]. Data-Flow Integrity also protects memory

safety issues but incurs overhead ranging from 44% to 103% [29, 187]. On the other hand, Point-

Guard [49] has relatively low overhead (up to 20%) for protecting pointers, but PointGuard’s

memory-related assumption that attackers cannot read arbitrary memory is no longer practical.

Thus, software-based pointer protection, in general, is not practical due to a high runtime over-

head.

5.2.3 Hardware-based Defenses

Hardware-based solutions can reduce the overhead significantly. HardBound [66] can lower the

overhead to 9% on average for pointers in C programs with architectural support. Intel’s Memory

Protection Extensions (MPX) incurs an average performance overhead of 50% due to the com-

plexity of storing and loading bounds metadata. Fortunately, the ARM pointer authentication

(PA) [158] offers a low cost (19.5% overhead for data pointer authentication [121]) and near-

practical pointer authentication in the ARMv8-A processor architecture.

PA [158] is a hardware pointer authentication primitive introduced in the ARMv8.3-A processor

architecture to protect programs from exploiting memory vulnerabilities. PA introduces a set of
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new instructions for calculating and verifying a Pointer Authentication Code (PAC) for pointers.

The use of an unauthenticated pointer would cause a memory translation fault. Each PAC is gen-

erated using a key from a set of five different keys and a tweakable modifier. The kernel generates

the five keys for each process and stores them in internal CPU registers which are not accessible

from userspace code. These keys remain the same throughout the process’s lifetime. Out of the

five keys, two (key a and key b) are used for generating PACs for code pointers, two (key a and key

b) for data pointers and one (key a) for general purpose uses. The modifier usually captures the

contexts of pointer declarations and accesses. For example, the instruction pacia creates the PAC

for the address of an instruction (i.e., code pointer) using key a. Similarly, the instruction pacib

creates the PAC for an instruction address using key b. On the other hand, the instructions pacda

and autda create and authenticate the PAC using the key a for a data pointer. To store PACs, PA

uses the unused bits in the virtual address of 64-bit address space. In a 64-bit Linux kernel, PA

uses 24 bits for the PACs, but the size can vary based on memory scheme and address tag usages.

5.2.4 Threat Model

Attackers’ capabilities in this work are consistent with prior data-oriented attacks [35, 100, 101,

105, 172]. The key capability for a data-oriented attack is the capability to arbitrary memory

read/write in an application’s address space except for the code sections as this is prevented by

Data Execution Prevention (DEP) security feature. In general, the attack model for data-oriented

attacks is powerful because these attacks work in presence of all modern security features such as

DEP [65], full or partial Relocation Read-Only, ASLR [38, 47, 52, 84, 97, 98, 108, 111, 199, 213],

CPI [12, 49, 103, 104, 115, 126, 130, 158], CFI [24, 83, 124, 130, 132, 152, 222, 224], and memory

protection [11, 53, 197, 215]. Since our prioritization framework works with underlying defenses

(ARM PA [158], MPX [104], Softbound [134], AddressSanitizer [175], etc.), we assume these

defenses are protected. We also attackers have no access to higher privilege levels. For example,

the kernel stores the PA keys, so we assume that attackers cannot access the keys.
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5.3 Data Object Prioritization

Figure 5.1 shows a high-level overview of our data object/pointer prioritization technique. The

technique has two major parts: i) data object identification and tracking and ii) sensitive data ob-

ject detection and prioritization. We utilize system or library I/O functions to identify and mark

data objects (as tainted) that receive input from external sources (e.g., network, file system, and

keyboard). We propagate the marked (i.e., tainted) data objects and propagate their values through-

out a program. We use rule-based heuristics to identify sensitive tainted data objects. Finally, we

prioritize sensitive data objects aiming to fine-tune security and performance of existing security

mechanisms (e.g., asan [176], PA [158], MPX [104], Softbound [134], CETS [135], etc.).

Figure 5.1: High-level overview of the data object prioritization technique.

5.3.1 Rule-based Prioritization

The data-oriented attacks in system security domains are evolving fast. Besides, attackers apply

their distinct strategies to mount attacks. Oftentimes, the end-to-end strategies differ from each

other. The unique attackers’ capabilities make the anticipation of future attacks difficult. One way

to capture existing attacks and anticipate future attacks is to break down advanced exploits and

figure out the common components. These common components can help us design generic rules
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and improve coverage for future attacks.

Our prioritization framework uses rule-based heuristics to detect sensitive data objects/pointers

that could potentially lead to vulnerabilities. The rules are vulnerability and exploit driven, i.e., we

analyzed existing exploits and vulnerabilities to extract these rules. We identify the vulnerable data

objects (and their pointers) from exploit program [35, 100], vulnerability description (CVE-2001-

0820, CVE-2006-5815, CVE-2006-5815, CVE-2017-9430, CVE-2018-6151, CVE-2018-10111,

CVE-2021-23017, etc.) exploit description 2, and literature [73, 173]. We identified two kinds of

manipulation of data flow from these exploits/vulnerabilities: i) manipulation of data pointers, and

ii) manipulation of data objects. We categorize the extracted seven rules into four categories.

Table 5.1: Simple rules to detect sensitive data objects and pointers.

Rule # Category Short Description Protection Example CVE

Rule 1
Control
alteration

Data pointers used in predicates
may alter program behavior AT/MT CVE-2006-5815

Rule 2
Control
alteration

Data pointers used in loops may
alter program flow or leak
sensitive information

AT/MT CVE-2006-5815

Rule 3
Proximity-
based

Data pointers that are near to
data buffers AT/MT CVE-2002-1496

Rule 4
Proximity-
based

Data pointers used in vulnerable
functions MT CVE-2021-31226

Rule 5 Erroneous
Data pointers that have been cast
to different types MT CVE-2018-6151

Rule 6 Erroneous
Data pointers that have
out-of-bound access MT CVE-2021-21773

Rule 7 Unguarded
Pointers that unbounded
allocations MT CVE-2020-11612

Rule 1 prioritizes data objects/pointers with predicate-use or p-use, i.e., whether a data object/-

pointer has been used in any predicates. Listing 5.2 shows a real-world example where the ma-

nipulation of pointer cp and pbuf in the conditions at line 10 and 17 may change the program’s

flow.

Rule 2 prioritizes data objects/pointers used in a loop condition and a loop body. Listing 5.3 shows

an example from ProFTPD v1.3.0 where the manipulation of pointer src can control the execution

of a loop. One can find DOP [101] gadgets by controlling the execution of the loop. A stack-based
2https://github.com/CyberGrandChallenge/samples
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1 char *sreplace(char *s, ...) {
2 ...
3 char *src = s, *cp, **rptr;
4 char buf[BUF_MAX] = {'\0'}, *pbuf = NULL;
5 size_t rlen = 0, blen; cp = buf;
6 ...
7 while( *src ) {
8 ...
9 // replace a specifier with dynamic content stored in *rptr

10 sstrncpy(cp, *rptr, blen − strlen(pbuf));
11 if(((cp + rlen) − pbuf + 1) > blen){
12 cp = pbuf + blen − 1; ...
13 } /* Overflow Check */
14 ...
15 }
16 ...
17 if((cp − pbuf + 1) > blen) { // off−by−one error
18 cp = pbuf + blen − 1; ...
19 } /* Overflow Check */
20 *cp++ = *src++;
21 ...
22 }

Listing 5.2: Usage of data pointer cp and pbuf in conditions at lines 10 and 17 in ProFTPD
v1.3.0 (CVE-2006-5815)

buffer overflow (CVE-2006-5815) allows the overwrite of the data pointer src at line 3.

1 char *sstrncpy(char *dest, const char *src, size_t n) {
2 register char *d = dest;
3 for (; *src && n > 1; n−−)
4 *d++ = *src++;
5 }

Listing 5.3: Loop manipulation for DOP [101] gadgets in ProFTPD v1.3.0 through data
pointer overwrite (CVE-2006-5815)

It is important to mention here that data pointer manipulation can leak information about a pro-

gram’s address space by exploiting conditional branches or exploiting loops [73, 173].

Rule 3 detects memory allocations that include an addressable buffer—typically an array—that is

followed by a pointer. The exploitation of this pattern is attractive for two reasons. First, because

the overflow and target are in the same buffer, there is no dependence on the overall memory layout

of the program. And second, due to limitations of allocation-based bounds checking [134], such

overflows can be performed even in the presence of common memory-protection schemes (such as

the allocation-based AddressSanitizer [176]). Listing 5.4 shows an example of such an exploitable

code pattern.
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1 typedef struct mystruct_s {
2 char buffer[64];
3 __attribute__((signed)) int (*printer_func)(const char*, ...);
4 } mystruct_t;
5 void func(mystruct_t *ms) {
6 scanf("%s", ms−>buffer);
7 ms−>printer_func(ms−>buffer);
8 }

Listing 5.4: A simplistic example of Rule 3

Rule 4 prioritizes data objects/pointers used in vulnerable library functions such as strcpy(), mem-

cpy(), gets(), strncpy(), sprintf(), etc. Listing 5.5 shows a vulnerability (CVE-2017-9430) in

dnstracer v1.9 caused by strcpy function at line 6.

1 int main(int argc, char **argv) {
2 while ((ch = getopt(argc, argv, "4cCoq:r:S:s:t:v")) != −1) {...}
3 ...
4 if (argv[0] == NULL) usage();
5 // check for a trailing dot
6 strcpy(argv0, argv[0]);
7 if (argv0[strlen(argv[0]) − 1] == '.') argv0[strlen(argv[0]) − 1] = 0;
8 ...
9 }

Listing 5.5: Stack-based buffer overflow (CVE-2017-9430) in dnstracer v1.9 through strcpy
function.

Rule 5 prioritizes data pointers that have been cast from one type to another type. Listing 5.6

shows a bad cast in Google Chrome version prior to 66.0.3359.117 at line 2. At line 2, a Chrome-

DownloadManagerDelegate pointer is assigned after casting download_manager->GetDelegate()

to ChromeDownloadManagerDelegate*. Here, the download_manager->GetDelegate() returns a

DownloadManagerDelegate pointer. But the download_manager->GetDelegate() can also return

DevToolsDownloadManagerDelegate pointer through Chrome extensions. This bad cast vulnera-

bility (CVE-2018-6151) allows attackers to perform an out-of-bounds memory read.

1 DownloadPrefs* DownloadPrefs::FromDownloadManager(DownloadManager* download_manager) {
2 ChromeDownloadManagerDelegate* delegate = static_cast<ChromeDownloadManagerDelegate*>(download_manager−>

GetDelegate());
3 return delegate−>download_prefs();
4 }

Listing 5.6: Vulnerability due to bad casting in Google Chrome version prior to 66.0.3359.117

Rule 6 prioritizes data objects/pointers where out of bound access may happen due to a set of
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pointer arithmetic or due to incorrect indices. Listing 5.7 shows an example of out of bounds

write in Nginx v0.6.18 - v1.20.0. Here, the out-of-bound write happens due to an off-by-one error

(CVE-2021-23017). An extra dot (’.’) character (i.e, 0x2E) can overwrite the least significant byte

of the next heap chunk size metadata which may impact the size of the next heap chunk.

1 static ngx_int_t ngx_resolver_copy(ngx_resolver_t *r, ngx_str_t *name, u_char *buf, u_char *src, u_char *last) {
2 char *err;
3 u_char *p, *dst;
4 ssize_t len;
5 ngx_uint_t n;
6 ...
7 /* len is calculated using buf buffer with proper null byte check */
8 ...
9 len += 1 + n;

10 ...
11 dst = ngx_resolver_alloc(r, len);
12 name−>data = dst;
13 n = *src++;
14 for ( ;; ) {
15 if (n & 0xc0) { // when processing the label
16 ...
17 n = *src++;
18 } else { // when processing a dot
19 ngx_strlow(dst, src, n);
20 dst += n; src += n;
21 n = *src++;
22 if (n != 0) { // this '.' will be extra when src points to "NUL Byte"
23 *dst++ = '.';
24 }
25 }
26 }
27 }

Listing 5.7: Out-of-bound write in Nginx v0.6.18 - v1.20.0

Rule 7 identifies and prioritizes data objects/pointers that miss bound checking while being allo-

cated, i.e., any data pointer that is allocated without any bound checking. Listing 5.8 shows an

example of unbounded allocation at line 13 in the GEGL version through 0.3.32. This unbounded

memory allocation leads to a denial of service (CVE-2018-10111).

5.3.2 Completeness and Representativeness of the Rules

As we discussed above, the unique attackers’ capabilities make the anticipation of future attacks

difficult. And, due to this difficulty of anticipating future attacks, it is challenging to guarantee the

coverage and completeness of any rule-based heuristics that aim to capture present data-oriented
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1 static gboolean render_rectangle (GeglProcessor *processor) {
2 GeglCache *cache = NULL;
3 const Babl *format = NULL;
4 gint pxsize;
5 ...
6 cache = gegl_node_get_cache (processor−>input);
7 format = gegl_buffer_get_format ((GeglBuffer *)cache);
8 pxsize = babl_format_get_bytes_per_pixel (format);
9 ...

10 GeglRectangle *dr = processor−>dirty_rectangles−>data;
11 ...
12 guchar *buf; /* create a buffer and initialise it */
13 buf = g_malloc (dr−>width * dr−>height * pxsize);
14 g_assert (buf);
15 ...
16 }

Listing 5.8: Unbounded allocation in GEGL version through 0.3.32 leads to denial of service
(CVE-2018-10111)

1 #include <stdio.h>
2

3 void main() {
4 int size = 10, *p, *q;
5 p = &size;
6 q = p;
7 *q = 20;
8

9 printf("%d\n", size);
10 }

(a) Sample C program
(b) LLVM IR

(c) Program Assignment Graph (PAG) (d) Constraint Graph

Figure 5.2: A sample program with LLVM IR, program assignment graph, and constraint graph.
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attacks as well as anticipate future attacks. Similarly, a signature-based rule or end-to-end rule is

not well-representative as a minor change in the attack pattern may not be covered by the exist-

ing rule. Thus, the representativeness of a rule depends on how readily the rule is applicable for

various attacks. To achieve the coverage and representativeness of rules, we extract the rules by

breaking down exploits and identifying key exploit strategies such as manipulation of conditions

and loops through data pointers, utilizing the position of a data pointer (e.g., adjacent to a data

buffer), utilizing vulnerable library functions, finding unbounded allocations and so on. Exploits

may use a strategy or a combination of strategies from our identified strategies to construct their

attacks. Our identified strategies are our best effort rules that tend to work well, as we experimen-

tally confirmed in our evaluation 5.4. However, it will not be surprising to add new rules in our

rule set to incorporate another class of future attacks.

We use the seven rules to flag/detect sensitive data objects/pointers from the tainted data object-

s/pointers. When a rule flags a pointer, our technique also flags the data object where the pointer

points to. Two key requirements for tracking tainted values and applying our rules are i) pointer

analysis, and ii) data/value flow graph. In the following section, we discuss the technique for

constructing the data flow graph using pointer analysis.

5.3.3 Data Flow Construction

We apply the prioritization heuristics on top of a tainted data/value flow graph of a program.

To construct the data flow graph, we utilize the interprocedural Static Value Flow (SVF) analy-

sis [193]. SVF implements various pointer analysis techniques. We use Andersen’s points-to anal-

ysis [7] for constructing our SVF graph. However, practical considerations must be made when

choosing a points-to analysis technique considering the trade-offs between speed and precision.

We discuss these practical considerations in Chapter 6. Next, we briefly discuss the construction

of the SVF graph below. A short and long description of how SVF performs static value flow

analysis on LLVM IR can be found in [195] and [193], respectively.
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Since SVF performs its analysis on top of the LLVM IR, we first briefly discuss the key LLVM

IR instructions. Figure 5.2 (b) shows the LLVM IR instructions of a sample C program in Fig-

ure 5.2 (a).

• AllocaInst. The alloca instruction allocates memory for local variables in a function.

• StoreInst. The store instruction writes the content of the first operand to the memory pointed

by the second operand.

• LoadInst. The load instruction reads from memory pointed by the first operand.

• GetElementPtrInst. The getelementptr instruction reads a field or subelement of an aggre-

gated data structure such as struct or array.

• CallInst. The call instruction calls a function.

SVF first converts LLVM IR instructions into a Program Assignment Graph (PAG). A node in a

PAG is of two types: i) ValPN, and ii) ObjPN. ValPN represents an LLVM value (i.e., an IR pointer)

and ObjPN represents an abstract memory object (i.e., the address-taken variable of an IR pointer).

An edge in the PAG represents the constraints between nodes by capturing the address-of, load,

store, and copy associations. For example, node 9 (rectangular shape) in the program assignment

graph of Figure 5.2 (c) is a value pointer pointing to the object node 10 (hexagonal shape). The

edge between node 9 and node 10 is an address-of constraint.

To perform pointer analysis, SVF starts with a copy of PAG. This copy of the PAG is called a

constraint graph. SVF solves the constraints in the constraint graph by converting Load (red color

edges) and Store (blue color edges) constraints to Copy constraints (black color edges) on each en-

counter of Load and Store instructions. The constraint graph in Figure 5.2 (d) is the final constraint

graph after completing the constraint resolution. We can determine the points-to set from the final

version of the constraint graph. For example, the points-set of node 11 in Figure 5.2 (d) is {12}

and node 20 is {10} by following Load, Store, and Copy constraints from a node.
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To construct Static Value Flow Graph (SVFG), SVF first annotates the potential use of a variable at

loads, potential definitions and uses of the variable at stores, inter-procedural uses and definitions

at call sites, and parameter passing/return at a function entries/exits, where the variable is pointed

by a top-level pointer. SVF utilizes the points-to sets constructed in the previous steps using the

constraint graph to find the points-to set of a top-level pointer. Finally, SVF constructs SVFG by

converting all the address-taken variables to Static Single Assignment (SSA) form, merging mul-

tiple definitions using phi instructions, and connecting the definition-uses for each SSA variable.

Figure 5.4 shows the SVFG of an example program in Figure 5.3. We utilize this example program

to demonstrate our taint analysis and rule design.

The example program (Figure 5.3) has five memory objects (two local, two dynamic, and one

global). The hexagonal shapes (nodes 1, 5, 13, 32, and 39) in the SVF graph (Figure 5.4) show

the memory object nodes. The rectangular nodes show how the values of the memory objects flow

through different IR instructions.

5.3.4 Taint Analysis

We design our rules on top of the tainted SVF graph. We identify the taint sources and propagate

the tainted data through the SVF graph. The seven rules detect vulnerable tainted data (i.e., taint

sinks).

Identification of tainted sources. Vulnerable data objects or pointers must be externally manipu-

latable. To manipulate any data in a program, attackers must use the input channels/streams (e.g.,

network, file system, or keyboard) to pass their crafted commands or packets. Thus, the input

channels are the intuitive sources for taint analysis. In most cases, the input sources are standard

Glibc library functions such as read, recv, getc, recvmsg, scanf, fscanf, fread, fgets, etc. However,

sometimes applications use some wrapper functions of the standard library functions. Identifica-

tion of these wrapper functions can make analysis faster. We analyze nine real-world programs and

twenty DARPA Cyber Grand Challenges to identify the library functions as well as the wrapper
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functions around those library functions. We call these functions input reading functions. We also

consider the main function as an input reading function. We start the tainting process from each

parameter and return-value (i.e., if a value is returned) of an input reading function if the parameter

or returned value is a memory object/pointer. If a parameter or returned value is a pointer, then the

tainting process starts from the points-to set of the pointer parameter or returned value.

1 #define MAX_SIZE 11
2 int global_array[100] = {−1};
3
4 void testcase(int ts) {
5 char buf[10];
6 //if (ts > MAX_SIZE) exit(0);
7 char *s = (char *) malloc(ts * sizeof(char));
8 for(int i=0; i < ts; i++) s[i] = i + '0';
9 if (s[0]=='a') printf("%d\n", s[ts−1]);

10 fscanf(stdin, "%s", s); //'s' marked as tainted
11 memcpy(buf, s, strlen(s)); // sink
12 printf("%s\n", buf);
13 }

10 int heap (int argc) {
11 int *array = (int *)malloc(sizeof(int) *100);
12 int res = array[argc + 100]; // overflow
13 free(array);
14 return res;
15 }
16 int main(int argc, char **argv) {
17 int size;
18 scanf("%d", &size); //'size' marked as tainted
19 testcase(size);
20 int r = heap(argc);
21 printf("%d", r);
22 return global_array[argc + 100]; //overflow
23 }

Figure 5.3: Motivating example (C program)

Propagation of tainted data. We propagate the tainted data through the SVF graph simply by

traversing all successors from a tainted node. However, we need to address the following limita-

tions of the SVFG for the completeness of the taint propagation process.

• First, SVF does not capture the dependency between a dynamically allocated object and an

argument of an allocation function.

• Second, it does not add a relationship between an array/object and an index/pointer when

the array or object is accessed through the index or pointer arithmetic.

• Third, it does not track when a function (e.g., memcpy) stores value from one parameter to

another.

We notice some of these limitations in the SVF graph in Figure 5.4. In the example C program

(Figure 5.3), the malloc call uses ts as its argument at line 7. Since ts has been propagated from
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Figure 5.4: Static Value Flow Graph (SVFG) of the motivating example in Figure 5.3. gep ib →
getelementptr inbounds.
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size, it is tainted. Thus, the dynamic object created by malloc needs to be tainted. However, there

exists no way to taint the malloc (node 5 ) by propagating the tainted data from node 1 in the SVF

graph (Figure 5.4).

We notice the second limitation in the SVF graph for lines 18 and 19 in the example program

(Figure 5.3). The malloc call at line 18 uses a constant value as its argument, but the malloced

object is accessed using the argc variable. Since argc is tainted (due to as an argument of main

function), the malloced object needs to be tainted. In this case, we also notice that we are unable to

propagate the tainted value from node 30 (i.e., argc) to node 32 (i.e., the malloc call) in the SVF

graph).

The node 29 in the SVF graph shows the third limitation where the memcpy function copies the

malloced object %call to %buf. A simple traversal through the SVF graph nodes does not show

the dependency between node 26 and node 27. Beside, the dependency between node 26 and any

successor nodes (node P and Q ) of node 27 is also not captured.

To address the first two limitations, we identify all the address-taken memory object nodes and GEP

instruction nodes in the SVFG with one or more tainted operands of these nodes and start/continue

the tainting process from/through these nodes. We maintain a data structure to store the node ID for

all tainted nodes. We utilize this data structure to identify address-taken memory object nodes and

GEP instruction nodes with tainted operands. We discard the first operand of GEP instruction as

we aim to identify whether the second or subsequent operands make the first operand tainted. The

address-taken nodes in the SVFG (Figure 5.4) are 1 , 5 , 27 , 32 and 39 where only node 5 has a

tainted operand (i.e., %conv). So, we taint node 5 and continue the tainting process through node

5 . All the GEP instruction nodes in the SVFG are 11, 22, 28, 35, and 42. We discard node

28 because the GEP instruction of this node has no tainted operand. For the rest nodes, we obtain

the points-to set of the first operand of a GEP instruction and start the tainting process from each

node of the points-to set if the node is not already tainted. For example, the points-to set of the first

operand of GEP instruction in node 35 is {32}. So, we start the tainting process from node 32.
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We address the third limitation by identifying all function call instructions that store the value

of their second parameter to the first parameter. Such function call instructions include memcpy,

memmove, strcpy, strncpy, strcat, and their variations. If the second parameter is tainted, then we

taint the first parameter and its points-to set. One such function call in Figure 5.4 is memcpy (node

29). Since the second parameter of the memcpy is tainted, we update the taint list by starting the

tainting process from the first parameter (i.e., %buf ) and its points-to set (in this case %buf ).

Algorithm 5.5 shows the pseudocode of the tainting process. Lines 3–8 in the algorithm identify

the taint sources and start the taint propagation from those sources. Lines 9–12 propagate tainted

data through dynamically allocated objects if the argument of allocation function is tainted. Lines

13–17 taint all base objects (i.e., points-to set of operand zero) of a GEP instruction if any operands

(starting from the second operand) of GEP are tainted. Finally, lines 18–24 check if any function

copies values from its second argument to the first argument, if so, then taint the first argument as

well as its points-to set. The UpdateTaintList function (lines 18—25) traverses all the reachable

nodes starting from a node in the SVFG.

Identification of sinks. We identify seven sink-types (i.e., sensitive uses of data object/pointer)

using our rules in Table 5.1. We discuss the sink identification in the next section (Section 5.3.5).

5.3.5 Rule Design

The complete process of identifying one sink type is different from another. However, the identifi-

cation processes share some steps. To determine sinks using Rule 1, 2, 4, and 5, we first identify

the tainted address-taken memory objects from the SVF graph considering only the object nodes

whose object-types are pointer types. Then, we obtain the set of pointers for each identified object

using the pointer analysis result. Note that this pointer set is different from a points-to set as a

points-to set contains a set of objects whereas the pointer set in this case contains a set of pointers

whose points-to sets contain the given object. For example, one of the tainted object-nodes from

the SVFG in Figure 5.4 is node 5 . The pointer set pointing to node 5 is {5, 11, 22}. We utilize
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Figure 5.5: Taint source identification and propagation

the LLVM built-in definition-use chains for the nodes in this pointer set to construct the usage list

of node 5 which is {5, 6, 7, 8, 11, 12, 13, 14, 22, 25, 26}. Once we construct this usage list, we
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apply the following techniques to capture sinks using Rule 1, 2, 4, and 5.

• To capture sinks using Rule 1, i.e., usage of data pointers in predicates, we check if any node

from the usage list has a compare instruction.

• To capture sinks using Rule 2, i.e., usage of data pointers in loops, we check if any node

from the usage list has a load/store/compare instruction and has been used in a loop’s prede-

cessor, header, and latch. We get the loop information from an IR module using the LLVM

LoopAnalysis 3 pass.

• We capture the sinks using Rule 4, i.e., usage of data pointers in vulnerable functions, by

checking if any arguments of a vulnerable function are from the usage list.

• We check if any node from the usage list has a bitcast instruction to check sinks using Rule

5 to find out incompatible casting of data pointers. LLVM IR uses the bitcast instructions to

convert one data type to another. We filtered out all the trivial casting like char * to anything

or vice-versa and non-pointer casts. We check the incompatibility of bitcast’s operands by

determining the allocation size of each operand’s pointed type using the data layout of an

LLVM module.

We detect the sinks related to data pointers that are closed to a data buffer (Rule 3) by traversing all

the tainted Alloca instructions in a function and all the tainted global variables to see if any pointer

follows a tainted data buffer. If so, we mark the pointer as sensitive.

To detect sinks related to out-of-bound access (Rule 6), we first obtain all the tainted objects and

pointers. We then apply three optimizations to filter out safe tainted objects/pointers. First, we

only need the object/pointer operands from Load, Store, and Call SVF nodes as these are the nodes

that deal with memory accesses. Second, we apply the stack safety analysis 4 to filter out safe

allocated variables that are free from memory access bugs. And finally, we statically approximate

3https://llvm.org/doxygen/classllvm_1_1LoopAnalysis.html
4https://llvm.org/docs/StackSafetyAnalysis.html
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the size and offset of the rest operands using LLVM’s ObjectSizeOffsetVisitor 5 class. We flag the

rest operands as sensitive.

To obtain the sinks using Rule 7, i.e., unbounded memory allocations, we first determine the dy-

namic memory allocation nodes from the SVF graph using SVF’s memory allocation APIs. We

filter out the allocation nodes that are untainted and are in dead functions. Once we get the allo-

cation sites or nodes in the SVF graph, we obtain the corresponding nodes in the Interprocedural

Control-Flow Graph (ICFG). Figure 5.6 shows the partial ICFG for the testcase function where

node 11 is the ICFG node for node 5 in the SVFG (Figure 5.4). We perform a backward search

from the obtained ICFG nodes to fetch cmp instructions. We follow multiple search paths to ex-

tract cmp instructions. The goal is to check if the argument used in a memory allocation function is

bounded. It is straightforward to search backwardly for cmp instructions. However, there are three

key challenges here: i) how to deal with path explosion, ii) how to deal with loops in the ICFG,

and iii) how to determine that a cmp instruction is the relevant cmp instruction that is related to the

argument of a memory allocation function.

To address the first challenge, we use two parameters to avoid the problem of path explosion. The

first and second parameters dictate how many paths to explore and how far to explore in a path,

respectively. We can tune these parameters to balance between performance and precision of our

analysis. To address the second challenge, we modify the ICFG by removing all the edges that

create loops in the graph. We address the third limitation by determining if a cmp instruction and

the argument of an allocation function have a common ancestor in the SVF graph.

To find the common ancestor, we first obtain all the SVF nodes that are backwardly reachable from

an allocation’s argument node. The argument of SVF node 5 in Figure 5.4 is %conv (node 4 ). For

convenience, we extract the partial SVF graph in Figure 5.7. The reachable nodes from node 4 in

the partial SVF graph are node 2 , node 3 , node 4’ , and node 4 . We then take each cmp node from

the search paths that we have already obtained from the ICFG, obtain its corresponding node(s)

5https://llvm.org/doxygen/classllvm_1_1ObjectSizeOffsetVisitor.html
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Figure 5.6: Interprocedural Control-Flow Graph (ICFG) for testcase function in Figure 5.3.

from the SVF graph, and traverse backwardly from the corresponding node(s). If the backward

traversal encounters any node from the reachable nodes, that means the cmp node has a common

ancestor with the argument node of an allocation function, hence this cmp node is related to the

argument of the allocation function. In Figure 5.7, the common ancestor of node ID 4 and node ID

15 is node ID 3.

It is important to mention that the symbolic execution [110] can improve the precision of Rule

7. Our approximation is to confirm the presence of a bound condition. But sometimes the bound

conditions can be wrong or have one type of bound checking (i.e., lower or upper bound checking).

This wrong bound condition or one-way bound checking is the common source of many real-world

vulnerabilities (e.g., CVE-2006-5815 and CVE-2021-23017). Our rule along with the symbolic

execution can precisely determine if any allocation is correctly bounded.
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Figure 5.7: Partial SVF graph. Common ancestor of node 4 and node 15 is node 3.

5.4 Evaluation

5.4.1 Implementation

We implemented our analysis in LLVM 12 6. To perform the pointer analysis and data-flow con-

struction, we utilize the latest version of SVF [193]. SVF also uses LLVM 12. We performed our

analysis on top of the LLVM bitcode. We obtained a single whole program bitcode file using the

whole program LLVM tool 7. We have implemented ten LLVM analysis passes to perform taint

tracking, i.e, taint source identification, taint propagation, and taint sink detection. We have also

implemented one instrumentation pass to instrument LLVM IR to include ARM pointer authenti-

cation instructions. Besides, we have modified the Address Sanitizer tool [175] to add an option

to instrument data objects/pointers prioritized by our rules. We will open our source code to the

public upon acceptance of this work.

5.4.2 Prioritization Effectiveness

We evaluate the effectiveness of our prioritization technique by flagging/prioritizing vulnerable

data objects. A requirement for this evaluation is ground truth vulnerable data objects. To the best

6https://releases.llvm.org/12.0.0/docs/ReleaseNotes.html
7https://github.com/travitch/whole-program-llvm
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of our knowledge, there exists no such dataset. There exists datasets such as DARPA Cyber Grand

challenges [1] and Software Assurance Reference (SAR) [144] that have annotations of the loca-

tions of vulnerabilities. We construct the ground truths of vulnerable data objects by identifying

33 vulnerable data objects from 18 programs including 5 real-world applications and 10 test cases

from SAR dataset. We extracted six (6) vulnerable data objects from five (5) vulnerable server pro-

grams where attackers have demonstrated data-oriented exploits. We identified 18 vulnerable data

objects from 13 DARPA Cyber Grand challenges and 10 data objects from SAR dataset, where

the data objects are related to a vulnerability in data buffers or pointers. The SAR dataset [144]

contains thousands of test cases by adding minor modifications to a base test case in a category

of Common Weakness Enumeration (CWE). We select 10 vulnerable objects from these base test

cases combining C and C++ sources as well as covering five CWE categories. We identify the vul-

nerable data objects from exploits for ghttpd-1.4, wu-ftpd-2.6.0, proftpd-1.3.0, httpd-2.4.49, and

nullhttpd-0.5.0 through exploit program [35, 100], exploit description 8, and literature [73, 173].

The DARPA Cyber Grand challenges and SAR dataset have labels for the location of the vulner-

abilities. We manually analyze each challenge to map the vulnerable data objects/pointers to their

defined, allocation and used locations in the respective programs. Table 5.2 shows the vulnera-

ble data objects/pointers extracted from different applications/programs. We have excluded the

allocation source code for some data objects from the table for brevity.

Table 5.3 shows the 18 programs and 10 test cases in our evaluation having a total of 13,120 data

objects. Out of these 13,120 data objects, the five real-world programs contain 12,591 data objects

while the DARPA challenges contain 208 and the SAR dataset contains 321. According to the

result in Table 5.3, our prioritization technique prioritizes 2,324 (∼18%) data objects on average,

out of 12,591 data objects from real-world applications. That means the rules filter out 82% of

data objects on average that do not need protection. The filtration rate is much lesser (25%) for

the DARPA CGC challenges compared to the server programs due to the size of the challenge

programs. The CGC challenges are small programs with vulnerabilities designed for evaluating

8https://github.com/CyberGrandChallenge/samples
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Table 5.2: Vulnerable data objects/pointers in various programs with their definition functions and
line numbers. The * in some source file names and function names indicate that parts of the file
name or function name have been truncated for space.

Ground truth data object Application Source Defined function Line #
char *ptr ghttpd-1.4 protocol.c serverconnection 62
struct passwd *pw wu-ftpd-2.6.0 ftpd.c global 264
char *src proftpd-1.3.0 src/support.c sreplace 631
char *cp proftpd-1.3.0 src/support.c sreplace 631
apr_array_header_t *log_format; httpd-2.4.7 server/log.c log_error_core 1209
char *pPostData; nullhttpd-0.5.0 src/http.c ReadPOSTData 92

char first[32]; CROMU_00003 yolodex.c struct _contact 41
char last[32]; CROMU_00003 yolodex.c struct _contact 42
char phone[16]; CROMU_00003 yolodex.c struct _contact 43
char name[MAX_NAME_LEN]; CROMU_00039 packet.c HandleReadRequest 155
char buf[64]; KPRCA_00011 main.c login 286
int *func_args KPRCA_00013 accel.c infixtorpn 482
question_t *cur KPRCA_00023 form.c handle_update 258
cgcf_Shdr *shdr = NULL; KPRCA_00037 main.c main 170
writer_t *writer KPRCA_00040 main.c decompress 637
char output[MAX_DATA_SIZE] KPRCA_00047 main.c perform_ocr 304
locker_t *locker KPRCA_00050 vault.c store_in_vault 140
char *dp KPRCA_00056 service.c execute_program 157
unsigned char **rot_table KPRCA_00064 sc.c sc_bwt 248
unsigned char *out KPRCA_00064 sc.c sc_bwt 249
char* message_buf=NULL NRFIN_00033 service.c auth_failure 74
char* message_buf; NRFIN_00033 service.c auth_success 105
char **lines NRFIN_00042 viewscript.c run_viewscript 603

int buffer[10] CWE121*/s01/ *_socket_01.c *_socket_01_bad 107
int buffer[10] CWE121*/s01/ *_fgets_01.c *_fgets_01_bad 44
int buffer[10] CWE121*/s01/ *_fscanf_01.c *_fscanf_01_bad 31
int * buffer CWE122*/s01/ *_socket_01.cpp bad 110
int * buffer CWE122*/s01/ *_fgets_01.cpp bad 47
int * buffer CWE122*/s01/ *_fscanf_01.cpp bad 34
int buffer[10] CWE126*/s01/ *_fgets_01.c *_fgets_01_bad 43
int * buffer CWE134*/s01/ *_fprintf_01.c *_socket_fprintf_01_bad 49
char * myString; CWE789*/s01/ *_socket_01.c *_socket_01_bad 118
char * myString; CWE789*/s01/ *_char_fgets_01.cpp bad 58

different techniques that aim to capture or fix the vulnerabilities. Similarly, the SAR test cases are

small programs designed to evaluate accuracy of a static analysis by adding a minor medication

on top of a base program. Also, the SAR test cases have a small number of data objects that have

external dependencies. And, all the test cases have the same or similar format. That is why we

observe the similar number of data objects and prioritized data objects for the SAR test cases.
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We rank the prioritized data objects for each application and test cases. To rank the data objects,

we use the number of rules that mark a data object as sensitive or vulnerable as a metric and use

the metric to rank all the data objects in an application in a decreasing order making the top data

objects the most sensitive.

The actual effectiveness of the prioritization technique relies on how effectively our technique

prioritizes vulnerable data objects. To measure how well our technique prioritizes vulnerable data

objects, we tested 33 ground truth vulnerable data objects (column one in Table 5.3) to see if our

prioritization technique flags and ranks those 33 data objects. Out of the 33 ground truth data

objects, our technique flagged 32 data objects as sensitive. We also determined how well our

technique ranks these 32 vulnerable data objects.

The fifth column of table 5.3 shows the top k number of prioritized data objects that include the

ground truth data object(s). For example, the top four prioritized data objects in ghttpd-1.4 server

include the ground truth data object pointed by char *ptr.

We computed the percentages of this top k number with respect to the prioritized data objects and

all data objects in the sixth and seventh columns, respectively. On average, we noticed that all

ground truth data objects can be found in the top 11% of the prioritized data objects for real-world

server applications. These top 11% data objects with respect to the prioritized data objects are

only 3% of all data objects for an application, on average. For DARPA CGC challenges, we found

the ground truths are in the top 25% of the prioritized data objects where the 30% data objects

are 24% with respect to all data objects. The top k percentage is higher (60%) for SAR dataset

compared to real-world or DARPA challenges. The reason is that the SAR test cases have a few

objects with external dependencies indicating a few number of objects to prioritize. However, our

rules successfully flagged and ranked seven vulnerable data objects as the top one out of the ten

data objects.

These results suggest that we may need to protect as low as only around 3% of all data objects

on average for a real-world application. We can decrease or increase this percentage with a trade-
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Table 5.3: The number and percentage of top k prioritized objects needed for detecting/flagging
ground truth data objects in 18 programs including five real-world server applications and 10 test-
cases from SAR dataset.

Ground Truth (GT)
data object (obj)

Program
name

All
data
objs

Prio.
data
objs

GT in
top-k

prio. objs

Percent of
top-k in

prio. objs

Percent of
top-k in
all objs

Real-world applications
char *ptr ghttpd-1.4 77 14 4 24% 5%
struct passwd *pw wu-ftpd-2.6.0 590 378 34 10% 6%
char *src
char *cp proftpd-1.3.0 5070 1313

236
28

18%
2%

5%
1%

apr_array_header_t
*log_format; httpd-2.4.7 6754 587 77 13% 1%

char *pPostData; nullhttpd-0.5.0 100 37 1 2% 1%
Sum.→ 12591 2324 Avg.→ 11% 3%
DARPA CGC challenges

char first[32]
char last[32]
char phone[16]

CROMU_00003 15 12
2
2
2

17%
17%
17%

13%
13%
13%

char name[MAX_
NAME_LEN]; CROMU_00039 8 8 6 75% 75%

char buf[64]; KPRCA_00011 28 19 10 53% 36%
int *func_args KPRCA_00013 38 36 – – –
question_t *cur KPRCA_00023 12 12 1 8% 8%
cgcf_Shdr *shdr =
NULL; KPRCA_00037 9 9 2 22% 22%

writer_t *writer KPRCA_00040 6 5 1 20% 17%
char output[MAX_
OCR_DATA_SIZE] KPRCA_00047 9 8 6 86% 67%

locker_t *locker KPRCA_00050 10 7 1 10% 10%
char *dp KPRCA_00056 6 5 1 20% 17%
unsigned char **
rot_table
unsigned char *out

KPRCA_00064 23 20
12
3

60%
15%

52%
13%

char* message_buf=
NULL
char* message_buf

NRFIN_00033 11 6
2
1

22%
11%

18%
9%

char **lines NRFIN_00042 33 4 1 25% 3%
Sum.→ 208 156 Avg.→ 30% 24%

SAR dataset
int buffer[10] CWE121/s01/socket_01 31 2 2 100% 6%
int buffer[10] CWE121/s01/fgets_01 32 2 1 50% 3%
int buffer[10] CWE121/s01/fscanf_01 31 2 1 50% 3%
int * buffer CWE122/s01/socket_01 32 2 1 50% 3%
int * buffer CWE122/s01/fgets_01 33 2 1 50% 3%
int * buffer CWE122/s01/fscanf_01 32 2 1 50% 3%
int buffer[10] CWE126/s01/fgets_01 32 2 2 100% 6%
char *data CWE134/s01/fprintf_01 32 2 2 100% 6%
char * myString; CWE789/s01/socket_01 32 4 1 25% 3%
char * myString; CWE789/s01/fget_01 33 4 1 25% 3%

Sum.→ 321 24 Avg.→ 60% 4%
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off between performance and security. If we prioritize security, then we need to increase this

percentage, and otherwise for performance.

False positives and false negatives. Our prioritization technique generates a false positive data

object/pointer when a data object/pointer is not sensitive, but our prioritization technique flags and

prioritizes the object/pointer. Similarly, when a data object/pointer is sensitive, but our prioriti-

zation technique does not flag and prioritizes the object/pointer, our technique generates a false

negative.

To find out the number of false positives, we manually analyzed all the prioritized data objects

from the DARPA CGC challenges and SAR dataset. However, it is very challenging to manually

analyze more than 2k prioritized data objects from the five real-world programs (i.e., wu-ftpd-2.6.0,

proftpd-1.3.0, httpd-2.4.7, and nullhttpd-0.5.0). To make our analysis easier, we pseudo-randomly

selected 12 data objects from each of the five applications. That means we randomly selected some

source files from an application and analyzed several data objects from that source file. This makes

our manual analysis easier and accelerated. The second challenge is to precisely identify sensitive

data objects by manual analysis due to complex value flow through pointers. To approximate

the sensitiveness of a data object, we set two criteria: (i) external dependency and (ii) necessary

conditions to fall under at least one rule. If a prioritized data object does not satisfy these two

criteria, we marked it as a false positive. In our evaluation, our prioritization technique has zero

false positives in our tested data objects based on our criteria.

However, one can argue that the technique discussed above will always have zero false positives

as the technique will always find the two criteria. It just reassures the correctness of the taint

analysis and rule enforcement. We understand this limitation and leave it as future work. One

direction could be the use of symbolic execution to figure out the bounds of an object, and identify

the safe access (i.e., read/write operation) of the object. If our technique prioritizes such objects,

then these objects will be considered as false positives. It is also important to note here that over

approximating is fine in this work, i.e., prioritizing some non-sensitive data objects/pointers does
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not hurt as long as the prioritization technique does not miss any sensitive objects/pointers.

Our technique missed one data object from the ground truth data objects, i.e., one false negative out

of 23 ground truths. This data object (int *func_args is from one of the DARPA CGC challenges

(KPRCA_00013). The reason for this false-negative case is due to operational dependence. That

means the data object is not tainted, but operationally dependent on a tainted value.

Listing 5.9 shows an example of such operational dependence. In the listing, the reallocation of

func_args at line 9 depends on the condition at line 7. A specific case of the variable arg_type (i.e.,

case FUNCTION at line 6) increases the index variable func_idx at line 14. However, there is no

data-flow dependency between arg_type and func_idx. This makes the func_args data object only

operationally dependent with arg_type.

1 switch (arg_type) {

2 case DOUBLE:

3 case CELL_ID:

4 enqueue_copy(&output_q, arg, strlen(arg) + 1);

5 break;

6 case FUNCTION:

7 if(func_idx == func_size) {

8 func_size *= 2;

9 int *temp = realloc(func_args, func_size * sizeof(int));

10 if (temp == NULL)

11 goto error;

12 func_args = temp;

13 }

14 func_args[++func_idx] = 0;

15 push_copy(&operators, arg, strlen(arg) + 1);

16 break;

17 case BAD_CELL:

18 break;

19 default:

20 goto error;

21 }

Listing 5.9: False negative case – operational dependence

One can raise the concern of the completeness of our ground truths, i.e., how to make sure that the
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ground truths include all the sensitive or vulnerable data objects that an application can have. If

we can confirm the inclusion of all vulnerable data objects in our ground truths, it can make our

false-negative analysis imprecise. This is also a limitation of our current evaluation. To solve this

limitation, we plan to use fuzzers for automating the ground-truth finding process. The idea is to

apply fuzzers to generate crashes. If the crashes are related to a data object or its pointers, then we

can mark the data object as sensitive. We also leave this as future work.

Our findings in Table 5.3 in terms of identifying and prioritizing the ground truths indicate em-

pirical guarantee as opposed to a theoretical guarantee. We can claim a theoretical guarantee if

we can prove the completeness of our rules. However, proving the completeness of the rules is a

challenging task as the attacks in the system security domain are constantly evolving. We provide

the empirical guarantee through our best effort approach.

Figure 5.8: The number of operations per second in three scenarios after normalizing with the
baseline (i.e., nbench)

5.4.3 Performance Evaluation

We utilize two approaches for evaluating the impact of our prioritization mechanism on perfor-

mance: i) through AddressSanitizer 9 tool and ii) ARM Pointer Authentication mechanism [158].

AddressSanitizer detects memory-related errors by instrumenting data objects by inserting extra

code and enforcing the instrumented code through a runtime library. It can detect various memory-

related errors such as out-of-bounds access, user-after-free, user-after-return, use-after-scope, and

9https://clang.llvm.org/docs/AddressSanitizer.html
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double-free, and invalid-free. Pointer Authentication (PA) [158] introduced in the ARMv8.3-A

processor architecture protects memory-related vulnerabilities by computing and verifying Pointer

Authentication Codes (PACs) for pointers through a set of instructions. The use of unverified

pointers triggers memory translation faults.

Performance evaluation using Address Sanitizer. In this approach, we used four real-world

applications (nginx, httpd, lighttpd, and postgres) and one benchmark program (nbench) to mea-

sure the impact of our prioritization on performance. We prepared three versions of each appli-

cation/benchmark program: i) Normal version when no instrumentation is done, ii) Asan ver-

sion when an application/benchmark program is instrumented with AddressSanitizer, and iii)

Asan+Prio. version when an application/benchmark program is instrumented with AddressSani-

tizer instrumenting only the prioritized data objects. We ran each version of an application against

benchmark workloads and measured the throughput. We measured the CPU Index for the nbench

benchmark program. We used the wrk 10 workload generator for the web servers (i.e., nginx, httpd,

and lighttpd) and sysbench 11 for postgres.

Table 5.4: Performance improvement of our prioritization technique over Address Sanitizer

Instrumentation criteria Overhead

Application
Performance
metric

No Instr.
Instr.

w/ asan
Instr.

w/ asan+prio.
w/ asan

w/ asan
+prio.

nginx throughput 21957 12582 16225 42.7% 26.1%

httpd throughput 47019 26030 34729 44.6% 26.1%

lighttpd throughput 51552 29380 35684 43.0% 30.8%

postgres throughput 1272 672 933 47.2% 26.7%

nbench

CPU Index

for 10 nbench

algorithms

810.43 501.01 677.98 38.2% 16.3%

43.14% 25.2%

Table 5.4 shows the performance of the four applications and one benchmark in the three instru-

mentation criteria. We found that Address Sanitizer incurs around 43% overhead on average com-

pared to the normal instrumentation criteria. When we incorporated our prioritization technique

with Address Sanitizer, we observed the overhead is around 25% on average compared to normal,
10https://github.com/wg/wrk
11https://github.com/akopytov/sysbench
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which improves performance by 18% and reduces the overhead by 42% compared to AddressSan-

itizer.

Figure 5.8 shows the performance comparison between the baseline, vanilla Address Sanitizer, and

Address Sanitizer with prioritized data objects in the nbench byte benchmark dataset. On average,

our approach incurs only a 12% slowdown whereas the vanilla address sanitizer incurs a 33%

slowdown. We are continuing this experiment with the CPU Spec benchmark dataset.

Performance evaluation using ARM PA. We also evaluated the performance improvement of our

prioritization technique using the ARM Pointer Authentication (PA) mechanism. We used ARM

PA to sign and authenticate Store/Load IR instructions of our prioritized data objects/pointers in a

program. We also signed and authenticated Load/Store IR instructions for all data objects/pointers

in the program to compare with our technique. We used five real-world applications (httpd-2.4.49,

orzhttpd-0.0.6, sudo-1.8.3, lighttpd-1.4.17, and proftpd-1.3.0) for this evaluation. The ideal ap-

proach for performance measurement is to run benchmarks against these programs (as we did in

the Address Sanitizer case). Unfortunately, we could not build these programs and run bench-

marks against them as the programs do not have support for cross-compilation which is necessary

for compiling and building the programs for the ARM platform. However, we indirectly measure

the performance improvement by computing the instrumentation size and number of Store/Load

IR instructions to sign/authenticate.

Table 5.5: Reduction of instrumentation size and number of Loads/Stores when applying ARM PA
considering prioritized data/object pointers compared to all data/object pointers.

Reduction (%) when k% of prioritized objects/pointers

Program
Instrumentation size Number of Loads Number of Stores
k=10 k=20 k=100 k=10 k=20 All k=10 k=20 k=100

httpd 90 85 77 90 84 77 95 91 80
orzhttpd 96 96 92 99 99 97 100 100 95

sudo 59 54 29 54 49 29 97 92 51
lighttpd 32 31 21 25 25 18 91 85 50
proftpd 31 28 17 13 11 7 98 88 52

Average → 62% 59% 47% 56% 54% 46% 96% 91% 66%

Table 5.5 shows the reduction of instrumentation size and the number of Load/Store IR instructions
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when we apply ARM PA considering different percentages (10%, 20%, and 100%) of our prior-

itized data objects/pointers compared to all data objects/pointers. On average, we can reduce the

instrumentation size by around 62% by leaving around 56% and 96% Load and Store instructions

uninstrumented, respectively without compromising security as we need to protect only around

11% of all prioritized data objects (refer to Table 5.3). Besides, we can reduce the instrumenta-

tion size and number of Load instructions nearly by 50% and the number of Store instructions by

66% in at the worst case (i.e., k=100%). These results suggest the promise of tuning security vs.

performance according to an application’s necessity.

5.5 Discussion

Our prioritization approach is different from the Clang Static Analyzer 12 as we prioritize data

objects/pointers according to their sensitivity for vulnerabilities. While Clang Static Analyzer

only warns for potential bugs, our goal is to make our prioritization approach generic for underlying

instrumentation techniques or defenses (ARM PA [158], AddressSanitizer [175], MPX [104], etc.).

We believe this makes our prioritization approach different from Clang Static Analyzer.

Another benefit of the prioritization technique is the ability to fine-tune between performance and

security. We have demonstrated the minimum number of data objects (on average) that we need to

protect for blocking exploits. However, one can tune this number by prioritizing security over per-

formance or vice-versa for his/her application. This ability of fine-tuning performance and security

adds the flexibility to keep an application protected while achieving demanded performance.

12https://clang.llvm.org/docs/ClangStaticAnalyzer.html

https://clang.llvm.org/docs/ClangStaticAnalyzer.html


Chapter 6

Guidelines and Practical Considerations

The measurement results in Chapter 3 and Chapter 5 along with our systemization work in Chap-

ter 4 taught us several lessons. However, to apply the lessons effectively and tackle real-world

challenges, we need to make a set of guidelines and practical considerations. Next, we discuss

these guidelines and practical considerations.

Do not underestimate attackers’ capabilities. Attacks in system security domains are evolving

fast. Besides, unique attackers’ strategies make the anticipation of future attacks difficult. These

unique strategies also make the generalization of attackers’ capabilities challenging. In our work,

we attempted to generalize and measure attackers’ capabilities using various gadget sets such as

the Turing-complete gadget set. Our approach of measuring attackers’ capabilities through various

gadget sets represents our best efforts, by no means the only way. For example, a pair of load

and store gadgets may potentially replace a move-register gadget. This replacement relaxes the

need for having a move-register gadget in the Turing-complete gadget set, though the replacement

may not be directly equivalent due to possibly mismatching memory offsets of extended foot-

print load gadgets or the scarcity of minimum footprint load gadgets. Excluding load-n-store from

the Turing-complete gadget set might underestimate attackers’ capabilities, while including them

might overestimate attackers’ capabilities. This is why it is important to strike a balance between

attackers’ capabilities through our measurement. We attempted to balance the attackers’ capabili-

ties through our measurements by breaking down the Turing-complete gadget set into two smaller

gadget sets: i) priority gadget set and ii) MOV TC gadget set. However, these smaller sets un-

derestimate attackers’ capabilities as some attackers may only need a few gadgets to perform their

134
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attacks. Our measurements through these gadget sets suggest a way to assess generalized attack-

ers’ capabilities, but may not reflect too specific or very unique attackers’ capabilities. Similarly,

the upper bound measurement also does not guarantee protection against some attackers. A shorter

interval may still allow attackers to gain information. We call the upper bound of re-randomization

intervals as the “best-case” re-randomization interval from a defender’s perspective because the

defender has to re-randomize by the time of the interval, if not sooner. This raises the question

regarding the effectiveness of “best-case” intervals over “worst-case” intervals. The “worst-case”

interval indicates the time required to build a useful gadget chain using a minimal set of gadgets.

In reality, attackers’ goals vary. It is difficult to determine a minimum set of gadgets common and

necessary across all attack chains.

Do not overestimate attackers’ capabilities. Existing attack demonstrations assume the capabil-

ity of a leaked code pointer for code reuse attacks [18, 27, 28, 185] and the capability of arbitrary

read/write for data-oriented attacks [100, 101, 106, 133, 162, 168, 196, 219] through remote ex-

ploitation of a vulnerability. The leaked content or arbitrary read/capability is a must-have in

launching exploits, however, most proof-of-concept attacks assume these capabilities. In reality,

attackers may need to use memory disclosure vulnerabilities (e.g., heap overflows, use-after-free,

type confusion, etc.) and weaknesses in system internals (e.g., vulnerabilities in the Glibc malloc

implementation or its variants [9, 96], Heap Feng Shui [190], and Flip Feng Shui [160]) to leak

memory contents or gain arbitrary read/write access. We seriously need to assess the practicality

of this assumption. Besides, it is also necessary to evaluate how useful arbitrary reads are. Our

assessment of examining the overall risk associated with stack, heap, and data segments can be

the first step for this evaluation. However, more system measurement approaches are necessary to

complete this assessment.

Choose the right metric. In our measurements, we have used the gadget availability and gadget

quality (i.e., gadget corruption rate) metrics. However, are these the right metrics to use? For

example, the measurement using gadget availability has a limitation of precisely estimating attack-

ers’ capabilities in all scenarios. Thus, refining the gadget metrics would be useful. Similarly,
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we need to further explore the benefits of gadget corruption rate as a metric. We can design new

randomization approaches aiming at increasing the register corruption rates through register-level

heuristics in gadgets and overall gadget corruption rates, e.g., through guided and strategically per-

muting registers that maximize the gadget corruption rate without compromising the correctness

of normal executions. Designing randomization solutions to increase the register corruption rate

in gadgets would be interesting as a high register corruption rate would make attacks unreliable.

Consider wider applicability. Our measurements in this dissertation specifically target the C/C++

programs in the x86 platform. However, such measurements must be performed for other domains

(e.g., non-C/C++ languages) as well as other platforms such as ARM or embedded systems. While

the data pointer protection is applicable for other platforms, it may not be applicable for non-

C/C++ languages such as Python or Java. Similarly, the gadget availability metric can work with

other platforms given the construction of gadgets needs to be adjusted based on the underlying

Instruction Set Architectures.

Identify when precision matters over speed or vice-versa. The key of any data flow analysis is

the points-to analysis. The precision of points-to analysis makes the data flow analysis accurate

and precise. However, the precision of a points-to analysis comes with a cost of speed. In our data

object/pointer prioritization work in Chapter 5, we have used the Anderson points-to analysis [7],

which is very precise but can be impractical for complex and large applications, especially appli-

cations having usage of a large number of function pointers. In this case, a less precise but faster

points-to analysis technique such as Steensgaard’s algorithm [191] can be useful if the precision

is not critical. For example, our one-time static analysis-based prioritization can tolerate some

speed issue, which enables our prioritization to use precise points-to analysis such as Anderson

algorithm [7], or even more precise approaches such as flow-sensitive or field-sensitive points-to

analysis.



Chapter 7

Conclusion and Future Work

In our first work (chapter 3), we presented multiple general methodologies for quantitatively

measuring the ASLR security under the JIT-ROP threat model and conducted a comprehensive

measurement study. One method is for computing the number of various types of gadgets and their

quality. Another method is for experimentally determining the upper bound of re-randomization

intervals. The upper bound helps guide re-randomization adopters to make more informed con-

figuration decisions. Our experiments showed that fine-grained code randomization up to basic

block level does not substantially weaken attackers’ capabilities, however, instruction-level does.

The primary reason is that function, basic-block, or machine register level fine-grained random-

ization preserves Turing completeness, however, instruction-level randomization does not. We

also found that a stack has a higher risk of being the source of memory leak than a heap or data

segment. The reduction in the gadget availability by fine-grained randomization does not sub-

stantially weaken attackers’ capabilities, as attackers only need one gadget per type. Although in

some cases, the number of minimum footprint gadgets are reduced to zero, there are still plenty

of extended footprint gadgets available. We observed that the register corruption rate is slightly

higher (∼6%) under fine-grained randomization. As one of the few measurement papers in the

ROP space, the significance of our work is beyond these security findings. Our metrics, method-

ologies, and synthesized knowledge about advanced exploits would be useful beyond this specific

study. The insights gained from our experimental results enable us to outline several promising

new attack and defense research directions.

A few open problems stand out from our experiments in our work in chapter 3: i) How easy is it

137



138 Chapter 7. Conclusion and Future Work Salman Ahmed

for attackers to obtain a leaked pointer? How realistic is it to assume a leaked pointer is known,

as is done in most attack demonstrations? Systematically measuring and quantifying the pointer

leakage risks in applications would be useful. ii) How to develop robust fine-grained ASLR tools

that can handle complex libraries such as Glibc? Currently, there is no known open source solution

that reliably provides this capability in Linux.

Traditionally, both coarse-grained (e.g., PaX ASLR [199]) and fine-grained (e.g., SR [47],

CCR [111], Remix [38], Binary stirring [213], ILR [97] and ASLP [108]) randomizations use

entropy to measure the effectiveness of hindering code-reuse attacks. However, such an entropy

measure is not useful under the JIT-ROP threat model, as chunks of code are still available. In-

clusion of distances between permuted functions or basic blocks for computing entropy would not

work either, because the code’s semantic connectivity (e.g., through call and jmp) is still not cap-

tured. Code connectivity is what JIT-ROP attacks leverage to discover code pages. In comparison,

our measurement methodology more accurately reflects JIT-ROP capabilities and is more mean-

ingful under the JIT-ROP model. How to design an entropy-like metric to capture the degree of

code isolation or the semantic connectivity in code is an interesting open problem.

Our work in chapter 3 has several limitations. For example, both CFI and XoM defenses are

powerful and have capabilities to prevent JIT-ROP attacks. These two defenses with continuous

re-randomization would be even more powerful. However, we did not enforce CFI and XoM in this

work to isolate an individual defense’s security impact. In this work, we addressed many important

questions related to fine-grained (re-)randomization, not yet answered by the literature. We leave

the analysis and measurement of CFI and XoM as future research.

Our current work does not measure zombie gadgets [186] and microgadgets [99]. The gadgets that

are available after applying destructive read defenses (e.g., XnR [11], NEAR [215], Readactor [52],

and Heisenbyte [197]) are called zombie gadgets [186]. Destructive read defenses only allow code

execution, no read after execution. In this way, destructive reads can limit gadget availability, but

cannot eliminate all gadgets. We plan to assess the availability of zombie and microgadgets in our
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future work.

Another limitation is that we assume the code pointer obfuscation is not enforced. If enforced, code

pointer obfuscation (e.g., CPI [114, 115], Oxymoron [12]) could make JIT-ROP code page discov-

ery less effective, reducing the gadget availability. Understanding how code pointer obfuscation

impacts JIT-ROP and measuring the effectiveness of this defense under various attack conditions

(e.g., Isomeron [62] and COOP [169]) are interesting problems.

One limitation of time-based re-randomization schemes is that the intervals need recalculation

with the evolution of hardware or a program itself. Event-based re-randomization schemes can be

effective in this case. However, event-based schemes may trigger unnecessary re-randomization if

events are frequent, e.g., re-randomizing every time a program outputs [16].

In our second work in chapter 4, we systematized the current knowledge of data-oriented exploits

and applicable defense mechanisms. We hope that this systematization will stimulate a broader dis-

cussion about possible ways to defend against data-oriented attacks. We highlight some interesting

future directions in this area.

Automation of Small Footprint DOP Attacks. An interesting research direction is how to minimize

the footprints (i.e., side effects) of a DOP attack while achieving the same attack goal. Attackers

may prefer data-oriented gadgets that cause a minimum deviation from normal executions. Such

a selection process requires automation to be efficient. Besides automation, one also needs to

define metrics to measure the footprints, i.e., the amount of alteration caused by a DOP execution.

Ispoglou et al. [105] made the first step towards automating data-oriented programming through

a powerful Block Oriented Programming Compiler (BOPC). Searching for gadget chains under

specific constraints is an interesting research direction.

Assessment of Programs’ Susceptibility to Data-Oriented Attacks. Such a characterization – stat-

ically or dynamically – would help one understand the threats that CFI cannot protect against. A

promising direction is to quantify the degree of control-flow decisions that are dependent on adver-

sarially controlled data (e.g., user input). Such a characterization also helps prioritize the defense
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effort, enabling one to address programs with the highest susceptibility first.

Deep Learning for Control-Flow Behavior Modeling. Non-control data violations may have im-

pacts on control-flows in different locations with long distances in a program. How to detect in-

compatible control-flow paths, given a relatively long control-flow sequence, is challenging. Deep

learning techniques have shown promises in detecting anomalies in different applications. An in-

teresting research direction is to apply deep learning algorithms to model program behaviors for

anomaly detection. For example, Recurrent Neural Network (RNNs), especially Long Short-Term

Memory (LSTM) models, can be leveraged to capture temporal relations contained in univariate

or even multivariate data. Such techniques may have the potential to detect incompatible control-

flow paths given an extreme long control-flow sequence [127]. However, one challenge of deep

learning based detection is the lack of labeled attack data given the difficulty to construct different

DOP/BOP exploits. In addition, attackers may exploit adversarial machine learning techniques to

evade detection by obfuscating control-flow behaviors under data-oriented attacks.

In our third work in chapter 5, we proposed a generic and adaptable data object/pointer prior-

itization framework that can be easily integrated with various data space protection countermea-

sure such as ARM PA [158], MPX [104], Softbound [134], AddressSanitizer [175], and Intel’s

CET [103]. The overall results suggest that the simple rule-based heuristics are simple but very

powerful. Our exploit and vulnerability-driven rule-based heuristics give the flexibility to add new

rules when necessary. Our experimental evaluations using 33 ground truths data objects/point-

ers from 18 programs including real-world server applications and 10 testcases from SAR dataset

showed the successful identification of 32 ground truths with a 42% performance overhead reduc-

tion compared to AddressSanitizer. Our experimental results showed that the number of sensitive

data objects in an application is as low as 3% for real-world applications. On average, we can filter

out 82% of data objects that do not need protection.

Our approach may generate false positives in some conditions. For example, if a data object is

well-bounded and even though the object is dependent on an external user. Since our heuristics
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only check for the existence of bounded conditions, does not check right/wrong conditions, may

falsely mark an object sensitive while the object is safe.

Our prioritization approach has some limitations. The first limitation is that our approach may miss

some sensitive data objects/pointers as we discussed in Section 5.4.2. That means our approach

cannot completely eliminate false negatives. One false negative in our approach was the inability to

detect a target data object that is operationally dependent on another tainted data object or variable.

There is no data-flow relationship between them. While this type of false negatives is challenging

to detect, it opens new research directions. One way to detect this type of false positives is to taint

a block of code that is dependent on another data variable. However, the size of the block of the

code is important as the block of code needs to be very precisely dependent on the data variable.

Otherwise, there is a chance of increasing false positives with the increase of the size of the code

block.

Another limitation of this work is evaluating our work against launching end-end data-oriented ex-

ploits. However, we manually cross-check the detection/prioritization of data object(s) that several

data-oriented exploits (refer to Table 5.2) utilize and found that all the target data objects are within

the top 11% of our prioritized data objects, on average (Table 5.3).
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[104] Introduction to Intelő Memory Protection Extensions. https://software.intel.c

om/content/www/us/en/develop/articles/introduction-to-intel-

memory-protection-extensions.html, 2013. [Accessed 03-24-2020].

https://software.intel.com/sites/default/files/ managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/ managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/ managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html


154 Bibliography Salman Ahmed

[105] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. Block oriented programming: Au-

tomating data-only attacks. In Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 1868–1882. ACM, 2018.

[106] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang. "the web/local" boundary

is fuzzy: A security study of chrome’s process-based sandboxing. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security, pages 791–

804, 2016.

[107] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev. Branch regulation: Low-

overhead protection from code reuse attacks. In Computer Architecture (ISCA), 2012 39th

Annual International Symposium on, pages 94–105. IEEE, 2012.

[108] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation (aslp):

Towards fine-grained randomization of commodity software. In Computer Security Appli-

cations Conference, 2006. ACSAC’06. 22nd Annual, pages 339–348. IEEE, 2006.

[109] J. Kim and Y. I. Eom. Fast and space-efficient defense against jump-oriented programming

attacks. In 2015 International Conference on Big Data and Smart Computing (BIGCOMP),

pages 7–10. IEEE, 2015.

[110] J. C. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.

[111] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis. Compiler-assisted code

randomization. In 2018 IEEE Symposium on Security and Privacy (SP), pages 461–477.

IEEE, 2018.

[112] S. Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks exploitation

technique. https://users.suse.com/~krahmer/no-nx.pdf, 2005. Last

accessed 10 May 2020.

https://users.suse.com/~krahmer/no-nx.pdf


Salman Ahmed Bibliography 155

[113] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and C. Fetzer.

Sgxbounds: Memory safety for shielded execution. In Proceedings of the Twelfth European

Conference on Computer Systems, pages 205–221, 2017.

[114] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer

integrity. In 11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI’14), volume 14, 2014.

[115] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer in-

tegrity. In The Continuing Arms Race, pages 81–116. Association for Computing Machinery

and Morgan & Claypool, 2018.

[116] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight Jr, and A. DeHon. Low-fat pointers:

compact encoding and efficient gate-level implementation of fat pointers for spatial safety

and capability-based security. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pages 721–732, 2013.

[117] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software diversity. In

2014 IEEE Symposium on Security and Privacy, pages 276–291. IEEE, 2014.

[118] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. Defeating return-oriented rootkits with"

return-less" kernels. In Proceedings of the 5th European conference on Computer systems,

pages 195–208, 2010.

[119] M. libc. A lightweight standard c library. https://www.musl-libc.org, 2011. Last

accessed 09 May 2020.

[120] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz.

Architectural support for copy and tamper resistant software. Acm SIGPLAN Notices,

35(11):168–177, 2000.

https://www.musl-libc.org


156 Bibliography Salman Ahmed

[121] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and N. Asokan. {PAC} it up:

Towards pointer integrity using {ARM} pointer authentication. In 28th {USENIX} Security

Symposium ({USENIX} Security 19), pages 177–194, 2019.

[122] D. Litchfield. Defeating the stack based buffer overflow prevention mechanism of microsoft

windows 2003 server, 2003.

[123] C. Liu, Z. Yang, Z. Blasingame, G. Torres, and J. Bruska. Detecting data exploits using

low-level hardware information: A short time series approach. In Proceedings of the First

Workshop on Radical and Experiential Security, pages 41–47. ACM, 2018.

[124] K. Lu and H. Hu. Where does it go? refining indirect-call targets with multi-layer type

analysis. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 1867–1881, 2019.

[125] K. Lu, W. Lee, S. Nürnberger, and M. Backes. How to make aslr win the clone wars:

Runtime re-randomization. In NDSS, 2016.

[126] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. Aslr-guard: Stopping address

space leakage for code reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, pages 280–291. ACM, 2015.

[127] Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. D. Yao. Deep learning-based anomaly detection

in cyber-physical systems: Progress and opportunities, 2020.

[128] G. Maisuradze, M. Backes, and C. Rossow. What cannot be read, cannot be leveraged?

revisiting assumptions of jit-rop defenses. In USENIX Security Symposium, pages 139–156,

2016.

[129] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek. Software fault

isolation with api integrity and multi-principal modules. In Proceedings of the Twenty-Third

ACM Symposium on Operating Systems Principles, pages 115–128, 2011.



Salman Ahmed Bibliography 157

[130] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. Ccfi: cryptographically enforced

control flow integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, pages 941–951. ACM, 2015.

[131] J.-W. Min, S.-M. Jung, D.-Y. Lee, and T.-M. Chung. Jump oriented programming on win-

dows platform (on the x86). In International Conference on Computational Science and Its

Applications, pages 376–390. Springer, 2012.

[132] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz. Opaque control-flow

integrity. In NDSS, volume 26, pages 27–30, 2015.

[133] M. Morton, J. Werner, P. Kintis, K. Snow, M. Antonakakis, M. Polychronakis, and F. Mon-

rose. Security risks in asynchronous web servers: When performance optimizations amplify

the impact of data-oriented attacks. In 2018 IEEE European Symposium on Security and

Privacy (EuroS&P), pages 167–182. IEEE, 2018.

[134] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Softbound: Highly compatible

and complete spatial memory safety for c. In Proceedings of the 30th ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 245–258, 2009.

[135] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Cets: compiler enforced temporal

safety for c. In Proceedings of the 2010 international symposium on Memory management,

pages 31–40, 2010.

[136] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. Ccured: Type-safe

retrofitting of legacy software. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 27(3):477–526, 2005.

[137] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-safe retrofitting of legacy code. In

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 128–139, 2002.



158 Bibliography Salman Ahmed

[138] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary

instrumentation. ACM SIGPLAN notices, 42(6):89–100, 2007.

[139] T. Newsham. Non-exec stack. Bugtraq mailing list, 2000.

[140] B. Niu and G. Tan. Modular control-flow integrity. In Proceedings of the 35th ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages 577–587,

2014.

[141] B. Niu and G. Tan. Rockjit: Securing just-in-time compilation using modular control-

flow integrity. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, pages 1317–1328. ACM, 2014.

[142] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N. Asokan, and A. Sadeghi.

Hardscope: Hardening embedded systems against data-oriented attacks. In 56th ACM/IEEE

Design Automation Conference (DAC), pages 1–6, 2019.

[143] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd, N. Asokan, and A.-R.

Sadeghi. Hardscope: Hardening embedded systems against data-oriented attacks. In 2019

56th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2019.

[144] N. I. of Standards and Technology. Software assurance reference dataset. https://sa

mate.nist.gov/SRD/testsuite.php. Last accessed 16 December 2021.

[145] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer. Intel mpx explained:

A cross-layer analysis of the intel mpx system stack. SIGMETRICS Perform. Eval. Rev.,

46(1):111112, June 2018.

[146] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: defeating return-

oriented programming through gadget-less binaries. In Proceedings of the 26th Annual

Computer Security Applications Conference, pages 49–58. ACM, 2010.

[147] A. One. Smashing the stack for fun and profit. Phrack, 7(49), November 1996.

https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php


Salman Ahmed Bibliography 159

[148] T. Palit, F. Monrose, and M. Polychronakis. Mitigating data leakage by protecting memory-

resident sensitive data. In Proceedings of the 35th Annual Computer Security Applications

Conference, pages 598–611, 2019.

[149] T. Palit, J. F. Moon, F. Monrose, and M. Polychronakis. Dynpta: Combining static and dy-

namic analysis for practical selective data protection. In 2021 IEEE Symposium on Security

and Privacy (SP), pages 1919–1937. IEEE, 2021.

[150] V. Pappas, M. Polychronakis, and A. Keromytis. Transparent rop exploit mitigation using

indirect branch tracing. In USENIX Security Symposium, pages 447–462, 2013.

[151] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering

return-oriented programming using in-place code randomization. In 2012 IEEE Symposium

on Security and Privacy, pages 601–615. IEEE, 2012.

[152] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-flow integrity through binary

hardening. In International Conference on Detection of Intrusions and Malware, and Vul-

nerability Assessment, pages 144–164. Springer, 2015.

[153] A. Peslyak. “return-to-libc” attack. Bugtraq, Aug, 1997.

[154] J. Pewny, P. Koppe, and T. Holz. Steroids for doped applications: A compiler for automated

data-oriented programming. In IEEE European Symposium on Security and Privacy (Euro

S&P), pages 111–126, 2019.

[155] M. Prandini and M. Ramilli. Return-oriented programming. IEEE Security & Privacy,

10(6):84–87, 2012.

[156] M. Prasad and T.-c. Chiueh. A binary rewriting defense against stack based buffer overflow

attacks. In USENIX Annual Technical Conference, General Track, pages 211–224, 2003.

[157] S. Priyadarshan, H. Nguyen, and R. Sekar. Practical fine-grained binary code randomization.

In Annual Computer Security Applications Conference, pages 401–414, 2020.



160 Bibliography Salman Ahmed

[158] Qualcomm Technologies Inc. Pointer Authentication on ARMv8.3. https://static

.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf, 2017.

[159] P. Rajasekaran, S. Crane, D. Gens, Y. Na, S. Volckaert, and M. Franz. Codarr: Continuous

data space randomization against data-only attacks. In Proceedings of the 15th ACM Asia

Conference on Computer and Communications Security, pages 494–505, 2020.

[160] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. Flip feng shui:

Hammering a needle in the software stack. In 25th USENIX Security Symposium (USENIX

Security 16), pages 1–18, 2016.

[161] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming: Sys-

tems, languages, and applications. ACM Transactions on Information and System Security

(TISSEC), 15(1):2, 2012.

[162] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and M. Polychronakis. Revisiting

browser security in the modern era: New data-only attacks and defenses. In 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 366–381. IEEE, 2017.

[163] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen, P. Larsen,

L. Davi, M. Franz, et al. Address oblivious code reuse: On the effectiveness of leakage

resilient diversity. In NDSS, 2017.

[164] A. Sadeghi, F. Aminmansour, and H. R. Shahriari. Tiny jump-oriented programming attack

(a class of code reuse attacks). In 2015 12th International Iranian Society of Cryptology

Conference on Information Security and Cryptology (ISCISC), pages 52–57. IEEE, 2015.

[165] A. Sadeghi, S. Niksefat, and M. Rostamipour. Pure-call oriented programming (pcop):

chaining the gadgets using call instructions. Journal of Computer Virology and Hacking

Techniques, 14(2):139–156, 2018.

https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf


Salman Ahmed Bibliography 161

[166] SAFE secure computing platform. http://www.crash-safe.org/, 2019. [Accessed 08-12-

2019].

[167] S. Schirra. Ropper tool. https://github.com/sashs/Ropper, 2014. Last

accessed 4 July 2018.

[168] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn. Modular protections

against non-control data attacks. Journal of Computer Security, 22(5):699–742, 2014.

[169] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counterfeit

object-oriented programming: On the difficulty of preventing code reuse attacks in c++

applications. In 2015 IEEE Symposium on Security and Privacy, pages 745–762. IEEE,

2015.

[170] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and T. Holz.

Evaluating the effectiveness of current anti-rop defenses. In International Workshop on

Recent Advances in Intrusion Detection, pages 88–108. Springer, 2014.

[171] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made easy. In USENIX

Security Symposium, pages 25–41, 2011.

[172] E. J. Schwartz, C. F. Cohen, J. S. Gennari, and S. M. Schwartz. A generic technique for

automatically finding defense-aware code reuse attacks. In Proceedings of the 2020 ACM

SIGSAC Conference on Computer and Communications Security, pages 1789–1801, 2020.

[173] J. Seibert, H. Okhravi, and E. Söderström. Information leaks without memory disclosures:

Remote side channel attacks on diversified code. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, pages 54–65, 2014.

[174] J. Seo, B. Lee, S. M. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. Sgx-shield: Enabling

address space layout randomization for sgx programs. In NDSS, 2017.

https://github.com/sashs/Ropper


162 Bibliography Salman Ahmed

[175] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast address

sanity checker. In USENIX ATC 2012, 2012.

[176] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast address

sanity checker. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages

309–318, 2012.

[177] F. J. Serna. The info leak era on software exploitation. Black Hat USA, 2012.

[178] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function

calls (on the x86). In Proceedings of the 14th ACM conference on Computer and Commu-

nications Security, pages 552–561. ACM, 2007.

[179] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effec-

tiveness of address-space randomization. In Proceedings of the 11th ACM conference on

Computer and communications security, pages 298–307, 2004.

[180] Shellphish. Educational Heap Exploitation: how2heap . https://github.com/she

llphish/how2heap, 2019. Last accessed 6 January 2021.

[181] Y. Shoshitaishvili, C. Kruegel, G. Vigna, R. Wang, C. Salls, N. Stephens, M. Polino,

A. Dutcher, J. Grosen, S. Feng, et al. Sok: (state of) the art of war: Offensive techniques

in binary analysis. In 2016 IEEE Symposium on Security and Privacy (SP), pages 138–157.

IEEE, 2016.

[182] X. Shu, D. Yao, N. Ramakrishnan, and T. Jaeger. Long-span program behavior modeling

and attack detection. ACM Transactions on Privacy and Security (TOPS), 20(4):1–28, 2017.

[183] K. Sinha and S. Sethumadhavan. Practical memory safety with rest. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA), pages 600–611.

IEEE, 2018.

https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap


Salman Ahmed Bibliography 163

[184] S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent runtime shadow stack: Protection

against malicious return address modifications, 2008.

[185] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi. Just-in-

time code reuse: On the effectiveness of fine-grained address space layout randomization.

In 2013 IEEE Symposium on Security and Privacy, pages 574–588. IEEE, 2013.

[186] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis. Return

to the zombie gadgets: Undermining destructive code reads via code inference attacks. In

2016 IEEE Symposium on Security and Privacy (SP), pages 954–968. IEEE, 2016.

[187] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee. Enforcing kernel security invariants

with data flow integrity. In NDSS, 2016.

[188] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. Hdfi: Hardware-

assisted data-flow isolation. In 2016 IEEE Symposium on Security and Privacy (SP), pages

1–17. IEEE, 2016.

[189] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and M. Franz. Sok:

sanitizing for security. In 2019 IEEE Symposium on Security and Privacy (SP), pages 1275–

1295. IEEE, 2019.

[190] A. Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007.

[191] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 32–

41, 1996.

[192] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter. Breaking

the memory secrecy assumption. In Proceedings of the Second European Workshop on

System Security, pages 1–8. ACM, 2009.



164 Bibliography Salman Ahmed

[193] Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in llvm. In Proceedings of

the 25th international conference on compiler construction, pages 265–266. ACM, 2016.

[194] Z. Sun, B. Feng, L. Lu, and S. Jha. Oat: Attesting operation integrity of embedded devices.

In 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[195] SVF-tools. Static Value Flow (SVF). https://github.com/svf-tools/SVF/w

iki/Technical-documentation, 2021. Last accessed September 6, 2021.

[196] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In 2013 IEEE

Symposium on Security and Privacy, pages 48–62. IEEE, 2013.

[197] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwarting memory disclosure

attacks using destructive code reads. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, pages 256–267. ACM, 2015.

[198] C. Team. Universal dep/aslr bypass with msvcr71.dll and mona.py. https://www.co

relan.be/index.php/2011/07/03/universal-depaslr-bypass-with-

msvcr71-dll-and-mona-py/, 2018. Last accessed 10 February 2018.

[199] P. Team. Pax address space layout randomization (aslr). 2003.

[200] The Rust Programming Language. https://www.rust-lang.org/, 2019. [Accessed 08-12-

2019].

[201] G. Torres and C. Liu. Can data-only exploits be detected at runtime using hardware events?:

A case study of the heartbleed vulnerability. In Proceedings of the Hardware and Architec-

tural Support for Security and Privacy 2016, page 2. ACM, 2016.

[202] S. Tsampas, A. El-Korashy, M. Patrignani, D. Devriese, D. Garg, and F. Piessens. Towards

automatic compartmentalization of c programs on capability machines. In Workshop on

Foundations of Computer Security 2017, pages 1–14, 2017.

https://github.com/svf-tools/SVF/wiki/Technical-documentation
https://github.com/svf-tools/SVF/wiki/Technical-documentation
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/


Salman Ahmed Bibliography 165

[203] Uptrends. Website speed test. https://www.uptrends.com/tools/website-s

peed-test, 2020. Last accessed 03 May 2020.

[204] A. van de Ven and I. Molnar. Exec shield. https://static.redhat.com/legacy

/f/pdf/rhel/WHP0006US_Execshield.pdf, 2004. Last accessed 26 September

2018.

[205] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos, and C. Giuffrdia.

The dynamics of innocent flesh on the bone: Code reuse ten years later. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages

1675–1689. ACM, 2017.
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