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Plate‑based lattices are predicted to reach theoretical Hashin–Shtrikman and Suquet upper bounds on 
stiffness and strength. However, simultaneously attaining high energy absorption in these plate‑lattices 
still remains elusive, which is critical for many structural applications such as shock wave absorber and 
protective devices. In this work, we present bi‑material isotropic cubic + octet sandwich plate‑lattices 
composed of carbon fiber‑reinforced polymer (stiff) skins and elastomeric (soft) core. This bi‑material 
configuration enhances their energy absorption capability while retaining stretching‑dominated 
behavior. We investigate their mechanical properties through an analytical model and finite element 
simulations. Our results show that they achieve enhanced energy absorption approximately 2–2.8 
times higher than their homogeneous counterparts while marginally compromising their stiffness and 
strength. When compared to previously reported materials, these materials achieve superior strength‑
energy absorption characteristics, making them an excellent candidate for stiff and strong, lightweight 
energy absorbing applications.

Introduction
Ultralight materials that are simultaneously stiff, strong, and 
tough (high energy absorption) are attractive. These materials 
(unattainable with monolithic bulk solids) can be achieved by 
designing the unit cell topology of a periodic, porous biphasic 
network (one phase is the material, οοas the other phase is the 
void), also known as “cellular materials” or “lattices” [1, 2], such 
that their effective Young’s moduli, E, strength, σ (initial yield 
or fracture-dominated), and energy absorption, U, can be tuned 
over their relative density ρ . While E ∼ ρa and σ ∼ ρb (a = b = 1 
for stretching-dominated topologies; a = 2 and b = 1.5 for bend-
ing-dominated topologies) [2–4], U depends on the topology, 
constituent material properties, and several other factors. Owing 
to this linear dependence of E and σ on ρ , stretching-dominated 

open-cell beam-based lattices, such as octet [5, 6] and cubic 
truss [7, 8], have dominated the lightweight material design 
space.

Furthermore, beam-based lattices have been manufactured 
by a wide variety of additive manufacturing techniques such 
as self-propagating polymerization waveguide (SPPW) [9, 10], 
powder bed fusion [11, 12], projection micro-stereolithogra-
phy (PμSL) [13], and direct laser writing (DLW) [14, 15] and 
provided opportunities for unique combinations of constitu-
ent material and topology. However, it was shown that these 
open-cell beam-based lattices can only achieve fractions of 
the isotropic elastic limit [16] (i.e., Hashin–Shtrikman upper 
bound [17]). On the other hand, closed-cell plate-lattices 
(although more limited in suitable fabrication methods), such as 
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cubic + octet [18] and n-fold symmetry plate-lattices [19], have 
been identified to approach both isotropic upper bounds of the 
Young’s modulus and strength at low ρ through numerical [20] 
and experimental [21] investigations. However, these closed-cell 
plate-lattices, due to their stretching-dominated deformation 
mode, often experience brittle fracture or exhibit a short and 
none-plateaued post-yield stress–strain curve [3, 22, 23] under 
compression at low ρ , which is undesirable for energy absorbing 
applications. While bending-dominated lattices (for example, 
Kelvin foams [24–27] and hollow pyramidal lattices [28, 29]) 
can potentially be a good energy absorber, they show significant 
lower E and σ (often orders of magnitude lower), not suitable 
for strong, lightweight applications. As such, the simultaneous 
optimization of stiffness, strength, and energy absorption is not 
achievable by a single-material lattice.

One way to increase the energy absorption without signifi-
cantly compromising the stiffness and strength of an open-cell 
lattice is to introduce a much softer material into its complemen-
tary void space, resulting in a bi-material interpenetrating phase 
composite (IPC) [30, 31]. These IPCs benefit from two topo-
logically interconnected material phases exhibiting enhanced 
energy absorption by different deformation mechanisms includ-
ing buckling suppression, crack resistance, or stress redistribu-
tion at the interface [32–34]. The enhanced energy absorption 
through IPC designs, however, have two main disadvantages: (i) 
the design approach is not suitable for closed-cell lattices where 
the bi-continuous interpenetrating layout cannot be achieved; 
(ii) it often comes at the cost of increasing mass [35], due to 
the introduction of additional topology from the second phase.

Another way to increase the energy absorption of a lat-
tice with minimal reduction on its stiffness and strength is to 
apply the two material phases (stiff and soft phases) directly 
into the lattice topology; for instance, a beam-based lattice can 
have each of its beams consisting of a soft material in the center 
surrounded by a thin stiff material phase [36]. We hypothesize 
that this idea can be applied to a closed-cell plate-lattice such 
that each of its plates consists of a soft material ply sandwiched 
between two stiff material plies (analogous to a laminated com-
posite) to achieve high energy absorption and strength. This 
plate configuration will potentially permit the exploitation of 
both stretching-dominated mechanisms and energy absorption 
via its two-phase composite plates. Additionally, as these mate-
rial phases only occupy the original topology space, there will 
not be any significant increase in the lattice mass.

In this work, we present the design of bi-material isotropic 
cubic + octet sandwich plate-lattices, that are potentially light, 
stiff, and strong with enhanced energy absorption via the above-
mentioned multi-material design strategy (i.e., each sandwich 
plate is composed of a soft material ply sandwiched between 
two stiff material plies). Inspired by our previous success in 
multi-material printing of carbon fiber reinforcement polymer 

(CFRP)- and soft polymer-based lattices [37], we select these 
two representative materials as a stiff and soft phase, respec-
tively. First, we extend the analytical solution for linear-elastic 
moduli of single-material plate-lattices [18] to dynamic moduli 
of bi-material plate-lattices, revealing the viscoelastic effects of 
the embedded soft phase on their macroscopic mechanical prop-
erties. Then, we evaluate the structural performance of the plate-
lattices by numerically investigating its effective modulus, peak 
strength, and energy absorption up to failure for different rela-
tive densities with the volume fraction of the soft phase ranging 
from 0 to 40%. These simulation results are cross-validated by 
comparing the moduli with those obtained from the analytical 
solutions. Lastly, we assess their strength and energy absorption 
performance against previously reported carbon-based archi-
tected materials.

Results and discussion
Design of the bi‑material isotropic cubic + octet 
plate‑lattice

We designed our bi-material plate-lattices by adopting the iso-
tropic cubic + octet configuration as a baseline topology, where 
a cubic-plate unit cell is combined with an octet-plate unit 
cell (Fig. 1). The chosen configuration was motivated by (i) its 
stretching-dominated deformation giving rise to efficient stiff-
ness (or strength)-to-weight ratio; (ii) its capability to achieve 
the theoretical Hashin–Shtrikman [17] and Suquet [38] upper 
bounds on stiffness and strength [18, 20, 21], respectively. We 
also introduced small holes at the center of the plate faces for 
the removal of residual (i.e., unpolymerized resin) which are 
needed for available additive manufacturing processes (an exam-
ple is given in Appendix A). The relative density of a single-
material isotropic cubic + octet plate-lattice, taking the holes 
into account, can be approximated as ρcubic+octet = (3/L − (12
πr2)/L3)·tcubic + ((4√3)/L − (32πr2)/L3)·toctet, where L is the unit 
cell size, r is the radius of the holes, tcubic and toctet are the plate 
thickness of the cubic and octet unit cell, respectively [18, 20], 
with thickness ratio:

To introduce bi-material composition to the isotropic 
cubic + octet plate architecture, we replaced each of its constitu-
ent plates by a two-phase sandwich plate (CFRP1-Soft2-CFRP 

(1)
tcubic

toctet
=

8
√
3L2 − 64πr2

9L2 − 36πr2

1 CFRP stands for carbon fiber-reinforced polymer, a stiff and 
strong material (see more details in Appendix B).
2 Soft phase is made of Flexible, a soft and weak rubber-like mate-
rial (see more details in Appendix B).
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ply), as shown in Fig. 1. We can then relate the total plate 
thickness to the thickness of each material phase through 
tcubic,i = Vi·tcubic and toctet,i = Vi·toctet, where the subscript i denotes 
either CFRP or soft phase, tcubic,i is the ply thickness of material 
phase i in the cubic-plate architecture, toctet,i is the ply thick-
ness of material phase i in the octet-plate architecture, and Vi is 
the volume fraction of the material phase i in the cubic + octet 
architecture. We then designed the plate-lattices with ρcubic+octet 
of 10, 20, and 30% and Vsoft from 0 to 40%.

Evolution of stress–strain curves from elastic–brittle 
to elastoplastic response

Compressive stress–strain curves of the designed bi-material 
isotropic cubic + octet plate-lattices, obtained from the simula-
tions (see the detailed material models and boundary conditions 
in ‘Finite element simulations’), for relative densities, ρ , of 10, 
20, 30% with volume fractions of the soft phase, Vsoft, between 

0 and 40% are shown in Fig. 2. With an increase in Vsoft, we 
observed an evolution of a stress–strain curve, changing from a 
linearly elastic response followed by brittle fracture to a behav-
ior mimicking linear elastic–plastic response. This transition 
can be explained by examining variations in yield and failure 
strains and the peak strength (Figs. 9 and 2). When Vsoft is below 
30%, yield strains gradually decrease, whereas failure strains sig-
nificantly increase as Vsoft increases. By contrast, at high Vsoft 
(e.g., > 30%), yield strains remain nearly constant at ~ 0.6% and 
failure strains progressively approach approximately 1.5% for 
all modeled relative densities. In addition, the magnitude of the 
peak strength reduces as Vsoft increases. These interconnected 
variations, attributed to a change in the stiff-soft phase ratio 
in the constituent plate, facilitate the evolution of stress–strain 
curves of the plate-lattice, enabling various failure mechanisms 
which progressively change from brittle fracture to more ductile 
failure caused by plate buckling. Furthermore, when holding 
the stiff–soft phase ratio constant, the stiffness and strength of 

Figure 1:  Illustration of bi-material isotropic cubic + octet plate-lattice with 3 × 3 × 3 unit cells. Each plate is designed as a sandwich plate (CFRP-soft-
CFRP ply). To achieve isotropy, the thickness ratio is enforced as tcubic/toctet = (8√3L2 − 64πr2)/(9L2 − 36πr2), where L is the unit cell side length and r is 
the radius of a hole at the center of the plate faces allowing the removal of unpolymerized resin after fabrication. The thicknesses of CFRP and soft 
phases are defined by their volume fractions such as tcubic,CFRP = VCFRP·tcubic, tcubic,soft = Vsoft·tcubic, toctet,CFRP = VCFRP·toctet, and toctet,soft = Vsoft·toctet, where 
VCFRP + Vsoft = 1.

Figure 2:  Simulated compressive stress–strain curves of bi-material isotropic cubic + octet plate-lattices for different relative densities, ρ , with the 
volume fractions of the soft phase, Vsoft, between 0 and 40%. (a) ρ = 10%, (b) ρ = 20%, (c) ρ = 30%. A stress–strain evolution from brittle response to 
elastoplastic-like behavior was realized through a change in Vsoft.
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the plate-lattices follow the power-law scaling with ρ , similar to 
other typical cellular materials [1], and this scaling relation will 
be discussed later in this section.

Effective storage modulus, peak strength, and energy 
absorption

The effective modulus, peak strength, and absorbed energy 
of the bi-material isotropic cubic + octet plate-lattices were 
extracted from their simulated stress–strain curves. Figure 3a 
shows that the storage modulus, E′ or real(E*), is inversely but 
linearly proportional to Vsoft. When compared with our analyti-
cal model (see the detailed formulation of the effective modulus 
in “Analytical derivation of the effective modulus”) plotted as 
solid lines in Fig. 3a, E′ was only slightly lower due to the holes 
at the center of each plate face. When fitted against ρ using least 
square method, near-linear scaling for the modulus was found 
(i.e., real(E*) ∝ ρ1 ) for all modeled lattices, confirming their 
efficient stretching-dominated behavior consistent with the 
previous work [21]. In addition, for the plate-lattices entirely 
constructed with the CFRP phase (i.e., Vsoft = 0%) for all ρ under 
consideration, we verified that their moduli obtained from our 
simulations approach the theoretical Hashin–Shtrikman upper 
bound of a single-material cubic + octet plate-lattice as reported 
previously [18]. By contrast, the magnitude of the loss modulus, 
E″, was found to be trivial compared to that of E′ (hence low 
tan δ shown in Fig. 3b) when Vsoft is below ~ 90%, justifying 
the constituent material models in our simulations neglecting 
viscoelastic effects. More specifically, the effective loss tangent, 
tan δ, starts from the inherent tan δ of the CFRP phase (equal to 
0.068), and slowly increases with the increasing Vsoft and then 
rapidly ramps up to 0.3 (equal to the inherent tan δ of the soft 
phase) at Vsoft ≈ 0.9 due to a much steeper negative slope of E′ 
than that of with the increasing Vsoft. We also found that the 

effective tan δ in a linear regime of a stress–strain curve, repre-
senting intrinsic mechanical damping, is invariant with ρ since 
it is the ratio of the loss modulus to storage modulus which both 
scale with ρ1.

Figure 4a plots the peak strength, σpeak, against the volume 
fraction of the soft phase, Vsoft. The strength decreases non-
linearly with an increase in Vsoft, owing to plate buckling. With 
least square fitting, the strength has the scaling exponent of ~ 1 
(i.e., σpeak ∝ ρ1 ) consistent with the reported value [21], where 
their strength-to-weight ratios do not substantially degrade as 
density decreases (i.e., efficient stretching-dominated behavior). 
Figure 4b reveals the absorbed energy of the bi-material plate-
lattices as a function of Vsoft, computed by integrating stress 
over strain in Fig. 2. This relationship does not show monotonic 
trends as observed in other obtained properties (E′, tan δ, and 
σpeak in Figs. 3a, b and 4a, respectively) but shows local maxima 
at specific Vsoft for different relative densities. This is due to 
the competition between the peak strength and failure strain 
(Figs. 4a and 9b) attributed to plate buckling, while the latter 
contributes more to the overall energy absorption. For example, 
at ρ = 0.1, failure strain rapidly increases but becomes plateau at 
Vsoft = 35%, whereas the peak strength only slowly decreases with 
an increase in Vsoft. This combination gives rise to a concave-
down curve of absorbed energy against Vsoft (Fig. 4b), where its 
optimum is achieved when failure strain becomes plateau (i.e., at 
critical Vsoft = 35%) in the failure strain–Vsoft plot (Fig. 9). Simi-
larly, the critical Vsoft results in the optimal energy absorption 
for other relative densities (i.e., Vsoft of 25% and 27.5% for ρ = 0.2 
and 0.3, respectively). As a result, we found that the optimal 
absorbed energy obtained from all modeled relative densities 
were improved by a factor of approximately 2–2.8 compared to 
plate-lattices entirely made of the CFRP phase. A more accurate 
energy absorption estimation, which accounts the viscoelastic 

Figure 3:  Effective viscoelastic properties of bi-material isotropic cubic + octet plate-lattices for ρ of 10, 20, 30% with Vsoft between 0 and 40%. (a) 
Effective storage modulus, E′ or real(E*). (b) Effective loss tangent, tan δ, representing intrinsic mechanical damping. The lines in these figures are 
obtained from the analytical model, whereas filled markers represent results from finite element simulations.
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contributions from the soft phase, could be accomplished if the 
soft phase is modeled as a viscoelastic material in the simula-
tion, however, we believe a change would be minimal since the 
analytically obtained tan δ barely varies at low Vsoft (Fig. 3b).

Assessment of strength‑energy absorption 
performance

To assess the performance of their strength-energy absorp-
tion pair, we compared our bi-material isotropic cubic + octet 
plate-lattices against previously reported carbon-based archi-
tected materials (Fig. 5). We adopted normalized strength and 
normalized absorbed energy as a measure of strength-energy 
absorption characteristics (i.e., U/Es vs. σpeak/σys) to highlight 
the roles of the cellular topology while suppressing the effects 
of the constituent material properties; herein, Es and σys for bi-
material lattices represent the homogenized properties of either 
the constituent plate or strut made of the CFRP and soft phase 
and are approximated using the rule of mixture, whereas the 
reported values of Es and σys [39, 40] are used for single-material 
carbon-based lattices. For ρ ∼ 10% , our bi-material plate-lattice, 
when designed with the optimal Vsoft, exhibits the largest energy 
absorption (~ 0.6% over carbon microlattice [40] and ~ 312% 
over CF octet-truss [37]) and advantageous strength (~ 1.7 times 
stronger than carbon microlattice but ~ 13% weaker than CF 
octet-truss). Furthermore, our bi-material plate-lattices show 
favorable strength-energy absorption characteristics against 
two-phase CF octet-truss lattices [37] (e.g., advantage in U/Es 
of ~ 200% and in σpeak/σys of 120%) at ρ  of ~ 10%. For low ρ 
regime (< 0.1%), we expect our bi-material plate-lattices with the 
optimal Vsoft, if manufacturable, would also outperform carbon 
foams (bending-dominated). This is because the gain in energy 
absorption (dictated by both strength and failure strain) of these 
carbon foams are compromised by significant reduction in their 
strength following σ ∝ ρ2 , while the bi-material plate-lattices 

retain the stretching-dominated efficiency (i.e., σ ∝ ρ1 ) with 
enhanced energy absorption due to the increased failure strain 
by incorporating soft material phase. CF and bi-material plate-
lattices with higher ρ (10%, 20%, and 30%) are also shown in the 
inset in Fig. 5 to show a trend of their strength-energy absorp-
tion pairs at higher ρ . This comparison implies that our bi-mate-
rial plate-lattices are an excellent candidate for impact isolation 
and energy dissipation with simultaneously higher strength 

Figure 4:  Simulated mechanical properties of bi-material isotropic cubic + octet plate-lattices having different Vsoft for ρ of 10, 20, 30%. (a) Peak 
strength, σpeak, (b) Absorbed energy, U.

Figure 5:  Performance assessment of strength-energy absorption pair 
of the presented bi-material isotropic plate-lattice against previously 
reported, carbon-based energy absorbing materials in terms of 
normalized absorbed energy and normalized peak strength (i.e., (U/Es) 
vs. (σpeak/σys). CF and bi-material octet-truss adopted from Ref. [37]. 
Carbon foam adopted from Ref. [39]. Carbon microlattice adopted from 
Ref. [40].
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and energy absorption. Furthermore, improvement in energy 
absorption of our bi-material plate-lattices is an order of mag-
nitude larger than a reduction in strength (e.g., ~ 270% improve-
ment in energy absorption with ~ 28% reduction in strength at ρ 
of 20% with Vsoft of 25% in Fig. 4), indicating marginal degrada-
tion in their load-bearing capacity. In addition, since our study 
assumes that the bi-material plate-lattices are perfect (i.e., no 
defects, perfect bonding between the two material phases, non-
porous plates, etc.), reliable multi-material manufacturing pro-
cess would be desirable. Potential manufacturing techniques for 
realization of the presented bi-material isotropic cubic + octet 
plate-lattices include snap-fit method with additive manufactur-
ing, two-photon polymerization direct laser writing with subse-
quent coating, and PμSL-printed shell lattices followed by soft 
phase injection (the last technique in Appendix A).

Conclusions
In this work, we designed bi-material isotropic plate-lattices 
composed of CFRP skins and a soft core arranged in a sand-
wich layout and derived the analytical model estimating their 
dynamic properties. We then investigated the stiffness, strength, 
and energy absorption of these plate-lattice materials modulated 
by changing the volume fraction of the embedded soft phase 
via numerical simulations, where the stiffness was verified by 
analytical calculations. Our results reveal that the bi-material 
plate-lattices, when designed with the optimal volume fraction 
of the soft phase, exhibit 250% (in average) increase of energy 
absorption with marginal reductions in modulus and strength 
(~ 30%) when compared to single-material CFRP plate-lattices. 
Furthermore, at ρ of ~ 10%, their strength and energy absorption 
outperform those of two-phase CF truss-based lattices (~ 120% 
and ~ 200%, respectively), and they are 1.7 times stronger than 
the carbon microlattices with comparable energy absorption. 
Our results reveal the roles of multi-material designs on the 
effective material properties of a lattice topology—a combina-
tion of the lattice topology and two-phase material configuration 
enables the enhanced strength-energy absorption pairs. This 
study will also motivate several areas of interest for future work, 
including acoustic isolation and impact mitigation. We envi-
sion that these bi-material enhancement on strength and energy 
absorption can be extended to other plate-based topologies and 
minimal surface-based topologies (i.e., spinodal lattices [33, 41, 
42] or triply periodic minimal surfaces [43–45]) that can be real-
ized via a wide variety of additive manufacturing methods.

Theory and simulation
Analytical derivation of the effective modulus

In the following subsections, we will extend the existing ana-
lytical solutions for the effective modulus, E, of single-material 

[18, 46] to bi-material isotropic plate-lattices, from which both 
quasi-static, E, and dynamic (viscoelasticity) moduli, E*, can 
be derived. Our approach is based on the strain energy method 
that relates global effective properties of a lattice to the local 
homogenized properties of each plate via non-directional elastic 
strain energy density terms, hence allowing superposition even 
for plate- lattices constructed by dissimilar topologies.

Transverse isotropy of a bi‑material sandwich plate

Each bi-material sandwich plate can be treated as a transversely 
isotropic plate (Fig. 6b) with five independent homogenized 
elastic constants Ep (in-plane Young’s modulus), vp (Poisson’s 
ratio for in-plane strain due to in-plane straining), vpz (Poisson’s 
ratio for out-of-plane strain due to in-plane straining), Ez (out-
of-plane Young’s modulus), and Gpz (out-of-plane shear modu-
lus). From the theory of elasticity, these homogenized elastic 
constants can be expressed in terms of the constituent materials’ 
mechanical properties:

where Gs,CFRP and Gs,soft are the shear modulus of the CFRP and 
soft phases, respectively. Note that νzp (Poisson’s ratio for in-
plane strain due to out-of-plane straining) is equal to νpz·Ez/Ep 
due to the symmetry of the compliance matrix.

Dynamic response of the bi‑material isotropic cubic + octet 

sandwich plate‑lattice

We then derived the effective linear-elastic modulus of the 
bi-material isotropic cubic + octet plate-lattice composed of 
the transversely isotropic plates with plane stress assumption 
(detailed derivations in Appendix D), given by

where Ep and νp are given in Eqs. (2) and (3), respectively. To 
take viscoelastic effects into account in the analytical model, 
we first converted the linear-elastic moduli of the two constitu-
ent materials into the dynamic moduli (denoted by a super-
script *) through the correspondence principle [47], leading to 
E∗CFRP = E′CFRP + iE′′CFRP and E∗soft = E′soft + iE′′soft , where prime 

(2)Ep = Es,CFRPVCFRP + Es,soft(1− VCFRP)

(3)vp =
Es,CFRPvs,CFRPVCFRP − Es,softvs,soft(1− VCFRP)

Es,CFRPVCFRP − Es,soft(1− VCFRP)

(4)vpz = vs,CFRPVCFRP + vs,soft(1− VCFRP)

(5)Ez =
Es,CFRP · Es,soft

Es,CFRP(1− VCFRP)+ Es,softVCFRP

(6)Gpz =
Gs,CFRP · Gs,soft

Gs,CFRP(1− VCFRP)+ Gs,softVCFRP

(7)E =
2
(

7− 5νp
)

Epρcubic+octet
(

1− vp
)(

27+ 15vp
)
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(′) and double prime (″) represent the real and imaginary parts 
of the dynamic modulus, respectively (i.e., the storage and loss 
modulus, respectively). Note that “dynamic” in this context has 
no connection with inertial terms or resonance. By replacing 
the linear-elastic moduli in Eq. (2) by these dynamic terms, the 
dynamic modulus of the bi-material constituent plate compris-
ing the lattice can then be written as

Next, the effective dynamic modulus of the bi-material 
isotropic cubic + octet plate-lattice can be readily expressed by 
substituting Eq. (8) into Eq. (7) as

(8)

E∗p = E′p + iE′′p

E∗p = VCFRP

(

E′CFRP + iE′′CFRP
)

+ (1− VCFRP)
(

E′soft + iE′′soft
)

(9)E∗ =
2
(

7− 5νp
)

(

1− νp
)(

27+ 15νp
)E∗pρ,

where νp denotes the effective in-plane Poisson’s ratio as defined 
in Eq. (3). Note that Eq. (9) exactly reduces to the previously 
derived expressions [18, 20] for linear-elastic, single-material 
plate-lattices when viscoelastic effects are suppressed. Lastly, the 
loss tangent (dimensionless), representing intrinsic mechanical 
damping or internal friction, can be expressed as

Finite element simulations

All simulations were performed under the quasi-static condition 
(the kinetic energy of the whole system is assumed to be less 
than 5% of the internal energy in the same system) with mass 
scaling (scale elements that have a smaller stable time increment 
to the target time increment 0.005 s at the frequency of every 

(10)tan δ =
Im(E∗)

Re(E∗)
=

E′′

E′

Figure 6:  Illustration of the cubic + octet shell model that has (a) 3 × 3 × 3 unit cells and (b) magnified views of a single unit cell with assigned section 
thicknesses (dark green for the cubic-plate architecture and light yellow for the octet-plate architecture) and an individual plate with assigned section 
materials, under (c) quasi-periodic boundary conditions (triangles and hollow circles representing rollers) via (d) the kinematic coupling constraints 
(yellow light beams) between the control points (red circles) and the constrained surfaces (red highlighted surface; only one surface is highlighted for 
the simplicity).
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increment) using explicit dynamic finite element analyses in the 
commercial software Dassault Systemes Abaqus 2018. We used 
3D shell models (3 × 3 × 3 unit cells meshed with S4R shell ele-
ments of average mesh size/L of 0.04; both determined from the 
convergence study in Appendix E), where the plate thickness 
and multi-material plies can be easily assigned in a plate-by-
plate basis via the section property function, to represent the bi-
material isotropic cubic + octet plate-lattice as depicted in Fig. 6. 
It was shown that the mechanical response between 3D shell and 
solid models would not differ significantly for ρcubic+octet below 
40% [21]. We then investigated the mechanical response of the 
bi-material isotropic cubic + octet plate-lattices under compres-
sion by applying quasi-periodic boundary conditions (QPBCs) 
via smooth step amplitude in the time duration of 100 s to simu-
late response of an infinite cellular material. To obtain the effec-
tive modulus E, peak strength σpeak, and energy absorption U 
of the plate-lattices, we first extracted the effective stress–strain 
(σ–ε) curve such that σ = F/L2 and ε = δ/L, where F denotes reac-
tion force due to the applied compressive displacement δ. Then, 
the effective modulus E was obtained by computing a slope at 
an initial linear region, the peak strength σpeak was taken at its 
maximum stress, and U was computed by calculating the area 
under the curve. The detailed constitutive material modeling 
and implementation of boundary conditions are discussed in 
the following subsections.

Constituent material modeling

The stiff and strong CFRP phase was modeled as a linear elas-
tic–plastic material (Young’s modulus Es,CFRP = 2.54 GPa, 
Poisson’s ratio νs,CFRP = 0.35, and the initial yield strength 
σys,CFRP = 17.74  MPa followed by isotropic hardening, 
σs,CFRP = 17.74+ 502ε0.69p  MPa, where εp is the equivalent 
plastic strain) that fails at a given maximum equivalent plastic 
strain ( εmax

p,CFRP = 0.00558) while the compliant and soft phase 
is modeled as a linearly elastic material ( Es,soft = 8.2 MPa and 
νs,soft = 0.49) that fails at a given maximum fracture strain 
( εmax

f,soft = 0.37). To simplify the material models, we suppressed 
the viscoelasticity effect in both CFRP and soft phases. We veri-
fied that such an assumption would not significantly change the 
mechanical response of the constituent materials used in this 
work (see Fig. 8 for the stress–strain curve comparison between 
simulation and experiment for both CFRP and Flexible bulk 
materials).

Implementation of quasi‑periodic boundary conditions 

(QPBCs)

We implemented QPBCs (as shown in Fig. 6c) to represent an 
infinite plate-lattices. QPBCs allow a much simpler prescrip-
tion of the displacements on very complex topologies and are 
more computationally efficient than the true periodic boundary 

conditions while achieving similar degree of accuracy [41, 48, 
49]. To implement the boundary conditions in Abaqus, we used 
the following procedures. First, each control point was kinemati-
cally coupled to its respective constrained surface in all rota-
tional degrees of freedom and in the translational degree of free-
dom along the surface normal direction (for example, MAXZ is 
coupled to z + surface and MINZ is coupled to z-surface in the z 
translational degree of freedom as shown in Fig. 6d). Second, a 
compressive displacement δ, corresponding to an effective strain 
of 2% (all simulated plate-latices lost their load-carrying capac-
ity under this strain) in the negative z-direction, was prescribed 
in the z translational degree of freedom of MAXZ and zero dis-
placements are prescribed on all the other degrees of freedom of 
MAXZ. Third, the translation degree of freedom of MAXX along 
the x-direction and of MAXY along the y-direction were let free 
while zero displacements were prescribed on the other degrees 
of freedoms of control points MAXX and MAXY. Finally, zero 
displacements in all degrees of freedom were prescribed on the 
MINX, MINY, and MINZ control points.

Acknowledgments 
This research was supported by the DOE Office of Energy 

Efficiency and Renewable Energy, Vehicle Technologies Office 
and used resources at the Manufacturing Demonstration 
Facility, a DOE-EERE User Facility at Oak Ridge National 
Laboratory. C. Ha, Z. Xu, M. Hsieh, and X. Zheng would 
also like to thank the AFOSR Air Force Office of Scientific 
Research (FA9550‐18‐1‐0299) and Office of Naval Research 
(N00014‐18‐1‐2553) for financial support.

Data availability 
All data generated during this study are available from the 

corresponding author upon reasonable request.

Declarations 

Conflict of interest The authors certify that they have NO affilia-
tions with or involvement in any organization or entity with any 
financial interest, or non-financial interest in the subject matter 
or materials discussed in this manuscript.

Appendix
A: Fabrication of the bi‑material isotropic cubic + octet 
lattices

A hollow CAD model of an isotropic cubic + octet plate-lattice 
with ρcubic+octet = 0.3 (shown in Fig. 7) was printed in CFRP 
via the projection micro-stereolithography (PμSL) system 
developed in the previous studies [37, 50]. After printing, the 
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samples were cleaned in ethanol using an ultrasonic cleaner. 
This process was repeated several times until the trapped resin 
was removed entirely. The sample was then left to dry and post-
cured under UV light. One of the as-fabricated samples was 
cut into pieces to verify that the inner hollowed channels are 
interconnected (Fig. 7a). To realize bi-material plate-lattices, the 
soft phase, comprising methacrylate monomers and oligomers 
and a thermal initiator (2,2′-Azobis(2-methylpropionitrile), was 
injected into the structure via a small hole at the top of each 
sample (Fig. 7a). This process was followed by thermal post-
curing at 150°F for 24 h. We ground off the extra materials (over 
25 × 25 × 25 mm) on six faces of the samples. One sample after 
grinding is displayed in Fig. 7b, clearly showing the boundary 
of the two material phases. Note that CFRP and soft phases were 
strongly bonded at their interface allowing the transfer tensile/
compression loads between the two phases; this was verified 
through experimental observations in our previous work [37].

B: Mechanical properties of the constituent materials

Development of CFRP and Flexible

Consistent with the methods used in our previous study [37], an 
ultraviolet (UV) curable CFRP composite was made with a UV-
sensitive resin (Formlabs Rigid, Formlabs Inc) reinforced with 
5 vol% short carbon fibers (PC100, E&L Enterprises, Inc). A 
high-energy ball mill was used to mix the monomer and carbon 
fiber thoroughly. The resulting CFRP composites are stiffer than 
the monomer, benefiting from the high stiffness of the carbon 
fibers and the interfacial friction [51–53] between fibers and 
monomer. On the other hand, the soft material was composed 
of methacrylate monomers and oligomers (Formlabs Flexible, 
Formlabs Inc) and a thermal initiator 2,2′-Azobis(2-methylpro-
pionitrile) (Sigma-Aldrich).

Mechanical testing

To quantify the mechanical properties of CFRP and soft materi-
als, we built ASTM standard (D3039) bulk samples to test along 
the same built direction via projection micro-stereolithography 
(PμSL). Two mechanical testing methods were performed: uni-
axial tension and dynamic mechanical analysis (DMA). The 
uniaxial tension tests were performed using an Instron 5944 
equipped with Bluehill data acquisition software and a 2000 N 
load cell to evaluate the stress–strain curve of the base material. 
A strain rate of  10−3/s (quasi-static strain rate) was conducted 
on each sample until fracture. The dynamic mechanical prop-
erties (storage and loss modulus) of the constituent materials 
were measured via a DMA apparatus (TA Instruments DMA 
850) at 0.1 Hz (equivalent frequency for quasi-static condition 
[29]). The measured material properties are listed in Table 1; 
the measured stress–strain curves under uniaxial tension are 
compared with those obtained via constituent material modeling 
(see ‘Constituent material modeling’) in Fig. 8.

C: Yield and failure strains of the bi‑material isotropic 
cubic + octet plate‑lattices

Figure 9 shows yield and failure strains of the bi-material iso-
tropic cubic + octet plate-lattices that were obtained from simu-
lated stress–strain curves in Fig. 2.

D: Quasi‑static response of the isotropic bi‑material 
cubic + octet sandwich plate‑lattice

Consider a cubic + octet unit cell oriented in a global Cartesian 
coordinate system as shown in Fig. 6b. We apply two different 
strain fields separately as follows:

Figure 7:  Fabrication of bi-material isotropic cubic + octet plate-lattices. (a) Schematic of the injection thermal curing method. Soft resin is injected into 
the 3D-printed octet-cubic shell made by CFRP then cured via heating. (b) Photograph showing the printed sample after injection and sanding.
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Uniaxial strain ( εxx = εyy = εxy = εxz = εyz = 0 

and εzz = ε)

First, we transform the uniaxial strain tensor from global xyz 
coordinate to each plate’s local x′y′z′ coordinate. Second, we 

enforce the plane-stress condition and obtain the principal stress 
( σI , σII , and σIII ) and principal strain ( εI , εII , and εIII ) compo-
nents. Strain energy density of each plate then can be calculated 
via Uel = 1

2 (σIεI + σIIεII + σIIIεIII) . This leads to the effective 
strain energy density of the unit cell under uniaxial strain as

Hydrostatic strain ( εxy = εxz = εyz = 0 

and εxx = εyy = εzz = ε)

Similarly, we obtain the effective strain energy density of the unit 
cell under hydrostatic strain as

(11)Uel,cubic+octet,uni =
Ep(2ρoctet + 3ρcubic)ε

2

9
(

1− v2p

)

(12)Uel,cubic+octet,hydro =
Ep(ρoctet + ρcubic)ε

2

1− vp

Figure 8:  The comparison of the tensile stress–strain curves between the simulation and experiment for CFRP and Formlabs flexible constituent 
materials under uniaxial tension.

TABLe 1:  Bulk material properties.

a Measured by DMA apparatus at 0.1 Hz.
b Measured from uniaxial tensile test.

Material

Storage 
 modulusa, 
E′ (MPa)

Loss 
 modulusa, 
E″ (MPa)

Loss 
 tangenta, 
tan δ (–)

Yield 
 strengthb, 
σy (MPa)

Poisson’s 
 ratiob, 
ν (–)

CFRP 2534.1 172.4 0.068 17.74 0.35

Formlabs 
flexible

8.2 2.4 0.299 – 0.49

Figure 9:  Yield and failure strains measured from simulated stress–strain curves of bi-material isotropic cubic + octet plate-lattices.
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Once we obtain the effective strain energy density of the 
unit cell, we enforce the isotropy with ρcubic = 2

3ρoctet [19, 21]. 
Equations (11)–(12) are then reduced to

Since the unit cell is isotropic, we can write the effective 
constitutive relation as follows:

(13)Uel,cubic+octet,uni =
4Epρcubic+octetε

2

15
(

1− v2p

)

(14)Uel,cubic+octet,hydro =
Epρcubic+octetε

2

(

1− vp
)

(15)
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,

w h e r e  C11 = 2Uel,cubic+octet,uni/ε
2  a n d  C11 + 2C12 =

2Uel,cubic+octet,hydro/
(

3ε2
)

 . Using Eqs. (13) and (14), we can 
obtain elastic constants C11 and C12 as

Finally, using E = (C11 − C12) · (C11 + 2C12)/(C11 + C12) , 
we can obtain the linearly elastic effective modulus as

where Ep and νp were defined in Eqs. (2) and (3), respectively.

(16)C11 =
8Epρcubic+octet

15
(

1− v2p

)

(17)C12 =
Epρcubic+octet

(

1+ 5vp
)

15
(

1− v2p

)

(18)E =
2
(

7− 5νp
)

Epρcubic+octet
(

1− vp
)(

27+ 15vp
) ,

Figure 10:  The Young’s modulus, peak strength, and strain at peak strength of the isotropic cubic + octet plate-lattice with ρcubic+octet = 0.3, made of (a) 
100% volume fraction of CFRP, VCFRP = 1 or (b) 100% volume fraction of the soft phase (Vsoft = 1) is plotted against the decreasing average mesh ratio for 
the mesh convergence study.
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E: Convergence study

Since both buckling and fractures can occur in the simulations 
(two situations that can break the material symmetry required 
for periodic boundary conditions3), we first performed both the 
mesh and unit cell convergence studies and determined that 
a 3 × 3 × 3 lattice configuration and an average mesh size ratio 
ẽavg (the ratio of the average element size to the unit cell size) 
of 0.04 are close to the converged values (see Figs. 10 and 11). 
The determined number of unit cells and mesh size ratio were 
then used in all simulations of the isotropic cubic + octet lattices 
with ρcubic+octet = 0.1, 0.2, and 0.3 and several Vsoft from 0 to 40% 
under compression.

Quasi-periodic boundary conditions (QPBCs) discussed in 
“Finite element simulations” were used in Abaqus to perform 
both the mesh and the unit cell convergence study on the iso-
tropic cubic + octet lattice shell models with ρcubic+octet = 0.3. For 
each convergence study, two constituent materials (100% vol-
ume fraction of CFRP, VCFRP = 1 or 100% volume fraction of soft 

phase, Vsoft = 1) are considered, hence representing two extreme 
ends of material behaviors. In the case of CFRP, a displacement 
δ, corresponding to 2% effective strain, is applied in the QPBCs; 
in the case of soft phase, a δ, corresponding to 10% effective 
strain is applied instead. The details are discussed below:

Mesh convergence study

Only a single unit cell was used. The average mesh size ratio ẽavg 
was then refined from 0.06 to 0.03 to study the convergence of 
Young’s modulus, peak strength, and strain at the peak strength. 
ẽavg = 0.04 was deemed appropriate for all cases (Fig. 10a and b) 
and then used in the unit cell convergence study.

Unit cell convergence study

The chosen average mesh size ratio ẽavg = 0.04 was used to mesh 
the models and the number of unit cell was increased cubically 
from 1 × 1 × 1 to 4 × 4 × 4 to study the convergence of Young’s 
modulus, peak strength, and strain at the peak strength. The 
optimal number of unit cells is determined to be 3 × 3 × 3 from 
Fig. 11.

Figure 11:  The Young’s modulus, peak strength, and strain at peak strength of the isotropic cubic + octet plate-lattice with ρcubic+octet = 0.3, made of (a) 
100% volume fraction of CFRP, VCFRP = 1 or (b) 100% volume fraction of the soft phase (Vsoft = 1) is plotted against the increasing number of unit cells 
per side for the unit cell convergence study.

3 For example, large number of unit cells are often required to 
investigate the crack propagations and fractures in cellular materi-
als [54, 55].
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