
Interpretable Machine Learning of Chemical Bonding at Solid
Surfaces
Noushin Omidvar, Hemanth S. Pillai, Shih-Han Wang, Tianyou Mou, Siwen Wang, Andy Athawale,
Luke E. K. Achenie, and Hongliang Xin*

Cite This: J. Phys. Chem. Lett. 2021, 12, 11476−11487 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Understanding the nature of chemical bonding and its variation in strength
across physically tunable factors is important for the development of novel catalytic materials.
One way to speed up this process is to employ machine learning (ML) algorithms with online
data repositories curated from high-throughput experiments or quantum-chemical simulations.
Despite the reasonable predictive performance of ML models for predicting reactivity
properties of solid surfaces, the ever-growing complexity of modern algorithms, e.g., deep
learning, makes them black boxes with little to no explanation. In this Perspective, we discuss
recent advances of interpretable ML for opening up these black boxes from the standpoints of
feature engineering, algorithm development, and post hoc analysis. We underline the pivotal
role of interpretability as the foundation of next-generation ML algorithms and emerging AI
platforms for driving discoveries across scientific disciplines.

Chemical bonding at solid surfaces underpins many
technological processes, including industrial separations,

pollution remediation, and interconversion of energies
mediated by molecular carriers.1 For catalytic reactions
occurring at gas−solid or liquid−solid interfaces, adsorption
of reactive species onto surface atoms is a prerequisite for bond
breaking and formation, thus playing a pivotal role in kinetics.2

Attributed to linear scaling relationships,3−6 adsorption
energies of one or two simple intermediates at site ensembles
largely dictate the activity and selectivity of catalytic materials.
As one of the oldest rules in catalysis, the Sabatier principle
highlights the importance of such reactivity descriptors in the
volcano-shaped plots of catalytic performance, in which
optimal sites should have “just right” binding affinities toward
descriptor species, neither too strong to get poisoned nor too
weak to be limited by activating stiff chemical bonds.7 With
recent advances in computing infrastructures and quantum-
chemical modeling tools, e.g., density functional theory (DFT),
it has become a routine practice to unravel the functional
mechanisms of existing catalysts and computationally design
improved ones followed by experimental validation.8 However,
the high computational cost of DFT simulations in a
combinatorial and high-throughput workflow restricts the
size of the chemical space and the structural complexity of
active sites that can be explored, prompting the development
of a new paradigm for catalytic materials discovery.
In recent years, machine learning (ML) algorithms have

been increasingly used to predict energetic properties of
catalytic materials, particularly for metals and metal com-

pounds where ever-growing data sets exist in open-access
repositories, e.g., Catalysis Hub, Computational Materials
Repository, ioChem-BD, and Open Catalyst Project.9−18

However, the predictive performance of purely data-driven
ML models comes with the loss of physical intuition as they
typically have complicated mathematical formulations which
make them black boxes. As autonomous materials discovery
platforms with AI agents are actively being developed in the
catalysis realm, there is an immediate demand for revealing the
rationale of the decision-making. In this regard, the field of
interpretable ML has attracted attention over the past few
years, and various strategies are implemented to improve the
physical understanding arising from ML models.19 Never-
theless, interpretability is a notoriously controversial concept,
and there is no formal definition agreed upon among domain
experts, ML practitioners, and algorithm developers. Broadly
speaking, interpretability can be considered as the extraction of
knowledge from data, while the knowledge relevancy is implied
by the attained insights.20

In this Perspective, we critically review recent advances of
interpretable ML for opening up black boxes and specifically
for predicting reactivity properties of solid surfaces from the
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aspects of feature engineering, algorithm development, and
post hoc analysis (see Figure 1). We review the long-lasting
effort of the catalysis community to find electronic, geometric,
and energetic descriptors as physically intuitive feature
representations of catalytic sites. We elaborate ML algorithms
that are interpretable to some extent because of the constraint
of model complexity or the integration of domain knowledge.
We also look into post hoc analysis tools, e.g., permutation
feature importance, that can provide model-agnostic inter-
pretations. Finally, promising prospects and existing challenges
regarding interpretable ML to accelerate catalytic materials
discovery are discussed.
Feature Engineering. The very first step in developing ML

models is to construct features that are representative of data
samples. Employing informative features may simplify the
relationships that need to be learned from data and allow
physical interpretation of model predictions. Identifying
physically transparent and relevant features using domain
knowledge has been an integral part of fundamental catalysis,
and many physics-inspired features were established based on
the electronic, geometric, and energetic information on
adsorption sites.
Electronic descriptors of site atoms include electron

configurations from the periodic table of elements and more
complex electronic structures that can be obtained from
quantum-chemical calculations. One of the simplest descrip-
tors of this type for transition metals and their compounds,
e.g., metal oxides, is the number of valence electrons of d-metal
atoms.21 It is designed from the intuition that surface metal
atoms interact with adsorbing species to maximize their overall
stability by satisfying electron-counting rules. The d-band
characteristics, i.e., the moments of the electronic density of d-
states distribution projected onto site atoms, have also been
widely used to capture the general trends of adsorption
energies. They are considered physics-inspired and highly
informative because their development is rooted in the theory

of chemisorption. According to the d-band theory widely
applied to transition-metal systems, the adsorption process can
be conceptually separated into two interaction steps of
adsorbate frontier orbitals with the metal sp-states and then
d-states, sequentially (see Figure 2a). Because the contribution
from the sp-states (ΔEsp) is approximated as a constant for
transition-metal surfaces of a given site type, the variation of
binding energies is solely governed by the d-states (ΔEd).
Hammer and Nørskov in the 1990s introduced the d-band
center, i.e., the first moment of the electronic density of d-
states distribution relative to the Fermi level (EF), as a key
descriptor for understanding reactivity trends of many catalytic
systems (see Figure 2b), including pristine transition-metal
surfaces,22 metal alloys,23,24 and surfaces with structural defects
(strains and steps)23,25 or poisons/promoters.25

Vojvodic et al.27 and Xin et al.28 identified the d-band upper
edge, defined as ϵd + Wd/2 (Wd: d-bandwidth) or the
maximum peak position of the Hilbert transform of the
electronic density of d-states distribution, as an improved
reactivity descriptor that explicitly considers higher-order
characteristics of the d-band electronic structure. None of
those descriptors, however, can truly capture the reactivity
trends of chemical bonding involving the adsorbate of almost
completely filled valence shells and site atoms of nearly fully
occupied d-states (e.g., hydroxyl adsorption on late transition
metals and their alloys). To resolve this puzzle within the d-
band theoretical framework, interatomic coupling strength was
recognized as a crucial factor governing Pauli repulsion
interactions, which often dominate the d-band contribution
to adsorption energies.29

While most of the electronic descriptors require self-
consistent quantum-chemical calculations, geometric descrip-
tors of surface reactivity are defined as the structural properties
of an adsorption site under the influence of surroundings. One
of the most intuitive geometric descriptors is the regular
coordination number (CN), which is defined as the number of

Figure 1. Interpretable machine learning of chemical bonding at solid surfaces can be achieved by feature engineering, algorithm development, and
post hoc analysis.
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atoms the site ensemble is directly bonded to. The maximum
coordination for an atom in an fcc/hcp metal crystal is 12.
Because of bond breaking at interfaces, surface atoms have
reduced coordination numbers, e.g., 9 for the fcc {111}-facet.
To make up for the lack of coordination, surface sites show the
tendency toward the formation of new chemical bonds. This
results in negative correlations between the CN of a site
ensemble and the adsorption strength, consistent with the
bond-order conservation principle.30 Using the CN of surface
metal atoms along with their curvature angles as supplemental
features, Mpourmpakis et al.31 elucidated how the size, shape,
and symmetry of Au nanoparticles impact site reactivity in CO
oxidation. In a similar vein, the generalized coordination
number (CN) of a surface site was engineered to consider the
local environment of each coordinating atom.32 The (CN) of
an atom i with ni nearest neighbors is defined as

= ∑ =CN CN /CNi j
n

j1 max
i , in which CNmax is the maximal

coordination of a bulk atom. This descriptor provides
fundamental insights into the structure−reactivity relationships
that successfully guide the design of Pt cavity sites with a
slightly weaker (∼0.1 eV) *OH binding than Pt(111),

resulting in improved catalytic performance for oxygen
reduction in fuel cells.33 The (CN) can reflect the general
trends of adsorption energies on pure metal surfaces and
shape-specific nanoparticles, although it is not directly
applicable for describing complex systems with lattice strains
and metal ligands. Ma and Xin34 proposed the orbitalwise
coordination number CNα (α = s or d) as a reactivity
descriptor for metal nanocatalysts, which explicitly takes into
account interatomic interactions within the tight-binding
theory. It is defined as CNi

α = M2,i
α /(tnn

α,∞)2, in which α
represents s- or d-orbitals, M2,i

α is the second moment of the
projected density of states onto the α-orbital at the site i, and
(tnn

α,∞)2 is the sum of the square of the α-electron hopping
integrals to relevant valence orbitals of a neighboring atom in
the reference bulk. Hopping integrals depend on the orbital
size, shape (symmetry), and internuclear distance as
approximated on the solid-state table.35 This descriptor
outperforms semiempirical bond-counting descriptors for
characterizing the surface reactivity of metal nanoparticles of
varying size, shape, and composition, which is attributed to its
consideration of lattice strains and metal ligands (Figure 3).
For transition-metal oxides, the adjusted coordination number

Figure 2. (a) Schematic illustration of the formation of a chemical bond between an adsorbate valence level and the sp- and d-states of a transition
metal surface. (b) The changes in the hydrogen-desorption potentials for Pd overlayers on a variety of metals scale with the shift of the d-band
center (δϵd). Adapted from ref 26. Copyright 2005, John Wiley & Sons.
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(ACN)36 and bond-energy-integrated orbitalwise coordination
number (CN )sd 37 were developed as engineered features to
understand site reactivity trends, showing promise for
generalizing the coordination concept to complex catalytic
systems.
Another type of physics-inspired feature that can provide

fundamental insights into chemisorption processes are
energetic descriptors. With the adsorbate valency concept,
Abild-Pedersen and colleagues showed that the binding
energies of a hydrogenated species at metal surfaces can be
linearly described by that of the center heavy atoms, the slope
of which is the ratio of the adsorbate valencies, e.g., (4 − x)/4
for *CHx scaling with *C (Figure 4a).3 This series of linear
scaling relationships (LSRs) have been generalized to hydro-
carbons with multiple carbon atoms and transition-metal
oxides, sulfides, nitrides, and carbides.4,39 The dependency of
LSRs on site types such as terraces, steps, kinks, or metal
adatoms has also been included to improve the predictive
accuracy and relevancy for structure-sensitive systems.40 For
complex adsorbates with multiple functional groups, the group
additivity concept has been shown to be efficient for predicting
binding energies as the sum of individual molecular-fragment
contributions, in analogy to the Benson group-increment
theory (BGIT) originally developed for gas-phase molecules.41

By leveraging both LSRs and group additivity formulas,
energetic descriptors have been employed to predict
adsorption properties of hydrocarbons, oxygenates, furanics,
and aromatics on various metal surfaces (Figure 4b).42−46

Having highly informative features simplifies the relationship
that the model must learn and allows practitioners to apply
model-based interpretability approaches. Despite great con-
tributions on physics-informed features, there are still bottle-
necks for many trained ML models. Feature engineering aids
the construction of such new informed feature sets by drawing
on the practitioner’s current domain experience as well as
insights obtained from the data through exploratory data
analysis. By extracting higher-order features, feature engineer-

ing may uncover potential physical information present in the
raw input data and make ML models more practical.
Algorithm Development. Another strategy of achieving model

interpretability is to utilize or develop algorithms that are
intrinsically interpretable, i.e., algorithms being readily
descriptive of the relationship between input features and the
target. Regarding all forms of linear regression as being under
the ML umbrella, intrinsically interpretable ML has a long
history in heterogeneous catalysis. Descriptor-based models for
understanding reactivity trends of solid catalysts, such as the
linearized d-band model of chemisorption, scaling relations,
group additivity, and the Brønsted−Evans−Polanyi (BEP)
relationship, all fall under this type of model by learning from a
typically small data set of adsorption properties.
Linear regression models can be generally written as y = β0 +

∑i=1βixi. The betas (βi) represent feature weights or
coefficients, and β0 is the intercept or bias. These unknown
parameters can be optimized when met with data as part of the
learning process. For instance, a linearized d-band model
predicts the change in chemisorption energy δΔE from one
metal surface to another with two linear terms,47 δΔE = k1δϵd
+ k2δVad

2 . The first term denotes the covalent contribution due
to the hybridization of metal d-states with the adsorbate
resonance states that are formed after being embedded into the
delocalized metal sp-states. The second term denotes the Pauli
repulsion contribution caused by the orthogonalization of
metal d-states and the adsorbate resonance states prior to
orbital hybridization. An optimized model with learned
parameters (k1 and k2) predicts that a positive shift in the d-
band center leads to a more exothermic covalent interaction,
while a larger coupling matrix element squared Vad

2 is
associated with weaker chemisorption if and only if Pauli
repulsion dominates reactivity trends. The model rationalizes
the observed exceptions to the traditional d-band model of
chemisorption involving late transition metals and electron-
rich adsorbates and proves to be useful in guiding catalytic
materials design.47 Montemore et al.48 also used a linear
combination of deliberately selected electronic descriptors of
surface sites to build multivariate reactivtiy models of different
adsorbates relevant for a wide range of chemistries (Figure 5).
These descriptors include the d-band center (ϵd), the number
of p-electrons (np), the coupling matrix element squared
between the adsorbate state(s) and metal d-states (Vad

2 ), and
the filling of the d-band ( fd). All these descriptors can be
obtained from look-up tables or estimated by submodels built
upon neighboring atoms’ features. The model is descriptively
accurate because of its transparency on how each of these
features affects the electronic descriptors and ultimately the
adsorption energies.
Despite being highly transparent, linear regression models

are too restrictive to accurately describe the nonlinearity in
chemical bonding. To include nonlinear correlations while
retaining the interpretability of linear regression models,
generalized additive models (GAMs) have attracted attention
recently. These models are linear combinations of nonlinear
single-feature components, namely, shape functions, y =
∑i=1 f i(xi).

49 A shape function can be any nonlinear relation-
ship of choice, and the contribution from each feature can be
directly quantified. Thus, it is capable of providing a descriptive
understanding of model predictions. Esterhuizen et al.50 used a
decision-tree-based generalized additive model (iGAM) for
unraveling factors that influence the chemisorption strength of
different electron-rich and electron-poor adsorbates on model

Figure 3. (a) The electronic structure of a surface metal site is linked
to its coordination number descriptors. The coordination numbers of
metal sites correlate with the adsorption energies of *CO (b) and *O
(c) at an on-top and a hollow site of Au nanoparticles, respectively.
Reprinted from ref 38. Copyright 2018, The Royal Society of
Chemistry.
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alloys with subsurface ligands (Figure 6). The model supports
that the strain in the surface metal layer, the number of d-
electrons in the ligand metal, and the d-orbital size of the
ligand metal are the essential characteristics of an adsorption
site. Energy deconvolution through shape functions consol-
idates the knowledge that OH adsorption is less influenced by
strain than other adsorbates (O, Cl, and N) because of the
varying degree of site coordination and the distinct nature of
chemical bonding.47 The feature shape for the number of d-
electrons in the ligand metal, on the other hand, sheds light on
a new aspect that has not been directly explored before. It
showed that the binding strength of the electron-rich
adsorbates (OH, Cl, and F) becomes weaker as the filling of
the d-states in the ligand metal increases, whereas an opposite
behavior was observed for relatively electron-poor adsorbates
(O, S, and CHx), in agreement with previous studies.29,47 The
predictive accuracy of GAMs can be improved by including
pairwise interactions resulting in a model known as generalized
additive models plus interactions (termed GA2 Ms).51

Nevertheless, pairwise interactions of primary features make
the algorithm convoluted and not easily explainable.
Similar to linear regression, symbolic regression is an

algorithm that offers structural interpretability with analytic

equations. Unlike traditional regression techniques with
predefined model structures, symbolic regression optimizes
both mathematical formulas and parameters while learning
from data. Symbolic regression comprises enormously vast
combinations of mathematical operations (+, sqrt, exp, sin, cos,
log, etc.) on features. Finding the best formula becomes an
optimization challenge that has been commonly tackled with
genetic programming and Bayesian optimization.52 The
attained formulation can offer descriptive understanding of
the underlying correlations. However, similar to any other
interpretable models, a compromise between accuracy and
interpretability needs to be considered. As the formula
becomes more complicated (potentially more accurate), the
model gets less interpretable. An example of employing
symbolic regression with attention to this trade-off is the
work of Weng et al.,53 in which a simple descriptor was created
to describe the OER activity of perovskite oxides (ABO3).
They found nine mathematical formulas that satisfy the
requirements of being descriptive and reasonably predictive.
Among those nine, μ/t showed the best compromise, where t =

+ +r r r r( )/ 2 ( )A O B O and μ = rB/rO are the tolerance and
octahedral factors, respectively. This model provides physical
insights for a rational design strategy, i.e., incorporation of

Figure 4. Energetic descriptors are physics-inspired features that are being used widely to predict chemisorption energies of adsorbate species. (a)
Adsorption energies of CHx intermediates scale with adsorption energies of the C atom. Adapted from ref 3. Copyright 2007, American Physical
Society. (b) Group additivity has been used to predict adsorption properties of furanic derivatives on Pd(111). Adapted from ref 45. Copyright
2014, American Chemical Society.
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large group IA and IIA cations (like K+, Rb+, Cs2+, and Ca2+)
on the A site (increasing t) and small 3d TM cations on the B
site (decreasing μ) resulting in candidate catalysts with
improved OER activity.
Symbolic regression has shown a promising aptitude for

developing interpretable ML models. However, having to
consider a vast dimension of formulas and features is a
weakness of this algorithm. Ideally, only a few features can be
highly relevant in the sense of defining the functionality of the
system,54 not to mention incorporating sparsity into symbolic
regression can make ML models relevant while being
descriptive. Compressed sensing (CS), as a sparse feature
selection algorithm, provides low-dimensional models that
identify highly relevant descriptors and predict output targets
simultaneously.55 Two popular CS algorithms in the field of
materials discovery are the least absolute shrinkage and
selection operator (LASSO) and the sure-independence
screening and sparsifying operator (SISSO). A specific target,
chemisorption energy for instance, can be predicted by a linear
combination of a collection of features (Θ), y = βΘ. In contrast
to the standard regression, LASSO applies the desire for
sparsity and enforces zero contributions for some of the
features by penalizing the magnitude of β coeffi-
cients.10,12,56−58 Nonetheless, LASSO has stability issues for
correlated features and the Sure SISSO algorithm has been
introduced to alleviate this problem.55 SISSO also assumes that
the property of interest is a linear function of candidate
descriptors that are nonlinear functions of primary features.

Those high-level descriptors are derived in iterative steps by
applying mathematical operators on primary features and then
ranked with the degree of correlation with the target. By
keeping the top ranks, SISSO can identify optimal n-
dimensional descriptors out of the immense feature spaces.
The SISSO approach has given researchers physical insights
about the underlying relationship for the prediction of material
properties, by providing sparse analytical models.59,59−63

Andersen et al.64 used this algorithm to find sparse feature
representations for predicting the adsorption enthalpies of key
reaction intermediates relevant to CO methanation and oxygen
evolution on transition metals and their oxides. The com-
pressed sensing technique derives algebraic models as a
combination of primary features, including atomic, bulk,
surface, and site properties (Figure 7). This model unbiasedly
uncovered the physical factors of surface reactivity that were
acquired by the d-band model, including the radius of the d-
orbitals in the bulk TM (rd), the filling and width of the d-
band, coupling matrix element squared (Vad

2 ), Pauling
electronegativity (PE), and the density of states at the Fermi
level of the sp- and d-bands. For metal oxides, the least
complicated 1D SISSO model identified the d-bandwidth (Wd)
and charge transfer energy (CTE), the energy difference
between the unoccupied metal d-band and filled oxygen 2p-
states, as the most important descriptors. Moreover, more
complex descriptors revealed the importance of additional
primary features, e.g., angular-resolved local order parameters.
These features are correlated weakly with the target

Figure 5. (a) With physical understanding of chemical bonding at surfaces, basic structural features can be chosen to predict electronic structure
parameters and then adsorption energies. The general linear models based on the electronic structure properties gave good accuracy for predicting
the electronic structure parameter, d-band center (b), and adsorption energies of various adsorbate species (c). Adapted from ref 48. Copyright
2020, The Royal Society of Chemistry.
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individually, but they appear to be capable of capturing part of
the target that electronic primary features do not if combined
with other features, which emphasizes the relevance of feature
interactions.
Clustering is also one type of learning algorithms with

interpretability potential resulting from identifying local
patterns and relationships. These unsupervised algorithms

divide the data set into related subgroups. The subgroup-
specific local models of adsorption energies can be more
accurately descriptive compared to global models as the
underlying mechanism may differ for different groups of
materials (such as d-block metals vs p-block metals).65

Identification of subgroups makes models more comprehen-
sible by understanding similarities and differences between

Figure 6. Additive structure of iGAMs allows for display of each feature xi’s contribution to the adsorption energies. Parity plots for DFT-calculated
and iGAM-predicted adsorption energies on Pt alloys show reasonable predictive accuracy. Adapted from ref 50. Copyright 2020, Elsevier.

Figure 7. The SISSO algorithm uses primary features to identify descriptors for prediction of a material’s properties. The adsorption energy of OH
is predicted by one of the simplest recognized models for TMO surfaces. Yellow circles mark symmetry-inequivalent adsorption sites on the
stepped metal alloy (top, bridge, and 3-fold- and 4-fold-coordinated sites). The primary features are averaged over these atoms if the adsorption site
is made up of numerous atoms (all but top sites). Reprinted from ref 64. Copyright 2021, American Chemical Society.
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subgroups and providing a simpler pattern of the data locally.
Ghiringhelli et al. were able to offer physical knowledge of the
local behavior of O and OH adsorption properties of
transition-metal alloys using the subgroup-discovery (SGD)
local technique. Their model’s boolean SG rules, also known as
selectors, could reveal alloy surface sites that deviate from
linear scaling relationships.66 This approach also aided the
physical interpretability of SISSO models for H binding on
single-atom alloy catalysts (SAACs) by providing local trends
of primary features appearing in identified descriptors of the
model.67 For instance, multiple subgroups of surfaces that bind
strongly with the H atom were distinguished by common
selectors, including the condition that d-band center of the top
surface layer host metals > −0.17. Their analysis also showed
that a subgroup of SAACs with strong and intermediate
binding energies of H atoms is mainly regulated by the
properties of the host metal rather than those of the guest
metals.
Most of the interpretable ML models we discussed so far

rely on the traditionally hand-crafted features identified by
human experts. Depending solely on the highly specialized
domain knowledge to develop features, however, may restrict
the generalizability of ML models. The pursuit of AI has been
pushing the exploitation of alternatives to manual feature
extraction. In this aspect, representation-learning algorithms
are broadly used for identifying relevant features. In a recent
attempt, Esterhuizen et al.68 applied principal component
analysis (PCA), an unsupervised dimension reduction
technique, to the atom-projected density of d-states with the
goal of identifying electronic and geometric factors as
algorithm-derived feature representations. This approach
reduces the high-dimensional d-DOS into a small set of
principal components (PCs) that are readily applicable in the
development of more accurate ML models for predicting
chemisorption energies in comparison to hand-crafted
descriptors. More importantly, reconstruction of density of
states signals from PC descriptors provides insights into how
the materials’ electronic structure, surface geometry, and
composition are linked and, ultimately, affect the bonding
strength. Specifically, the first PC descriptor was shown to
mainly capture the effects from the size of surface and ligand
metals, while the second PC descriptor is correlated with the
number of valence d-electrons in surface metals. The
convolutional neural network, or CNN for short, as a deep
learning framework is also well-established for feature learning
in image recognition. Over the past few years, there has been
huge attention paid to representation learning to extract the
high-level features from graphs. Xie et al.69 leveraged this tool
for predicting material properties using the crystal graph
convolutional neural network (CGCNN), which is initiated by
converting crystal structures into graphs with atoms as nodes
and their connections as edges. The crystal graph encodes the
atomic information and bond interactions between atoms.
Convolutional layers are then built on top to get new graphs in
which each node represents the local environment of the atom.
Using a pooling layer at this stage, a feature vector representing
the whole crystal is generated. The global vector from linear
pooling becomes the key piece in the model interpretability by
providing contributions from local chemical environments to
the target property. This algorithm has been employed to
predict surface reactivity by learning from a large data set. For
instance, the original CGCNN code has been modified to
collect neighbor information using Voronoi polyhedra to

predict CO and H binding energies on a variety of metal alloy
surfaces.70 Fung et al.71 developed the DOSnet models for a
wide range of metal alloys and adsorbates, using the CNN
algorithm to automatically featurize the electronic density of
states and provide physically meaningful interpretations of
reactivity trends. Although the interpretability may be
compromised, representation learning is a promising ML
approach to be explored for automatically gaining physically
intuitive information. Integrating scientific understanding of
physical interactions into the algorithms is an emerging field to
generalize the models and make them interpretable. A Bayesian
learning approach was developed by Wang et al.72 based on the
d-band reactivity theory and Newns−Anderson-type model
Hamiltonians. They used a Bayesian inference algorithm
(Bayeschem) to learn the model parameters on a small ab
initio data set. Bayschem enables quantitative investigation of
chemical bonding of simple adsorbates on metal surfaces by
providing orbitalwise insights. Bayeschem prediction perform-
ance is, however, compromised by its interpretability. The
theory-infused neural network (TinNet) was recently
developed73 that infuses the d-band theory of chemisorption
into deep learning networks to predict reactivity properties of
transition-metal surfaces. As shown in Figure 8, the TinNet
framework contains two sequential components: a regression

Figure 8. (a) The TinNet framework with a regression module and a
theory module sequentially integrates scientific understanding of
physical interactions into the learning algorithm. (b) Contributions of
orbital hybridization and Pauli repulsion from metal d-states to *OH
adsorption energies deconvoluted using TinNet models. (c) TinNet
shows coupling integral squared (Vad

2 ) for 3σ, 1π, and 4σ* orbitals
linearly correlates with the corresponding orbital hybridization energy.
Adapted from ref 73. Copyright 2021, Wang et al.
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module and a theory module. The input into the regression
module built with convolutional neural networks is the feature
representation of the adsorbate−substrate system that encodes
the atomic information and bonding interactions of each atom
with its neighboring environment. The output units from the
regression module then serve as unknown parameters in the
theory module that is built upon the d-band theory of
chemisorption for predicting adsorption properties of a d-metal
site. For a given adsorbate, the predicted adsorption energy
from TinNet can be deconvoluted into the orbital hybrid-
ization and Pauli repulsion contributions, which can give a
detailed physical interpretation not attainable from a purely
regression-based model. This model also provides the
projected density of states onto the adsorbate frontier
orbital(s) and d-band moments of the adsorption site for
interpretation.
Post Hoc Analysis. To this point we have discussed the

interpretability that can be achieved before and during the
process of learning through feature engineering and algorithm
development, respectively. Statistical analysis after training may
also offer model interpretation. Post hoc analysis typically
separates the interpretation from the model development and
has been shown to be generic in generating explanations for
black box models, irrespective of learning algorithms. These
approaches include visualizing the relationship between the
features and output target, measuring the contribution of
individual features to the model prediction, and approximating
models with interpretable surrogate models. By leveraging the
visualization ability of humans as our core cognitive skill, we
can greatly improve the transparency of ML models.74 Partial
dependence plots (PDPs), individual conditional expectation
(ICE) plots,75 and accumulated local effects (ALEs)76,77 are
examples of visualization techniques that have been used to
explain ML models. For instance, Liu et al.78 used PDPs to
interpret tree ensemble regression models of the interactions
between small molecules and group 13 metal-oxide surfaces,
revealing that higher HOMO energies, surface energies, and
dipole moments statistically lead to stronger molecular
bindings.
Feature importance analysis determines which features have

the most impact on model predictions. Permutation feature
importance (PFI) originally introduced for random-forest
models measures the change in prediction error by permuting
feature values and is the most prevalent technique for
computing and displaying feature contributions.80 Li et al.79

utilized sensitivity analysis based on feature permutation to
physically comprehend and explain the underlying variables
that influence adsorbate−metal interactions in feed-forward
neural network models. This sensitivity analysis highlighted the
significant role of the lower moments of the metal d-band in
site reactivity in comparison to higher moments, a higher
dependency of CO adsorption on d-band features than OH
adsorption, and a notable effect of sp-band properties on OH
adsorption (Figure 9). Fung et al.71 also used a similar
approach to obtain insights into which parts of the DOS are
accountable for the prediction from the deep neural network
model (DOSnet) with the full DOS as inputs. Looking into
hydrogen adsorption on Pt, they observed a decrease in the
bonding strength if low-energy states are masked and an
increase when masking the high-energy states. Other local and
global feature analysis metrics have also been introduced as
post hoc techniques to explain ML models, e.g., leave-one-
covariate-out (LOCO)81 and Shapley value.82 Surrogate

models, generated by training a simpler model with the
original model’s input data and predictions, can give insights
into complicated black box models.83 Local surrogate models
like LIME (local interpretable model-agnostic explanations)
focus on explaining why specific predictions were produced
and identifying which parts of a given input contribute the
most to a prediction.84 SHAP (SHapley Additive exPlanations)
is also a surrogate model inspired by LIME to explain the
prediction of an instance by computing the importance rating
for each feature for a specific prediction based on the Shapley
values.85,86

In summary, feature engineering can help with the relevance
of models by introducing informative, physics-based features.
Algorithm-based interpretability may give undistorted explan-
ations of the chemisorption process by introducing constraints
into the structural form of ML models. A trade-off between
model predictive accuracy and interpretation integrity is often
manifested in algorithm development. Integration of domain
knowledge into ML algorithms can possibly break this trade-off
and offer further insights into the nature of chemical bonding.
Post hoc interpretability allows maintaining the high predictive
accuracy of ML models while providing explanations on how
the predictions are made. Despite significant progress in all
three aspects, many challenges remain to be addressed on the
path toward truly interpretable models for driving catalytic
materials discovery. Feature engineering is still limited by the
lack of understanding of the electronic structure and its
relationship with chemical bonding, particularly for complex
materials. One promising direction in engineering of new
informative features is addressing this shortfall by looking into
high-order features, e.g., convolutions of the electron density.87

Algorithm development with integrated domain theories
heavily relies on the improvement of network architectures
and physical models. It is critical to apply approaches that
transform the network so that its essential building blocks, i.e.,
the architecture and underlying calculations, become more
understandable by humans. Network compression methods

Figure 9. Feature importance scores for *CO and *OH adsorption
models based on the sensitivity analysis of neural network models
imply an important role for the lower moments of the metal d-band in
site reactivity in comparison to higher moments and the distinct
bonding character of two adsorbates. Reprinted from ref 79.
Copyright 2017, The Royal Society of Chemistry.
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such as pruning and distillation are examples of approaches
that can be employed to gain smaller and more interpretable
networks.88−90 TinNet, integrating a Newns−Anderson
physical model, is demonstrated to work very well for
transition metals; however, its generalization to sp-metals and
metal compounds remains challenging. Thus, it is vital to focus
on the generalizability of the model while developing future
theory-integrated models. Despite the availability of many
powerful post hoc tools for the interpretation of black box
models, their use in the field has been limited. It is also
beneficial to explore various post hoc approaches to get more
information out of the black box models that have previously
been trained. Nonetheless, these approaches should be used
cautiously as they may raise the risks and concerns of
generating explanations that are products of artifacts learned
by the model rather than genuine information from the data.
Even so, interpretability should be an integral part of ML that
can push forward catalysis science. Given the current
challenges and technological hurdles in data availability,
standardization, and sharing mechanisms, the future looks
extremely bright indeed for deploying an explainable ML
framework that is directly interpretable, tractable, and
trustworthy. If successful, an AI agent can be built to discover
plausible models from data and automatically present its
findings as user-centered, human-level explanations. With all
that excitement, developing quantifiable metrics is the key
toward interpretable ML for catalytic materials discovery.
Establishing such metrics should be considered an essential
part of future efforts in interpretable ML frameworks.
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