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In this review paper, we first provide comprehensive tutorials on two classical methods of polygon-based computer-
generated holography: the traditional method (also called the fast-Fourier-transform-based method) and the
analytical method. Indeed, other modern polygon-based methods build on the idea of the two methods. We will
then present some selective methods with recent developments and progress and compare their computational
reconstructions in terms of calculation speed and image quality, among other things. Finally, we discuss and pro-
pose a fast analytical method called the fast 3D affine transformation method, and based on the method, we present
a numerical reconstruction of a computer-generated hologram (CGH) of a 3D surface consisting of 49,272 pro-
cessed polygons of the face of a real person without the use of graphic processing units; to the best of our knowledge,
this represents a state-of-the-art numerical result in polygon-based computed-generated holography. Finally, we
also show optical reconstructions of such a CGH and another CGH of the Stanford bunny of 59,996 polygons with
31,724 processed polygons after back-face culling. We hope that this paper will bring out some of the essence of
polygon-based computer-generated holography and provide some insights for future research. © 2022 Optica

PublishingGroup under the terms of theOptica Open Access Publishing Agreement

https://doi.org/10.1364/AO.444973

1. INTRODUCTION

Holography, invented by Gabor in 1948, is a technique based
on interference and diffraction to record and reconstruct a real
three-dimensional object [1]. Computer-generated holography
deals with the methods for digitally generating holographic
interference patterns. The resulting interference patterns are
called computer-generated holograms (CGHs). The CGH
can then be subsequently printed on a high-resolution film
or inputted to a spatial light modulator (SLM) for optical
reconstruction. In the early stage of CGH development, nei-
ther gray-tone plotter nor spatial light modulators (SLMs)
were available. Indeed, the first CGH, invented by Brown and
Lohmann in 1966, was necessary a binary, amplitude-only holo-
gram [2]. Computer-generated holography has since become
a technique for generating holograms with the development
of computer technology and modern optics. CGHs have been
widely used in various fields such as digital media, microscopy,

optical information storages, 3D display and imaging [3], and
most recently holographic displays [4] in virtual reality (VR)
and augmented reality (AR) using diffractive optical elements
[5]. There are also some recent reviews, surveys, and books on
computer-generated holography. Park reports recent progress
on computer-generated holography for three-dimensional
scenes and on fully analytic mesh-based computer-generated
holography [6,7]. Sahin et al. provide a comprehensive survey
for synthesis of CGHs [8]. Yamaguchi reviews light-field dis-
play technologies based on both light rays and wavefronts [9].
Corda et al. presents an in-depth review of the algorithms for
advanced processing and rendering of CGHs [10]. Yoshikawa
and Yamaguchi review holographic printers for CGHs [11].
Tsang et al. [12] and Nishitsuji et al. [13] focus on the review
of fast methods for point-based CGHs. Shimobaba et al. [14]
also have a review on fast algorithms and hardware imple-
mentations on CGHs. Wang et al. [15] review the hardware
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implementations of CGHs. While Matsushima presents a com-
prehensive treatment on one of the classical approaches, namely,
the traditional method (to be discussed in the next section), in
polygon-based numerical CGHs [16], Shimobaba and Ito focus
on point-based CGH in their book [17]. The book by Tsang
provides a comprehensive coverage of modern methods for
generating phase-only CGHs for 3D display [18]. From those
fine reviews, we know that two main practical obstacles still exist
for a wider technology adoption of CGH. One is the limited
performance of currently available spatial light modulators
(SLMs), and the other is the huge amount of computation time
for large-sized objects. On the computational side, fast and
efficient methods are sought.

The generation of CGHs in 3D imaging are categorized into
wavefront-based and ray-based methods, depending mainly
on the object model and light propagation model [8,9]. The
wavefront-based method calculates the hologram through
the use of wave optics to obtain a wave field scattered from the
object, such as the point-based method and the polygon-based
method. The ray-based method creates holograms mainly by
utilizing the intensity distribution of the 2D images propa-
gating from different viewing points and capturing the object
information incoherently based on geometric optics, such as
holographic stereogram (HS) and multiple viewpoint projec-
tion (MVP) holography [9]. In this review, we concentrate on
the wavefront-based method.

To calculate the CGH of a 3D object, the algorithms usually
decompose the 3D object into a set of simple primitives such
as points [12,13], line segments [19], polygons [20], or layers
[21–24]. No matter which type of primitives is used, the
complex amplitude of these primitives is superimposed in
the hologram plane. The aim is to reduce the calculation of
the complex amplitude from all the primitives.

In modern CGH, there are two prevalent approaches based
on wavefront reconstruction: the point-based approach and the
polygon-based approach. In the point-based approach, the 3D
object is represented by a collection of self-illuminating points,
each point is emitting a spherical wave toward the hologram
plane, and the total complex amplitude on the hologram plane
is the object wave calculated by summing up the spherical waves
emitted by all the point sources. For a most recent review of fast
methods for point-based CGHs, interested readers are referred
to the paper by Tsang et al. [12] and Nishitsuji et al. [13].

In the polygon approach, the 3D object is represented by
a collection of 2D polygons (a triangle is often used for the
method). The object wave on the hologram plane is the summa-
tion of all the diffracted fields from each polygon. The central
idea of using polygons to represent a 3D object is that the num-
ber of polygons representing an object is much smaller than that
of points in the point-based approach, which thus drastically
speeds up the calculation time required for the generation of a
hologram. Hence, in a way, the polygon-based method is kind
of an information reduction approach to computer-generated
holography. The polygon-based approach is also motivated
by the availability of visualization tools or rending software
such as 3ds Max. In 3ds Max, we can edit a mesh by adding or
deleting the various polygons. Therefore, the feature makes
it possible to apply computer graphics to the generation of
CGHs. To improve the reality of 3D object reconstructed by

polygon-based CGHs, some basic techniques used in computer
graphics, such as shading, rendering, occlusion and hidden-face
removal, texture mapping, and illumination can be applied
to polygon-based CGH. The amplitude and phase function
of each polygon can be encoded with the “surface function”
introduced by Matsushima and Kondoh [25], and Matsushima
and Nakahara [26], as Matsushima first investigated 3D surface
objects with shade and texture [27]. Other examples include
the works of Tang et al. [28] and Park et al. [29]. Inspired by
the works of Matsushima et al., Ahrenberg et al. [30] first pre-
sented algorithms for fast rendering of polygons directly in the
angular spectrum domain based on an affine transformation.
Subsequently, many improved methods on wave-field rendering
[31–33], texture [10,34,35], shading [36], and hidden-surface
removal have been described [37–39]. The removal of dark line
artifacts on the mesh boundary [40] and occlusion handling
between polygon surfaces provide correct information about the
perception of depth in order to encode 3D scenes [41–43]. Also
the calculation of reflectance distributions has been addressed in
polygon-based methods [44–46].

Our aim is to decrease the computation time of CGHs and
to improve the quality of the reconstructed image. However,
the calculation of CGH of a 3D object with rendering, hidden-
face removal, and so on is a heavy computer processing task.
To reduce calculation time, fast algorithms and hardware
implementations are both needed. As the number of polygons
increases, there is a significant computational load associated
with hologram synthesis, and most calculations target toward
real-time 3D display [14,15]. To speed up the calculation,
hardware-based acceleration is highly effective. Accelerated
hardware platforms, including graphics processing units
(GPUs), field-programmable gate arrays (FPGAs), digital sig-
nal processors (DSPs), coprocessors, and so on can bring high
efficiency in CGH generation [47–51].

When CGH faces its main practical display application
with SLMs, the SLM needs to present high enough resolution,
as the resolution of a SLM will affect the quality of hologram
display [52–54]. For a SLM, it has constant pixel pitch. Given
a fixed wavelength, the maximum diffraction angle of the SLM
is dependent on the pixel pitch, and the pixel number decides
the image size and the viewing angle of the reconstructed 3D
holographic image. The space-bandwidth product (SBP) is
defined by the product of the spatial and spectral footprints of
the holographic signal. When a hologram is displayed on an
SLM, the SBP corresponds to the number of pixels, and so the
total pixel count of the SLM puts an upper limit on the SBP of
the system [9,55].

This review paper is primarily concerned with the devel-
opment in CGH with polygon-based algorithms. There are
two classical methods in polygon-based CGH: the traditional
method and the analytical method. In Section 2, we will first
provide a comprehensive tutorial of the basic theory of the two
methods. In Section 3, we will describe some recent progress
in the analytical method in which two existing methods and
one method proposed by this paper called the fast 3D affine
transformation (F3DAT) method are discussed. In Section 4,
we will generate CGHs and perform reconstruction using these
three analytical methods. Computation time and image quality
evaluation are compared among these methods along with some
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Fig. 1. 3D object as a 3D mesh.

optical reconstruction using a SLM. Real face data obtained
by a depth camera will also be used to further test the F3DAT
method. In the last section, we make some concluding remarks.

2. TUTORIAL OF TWO CLASSICAL
POLYGON-BASED METHODS

Figure 1 illustrates a 3D mesh of the Stanford bunny consisting
of triangles. The hologram plane is in the x − y plane. The
optical complex field emitted by each polygon (triangle in this
case) on the hologram plane is referred to as the polygon field .
Therefore, we can write the total complex object field on the
hologram by summing all the polygon fields from each polygon:

u(x , y )=
N∑

i=1

ui (x , y ), (1)

where N is the number of polygons and ui (x , y ) is the polygon
field on the hologram plane from the i th polygon. We now
discuss two popular polygon-based methods to realize Eq. (1):
the traditional method [or the fast Fourier transform (FFT)-
based method] and the analytical method. We will start with the
traditional method.

A. Traditional Method

Calculations of diffraction between two parallel planes are well
known. These can be performed using the angular spectrum
method or the Fresnel diffraction formula if small angle approxi-
mations are assumed [56]. However, in a general 3D mesh, most
polygons do not lie parallel to the hologram plane. Therefore,
there was a great need to propagate diffracted fields between
tilted planes. Ganci, Patorski, and Rabal et al. investigated
the diffraction pattern of a tilted plane under the Fraunhofer
approximations [57–59]. Leseberg and Frere were the first to
investigate the diffraction pattern of a tilted plane using the
Fresnel approximations [60]. Subsequently, they extended
their investigation for large objects [61]. Tommasi and Bianco
first analyzed the relation for the angular spectra of rotated
planes [62]. The result is a central idea of most of the popular
polygon-based methods. In their subsequent investigation,
they applied their approach to calculate the CGHs of off-axis

Fig. 2. Coordinate systems: source coordinate system or tilted
local coordinate system (x s , y s , zs ), parallel local coordinate system
(x p , y p , z p), and hologram plane (x , y ).

objects and addressed the problems concerning the hologram
size and the sampled spectrum [63]. The same problem was fur-
ther examined and deliberated mathematically in a precise and
clear fashion by Matsushima et al. [64,65]. Other works on the
investigation of diffraction between oriented planes include the
ones by Delen and Hooker based on full diffraction theory [66]
and by Onural using impulse functions over a 3D surface [67].

To find the polygon field of the i th polygon ui (x , y ), we
need to relate the surface function of an arbitrary polygon on a
tilted plane u s (xs , y s ) to that on the hologram plane [25–27].
Figure 2 shows a single tilted polygon, where coordinate sys-
tem (xs , y s , zs ) is referred to as a tilted local coordinate system
or a source coordinate system. A parallel local coordinate system
(x p , y p , z p) is also defined, which shares the origin of the
tilted local coordinates. In describing the coordinate systems,
we are using the same terminology originally introduced by
Matsushima [27]. The parallel local coordinate system is parallel
to the hologram plane (x , y ). So, given u s (xs , y s ), we find
ui (x , y ). From u s (xs , y s )we can first find the complex field on
the parallel local coordinate system. Subsequently, the field on
the parallel local coordinate system diffracts to the hologram
plane to form ui (x , y ).

The complex polygon field with angular plane wave spectrum
Us (ksx, ksy)=Us (ksx, ksy; zs = 0)propagating along zs is
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u s(xs , y s , zs )=
1

4π2

∫∫
∞

−∞

Us(ksx, ksy; 0)

× e− j(ksxxs+ksy y s+kszzs )dksxdksy, (2a)

where

Us
(
ksx, ksy; zs = 0

)
=F {u s (xs , y s ; zs = 0)}

=

∫∫
∞

−∞

u s (xs , y s )e
j (ksxxs+ksy y s )dxs dy s

with F{·} representing the Fourier trasnform of the quanity
being bracketed. In vector notations and using the dot product,
Eq. (2a) becomes

u s (r s )=
1

4π2

∫∫
∞

−∞

Us (ksx, ksy; 0)e
− j ks · r s dksxdksy, (2b)

where r s = (xs , y s , zs ) and ks = (ksx, ksy, ksz) are a position
vector and a propagation vector of u s in the source coordinates,
respectively, defined by row matrices. Now the two local coordi-
nates r s = (xs , y s , zs ) and r p = (x p , y p , z p) can be mutually
transformed by coordinate rotation using transformation matrix
T:

r t
p =

 x p

y p

z p

=
 a1 a4 a7

a2 a5 a8

a3 a6 a9

 xs

y s

zs

= Tr t
s , (3a)

or

r t
s = T −1r t

p, (3b)

where T is a rotation matrix or the product of rotation matrices.
The idea is that upon proper rotations, the polygon under con-
sideration will be on the x p y p plane that is parallel to the holo-
gram plane. From Eq. (3b), after taking the transpose, we have

r s = r p(T −1)t = r pT (4)

as T −1
= T t for any rotation matrix. Hence, with Eq. (4),

the complex field in Eq. (2a) in the parallel local coordinates
becomes

u p(r p)= u s (r s )|r s=r pT

=
1

4π2

∫∫
∞

−∞

Us (ksx, ksy; 0)e
− j ks · r pTdksxdksy. (5)

Similarly, a propagation vector in the source and parallel local
coordinates can also be transformed like position vectors as
follows:

ks = k pT, (6)

where k p = (kpx, kpy, kpz). With this equation, the exponential
term original in Eq. (2b) and now in Eq. (5) becomes

ks · r s = ks · r pT = k pT · r pT.

If vector a and b are defined with row matrices, we can write
the dot product as a matrix product as follows:

a · b= abt.

Hence,

ks · r s = k pT · r pT = k pT(r pT)t = k pT(T tr t
p)

= k pr t
p = k p · r p, (7)

and with this, we rewrite Eq. (5) to become

u p(r p)= u s (r s )|r s=r pT

=
1

4π2

∫∫
∞

−∞

Us (ksx, ksy; 0)e
− j k p· r pdksxdksy

=
1

4π2

∫∫
∞

−∞

Us (ksx, ksy; 0)

× e− j(kpxx p+kpy y p+kpzz p)dksxdksy, (8a)

where

kpz(kpx, kpy)=

√
k0

2
− k2

px − k2
py, (8b)

with k0 being the wavenumber of the light. The exponential
function in Eq. (8a) represents plane wave propagating along the
z p direction (or the z direction) on the parallel local coordinates
as shown in Fig. 2. We now need to fully convert Eq. (8) in terms
of (kpx, kpy, kpz). In other words, the terms

Us (ksx, ksy; 0)dksxdksy (9)

still need to be converted. From Eq. (6), we have

kt
s = T −1kt

p,

which is  ksx

ksy

ksz

=
 a1 a2 a3

a4 a5 a6

a7 a8 a9

 kpx

kpy

kpz

.

Therefore, we have

ksx = ksx(kpx, kpy)= a1kpx + a2kpy + a3kpz(kpx, kpy) (10a)

and

ksy = ksy(kpx, kpy)= a4kpx + a5kpy + a6kpz(kpx, kpy). (10b)

Therefore, Us(ksx, ksy; 0) from Eq. (8a) can be expressed in
terms of (kpx, kpy, kpz) explicitly as

Us (ksx, ksy; 0)=Us
(
ksx(kpx, kpy), ksy(kpx, kpy); 0

)
=Us

(
a1kpx + a2kpy + a3kpz, a4kpx

+ a5kpy + a6kpz; 0
)
. (11)

Now, using Eq. (10), the differential element of Eq. (8a) is
achieved by

dksxdksy =
∣∣J (kpx, kpy)

∣∣ dkpxdkpy, (12)

where J(kpx, kpy) is the Jacobian of the coordinate trans-
formation of ksx and ksy with respect to kpx and kpy,
given by
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J (kpx, kpy)=

∣∣∣∣∣
∂ksx
∂kpx

∂ksx
∂kpy

∂ksy
∂kpx

∂ksy
∂kpy

∣∣∣∣∣= (a2a6 − a3a5)kpx

kpz(kpx, kpy)

+
(a3a4 − a1a6)kpy

kpz(kpx, kpy)
+ (a1a5 − a2a4)

≈ (a1a5 − a2a4), (13)

for paraxial approximations as kpx and kpy are much smaller than
kpz. With Eqs. (11) and (12), Eq. (9) becomes

Us (ksx, ksy; 0)dksxdksy

=Us
(
ksx(kpx, kpy), ksy(kpx, kpy); 0

) ∣∣J (kpx, kpy)
∣∣ dkpxdkpy

=Us
(
a1kpx + a2kpy + a3kpz, a4kpx + a5kpy + a6kpz; 0

)
×
∣∣J (kpx, kpy)

∣∣ dkpxdk py .

(14)

Substituting Eq. (14) into Eq. (8a), we have

u p(r p)=
1

4π2

∫∫
∞

−∞

Us
(
a1kpx + a2kpy + a3kpz, a4kpx

+ a5kpy + a6kpz; 0
)
e
− j
(

kpxx p+kpy y p+z p

√
k0

2−k2
px−k2

py

)

×
∣∣J (kpx, kpy)

∣∣ dkpxdkpy,

(15)

where, again, Us (ksx, ksy; zs = 0)=F{u s (xs , y s ; zs = 0)} and
u s (xs , y s ; zs = 0)= u s (xs , y s ). For a given surface function
of a polygon u s (xs , y s ), Eq. (15) gives us the complex field
propagating on the (x p , y p , z p) coordinate system.

Therefore, we can write the polygon field ui (x , y )(due to the
i th polygon) on the hologram plane at z p = zi with (x p , y p)

replaced by (x , y ) in Eq. (15):

ui (x , y )=F−1{Us ,i
(
a1,i kpx + a2,i kpy + a3,i kpz, a4,i kpx

+ a5,i kpy + a6,i kpz; 0
) ∣∣J i (kpx, kpy)

∣∣ e− j zi

√
k0

2−k2
px−k2

py

}
,

(16)

where Us ,i (ks x ,i , ks y ,i ; 0)=F{u s ,i (xs , y s ; zs = 0)} is the
angular spectrum on the source plane and u s ,i (xs , y s ; zs = 0)
denotes the i th polygon that is zi away from the hologram.
We observe that numerical calculations of each of the polygon
field ui (x , y ) on the hologram require two FFTs, and finally
the total polygon field on the hologram is computed by Eq. (1).
The use of Eq. (16) to find the total polygon fields is what we
call the traditional method—the same name that it is called
by Pan et al. [68], where the first FFT is applied to the tilted
local coordinate system or a source coordinate system, and the
second FFT is applied in the frequency domain. Clearly, the two
processes involve expensive numerical calculations, and hence
we can also call the traditional method the FFT-based method
[34]. The main drawback is the need to perform two FFTs
for each polygon as mentioned. In addition, most seriously,

the transformation of the spectrum from the local coordinate
system to the parallel local coordinate system through rotation
is nonlinear [see Eq. (10)], and that requires interpolation
to allow FFT sampling at even intervals to alleviate sampling
distortion (see Ref. [16], Sections 9.5 and 9.6 for detailed discus-
sion). However, one of the biggest advantages of the traditional
method is that shading and texture mapping of each polygon are
naturally incorporated into the surface function, which leads to
the unparalleled rendering of high-resolution and realistic 3D
reconstructed images.

B. Analytical Method

We see from Eq. (16), that for an arbitrary polygon with surface
function u s ,i (xs , y s ; 0), its spectrum is F{u s ,i (xs , y s ; 0)} =
Us ,i (ksx, ksy; 0), which is calculated numerically by FFT. If
we have an analytical function describing the spectrum of an
arbitrary polygon, we will save time in calculations, and then
Eq. (16) can be calculated using a single FFT numerically. In
addition, each spectrum of the polygon can be precalculated
to speed things up. Ahrenberg et al. [30] pioneered a method
to analytically compute the spectrum of an arbitrary poly-
gon through the use of affine transformation [69]. An affine
transformation is a geometrical transformation that maps input
coordinates (x , y ) into output coordinates (xs , y s ) according to(

xs

y s

)
=

(
a11 a12

a21 a22

)(
x
y

)
+

(
a13

a23

)
. (17)

Typical affine transformations consist of various operations:
scaling, reflection, shear, and translation. Figure 3(a) shows a
general triangle f0(xs , y s ) on the source coordinate system
with the vertex coordinates as (x1, y1), (x2, y2), and (x3, y3).
In Fig. 3(b), we also show a unit right triangle on the (x , y )
coordinates. The affine transform relating the two coordinates
can be written as(

xs

y s

)
=

(
x2 − x1 x3 − x2

y2 − y1 y3 − y2

)(
x
y

)
+

(
x1

y1

)
. (18)

We see that transforming the three vertices of the unit right
triangle f1(x , y ) gives three new vertices, which forms the
triangle f0(xs , y s ). Note that the function f0(xs , y s ) and
f1(x , y ) are constant valued 1 inside the triangles and 0
everywhere else.

The central idea of the 2D affine transform analytical method
is that we can relate the Fourier transform (or the spectrum) of
an arbitrary triangle to that of a unit right triangle, as the spec-
trum of the unit right triangle is given analytically. The spectrum

Fig. 3. (a) General triangle on the source coordinates (x s , y s );
(b) unit right triangle.
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of f0(xs , y s ) is

F{ f0(xs , y s )} = F0(ksx, ksy)

=

∫∫
∞

−∞

f0(xs , y s )e
j (ksxxs+ksy y s )dxs dy s , (19)

and similarly, the spectrum of f1(x , y ), which has an analytical
expression, is given by

F{ f1(x , y )} = F1(kx , ky )=

∫∫
∞

−∞

f1(x , y )e j (kx x+ky y )dxdy

=

∫ 1

0

∫ x

0
e j (kx x+ky y )dxdy

=



1
2 , kx = ky = 0
1−e j ky

ky
2 +

j
ky
, kx = 0, ky 6= 0

e j kx −1
kx

2 −
j e j kx

kx
, kx 6= 0, ky = 0

1−e j ky

ky
2 −

j
ky
, kx =−ky , ky 6= 0

e j kx −1
kx ky
+

1−e j (kx+ky )

ky (kx+ky )
, elsewhere

(20)

Now, for a general triangle relating to the unit right triangle,
we use Eq. (17) to obtain affine operations xs = a11x + a12 y +
a13 and y s = a21x + a22 y + a23. With a change of variables to
(x , y ), Eq. (19) becomes

F0(ksx, ksy)

=

∫∫
∞

−∞

f0(xs , y s )e
j (ksxxs+ksy y s )dxs dy s

=

∫ 1

0

∫ x

0
f1(x , y )e j [ksx(a11x+a12 y+a13)+ksy(a21x+a22 y+a23)]

× |J (x , y )| dxdy

=

∫ 1

0

∫ x

0
e j [ksx(a11x+a12 y+a13)+ksy(a21x+a22 y+a23)]

× |J (x , y )| dxdy ,

where the Jacobian is

J (x , y )=

∣∣∣∣∣
∂xs
∂x

∂xs
∂ y

∂ y s
∂x

∂ y s
∂ y

∣∣∣∣∣=
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣= a11a22 − a12a21. (21)

Rearranging the equation F0(ksx, ksy) from above and using
the definition of F1(kx , ky ) in Eq. (20), we can write

F0(ksx, ksy)= |a11a22 − a12a21| e
j (ksxa13+ksya23)

×

∫ 1

0

∫ x

0
e j [ksx(a11x+a12 y )+ksy(a21x+a22 y )]dxdy

= |a11a22 − a12a21| e
j (ksxa13+ksya23)

× F1
(
a11ksx + a21ksy, a12ksx + a22ksy

)
.

(22)

This is an analytical expression of the spectrum of
u s(xs , y s )= f0(xs , y s ), i.e., F{u s(xs , y s )} =Us(ksx, ksy)=

F0(ksx, ksy), with F1 given by Eq. (20) analytically. Therefore,
the polygon field due to the i th polygon zi away from the
hologram, according to Eq. (16), becomes

ui (x , y )=F−1{Us ,i
(
a1,i kpx + a2,i kpy + a3,i kpz, a4,i kpx

+ a5,i kpy + a6,i kpz; 0
) ∣∣J i (kpx, kpy)

∣∣ e− j zi

√
k0

2−k2
px−k2

py

}
,

(23)

where Us ,i (ks x ,i , ks y ,i ) is now given analytically as

Us ,i (ks x ,i , ks y ,i )

=F{u s ,i (xs , y s ; zs = 0)} = F0i (ks x ,i , ks x ,i )

=
∣∣a11,i a22,i − a12,i a21,i

∣∣ e j (ksxa13,i+ksya23,i )

× F1
(
a11,i ks x ,i + a21,i ks y ,i , a12,i ks x ,i + a22,i ks y ,i

)
.

Again, the total polygon field on the hologram can now be
computed using Eq. (1). As compared to the traditional method
[see Eq. (16)], this method has the advantage that it only needs
to perform a single inverse FFT and avoids the need of interpo-
lation. By using Eq. (23) along with Eq. (1), we can obtain the
total polygon field on the hologram, and the first FFT used in
the traditional method is replaced by an analytical expression,
i.e., F0i (ks x ,i , ks x ,i ). Therefore, the method described here
is called the analytical method. However, one of the biggest
drawbacks of the method is that texturing a polygon leads to
a convolution in the angular spectrum of the polygon, which
slows down the calculation speed.

To put things into perspective, we want to point out that
almost at the same time Ahrenberg et al. published their paper,
another group, Kim et al. [70], proposed another analytical
angular spectrum representation of image light field emitted
from the model of a triangle-mesh-modeled 3D surface objects.
Using simple geometric transform, they are also able to get the
analytical 2D Fourier transform of an arbitrary triangle on the
source plane. Other analytical methods include the work of
Zhang et al. using conformal geometry theory [71], and Sakata
and Sakamoto deriving 3D affine transformation in the Fresnel
region [72]. In addition, a semi-analytical method [34] has also
been developed by Lee et al.

As a final note to this subsection, we want to point out that
while we have discussed the two classical polygon-based meth-
ods, i.e., the traditional method and the analytical method,
there are other modern polygon-based methods that build on
the ideas of these two methods. For example, in the analytical
method, we could take the affine transform of the source func-
tion before rotation to align the source coordinate system to
be parallel with the hologram plane. Pan et al. [68,73,74] have
developed a method using 3D affine transformation, which
contains the rotational, translational, and scaling transforma-
tion. They have reduced the computation time as compared
to that from Ahrenberg et al. Zhang et al. [20] have recently
introduced a fast generation method that performs polygon
rotation and 2D affine transformation to obtain full 3D affine
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transformation, which further reduces the computation time by
avoiding the time-consuming aspect of solving a pseudo-inverse
matrix encountered in Pan et al.’s work. In the next section,
we will discuss and compare further on the methods by Pan
et al. and Zhang et al. with the addition of a F3DAT method
proposed in this paper. The F3DAT method avoids the time-
consuming nature of solving the pseudo-inverse matrix and at
the same time avoids using the multiple three-dimensional rota-
tions used in Zhang et al. Hence, the computational efficiency
is further improved. We want to mention that, with all these
analytical methods investigated, we have not considered any
texture mapping, as we simply try to seek ways to improve the
calculation time for uniform surface function of each polygon.
Therefore, these analytical methods including F3DAT are not
a universal technique to calculate the object field of polygon-
meshed objects. The traditional method, all the analytical
methods mentioned, and other novel techniques are aiming for
the calculation of CGHs with the ultimate goal of high-quality
reconstruction with efficient calculations.

3. RECENT PROGRESS

A. 3D Affine Transformation/Pseudo-Inverse Matrix
Method

Inspired by 2D affine transformation, 3D affine transforma-
tion has been proposed by Pan et al. [68,74]. For convenience,
according to the terminology used by Pan et al., the hologram,
located at z= 0, is in the x − y plane, and the xyz coordinates
are called the global coordinates. Again we denote coordinate
system (xs , y s , zs ) as a tilted local coordinate system or a source
coordinate system. They also define the unit right triangle
f1(xs , y s ) at zs = 0 in the local coordinates, where we know
its spectrum analytically as discussed earlier. The right triangle
can be related to the arbitrary polygon to the global coordinate
system via a 3D affine transformation as follows:[

x , y , z, 1]t = T
[

xs , y s , zs , 1]t , (24)

where [x , y , y , 1]t and [xs , y s , zs , 1]t are the global coordinate
vector and the local coordinate vector of a given point. T is an
affine coordinate transformation matrix given by

T =

 a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
0 0 0 1

 . (25)

Hence, we can relate a pairwise correspondence of the vertices
between the two triangles according to x = a11xs + a12 y s + a13zs + t1

y = a21xs + a22 y s + a23zs + t2
z= a31xs + a32 y s + a33zs + t3.

(26)

Since the unit right triangle is assumed to lie in the plane
zs = 0, the above equation becomes

x = a11xs + a12 y s + t1
y = a21xs + a22 y s + t2
z= a31xs + a32 y s + t3.

(27)

We need to compute the a ′s and t ′s of the above equations.
However, since [xs , y s , zs , 1]t =[xs , y s , 0, 1]t , we cannot
invert Eq. (24) to find the a ′s and t ′s . Pan et al. then bring on the
concept of a pseudo-inverse matrix to perform inversion using
the singular decomposition method [68,74]. By employing the
3D affine transformation in Eq. (24) along with the concept of
a pseudo-inverse matrix and the analytical spectrum of a right
unit triangle, they have been able to speed up the calculation
process.

B. Full Analytical 3D Affine Transformation

The introduction of the pseudo-inverse matrix has produced
calculation errors and slowed down the calculation speed.
Zhang et al. have introduced a fast generation of the full analyti-
cal method to avoid the use of the pseudo-inverse matrix [20].
The method includes three core steps: rotation transformation
for the tilted polygon until it is parallel to the hologram plane,
2D affine transform of the rotated polygon, and finally the com-
putation of the field distribution on the hologram by using the
angular spectrum (AS) method for diffraction. The end result
of the method has enabled the computation of a complex 3D
objects with thousands of polygons, and at the same time the
computation speed is much faster than the traditional method
and the analytical method in Section 2.A and 2.B, respectively,
and the method proposed by Pan et al. discussed in the previous
section.

C. Fast 3D Affine Transformation Method

We have currently attempted a revised method based on the
3D affine transformation based on Pan et al.’s to improve the
computation efficiency. To solve the singular matrix problem,
they use the concept of a pseudo-inverse matrix, which is very
time consuming and not precise for the calculations. The exist-
ence of the noninvertible matrix is that the unit right triangle is
defined to locate at zs = 0 plane, so the value of zs of the triangle
has been set to be zero in the formalism. In other words, they
have not considered the relative position between the global
system and the local system. What is it to be if we let the unit
right triangle be located at the zs = z0 6= 0 plane? Once we have
zs 6= 0, the matrix T can now be fully inverted. The resulting
consequence is the fast calculation time, and we call it the fast
3D affine transformation (F3DAT) method. In the next section,
we will compare the simulation and experimental results of all
the methods discussed in this section.

4. COMPUTATIONAL AND EXPERIMENTAL
RESULTS

A 3D acquisition system consisting a camera [Dalsa CA-
D6-0512W with resolution 532× 516 pixels of pixel size
10 µm] and a fringe projector [Kodak DP900 projector with
available wavelengths of 360–700 nm] have been used to
extract depth points and texture information of real objects
to make a point cloud model [75]. The viewing volume is
342× 376× 658 mm3 with the actual size of “Sophie” being
137.8× 180.6× 75.1 mm3. The point cloud model is then
converted to a triangular-mesh model by using triangulation
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Fig. 4. (a) Picture of a real person, (b) “Sophie,” geometric sur-
face of (a). The geometric surface with the texture image in (a) is
from a publicly accessible geometric archive from the 3D Scanning
Laboratory in Stony Brook University [76].

Fig. 5. Sophie consisting of (a) 7270 polygons, (b) 21,402
polygons, (c) 35,403 polygons, and (d) 49,272 polygons.

along with computer graphics. The captured face of a real person
is shown in Fig. 4(a), and the geometric surface of Fig. (4a) is
called “Sophie,” which is shown in Fig. 4(b). Figures 5(a)–5(d)
show the face of Sophie consisting of 7270, 21,402, 35,403, and
49,272 polygons, respectively. Note that in the present inves-
tigation, these polygons have no texture mapping. However,
limited approaches have been investigated to include texture
mapping in the analytical techniques [34,35].

We generate holograms with a resolution of 1024× 1024,
and the hardware includes Intel Core i7-11700 at 4.8 GHz,
16 G-byte RAM with RTX 3060Ti under the environment of
MATLAB 2018b. In order to reproduce the details of the object,
instead of using polygons with constant amplitude, we render
the 3D mesh with shading using a simple method to judge the
normal and assign values to the triangles with different constant
values of reflectance according to the following formula:

Ai = k1 cos α + k2 cos β + k3 cos γ, (28)

Fig. 6. Polygon with normal vector and angles,β and γ with respect
to the x , y , and z axis, respectively.

Table 1. Comparison of Calculation Times for
Different Methods

Number of
Polygons for
Sophie Traditional Ahrenberg Pan Zhang F3DAT

7270 // // 499 s 410 s 363 s
14,254 // // 978 s 816 s 720 s
21,402 // // 1470 s 1213 s 1060 s
28,611 // // 1966 s 1621 s 1389 s
35,403 // // 2434 s 2007 s 1750 s
42,205 // // 2931 s 2398 s 2093 s
49,272 // // 3413 s 2786 s 2463 s

where Ai is the amplitude of the surface function of the i th
polygon, and, according to Fig. 6, the normal vector En of each
triangle is at angles α, β, and γ with the x y z axis in the global
coordinate system. k1, k2, and k3 are the weight factors, ranging
from 0 to 1 under the condition that k1 + k2 + k3 = 1.

In Table 1, we compare the calculation time with the different
methods we have discussed. Numerical reconstruction distance
is at 200 mm away from the hologram. The calculation times
using the traditional and Ahrenberg et al.’s methods are too long
to tabulate. Note that for all the cases, the F3DAT method is
the fastest. Note that in all calculations, we reduce the number
of polygons that need to be processed using back-face culling,
i.e., we only calculate the polygons that satisfy −→nh ·

−→na > 0,
where−→nh is the normal vector of the hologram plane and−→na is
the normal vector of the arbitrary polygon. For most 3D objects,
back-face culling is an effective way to remove hidden surfaces.

Since Pan et al.’s method is a precursor of the F3DAT
method, we compare their image reconstruction quality and
similarity, and we tabulate the results in Table 2. In the table,
PSNR is the peak signal-to-noise ratio, and SSIM is the struc-
tural similarity index measure. We see that the two methods
are of high quality with great similarity but with the F3DAT
method being faster.

In Fig. 7, we show the numerical reconstructions from the
F3DAT transformation method. Clearly we observe that the
reconstruction from the 49,272-polygon Sophie provides finer
details. Finally, regarding numerical reconstruction, we want
to point out the importance of shading introduced in Eq. (28).
Figure 8 shows the reconstructions with and without shading in
(a) and (b), respectively, for the 3D mesh with 49,272 polygons.

In Fig. 9, we show the optical display of the hologram with
49,272-polygon Sophie at optical reconstruction distance of
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Table 2. Table of PSNR and SSIM Comparing Pan’s
Method and the Fast 3D Affine Transformation Method

Number of Polygons
(Sophie) PSNR SSIM

7270 39.68 (dB) 1.0
21,402 39.54 (dB) 1.0
35,403 39.51 (dB) 1.0
49,272 39.50 (dB) 1.0

Fig. 7. Reconstructed Sophie consisting of (a) 7270 polygons;
(b) 49,272 polygons of the original 3D mesh, from the F3DAT
transformation method.

Fig. 8. Reconstruction of Sophie (a) without shading, (b) with
shading.

200 mm from the hologram. Note that the actual size of Sophie
was first reduced to 5.17× 7.11× 3.01 mm3 before the gener-
ation of the hologram. The hologram is of 1024× 1024 pixels.
The phase-only hologram of size about 8.2× 8.2 mm2 is then
displayed by a phase-only SLM. The SLM used is a HOLOEYE
PLUTO(NIR-011) phase-only SLM with a resolution of
1920× 1080 (full HD 1080 p) with a pixel size of 8 µm. This
SLM provides a refresh rate of 60 Hz (monochrome) with a bit
depth of 8 bits with diffraction efficiency of over 80%. We use a
green laser with wavelength of 532 nm.

We also show the numerical and optical reconstructions of
the Stanford bunny. The bunny consists of 59,996 polygons
originally. After back-face culling, it has 31,724 polygons. Using
the F3DAT method, it takes 2463 s to complete the CGH of
1024 by 1024. Figures 10(a) and 10(b) show the numerical and
optical reconstructions, respectively.

As a conclusion to this section, we want to point out that
Table 1 has tabulated the calculation time of the two basic

Fig. 9. Optical reconstruction of Sophie, which consists of 49,272
polygons as a 3D mesh.

Fig. 10. (a) Numerical reconstruction; (b) optical reconstruction.

frameworks in polygon-based holography, i.e., the traditional
method and the analytical method of three approaches. In
general, the analytical methods produced shorter calculation
time against the traditional method. The reason is that in the
traditional method, as pointed out in Sections 2.A and 2.B, it
requires two FFTs to obtain each polygon field on the hologram,
whereas in the analytical method, it only needs to use a single
FFT. In addition, the transformation of the spectrum from the
local coordinate system to the parallel local coordinate system is
nonlinear, which requires interpolation. Indeed, one estimate
indicated that interpolation can take up to 44% of the CPU
time [77]. Other estimations reported that interpolation occu-
pies from 61% to 78% of the total calculation time [78,79]. The
severity of interpolation is object dependent, as different objects
have different surface curvatures. However, with the traditional
method, one can achieve high-resolution computer-generated
holograms for realistic reconstruction because shading and
texture are naturally incorporated into the surface function.
Further research on parallel computation with dedicated com-
puting hardware can accelerate the numerical calculations for
the traditional method.

The core of the analytical method employs a uniform surface
function, which would affect the image quality as well as the
creation of realistic 3D images. In other words, shading and
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texture mapping are not included in the analytical methods
considered. However, these techniques allow for computer-
generated holograms suitable for SLM display. To achieve
realistic reconstructed objects, shading and texture-mapping
are needed. Surface diffuseness can be included in the analytical
methods fairly easy. For example, Kim et al. [70] and Pan et al.
[68] divided each triangle in the local coordinate system into a
set of smaller triangles with different amplitudes and phases. In
the present paper, we have included a simple shading method
for each polygon [see Eq. (28)]. However, texture mapping is
not as straightforward, and texturing of a surface function is
paramount. In general, texturing a polygon leads to a convolu-
tion in the frequency domain, as the texture pattern multiplies
the shape of the polygon, resulting in the slowdown of the
overall calculation time. Clearly, there is a trade-off between
computational efficiency and texture mapping, which needs
to be further investigated, as analytical texturing algorithms
remain fairly unexplored.

5. CONCLUDING REMARKS

This review has an emphasis on the algorithms and development
of polygon-based computer-generated holography in the area
of hologram synthesis. Particular attention is given to the inves-
tigation of their numerical implementation of each method.
Two classical polygon-based CGH generation algorithms have
been fully discussed. Performance of three most recent methods
is also evaluated by using high-resolution 3D real face data
captured by a depth camera—a state-of-the-art experimen-
tal result in polygon-based CGH. A summary of the present
research progress is also provided. Complexity of rendering
and hidden-surface removal have a direct impact on the effi-
ciency of the CGH computation and the resulting holographic
reconstructed image quality. Objective quality assessments have
also been evaluated in terms of PSNR and SSIM. However,
holographic data have very different signal properties compared
to 2D images, and other quality assessments appropriate for
holographic data should be investigated [80,81].

The challenge of high-quality and high-resolution hologram
synthesis, real-time holographic display, fast algorithms,
artificial intelligence (AI), and acceleration of computa-
tion with hardware implementation are all needed. We
believe that the algorithm development with advanced hard-
ware will open exciting avenues for significantly advancing
computer-generated holography and its applications.
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