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Abstract: The brain’s ability to create a unified conscious representation of an object by integrating
information from multiple perception pathways is called perceptual binding. Binding is crucial for
normal cognitive function. Some perceptual binding errors and disorders have been linked to certain
neurological conditions, brain lesions, and conditions that give rise to illusory conjunctions. However,
the mechanism of perceptual binding remains elusive. Here, I present a computational model
of binding using two sets of coupled oscillatory processes that are assumed to occur in response
to two different percepts. I use the model to study the dynamic behavior of coupled processes
to characterize how these processes can modulate each other and reach a temporal synchrony. I
identify different oscillatory dynamic regimes that depend on coupling mechanisms and parameter
values. The model can also discriminate different combinations of initial inputs that are set by initial
states of coupled processes. Decoding brain signals that are formed through perceptual binding is
a challenging task, but my modeling results demonstrate how crosstalk between two systems of
processes can possibly modulate their outputs. Therefore, my mechanistic model can help one gain a
better understanding of how crosstalk between perception pathways can affect the dynamic behavior
of the systems that involve perceptual binding.

Keywords: binding problem; perceptual binding; multisensory integration; consciousness; unity
of consciousness; perception; sensory processing; information integration; cross-modal interaction;
split-brain

MSC: 70K99

1. Introduction

Perceptual binding provides a unified conscious representation of an object that is
described by several different perceptual features such as the object’s shape, color, and
location [1,2]. Importantly, accumulated empirical evidence suggests that binding is critical
for normal cognitive operation. Binding disorder occurs in damaged brains when patients
cannot perceive more than one object at a time, have dissociations between different per-
ception pathways, and have problems solving a discrimination task according to different
percepts [3,4]. ‘Split-brain’ studies report the loss of interhemispheric integration and
the functional disengagement of the right and left hemispheres with respect to cognitive
activities [5,6]. Specifically, the independence of the two visual half-fields has been reported
in patients with a complete transection of the corpus callosum [5]. Pictures of objects seen
in one half of visual field (processed in one hemisphere) are dissociated in perception and
memory from pictures seen in the other half-field (processed in the other hemisphere).
Moreover, illusory conjunctions are often referred to as examples of binding errors [7,8].
Thus, a normal cognitive operation requires appropriate integration of neural signals from
different perception pathways.

The concept of binding is often used to explain the integration of information across
different sensory modalities into unified percepts [9]. Multisensory integration depends
on the temporal relationship of the different sensory inputs and occurs only within the
specific time window known as the ‘temporal binding window’ [10,11]. Several studies
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have shown, for example, that binding depends on the temporal arrangement of the
stimulus sets [12] and that the temporal binding window varies in elderly and young
adults [13–16]. Furthermore, cross-modal perceptual interaction studies have shown that
sensory modalities (e.g., visual perception or direction of motion perception) can be altered
by other modalities (e.g., sound) [17–19]. Such cross-modal interactions also occur within
a specific temporal window, ~100 ms, that is comparable with the integration window of
polysensory neurons in the mammalian brain [17].

Binding is also closely connected to the philosophical problem of the ‘unity of con-
sciousness’ [20,21]. Consciousness-related binding is seen as the neural mechanism that
maps the subjective phenomenal experiences in consciousness onto corresponding neural
processes in the brain [21]. Thus, binding is a mechanism that phenomenally unifies enti-
ties constructed through multiple sensory modalities. It is remarkable that our conscious
experience is unified even when the corresponding neural pathways that process different
phenomenal contents are distributed all around the cortex [22].

Building binding models could help us better understand how our brain integrates
information from different perception pathways to provide us with a unified and coherent
conscious experience. Several models have been proposed to explain the mechanism of
perceptual binding, among which the most frequently discussed is based on the neuronal
synchrony or temporal correlation hypothesis [2,23–25]. In operational architectonics,
an operational synchrony among neuronal processes initiated in different brain regions
is postulated to play a central role in binding spatially dispersed phenomenal features
into a unified phenomenal object [26–28]. A temporal alignment that permits binding
between a stimulus and ongoing spontaneous neural activity is a core assumption of the
temporo-spatial theory of consciousness [29,30]. Furthermore, an interdependence be-
tween information integration and consciousness has been postulated in several theories
of consciousness [31–34]. For example, the integrated information theory identifies con-
sciousness as the ability of the neuronal system to integrate information to the level at
which information is consciously accessible [35–37]. In addition, some attempts to give
a computational explanation of binding have been made within the framework of clas-
sical neural networks [2]. However, much remains to be understood about the neuronal
processes involved in perceptual binding. Moreover, many works have been devoted to
provide a critical evaluation of the temporal synchrony hypothesis as well as arguments
against the existence of the binding problem in principle [38–40].

In this work, I present a mathematical model of binding, which is based on my previous
model of oscillatory processes, that exhibits the dynamic behavior isomorphic to a specific
percept [41–43]. The underlying concept of the approach has been described in Kraikivski,
2017 [43]. A mathematical formulation of a system of processes representing a percept
isomorphic to the space has been elaborated in Kraikivski, 2020 [41]. The corresponding
stochastic model to study implications of noise on the system of processes has been pre-
sented in Kraikivski, 2021 [42]. To study the binding mechanism, here I use two systems of
oscillatory processes that are bound via negative feedback loops. Two different binding
interaction wiring schemes are analyzed. I study how the sets of oscillatory processes
modulate each other to identify different regimes of modulated oscillations, which are then
represented in a two-parameter bifurcation diagram. Furthermore, I investigate how the
system in these different regimes are capable of distinguishing different combinations of
initial inputs (stimuli). I intend my dynamic model to help us understand how a possible
mechanism of perceptual binding can be deduced from observable oscillating signals.

2. Model and Methods

Perceptual experiences of two individuals can be synchronized by the same stimulus;
therefore, in principle, temporally correlated neuronal signals can be recorded in two
non-interacting brains. In that case, however, the temporal synchronization is not sufficient
to provide a unified conscious representation since the stimulus is still independently
processed by each individual. Moreover, as discussed in the introduction, the functional
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disengagement of the right and left hemispheres with respect to cognitive activities has
been reported in subjects with a complete transection of the corpus callosum which results
in the loss of interhemispheric integration [5,6]. Such split-brain studies have revealed a
lack of integration between the contents of the patient’s conscious states. Therefore, binding
can occur only if there is a crosstalk between perception pathways that can interact and
exchange information. Binding is thus detectable since the crosstalk between pathways may
result in modulation and superposition of signals that can be analyzed. Here, I assume that
direct interaction among perception pathways or corresponding processes is a necessary
condition for binding, which can, in turn, induce temporal correlation, synchronization, or
modulation among oscillating processes.

I use my previous framework in which a set of oscillating processes is used to represent
a percept [41] such as a space or a position in the space. The spatial position is encoded in

the relationships among processes denoted as
→
P , which is closely analogous to an intrinsic

space as defined in the temporo-spatial theory of consciousness (TTC) [29,30]. The central
hypothesis of TTC is that the brain constructs its own inner time and space in its neural
activity. Closely, in my framework, the space is encoded in the system of processes that
interact such that their dynamic relationships are isomorphic to the space. This framework
also can be applied to represent the time which would be conceptually similar to the
intrinsic time in TTC.

To investigate binding, in addition to the position in space, I introduce an attribute
associated with the position such as brightness of a source at that position, which is assumed

to be similarly encoded in the relationships among processes denoted as
→
Q. Thus, to study

binding, I use two closed sets of processes:
→
P = (p1, p2, x1, x2) and

→
Q = (q1, q2, y1, y2),

which are described by the following system of equations:

dp1
dt = εp2 − p1 − x1 + f1(q1, q2)

dp2
dt = εp1 − p2 − x2 + f2(q1, q2)

dx1
dt = p1, dx2

dt = p2
dq1
dt = αq2 − q1 − y1 + g1(p1, p2)

dq2
dt = αq1 − q2 − y2 + g2(p1, p2)

dy1
dt = q1, dy2

dt = q2

(1)

where ε and α are parameters describing the mutual interactions between p-processes and be-
tween q-processes correspondingly, see Figure 1a,b. The f1(q1, q2), f1(q1, q2) and g1(p1, p2),

g1(p1, p2) functions describe the binding between the
→
P and

→
Q sets of processes. Generally,

a function that depends on a difference between oscillating variables can be used to achieve
a synchronization of two oscillators [44] (pp. 123–136). Two oscillators that communicate the
phase to one another can be drawn into synchrony over time. In System (1), I assume that
the interaction among processes is realized via negative feedback loops (see Figure 1a,b that

show two possible coupling mechanisms between the
→
P and

→
Q sets of processes). Mathemat-

ically, I consider the following two interaction schemes: (a) f1(q1, q2) = q1, f2(q1, q2) = q2,
g1(p1, p2) = −p1, g2(p1, p2) = −p2, where this formulation corresponds to the mecha-
nism shown in Figure 1a,b f1(q1, q2) = q1 − q2, f2(q1, q2) = q2 − q1, g1(p1, p2) = p2 − p1,
g2(p1, p2) = p1 − p2 is according to the mechanism shown in Figure 1b.

I assume that the
→
P and

→
Q processes occur in response to two different percepts.

For example, the state of (p1, p2) can represent the processes in response to the specific
position selected by attention, which is indicated by a blue circle in Figure 2, and the state
of (q1, q2) can represent the processes in response to the presence or absence of a light
stimulus at the selected location (shown by a star sign or black dot in Figure 2). Hence, I
distinguish the position of a spot that can be either dark or bright by focusing our attention
either on the bright spot (e.g., case (i) in Figure 2) or on the dark spot (e.g., case (ii) in
Figure 2). Therefore, my model represents perceptual binding occurring for two percepts
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that include the position in space and an attribute that is assigned to each position. The
position selection is represented by the p1 and p2 processes. The initial value for the p1
or p2 variable is set to 1 if the corresponding position is selected or to zero otherwise (see
Figure 2). Similarly, the initial value for the process q1 or q2 is set to 1 if a light stimulus is
present, otherwise the initial value for q1 or q2 is set to zero. All corresponding initial values
for p1, p2, q1, q2 processes for cases (i)–(viii) are shown in Figure 2. Simulation results of
these cases are provided in the Results section of this manuscript.
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Figure 1. Two different influence schemes for processes described by the system of Equation (1).

(a) Binding between
→
P and

→
Q sets of processes is gained through interaction of p1 with q1 and p2

with q2 processes. In neural systems such specific winning links can be established via training in
response to different combinations of input stimuli. Here, negative feedback loops are used to realize

connections between p1 and q1 as well as between p2 and q2. (b) Binding between
→
P and

→
Q sets

of processes in which all p1, p2, q1, q2 processes are mutually interconnected via negative feedback
loops. Arrow-headed lines represent a positive influence and bar-headed lines represent a negative
influence. The dot-headed lines represent positive or negative influence depending on the sign of the
α and ε parameters.
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Figure 2. Seven different combinations of two distinct types of inputs representing percepts and
the corresponding initial values of (p1, p2) and (q1, q2) processes. Each combination consists of two
possible positions and the presence/absence of a light stimulus at these positions. The presence of a
light stimulus at a position is indicated by the star sign and the absence of light is indicated by the
black dot. A specific position is assumed to be selected by attention, which is indicated by the blue
circle. For example, for case (i), the focus is on the bright spot, while for case (ii), the focus is on the
dark spot.
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System (1) consists of a system of linear differential equations that has a solution
that can be, in principle, expressed in algebraic form. However, eight eigenvalues and
eigenvectors cannot be written in a concise form to fit into this text and be easily analyzed.
Therefore, here, I present numerical solutions obtained for different initial conditions
and parameter values that produce distinct numerical results. XPP/XPPAUT software
(http://www.math.pitt.edu/~bard/xpp/xpp.html, accessed on 12 January 2022) was used
to solve System (1) and compute two-parameter bifurcation diagrams. XPP codes that
were used to produce all results presented in this work are provided in Appendix A. since
System (1) is linear, I do not perform a global sensitivity analysis that is a common tool to
analyze nonlinear systems to determine the variations in the model outputs depending on
the variations in inputs [45,46]. Nevertheless, the dynamic behavior of System (1) has been
already shown to be robust against the noise [42].

3. Results

First, I analyze System (1) by considering the interaction scheme shown in Figure 1a. I
explore solutions of System (1) for different values of ε and α parameters to identify distinct
dynamic regimes that the system of coupled processes can exhibit. Thus, ε and α serve
as bifurcation parameters of the system. As shown in Figure 3, the dynamic behavior

of the
→
P and

→
Q processes depends on ε and α parameter values. The feedback loops

connecting the two sets of processes induce a complex mutual modulation among the
interacting processes. Consequently, variations in amplitude, frequency, and temporal
relationships among processes depending on parameter values are observed. Similar
amplitude modulation or distortion is commonly observed for two coupled oscillators
when the coupling is not strong enough to bring the phases of two oscillators into synchrony
over time [44] (pp. 123–136). Closely, the strong amplitude modulation in System (1) occurs
when one parameter, either ε or α, is much smaller than the other (see Figure 3e,f). Therefore,
amplitude distortion is likely to be observed in a system that is composed of two interacting
subsystems such that one subsystem is described by weak internal coupling parameters
and the other is described by strong internal coupling parameters. Interestingly, I also
observe small amplitude variations when both ε and α have values close to −1. These

variations also occur due to interactions between the
→
P and

→
Q processes. When the

→
P

and
→
Q processes are decoupled, the amplitude variations disappear. Thus, the amplitude

distortion in experimentally recorded signals could indicate binding.
Here, I only present periodic solutions with sustained oscillations; however, the

system also exhibits damped oscillations and unstable sources or oscillations with growing
amplitude as well. The periodic solutions of System (1) with sustained oscillations are
found for the following ranges of parameters:

α = − ε+2
ε+1 for − 2 < ε ≤ −

√
2 and 0 < ε ≤

√
2

α = ε−2
ε−1 for −

√
2 ≤ ε < 0 and

√
2 ≤ ε < 2

α = −ε− 2 for − 2 < ε < 0
α = −ε + 2 for 0 < ε < 2.

(2)

The corresponding two-parameter bifurcation diagram is shown in Figure 4. The
diagram is obtained numerically as explained in the Methods section and agrees with
the analytical solutions described by the System of Equation (2). The parameter ranges
marked as (i) and (iii) in Figure 4 correspond to the first equation in System (2); the regions
marked as (iv) and (vi) in Figure 4 correspond to the second equation in System (2); the
line marked as (ii) in Figure 4 corresponds to the third equation in System (2) and the line
labeled with (v) in Figure 4 corresponds to the last equation in System (2). Oscillations
are observed with varying amplitudes for parameter values along the (ii) and (v) lines
shown in Figure 4. Figure 3c,d,f provide examples of oscillations obtained using parameter
values from region (ii) and Figure 3e shows simulations obtained using parameter values
from region (v). Oscillations produced using parameter values from regions (i) and (iii) are

http://www.math.pitt.edu/~bard/xpp/xpp.html
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shown in Figures 3a and 3b, respectively. Oscillations for parameter values taken in regions
(iv) and (vi) have constant amplitude similar to those shown in Figure 3a,b but p1 and q1
oscillate in phase with p2 and q2, respectively (not shown). Overall, System (1) combined
with the interaction scheme shown in Figure 1a produces a diverse repertoire of periodic
solutions with sustained oscillations that depend on the system’s parameters.
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Figure 3. Oscillatory behavior observed in the dynamic system of coupled processes. Oscillations of
(p1, p2) and (q1, q2) processes are obtained using the following parameter values: (a) ε = 1, α = −1.5;
(b) ε = −1.8, α = 0.25; (c,d) ε = −0.1, α = −1.9, where the (p1, p2) and (q1, q2) processes are shown on
separate figure panels for better visualization; (e) ε = 1.99, α = 0.01, note that shortly after the starting
values the (p1, p2) and (q1, q2) processes begin and continue to overlap over time; (f) ε = −0.01,
α = −1.99. All simulations are obtained using the same initial conditions: (p1, p2, q1, q2) = (1, 0, 1, 0)
that corresponds to case (i) in Figure 2, and (x1, x2, y1, y2) = (0, 0, 0, 0).

Next, I fix the ε and α parameter values and investigate the solutions of System (1)
depending on the different initial conditions that are shown in Figure 2. ε and α parameter
values are taken from region (ii), shown in Figure 4, which are also described by the
third equation in System (2). For these parameter values, the system of processes exhibits
sustained oscillations for both interaction schemes shown in Figure 1a,b. Thus, we can
compare how different interaction schemes perform in solving a discrimination task by
differentiating inputs shown in Figure 2.

Six conditions (i)–(vi) shown in Figure 2 produce distinct dynamic relationships among
p1, p2, q1, q2 processes (see Figure 5). However, two conditions (vii) and (viii), shown in
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Figure 2, produce the same dynamic relationships among processes as obtained for the
(v) and (vi) conditions, respectively. Therefore, the system can discriminate (i)–(vi) initial
inputs but cannot discriminate (vii) and (viii) from (v) and (vi) inputs. The latter means
that the position in space that is homogeneously bright is identical to the same position
in space that is homogeneously dark. Perhaps, these inputs can be discriminated if more
complex interactions representing binding or a system with more states and hierarchical
levels of binding interactions between these states are used.
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Figure 4. Two-parameter bifurcation diagram for the interaction scheme shown in Figure 1a. Os-
cillations occur for ε and α parameter values along solid curves marked as (i)–(v). To demonstrate
agreement between numerical and analytical solutions, the dotted curves are drawn by plotting the
following functions: α = −(ε + 2)/(ε + 1) and α = (ε − 2)/(ε − 1), which overlap with solid curves (iii),
(i) and (iv), (vi) obtained numerically in corresponding regions.

Solving and analyzing System (1) for the second interaction scheme shown in Figure 1b,
I also identified ε and α parameter values for which the periodic solutions with sustained
oscillations are obtained. A two-parameter bifurcation diagram that summarizes parameter
ranges with periodic solutions is shown in Figure 6. Oscillations for parameter values
along the solid line in Figure 6 are qualitatively similar to those that are shown in Figure 5
and obtained for the same range of parameters: α = − ε − 2 for −2 < ε < 0, however, the
frequency of oscillations is higher (see Figure S1 in the Supplementary Materials). Also,
System (1) combined with the interaction scheme in Figure 1b performs equally well to that
of the scheme shown in Figure 1a on the task to discriminate different inputs that are shown
in Figure 2. However, comparing two-parameter bifurcation diagrams in Figures 4 and 6,
the diagram in Figure 4 shows significantly more parameter ranges where the system
exhibits sustained oscillations. Therefore, despite the fact that the interaction scheme
in Figure 1b has more interactions than the interaction scheme shown in Figure 1a, the
latter, simpler interaction scheme produces a more diverse dynamic behavior of the system.
Thus, the more comprehensive interaction network that integrates information from many
network nodes does not necessarily result in a more diverse dynamic repertoire.
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Figure 5. The change in dynamic relationships among p1, p2, q1, q2 processes depend on initial
conditions. Six initial conditions (i)–(vi) shown in Figure 2 are used to produce these simulation
results. These conditions induce distinct dynamic relationships among processes and, thereby, can be
discriminated by the system. The initial conditions are indicated in the figures as two pairs of digits
corresponding to initial values of (p1, p2; q1, q2) shown in parenthesis at the upper left corner of each
figure panel. All simulations are obtained using the interaction scheme shown in Figure 1a and the
following parameter values: ε = −1, α = −1.
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4. Discussion

Mechanistic modeling has become a very popular tool that allows one to not simply
describe the system components but to also analyze, understand, and explain the dynamic
behavior of the system. This mechanistic approach has been successfully applied to mod-
elling nerve action potential [47], neurodynamics in the olfactory system [48], dynamics
of ecological networks [49], molecular signaling pathways [50], and complex molecular
mechanisms determining cell fate [44,51–54]. However, building mechanistic models of
consciousness is undoubtedly one of the most challenging tasks. By using my previous
dynamic modeling framework to describe a percept [41–43], here, I developed a dynamic
mechanistic model of perceptual binding.

The perceptual binding concept is compatible with the Integrated Information and
Temporo-Spatial theories of consciousness as well as with some classical neural network
models [2,25,29–32]. However, as put forward by von der Malsburg, for example, the
classical neural network models interpret a brain state as a static vector ignoring the fact
that recorded neural signals are not constant over any fixed time scale [2]. By contrast, in
my model, the states are encoded in the dynamical processes that continuously alternate,
yet their specific relationships that encode information are maintained over time. This
continuous realization of specific relationships among processes in the system is an impor-
tant concept in my modeling framework. The main assumption of my approach is that
consciousness is a dynamical process, not a capacity, memory, or information, as elaborated
by James, 1904 [55].

My dynamic approach is comparable to Freeman’s framework developed to describe
population neurodynamics in the olfactory system [48]. His system of ordinary differential
equations constructed in conformance with the anatomical and physiological properties
of the olfactory system has been successful in explaining electrophysiological recordings
of impulse responses. Different oscillations have been observed including complex and
highly dimensional oscillations with varying amplitudes and a pattern that repeats itself
(see Figure 6 on page 301 in Ref. [48]). While my simulation results may not be directly com-
parable with the dynamic behavior of neuronal systems or with electroencephalographic
brain recordings, my model provides a qualitative representation of how binding can
influence and change neural oscillations. Although, I analyzed a simple system in which
the space is represented by two points described by the (p1, p2) processes and each point
was characterized only by two states (q1, q2), the system can be scaled to n-points each with
m-states (n, m > 2) as shown in Kraikivski, 2020, 2021 [41,42]. However, the application
of sets with many states to investigate binding would only complicate the analysis and
interpretation of results.

I analyzed a system of two sets of processes representing two different percepts and
found that the system exhibits different dynamic behavior depending on initial conditions
(see Figure 5) and is capable of distinguishing different combinations of initial inputs shown
in Figure 2. Therefore, my approach can be an alternative to classical neural networks that
fail to solve a discrimination task in Frank Rosenblatt’s example with four neurons where
two neurons learn to recognize the object shape and the other two indicate the position of
objects [2,56]. The output reads of such a four-neuron classical network include two shapes
(e.g., square, triangle) and two positions (left, right), however, whether a specific shape is
on the left side or on the right side remains indistinguishable.

I investigated two interaction schemes (see Figure 1a,b) describing binding between
the sets of processes. For both wiring schemes, different dynamic oscillatory regimes were
identified. Remarkably, despite the comprehensive level of interactions among processes
and, therefore, a higher level of information integration, the interaction scheme shown
in Figure 1b does not result in overly complex dynamic behavior, as opposed to the
interaction scheme in Figure 1a, which produces a more diverse repertoire of oscillating
regimes (see Figures 3, 4 and 6). This result appears to be opposite to what would be
expected in Integrated Information Theory, which identifies consciousness with the ability
of the system to integrate information.
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In conclusion, my mechanistic model can help one gain a better understanding of how
binding can affect the dynamic behavior of the systems that involve perceptual binding.
Although, the real neural oscillatory signals differ from oscillations shown in Figures 3 and 5,
the qualitative conclusions derived in this work can be applied to understand the dynamic
outcomes recorded in real neural systems. For example, my results suggest that amplitude
modulation or distortion detected in experimentally recorded signals can be used to detect
binding and reveal some properties of interacting subsystems. Furthermore, binding
cannot be merely the result of synchronization of signals or temporal correlation that can
spontaneously occur or be set in two non-interacting systems. Binding may only occur when
processes interact, resulting in modulation and superposition of signals. Some approach
limitations and the discussion of how the results can be compared to electroencephalograms
(EEG) and functional magnetic resonance imaging (fMRI) recordings has been discussed in
Kraikivski, 2020 [41].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10071135/s1. Figure S1: Dynamic relationships among
processes depending on the initial conditions. Simulations are obtained using the interaction scheme
shown in Figure 1b and the following parameter values: ε = −1, α = −1.
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Appendix A

The XPPAUT code A was used to simulate results in Figures 3–5.

# code A
init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0
par eps=-1.0, alpha=-1.0

p1’=eps*p2-p1-x1+q1
x1’=p1
p2’=eps*p1-p2-x2+q2
x2’=p2
q1’=alpha*q2-q1-y1-p1
y1’=q1
q2’=alpha*q1-q2-y2-p2
y2’=q2

@ dt=.025, total=100, xplot=t,yplot=p1
@ xmin=0,xmax=100,ymin=-1,ymax=1
done

The XPPAUT code B was used to simulate results in Figure 6 and Figure S1 in the
Supplementary Materials.

# code B

init p1=1, p2=0, x1=0, x2=0, q1=1, q2=0, y1=0, y2=0
par eps=-1.0, alpha=-1.0

p1’=eps*p2-p1-x1+q1-q2
x1’=p1

https://www.mdpi.com/article/10.3390/math10071135/s1
https://www.mdpi.com/article/10.3390/math10071135/s1
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p2’=eps*p1-p2-x2-q1+q2
x2’=p2
q1’=alpha*q2-q1-y1-p1+p2
y1’=q1
q2’=alpha*q1-q2-y2+p1-p2
y2’=q2

@ dt=.025, total=100, xplot=t,yplot=p1
@ xmin=0,xmax=100,ymin=-1,ymax=1
done
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