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On Reducing the Trusted Computing Base in Binary Verification

Xiaoxin An

(ABSTRACT)

The translation of binary code to higher-level models has wide applications, including de-
compilation, binary analysis, and binary rewriting. This calls for high reliability of the
underlying trusted computing base (TCB) of the translation methodology. A key challenge
is to reduce the TCB by validating its soundness. Both the definition of soundness and the
validation method heavily depend on the context: what is in the TCB and how to prove it.
This dissertation presents three research contributions. The first two contributions include
reducing the TCB in binary verification, and the last contribution includes a binary verifi-
cation process that leverages a reduced TCB.

The first contribution targets the validation of OCaml-to-PVS translation – commonly used
to translate instruction-set-architecture (ISA) specifications to PVS – where the destina-
tion language is non-executable. We present a methodology called OPEV to validate the
translation between OCaml and PVS, supporting non-executable semantics. The validation
includes generating large-scale tests for OCaml implementations, generating test lemmas for
PVS, and generating proofs that automatically discharge these lemmas. OPEV incorporates
an intermediate type system that captures a large subset of OCaml types, employing a va-
riety of rules to generate test cases for each type. To prove the PVS lemmas, we develop
automatic proof strategies and discharge the test lemmas using PVS Proof-Lite, a powerful
proof scripting utility of the PVS verification system. We demonstrate our approach in two
case studies that include 259 functions selected from the Sail and Lem libraries. For each
function, we generate thousands of test lemmas, all of which are automatically discharged.

The dissertation’s second contribution targets the soundness validation of a disassembly
process where the source language does not have well-defined semantics. Disassembly is a
crucial step in binary security, reverse engineering, and binary verification. Various studies
in these fields use disassembly tools and hypothesize that the reconstructed disassembly is
correct. However, disassembly is an undecidable problem. State-of-the-art disassemblers
suffer from issues ranging from incorrectly recovered instructions to incorrectly assessing
which addresses belong to instructions and which to data. We present DSV, a systematic
and automated approach to validate whether the output of a disassembler is sound with
respect to the input binary. No source code, debugging information, or annotations are
required. DSV defines soundness using a transition relation defined over concrete machine
states: a binary is sound if, for all addresses in the binary that can be reached from the
binary’s entry point, the bytes of the (disassembled) instruction located at an address are



the same as the actual bytes read from the binary. Since computing this transition relation
is undecidable, DSV uses over-approximation by preventing false positives (i.e., the existence
of an incorrectly disassembled reachable instruction but deemed unreachable) and allowing,
but minimizing, false negatives. We apply DSV to 102 binaries of GNU Coreutils with eight
different state-of-the-art disassemblers from academia and industry. DSV is able to find
soundness issues in the output of all disassemblers.

The dissertation’s third contribution is WinCheck: a concolic model checker that detects
memory-related properties of closed-source binaries. Bugs related to memory accesses are
still a major issue for security vulnerabilities. Even a single buffer overflow or use-after-free
in a large program may be the cause of a software crash, a data leak, or a hijacking of
the control flow. Typical static formal verification tools aim to detect these issues at the
source code level. WinCheck is a model-checker that is directly applicable to closed-source
and stripped Windows executables. A key characteristic of WinCheck is that it performs
its execution as symbolically as possible while leaving any information related to pointers
concrete. This produces a model checker tailored to pointer-related properties, such as buffer
overflows, use-after-free, null-pointer dereferences, and reading from uninitialized memory.
The technique thus provides a novel trade-off between ease of use, accuracy, applicability,
and scalability. We apply WinCheck to ten closed-source binaries available in a Windows
10 distribution, as well as the Windows version of the entire Coreutils library. We conclude
that the approach taken is precise – provides only a few false negatives – but may not explore
the entire state space due to unresolved indirect jumps.

This work is supported by the Defense Advanced Research Projects Agency (DARPA) under
Agreement No. HR00112090028 and contract N6600121C4028, and the US Office of Naval
Research (ONR) under grants N00014-17-1-2297 and N00014-18-1-2665.



On Reducing the Trusted Computing Base in Binary Verification

Xiaoxin An

(GENERAL AUDIENCE ABSTRACT)

Binary verification is a process that verifies a class of properties, usually security-related
properties, on binary files, and does not need access to source code. Since a binary file is
composed of byte sequences and is not human-readable, in the binary verification process,
a number of assumptions are usually made. The assumptions often involve the error-free
nature of a set of subsystems used in the verification process and constitute the verifica-
tion process’s trusted computing base (or TCB). The reliability of the verification process
therefore depends on how reliable the TCB is. The dissertation presents three research con-
tributions in this regard. The first two contributions include reducing the TCB in binary
verification, and the last contribution includes a binary verification process that leverages a
reduced TCB.

The dissertation’s first contribution presents a validation on OCaml-to-PVS translations
– commonly used to translate a computer architecture’s instruction specifications to PVS, a
language that allows mathematical specifications. To build up a reliable semantical model
of assembly instructions, which is assumed to be in the TCB, it is necessary to validate the
translation.

The dissertation’s second contribution validates the soundness of the disassembly process,
which translates a binary file to corresponding assembly instructions. Since the disassembly
process is generally assumed to be trustworthy in many binary verification works, the TCB
of binary verification could be reduced by validating the soundness of the disassembly process.

With the reduced TCB, the dissertation introduces WinCheck, the dissertation’s third and fi-
nal contribution: a concolic model checker that validates pointer-related properties of closed-
source Windows binaries. The pointer-related properties include absence of buffer overflow,
absence of use-after-free, and absence of null-pointer dereference.
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Chapter 1

Introduction

Many program verification and analysis tools that target binaries assume a trustworthy
semantics of assembly instructions and a trustworthy disassembler. The tools build their
analysis on top of these two assumptions, i.e., these are parts of the trusted computing base
(TCB). To reduce the TCB and thereby increase the reliability of verification and analysis,
this dissertation presents trustworthy semantics for assembly instructions and techniques to
validate disassemblers, and shows that binary verification can be done on top of a validated
disassembler.

1.1 Motivations

In recent years, a multitude of methods has been developed to verify the properties of bina-
ries. These methods serve as important elements in many reverse engineering and related
sub-disciplines such as decompilation [22], binary analysis [15, 31, 102], binary verifica-
tion [100], and binary rewriting [11, 119]. For example, MAYHEM [17] exploited hybrid
symbolic execution and index-based memory modeling to automatically detect bugs in exe-
cutable files. SAGE [40] and S2E [20] are symbolic execution frameworks that are developed
for binaries and can be used in different application contexts, including binary security
verification.

1.1.1 The Trusted Computing Base of Binary Verification

In developing binary verification or analysis techniques, various assumptions have to be
made, which form the TCB of the verification/analysis process. In general, the TCB must
be reduced as much as possible. A large TCB means that there are many components that
need to be trusted before the result of the binary verification technique can be trusted. Min-
imizing a TCB thus leads to more reliable verification. Considering the various assumptions
made in the binary verification process, it is necessary to identify and validate some of the
fundamental assumptions to reduce the TCB in binary verification.

Figure 1.1 provides an overview of the TCB when developing a binary verification technique.
It shows four components that are generally trusted, i.e., assumed to be correct without
further validation.

1
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Figure 1.1: The composition of the TCB for binary verification.

Instruction Semantics. An assumption that is often implicitly part of the TCB in a
binary verification effort is that a proper semantical model exists for all instructions in the
binary. The semantics are dependent on a state model, i.e., which parts of the state are
taken into account. Moreover, they are expressed in some specification language. Both
the state model and the specification language effectively determine the preciseness of the
semantics. Typically, the semantics specify the values of all registers and memory, but precise
semantics may also provide information on flags, segment registers, deprecated floating-point
operations, etc.

To build up a semantical model of assembly instructions in the binary verification tool, it may
be necessary to translate instruction semantics to some specific language. This translation
is often assumed to be reliable in the literature [48, 61].

The disassembler. A second assumption that is often implicit in a binary verification
effort is the correctness of the disassembler. The input of a binary verification technique is
a binary, written in machine code indicating the operations that the computer is performing
during execution. The machine code is represented as byte sequences and has no well-
formed formal semantics. Since the machine code is composed of byte sequences and is hard
to understand, researchers have to translate the machine codes to assembly languages in a
human-readable way and continue the analysis/verification of the assembly instructions. This
translation, the disassembly process, is assumed to be trustworthy in many binary verification
works [102, 113]. Typical parts of the disassembler that may introduce soundness issues are
1.) the instruction decoder (per individual instruction, translate a byte sequence into a
humanly readable representation) and 2.) the way the binary is traversed and the way it is
determined which addresses in the binary contain instructions.

Implementation of the tool. The tool itself is implemented in a programming language,
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and it is generally trusted that this implementation is correct. This part of the TCB encom-
passes the theoretical foundation on which the tool bases its verification; e.g., it can be based
on model-checking [111] and state-space exploration [120], or on predicate transformations
proven correct by Hoare logic [34]. The implementation also necessarily makes assumptions
on the memory model: typically, separation must be assumed between different regions in
memory. This component also encompasses the actual implementation, its compilation, and
the OS stack on which the tool is run.

User input. Generally, any binary verification effort requires some form of user input. It
may be the case that the tool must interactively be guided, but it may also be the case
that the user is assumed to provide information on, e.g., semantical behavior of external
functions or constraints on the initialization of the program under verification. Typically,
the user input must be trusted, i.e., if the user does not provide proper information, then
the verification effort becomes unreliable.

1.1.2 Motivation behind Minimizing the TCB

We thus argue the need for building up trustworthy instruction semantics in a formal lan-
guage. We consider a specific translation from the specification language Lem [64] to the
formal language of PVS [84]. This translation can be validated using various methods, such
as testing. Testing is a widely used strategy to establish equivalence between two spec-
ifications. However, validating a translation by testing requires that both languages are
executable. Some specifications can be either executable or non-executable, and the results
of the non-executable specification cannot be directly computed. For example, in the Proto-
type Verification System (PVS) [79], PVSio [71], PVS’s emulator utility, can only execute a
subset of the functional specifications in PVS. This is a limitation of many theorem provers,
not just PVS – their specification languages are designed to state and prove theorems but not
execute. In fact, large subsets of many provers’ powerful specifications are non-executable.
This downside can be overcome by stating theorems on these specifications that capture
the intended behaviors and proving them, mostly interactively – a highly labor-intensive
effort. For example, verification of the CompCert compiler [55] using interactive theorem
proving involved 100K lines of Coq proof [9] and six person-years of effort. The key challenge
here is to find a methodology for translation validation of the Lem-to-PVS translation that
provides more formal assurances than testing while being less human-labor intensive than
manual verification through interactive theorem proving.

Moreover, we argue the need for validation of the output of disassemblers. Trustworthy
disassembly is an essential component of the TCB in many reverse engineering and related
sub-disciplines. A plethora of disassemblers exist [15, 85, 89, 102] that can recover assembly
instructions from an executable binary. In many reverse engineering works, it is implicitly
assumed that the disassemblers and the disassembly process are trustworthy. This premise
holds true for both well-developed commercial and open-source disassemblers. For example,
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Ramblr [113] uses static binary rewriting to implement binary reassembling. The authors
take angr [102] as the base platform to disassemble the binary and rebuild the program
control flow graph (CFG), which implies that the correctness of Ramblr highly relies on
the correctness of angr. As another example, Ghidra [89] is a state-of-the-art tool for de-
compilation. Ghidra’s capabilities include control-flow reconstruction, type-inference, and
pointer analysis, and all these functionalities are based on the assumption that disassembly
is done correctly. Still, disassembly is not a solved problem: new techniques are developed
based on machine learning [82], advanced heuristics, and inference methods, among oth-
ers [85, 89, 102]. All existing disassemblers have soundness issues and may produce different
results on the same binary. Instead of trusting a disassembler, we thus argue for validating
its output.

An important goal of binary verification is to verify memory-related properties of closed-
source binaries such as many Windows binaries. Examples of such properties include absence
of buffer overflow, absence of null pointer dereference, and absence of use-after-free. These
properties have a large impact on program security. For instance, in 2003, the SQL Slammer
worm used a buffer overflow bug to infect a large number of machines running Microsoft
SQL Server 2000, which caused a denial of service (DoS) on many hosts [103]. Null-pointer
dereference took up 37.2% of all the memory problems in Mozilla and Apache [68]. As
another example, from Microsoft Internet Explorer 6 to 11 [19], there exists a use-after-free
vulnerability named CVE-2014-1776, which can be used to cause a DoS attack.

We thus argue that there is a need for a binary verification tool for Windows executables,
where no ground truth is available. Since no source code, debugging information, or any other
form of ground truth is available, we argue that such a verification tool must be built on top
of a reduced TCB. For example, the tool must use validated disassembled instructions.

1.2 Challenges

To validate the translation from a reliable instruction semantics written in one language to
an instruction semantical model represented in another language, a fundamental problem
is how to define the soundness of the translation between a language without well-defined
semantics (e.g., x86 machine code) and a language with well-defined semantics (e.g., x86 as-
sembly language). Since the source and destination languages do not have formally-specified
behaviors, developing a conformance relationship between programs written in the two lan-
guages is challenging. In some situations, a translation between two languages is sound if
the corresponding two programs always produce the same output for the same input. In
other words, they have I/O equivalence [51]. However, for some languages that support non-
executable semantics, I/O equivalence cannot be established, and the soundness definition
of the translation is still a challenge.

The choice of the methodology used to validate the translation is another challenge. Re-



1.2. CHALLENGES 5

finement proof [44] is a rigorous method for translation validation. However, it requires
a formal model of the source and target languages. Often, it is challenging to build such
formal models, as in many cases, the semantics of the two languages cannot be mapped
to each other one-to-one. Moreover, if one language does not have well-formed semantics,
extracting a formal model for it is another challenge. In such situations, testing [28], espe-
cially random testing [35], is an effective method and can detect inconsistencies. However,
as previously discussed, testing is not applicable in situations when the destination language
is not executable, as is the case with PVSio [71], PVS’s emulator utility.

The validation of the disassembly process, which is another step of binary verification, is
also challenging. Disassembly is by its very nature inherently an untrustworthy process.
It is an undecidable problem [87, 115] due to multiple reasons, such as variable-length in-
struction encoding and mixed instruction and data. In a context where only the binary
is available (e.g., software with proprietary code), there is no ground truth as to what the
“correct” assembly instructions are. State-of-the-art and mainstream disassemblers such as
objdump [38], Hopper [50], and IDA Pro [52] suffer from issues when, e.g., instructions are
overlapping, data and instructions are mixed, indirect jump/call targets are unresolved, or
a security vulnerability leads to unexpected control flow. Many errors have been reported
for these disassemblers, such as incorrectly recovered instructions and incorrectly assessing
which addresses belong to instructions and which to data [7, 70].

Even though the foregoing challenges must be solved, in implementing a binary verification
tool to verify closed-source binaries, three fundamental challenges have to be overcome: i)
unbounded loops, ii) pointer-aliasing, and iii) external functions. The handling of unbounded
loops is an essential problem for any verification effort based on symbolic execution [56,
94], as it may cause state-space explosion or non-termination. The problem with pointer-
aliasing is that during symbolic execution, it may not be known that two given pointers
refer to overlapping or separate regions in memory. As a result, it is difficult to provide an
accurate step-function that describes the state change induced by a memory write operation.
Computing pointer aliasing relationships becomes more difficult due to the lack of typing
information in a binary since variables are simply regions in memory (in a binary). Finally,
a closed-source binary typically calls various external functions whose machine code is not
accessible until linked at run-time. Thus in the static analysis process, the functionality
and calling convention of these external functions are unknown. Note that these problems
also manifest in verifying open-source binaries, but they are particular challenges for closed-
source binaries – the lack of sources prevents inferring useful information from the source
code, such as loop bounds, variable types, and identification of external functions.

The aforementioned challenges in verifying closed-source binaries exacerbate for Windows
binaries. Since many Windows binaries are closed-source, the verification process cannot
use the source code as the ground truth. Whether a detected memory-related negative is
a true error is undecidable. Windows binaries are often compiled with aggressive levels of
optimization, which makes both loop- and pointer-analysis difficult. Moreover, in Windows
binaries, external functions may have mixed calling conventions even within the same binary,
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which is allowed in the Windows ABI [1]. Such mixed calling conventions aggravate the
verification process.

Motivated by these challenges, we aim to reduce the TCB of a binary verification process
(Figure 1.1) via different methods. In Chapters 4 to 5, we target the translation from Lem
to PVS. Chapters 6 to 8 target disassembly validation. Chapters 9 to 11 provide a method
for Windows binary verification with minimal TCB. Specifically, Section 10.3 discusses how
the amount of information requested from the user is minimized.

1.3 Dissertation Contributions

This dissertation presents three research contributions. The first contribution is a technique
for validating the equivalence relationship within an OCaml-to-PVS translation. The mo-
tivation for validating this translation lies in the requirement for translation from the Sail
language to PVS. The Sail language [43], which is a first-order imperative language, has
been used to describe the semantics of ISAs such as x86, ARM, RISC-V, and PowerPC [43].
Sail specifications of many of these ISAs have been used for type-checking and test-case gen-
eration, translated into executable emulators, and lifted into theorem-proving languages for
rigorous reasoning [43]. While translators from Sail to theorem provers such as Isabelle/HOL,
HOL4, and Coq exist [43], one to PVS [79] does not. We develop a Sail-to-PVS translator to
translate the semantics of ISAs specified in Sail for the benefit of the PVS community. It is
critically important that the translation from Sail to PVS is provably correct. We presume
that the translation from Sail to OCaml is trustworthy; we then employ the executable fea-
ture of OCaml to validate the OCaml-to-PVS translation. If the equivalence between OCaml
and PVS is validated, the Sail to PVS translation is validated. We, therefore, develop a test-
and-proof methodology to validate the translation from OCaml to PVS. This validation is
challenging since OCaml does not have well-defined semantics while PVS has. Moreover,
PVS is a formal verification tool and supports non-executable semantics. We employ specific
features of PVS such as subtypes [90], proof checking [77], and batch proving [71] to solve
the validation problem.

The dissertation’s second contribution is a technique for validating the soundness of the dis-
assembly process. Disassembly is a translation from machine code in a binary to assembly
code. Machine code has no well-defined semantics, whereas assembly code has. We set up
a limitation for this problem in that we assume that we do not have access to the original
assembly code, and thus we do not have the assembly code as the ground truth for this
validation. This limitation is motivated in part by application settings where assembly code
is wholly or partially unavailable, outdated and decaying build processes and environments
that prevent regeneration of assembly, and third-party libraries and tools that are no longer
available or backwards compatible. This limitation raises the problem of how to determine
the ground truth for soundness validation while requiring that the correctness of the disas-
sembly must be validated without assembly code. We focus on the widely used Intel x86
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ISA [53], which is another challenge since the x86 ISA has a large number of instructions
with variable lengths, and the documentation does not provide clear specifications for some
instructions. Our validation technique uses a soundness notion that is defined using a tran-
sition relation defined over concrete machine states and the reachability of addresses in the
binary from the binary’s entry point. Since computing this relation is undecidable, our tech-
nique uses over-approximation by preventing false positives and allowing, but minimizing,
false negatives.

The dissertation’s third and final contribution is a concolic model checker that detects
memory-related properties, including absence of buffer overflow, absence of use-after-free,
and absence of null-pointer dereference in closed-source Windows binaries. Violation of these
memory properties is pervasive and often the source of many security exploits. Verifying them
for closed-source Windows executables is particularly challenging as such executables often
have different sources and use mixed calling conventions. We develop a formal definition of
these properties and develop a concolic model checker that uses those definitions to detect
the violation of these properties.

1.3.1 OCaml-to-PVS Equivalence Validation

We present a semi-automatic test-and-proof methodology to validate the translation between
two different languages, with one of them supporting non-executable semantics. The test-
and-proof methodology combines testing and proving to validate properties, which requires
short development cycles and supports validation using a formal verification language (i.e.,
PVS). Our methodology, folded into a tool called OPEV for “OCaml-to-PVS Equivalence
Validation”, takes an OCaml program and a corresponding PVS implementation as input.
From these inputs, OPEV automatically generates large-scale test cases using rules we have
developed for an intermediate type system that captures the commonality of OCaml and
PVS types. The test cases are directly executed on the OCaml program and are also used
for constructing a large number of test lemmas on the PVS specification. We represent the
test lemmas as equations with test cases on the left-hand side and the execution results on
the right-hand side. Since the test lemmas are represented as equations that do not hold
any higher-order logic, we are able to automatically prove the test lemmas using a PVS
feature called proof strategies [71]. The results of the proofs are then employed to establish
equivalence. Figure 1.2 illustrates OPEV.

We demonstrate OPEV by using it to validate a manually implemented OCaml-to-PVS
translation and a manually implemented Sail-to-PVS parser. The Sail-to-PVS parser in-
cludes 2,763 LOC and is used to translate 7,542 LOC of Lem code to 10,990 LOC of PVS
implementation. OPEV generates and proves 458,247 test lemmas for these two case studies
and detects 11 errors. The development of OPEV takes three person-months, and the effort
to develop and validate the translator takes five person-months.

OPEV’s central contribution is the semi-automatic test-and-proof methodology for validating
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Figure 1.2: Equivalence validation for OCaml and PVS.

translators supporting non-executable specifications. In principle, the OPEV methodology
can be applied to any pair of languages where one has non-executable semantics.

1.3.2 Disassembly Soundness Validation

We develop a formal definition for the soundness of disassembly. Our soundness concept
uses a transition relation defined over concrete machine states: a binary is sound if, for all
addresses in the binary that can be reached from the binary’s entry point, the bytes of the
(disassembled) instruction located at an address are the same as the actual bytes read from
the binary. Thus, a disassembler is unsound if there is a reachable (disassembled) instruction
whose bytes are not the same as those in the binary. Since computing this transition relation
is undecidable, we use over-approximation by preventing false positives, i.e., the existence
of an incorrectly disassembled reachable instruction but deemed unreachable, and allowing,
but minimizing, false negatives, i.e., the existence of an incorrectly disassembled unreachable
instruction but deemed reachable.

Based on this definition, we implement a tool called DSV, for “Disassembly Soundness Vali-
dation,” to validate whether a binary has been soundly disassembled or not. As illustrated in
Figure 1.3, DSV takes a binary file and the assembly file disassembled from the binary file as
inputs, generates “sound” or “unsound” as output, and reports all the “unsound” disassem-
bled instructions. Essentially, DSV performs a recursive traversal starting at the binary’s
entry point while validating all reached instructions. DSV’s key characteristic is that it does
not assume a ground truth; in other words, DSV does not presume the availability of source
code or debug information.

DSV over-approximates the semantics of the binary under investigation in two ways. First,
the semantics of various instructions are over-approximated by treating their effects on cer-
tain state parts as unknown. Second, the jumps and paths that can be traversed at run-time
are statically over-approximated. DSV needs to deal with three key problems: i) unbounded
loops, ii) pointer aliasing, and iii) indirect-branch instructions. In order to deal with loops,
we employ bounded model checking (BMC) [13]. To handle the pointer aliasing problem and
indirect branches, we use concolic execution [98], which is a combination of concrete and
symbolic execution.
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Figure 1.3: Soundness validation for disassembly.

We apply DSV to all the binaries of the GNU Coreutils library for eight different disassem-
blers. Soundness issues are found in each of them. Some examples include:

1. Incorrectly recovering instructions, e.g., Ghidra [89] disassembles 49 0f a3 c8 to bt
rax,rcx, while the correct result is bt r8,rcx;

2. Incorrectly recovering immediate values in operands, e.g., Dyninst [11] translates 48 b8
ff ff ff ff ff to mov rax, 0x4611686018427387903, however, the valid instruc-
tion is movabs rax,0x3fffffffffffffff;

3. Missing instructions due to under-approximating indirect control flow transfers.

DSV’s contribution consists of:

1. A formal definition for the soundness of disassembly.

2. An automated methodology for validating whether the output of a black-box disas-
sembler is sound with respect to a binary.

3. The application of this methodology to 102 binaries of Coreutils, each for eight different
disassemblers: angr 8.19.7.25 [102], BAP 1.6.0 [15], Ghidra 9.0.4 [89], objdump 2.30,
radare2 3.7.1 [85], Dyninst 10.2.1 [11], IDA Pro 7.6, and Hopper 4.7.3.

1.3.3 Verifying Pointer-Related Properties of Closed-source Bina-
ries

We present WinCheck, a model checker for closed-source binaries, such as Windows executa-
bles and libraries. The model checker is tailored for properties pertaining to pointers. The
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set of properties includes security-related properties such as use-after-free, buffer overflow,
and null-pointer dereference.

Similar to DSV, WinCheck also needs to tackle the challenges of unbounded loops and pointer
aliasing, and additionally, external functions. WinCheck approaches these three challenges
as follows. Loops are dealt with using bounded model checking. Bounded model checking
is applicable even in cases where no loop-invariants can be established. The cost is that it
may lead to false positives in case the bound is actually hit. Pointer-aliasing is dealt with
using concolic model checking. State parts are kept as symbolic as possible, but pointers
are always concrete. For example, the stack pointer and the return values of malloc are
kept concrete. This solves the pointer-aliasing problem since that problem is decidable if all
pointers are immediate values. External functions are dealt with by interactively requesting
the user for necessary information.

The model checker is based on a traceback system: as soon as a pointer-relation becomes
symbolic, the model checker traces back to the root of the issue. If this is due to an external
function, the user is asked for information about that function. Effectively, the user is
interactively asked for a very limited amount of information regarding the effects of external
functions on pointers in a given state (for example, function malloc returns a fresh pointer).

We applied WinCheck to several closed-source Windows 10 binaries in PE format, as available
in a standard Windows distribution, as well as the Windows version of the entire Coreutils
library. WinCheck supports 64-, 32-, and 16-bit ISAs. We found that WinCheck’s concolic
nature produces only a small amount of false negatives. An example of a false negative is a
read from uninitialized memory, which is not a true negative if the read data is never used
(this occurs, for example, during stack probing). However, due to WinCheck’s boundedness
as well as unresolved indirect jumps (control flow transfers computed at run-time), only a
part of the binary is explored.

To verify the absence of memory-related issues on binaries, different methods have been
under investigation for decades. These methods vary from random testing (often under-
approximative, i.e., subject to false positives) to formal verification (often over-approximative,
i.e., subject to false negatives). We argue that WinCheck is the first model checker that sat-
isfies all of these characteristics:

1. applicable to Windows executables without needing to model the system under verifi-
cation;

2. no need for specifications, definitions of properties, or source-code level assertions;

3. the required interaction is limited to asking the user for specific necessary information.

Note that the implementation of WinCheck is part of the TCB (see Figure 1.1), and we
do not target removing the implementation from the TCB. Specifically, our method (and
also tool) for Windows binary verification called WinCheck itself has not been verified.
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WinCheck assumes that stack, heap, and global data are separate memory spaces and that
malloc returns a fresh region separate from existing regions. Concurrency is scoped out, i.e.,
only single-threaded binaries are supported.

In this dissertation, we use the terminologies of validation and verification in a different
way than how it is often used [108]. To make a distinction, the terminology validation indi-
cates the act that checks whether an input/output pair is correct. Meanwhile, verification
illustrates the act that checks whether the verifying process works correctly for all inputs.
Although WinCheck verifies the pointer-related properties in an under-approximative way,
which means WinCheck is subject to false positives, WinCheck endeavors to detect all the
possible pointer-related errors for all the inputs. Thus, we use the terminology binary veri-
fication to describe WinCheck.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the background of
symbolic execution, formal verification, and model checking.

Chapter 3 presents past and related work in each of the dissertation’s problem spaces and
compares and contrasts them with the dissertation’s contributions.

Chapter 4 presents the OCaml-to-PVS equivalence validation work. We introduce the proof
automation of PVS and the corresponding case studies of OPEV in Chapter 5.

Chapter 6 presents the soundness definition of disassembly and Chapter 7 presents the
implementation of the DSV disassembly soundness validation tool. DSV’s case studies are
presented in Chapter 8.

In Chapter 9, we introduce the pointer-related properties that can be detected by WinCheck,
in a formal way. Chapter 10 presents WinCheck’s implementation details. WinCheck’s
experimental results and analysis are presented in Chapter 11. Chapter 12 concludes the
dissertation and identifies future work.

The chapters presenting this contributions are based on OPEV [4], DSV [5], and WinCheck [6].

Source Code Availability

Artifacts of the OPEV methodology are open-source and publicly available at: https://ssrg-
vt.github.io/Renee/.

The complete source code, benchmarks, and experimental results for DSV are open-sourced
and available at the project website: https://ssrg-vt.github.io/DSV. The source code artifact
is archived with a DOI link at: https://doi.org/10.5281/zenodo.6380975.

https://ssrg-vt.github.io/Renee/
https://ssrg-vt.github.io/Renee/
https://ssrg-vt.github.io/DSV
https://doi.org/10.5281/zenodo.6380975


Chapter 2

Background

In our work, we refer to different kinds of formal methods and apply testing, semi-automatic
proofs, symbolic execution, and bounded model checking to build up our tools. We introduce
the relevant background information in detail in the following sections. Section 2.1 introduces
the fundamentals and limitations of symbolic execution. We present a formal verification
technique and its application in a real system in Section 2.2. Section 2.3 demonstrates the
principles of model checking and some essential work that is implemented using a model-
checking technique.

2.1 Symbolic Execution

The idea of symbolic execution was introduced in 1976 by J.C. King [60]. Once the idea
came out, it was widely applied in software analysis, model checking, software testing, etc.
In the original design of symbolic execution, the inputs are symbolic value, and the program
executes on the symbolic inputs to explore as many execution paths as possible to check
certain properties of the program. Symbolic execution infers input classes instead of individ-
ual input values. More specifically, each value that cannot be resolved by static analysis of
the code is denoted by the symbolic value. By evaluating all the generated execution paths,
certain properties are verified.

The major limitation of symbolic execution is the path explosion problem. Take the code
in Listing 2.1 as an example; our target is to verify the assertion at line 8. With concrete
input a, we can execute the program and verify that the assertion is true under the concrete
input value. However, we cannot declare that this assertion is true in any case. If we apply
symbolic execution to the code, the symbolic execution generates an unlimited number of
execution paths since the code contains loops, and the termination condition is a symbol.

Moreover, if the symbolic path constraint is not solvable or cannot be solved efficiently,
inputs cannot be generated. Assuming that the adopted solver cannot solve the constraint
generated in the execution path, then the symbolic execution will fail. That is, symbolic
execution will not be able to generate any input for the program or verify the properties
that are required in the program. For the unsolvable path constraints, techniques, such as
concolic testing [98], are developed to solve the problem. Moreover, to reduce the number
of generated paths, algorithms that eliminate infeasible paths during the symbolic execution

12
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Listing 2.1: An algorithm to calculate square using addition.
void foo(int a) {

int sum = 0;
int b = 1;
for (int i = 0; i < a; i++) {

sum += b;
b += 2;

}
assert(sum == a * a);

}

are developed [2].

2.2 Formal Verification

Formal verification technique in a computer system is to prove mathematical theorems using
assistant tools. The proving process is based on reasoning logic, such as temporal logic
and natural deduction rules which describe logical reasoning using inference rules. Some
theorems or lemmas we need to prove are in the form of propositions, which take the value
of true or false. These propositions are deduced from various premises by implementing
different inference rules.

Generally, it takes three steps to formally verify a practical system. First, formulating
the specification of the model of the system using certain language in theorem provers.
Since the functional languages used in theorem provers are different from the programming
languages, the first step of construction takes a long time and great effort. For example, in
the verification of seL4 [61], it took the working team 9 person-years to build up the formal
frameworks and tools, which occupied almost half of the whole time spent on the project.
Second, proving the correctness and soundness of the specification. Due to the existence of
concurrency and indeterminacy in a real-time system, this part also requires special expertise
and considerable endeavor. The third step is to implement a practical system that meets
the specification and verify the refinement relationship between the specification and the
real system. For some theorem provers which have integrated code generators, such as
Isabelle/HOL theorem prover [74], the implementation can be fulfilled automatically.

Generally, the theorem-proving language is dissimilar from the languages that are used to
implement real software systems. Therefore, it is impossible to obtain the theorem-proving
model directly from the real system. The modeling process usually takes a long time. Be-
sides, proving the theorems representing the properties of the system is also time-consuming
and skill-requiring, which prevents the application of theorem-proving techniques in some
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system verification. However, if the theorem has been successfully proved, the corresponding
property regarding the real system is highly trustworthy.

Many theorem provers, such as Coq [9], HOL4 [42], Isabelle/HOL [83], and PVS [79], are
developed using distinct languages, such as OCaml, Standard ML, and Common Lisp. Al-
though their implementation methods are different and the reasoning logic is not necessarily
identical, these theorem provers have already been applied to analyze different systems. For
example, Isabelle/HOL has been used to verify seL4 [61], an OS microkernel. Coq has been
applied to analyze Verdi [116], a distributed system, and Compcert [55], a C compiler.

The advantages of these theorem-proving tools are that they prove the general concepts,
rather than verifying them using specified variables, states, and traces, which prevents par-
ticular errors due to loss of details. For example, in [110], if the number of processors in a
multiprocessor system is parameterized, which means any number of processors is acceptable
in the system, then it is infeasible to apply model checkers to verify the system. In contrast,
theorem provers are applicable for such a parameterization problem since the number of
processors does not affect the final results.

In recent years, formal verification using interactive theorem provers has been extensively
applied to software and hardware systems, with the increasing requirement of system cor-
rectness and soundness. For example, in the software field, Compcert [65], a C compiler,
has been verified using the Coq theorem prover; and Ridge et al. [88] presented a model
of the behaviors that are permitted by the SibylFS file system. In the hardware field, Vi-
jayaraghavan et al. [110] modeled, refined, and proved a multiprocessor hardware system,
which consisted of a parameterized number of processors and parameterized level of cache
hierarchies, using the Coq theorem prover.

Even further, Klein et al. [61] have employed Isabelle/HOL to formally verify the seL4
microkernel from the specification of the model to the low-level C implementation, which
demonstrates the wide range of application of theorem provers in software verification. There
exist many challenges in the verification of operating systems, such as the large-scale code
base of the kernel, the abstract model of the real implementation, and the proofs that are
required for the refinement relation between the abstract model and the real implementation.
seL4 [61] provides high-level assurance of the functional correctness of an OS kernel in the L4
family using formal proofs. To fill the gap between a real kernel and its abstract model, seL4
took a methodology that started from a medium-level prototype written in Haskell. The
intermediate specification was then directly translated to a formal abstract specification and
was manually re-implemented to a C implementation. seL4 was tested with OKL4 2.1 on a
specific platform. The performance of seL4 was approaching the other optimized L4 kernels,
which indicates that the formally verified kernel could also achieve high performance. The
complete functional correctness of seL4 was verified. Besides, the researchers assumed the
correctness of the C compiler and the real hardware, which are the TCB in the verification.
There were some limitations during the verification of seL4. For instance, seL4 only allowed
a large subset of C99 language. Besides, they spent 20 person-years on the highly-assured
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kernel with almost 10K LoC.

2.3 Model Checking

Model checking is a verification technique that searches the finite state space of the system
model to check whether the system’s behavior satisfies predictive properties. A formal model-
checking approach employs a particular language to construct the model of the system,
describes the specifications of the requirements in the form of formulas, and analyzes whether
the model conforms to the specifications.

Model checkers analyze different properties according to the specific requirements of a certain
system. First is the correctness of the model, which means that the modeling process should
conform to the rule of certain model-checking language and incur no error in any traces. Most
properties of the model are generally divided into two kinds: safety property, which means
that nothing bad would happen, and liveness property, such as the termination that can be
verified using temporal logic. Besides, different model checkers analyze distinct properties.
For example, CBMC [62] could verify array bounds, pointer safety, exceptions, and user-
specified assertions in C code; and TLC [63] checks the specification of some simple system
constructed using TLA+ or PlusCal language.

Explicit-state model checkers, such as Murphi [69], TLC [63], and SPIN [49], are only able
to handle finite-state models. They iterate over all the behaviors and analyze the model.
If the number of states is too large or even infinite, explicit-state model checkers are not
capable. Symbolic model-checking tools, including SMART [21] and NuSMV [24], have
better performance in analyzing this kind of complex system with infinite states. However,
to apply symbolic model-checking techniques, the states of the model have to be symbolized
and classified into various finite sets, and traces have to be translated into transitions between
sets.

As the technique develops, automation becomes a key requirement in model checking. For
example, CBMC [62] is applied to test C programs and verify predefined properties auto-
matically. However, in some cases, because of the infinite state space and undecidability of
the problem, such as whether a C program would terminate or not, it is impossible to apply
automatic proving. Handwork is still necessary in such cases. Besides, even though model
checkers can be employed to prove some rather complex systems, it is still impossible for
them to verify a full operating system like seL4, since real OS has too many features and
indeterminacy, and state explosion is still a great challenge in model checking.
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2.3.1 Application of Model Checking

Although a model is needed to be constructed for the system, the automation property
of the model check lowers the threshold of the model-checking technique. Model-checking
technique is widely applied to verify many software and hardware systems.

Linux Virtual File System [36]

This paper introduces a model of the Linux Virtual File System (VFS) and shows how
to verify the validation of the model. The model is extracted from the C source code of
the implementation of VFS together with some manually inserted code. Then, SPIN [49]
and SMART [21], two different model-checkers, are respectively applied for simulating and
verifying the model.

The process of constructing a VFS model is to extract the activities from the real imple-
mentation of VFS and articulate them in an abstract method. The modeling process cannot
be executed completely automatically because of some specific elements, such as dynamic
memory allocation, macros, and inlined assembly. Thus, the Kernel Function Trace tool is
selected to get traces from the executions of a Linux kernel, and manual examination is also
adopted to assemble an abstract VFS model in C language.

The simulation of the model is implemented using the SPIN model-checking technique [49]
for the following reasons. First, the Promela language, which is used in the checking process
of SPIN, is quite similar to the C language that is employed in the model. Second, SPIN
has great simulation competencies and accepts assertions inserted while running. Thus, a
SPIN model can be used to simulate the C model and to detect model errors via simulation
of various system calls using SPIN. However, due to the broad state space along with the
concurrency in VFS implementations, SPIN is not capable of verifying the model.

Therefore, SMART [21], a symbolic model checker, is introduced to verify the model. The
verification using SMART is based on Petri nets, and the VFS model is translated into a
Petri net and then is analyzed using SMART. In the new model, various VFS variables
are parameterized and symbolized as Petri net nodes, and calls are depicted as transitions.
The main properties of the VFS model, which are verified using the SMART checker, are
deadlock-freedom and data integrity which includes three elements: allocation, reference,
and structural properties.

Hypervisor Framework [109]

In this paper, the authors present a new hypervisor framework called XMHF (eXtensible and
Modular Hypervisor Framework) which supports further extensions and preserves essential
memory-security properties. XMHF is limited to support only a single guest (other hyper-
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visors or operating systems) and sequential execution, and it holds certain properties such
as Modularity, Atomicity, and Initialization Validity. In the model-design procedure, all the
properties should be realized to ensure memory integrity, which is proved by illustrating that
system invariants, referring to memory integrity, would resist under all circumstances.

After the fundamental proofs of system security, it is verified that the extensions based on
this framework are still correct in memory integrity. This part is automatically analyzed since
the extended hypervisor is developed over the framework and also has specific properties,
which can be verified using CBMC [62]. This framework is evaluated by being compared
with other general hypervisors, and the evaluation results show that the performance of
XHMF is as outstanding as other popular hypervisors.

The verification of the structure is implemented by CBMC, and the majority part of the code
is analyzed automatically, except for a small part regarding concurrency and loops over page
tables. The code is verified directly due to the functionality of CBMC, which eliminates any
inaccessible code and unfolds other codes. Because of the simplification of the framework
(single guest and sequential execution), only a minor part of the code, including concurrency
and unboundedness of the code, needs manual verification, which immensely reduces the
handwork.

2.3.2 Concolic Model Checking

Concolic model checking is a technique that combines concolic execution and model checking
together to check certain system’s properties. It holds the characteristic of model checking,
such as exploring the state space of a model to check specific properties of a system. Mean-
while, the concolic execution process enables the concolic model checker to verify certain
properties in a decidable way. For example, if the memory address in a system model is
enforced to be concrete while the other parts are symbolic, then certain challenges, such as
pointer-aliasing problems, can be solved, which facilitates the validation of memory-related
properties.

The combination of different software verification techniques has been extensively used in
recent years. For instance, DART [39] and CUTE [98] used concolic testing to generate test
inputs for C programs, while jCUTE [97] applied concolic testing to test concurrent Java
applications. Meanwhile, JPF [111] is an explicit-state model checker that combines model
checking and testing together to analyze Java programs. ExpliSat [8] also employed the
concolic model-checking technique to validate specifically designed properties for C programs.
The hybrid methodology, such as concolic testing and concolic model checking, gets the
advantages of different techniques and enables the tools built upon the hybrid method to
carry out the software verification process in a flexible way.



Chapter 3

Past and Related Work

In this chapter, we present OPEV’s related work in Section 3.1. Section 3.2 introduces the
linear and recursive disassembly and some work regarding translation validation of a disas-
sembly process. Then some techniques regarding verification of pointer-related properties
are illustrated in Section 3.3.

3.1 Translation Validation

Significant literature exists in translation validation. Due to space constraints, our discussion
is not meant to be comprehensive. We only discuss the most relevant and closest efforts to
ours.

CompCert [55, 66] uses a formally verified compiler to establish the correctness of compila-
tion from a subset of C to PowerPC, ARM, RISC-V, or x86 assembly code. The compilation
guarantees that the assembly code executes with the behavior that was designated by the
original C program [54]. However, the formal proofs of CompCert did not cover the correct-
ness of the formal specifications of C and assembly [66]. In addition, it took six person-years
of effort and involved 100,000 lines of Coq code [55].

In [100], the authors show that the seL4 source code [96] and its binary code have the same
behavior. The translation validation, in this case, relies on a refinement proof. A refinement
proof is possible here due to the formal semantics that is created for both the source and
target languages. However, the semantics of Sail and PVS cannot be mapped to each other
one-to-one. Besides, refinement proofs, in general, are labor-expensive due to the significant
human intervention that is necessary. The seL4 refinement proof [61] took 8 person-years;
the seL4 total verification effort [61] is more significant and took ∼20 person-years.

In contrast with compiler verification and refinement proofs, OPEV is a lightweight approach
for the validation of a translation from a high-level language into a theorem prover using
random testing. OPEV is, therefore, significantly less labor-expensive. In addition, OPEV
allows non-executable specifications and proofs for generic theorems after translating the
code for further verification. The comparison between OPEV and other translation validation
methodologies is illustrated in Table 3.1.

OPEV also differs from some other testing-based lightweight verification techniques. For
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Table 3.1: OPEV methodology vs. other translation validation techniques.

Feature sel4 [61] CompCert [66] OPEV
Methodology Refinement Proof Compiler Verification Random Testing
Total LOC + 210K 100K 23,615
Target LOC 10K NA 9,000
Time requirement 8 person years 6 person years 1.5 person years

Table 3.2: Comparison between OPEV and lightweight formal verification approaches.

Tool Non-Executable
Spec Verification

Translation
Validation

Counterexample
Search

OPEV ✓ ✓ ✓
QuickCheck × × ✓
Eiffel AutoTest × × ✓

instance, Haskell’s QuickCheck mechanism [27] is designed to aid in the verification of prop-
erties of a given function. The tests are randomly generated until either a counterexample
is discovered in a given domain or a preset threshold is reached. Likewise, AutoTest for
Eiffel [26] checks program annotations based on randomly generated test suites. Similar
methods exist for theorem provers. For example, QuickCheck [107] and Nitpick [14] for Coq
and Isabelle/HOL use random testing [112] to support counterexample discovery for a given
conjecture. These mechanisms work well with executable specifications. OPEV differs from
these efforts by its focus on validating the translation into a theorem prover, as shown in Ta-
ble 3.2. Precisely, OPEV aims to increase the trust in the translation process of code into its
formal specification (including the non-executable) based on random testing. These tests do
not attempt to prove or disprove any functional property, but they increase the trust in the
formal translation. However, our translation into PVS may allow the user to verify properties
and specified conjectures for the translated functions using PVS’s built-in test-generator [30]
to assist in proving these properties or reaching a counterexample [78]. But like the other
built-in translations, it is restricted to generated PVS’s executable specifications from our
tool.

For translating non-executable specifications, OPEV allows proofs using pre-designed, auto-
matic proof strategies for translation validation.

The closest work to OPEV is MINERVA [73], which provides a practical approach to produce
high assurance software systems using model animation on mirrored implementations for
verified algorithms [73]. However, this work is limited to the executable subset of PVS. OPEV
can be viewed as complementary to MINERVA when the specification is not executable.
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3.2 Disassembly Validation

We first discuss the main approaches to disassembly. Then, the approaches for the validation
of disassembly are discussed.

3.2.1 Disassembly Techniques

Linear sweep and recursive traversal are the major techniques behind the binary disassembly
process. PSI [119] and objdump [38] are typical linear-sweep disassemblers. These disassem-
blers handle the byte sequences in the binaries sequentially. Linear-sweep disassemblers have
superior performance under certain circumstances. For example, some linear sweep disas-
semblers fulfill a 100% correctness on SPEC CPU 2006 benchmarks generated by gcc [37] and
clang [7]. However, linear sweep disassemblers have poor performance in handling special
situations such as overlapping instructions, inline data, and jump tables.

On the other hand, disassemblers such as IDA pro [52], Dyninst [11], Ghidra [89], and Hop-
per [50] are implemented using recursive traversal. These disassemblers decode the instruc-
tions following the execution path of the sequential and branching instructions and try to
resolve the indirect jump addresses. Essentially, they reconstruct the control flow on-the-fly
in order to perform disassembly. Recursive traversal handles overlapping instructions and
inline data in a more reliable way than linear sweep disassemblers.

However, recursive traversal presents a crucial challenge, which is how to resolve indirect-
branch addresses. The implementation of jump address resolving algorithms in various
disassemblers leads to different performances. Researchers apply program slice [23] to recover
jump tables from binary files. Meanwhile, constant folding and propagation are employed
to resolve indirect branches in many applications [33, 58]. With this method, constants
are propagated in a block, and comments with concrete targets are added to specific calls
that call these constants. Furthermore, Kinder et al. [57] combined over-approximation and
under-approximation together to construct indirect branches. Schwarz et al. [95] proposed a
technique based on relocation information to collect possible indirect jump targets, and all
these possible addresses were visited to advance the disassembly process.

Other than the traditional disassembly techniques, disassembly based on machine learning
is gaining traction. Wartell et al. [114] implemented a machine learning-based approach to
discriminate code from interleaving data, which is a crucial challenge in disassembly. Be-
sides, though there are no full-fledged machine-learning-based disassemblers, a project named
MLDisasm [105] was in development. MLDisasm was designed to serve as a disassembler and
was developed based on LSTM neural network. A major challenge for MLDisasm was how
to determine the instruction boundaries. Though MLDisasm is not a complete off-the-shelf
disassembler, it provides another direction for future disassembly techniques.
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3.2.2 Soundness Validation

Andriesse et al. [7] checked the false positive and false negative rates for nine mainstream dis-
assemblers using SPEC CPU2006 and Glibc-2.22 as the benchmarks. The researchers gave
a comprehensive comparison between different disassemblers on five critical criteria, includ-
ing instruction recovery, function starting address relocation, function signature restoration,
control flow graph (CFG), and callgraph reconstruction. They used the ground truth in-
formation derived from LLVM analysis, DWARF debugging information, and some manual
ancillary work. These ground truths provided critical information for the five criteria.

Paleari et al. [80] developed a methodology called n-version disassembly to apply differential
analysis to validate the correctness of different x86 disassemblers. The writers employed var-
ious disassemblers to recover the instruction from the same string of bytes and compared the
results to find out the divergences. This paper validates the correctness of single-instruction
disassembly, whereas our paper focuses on a complete disassembly process.

Pang et al. [81] manually evaluated the code base of various disassemblers and discussed the
algorithm and heuristics used by these disassemblers. They also studied 3,788 binaries from
different sources on nine mainstream disassemblers to evaluate the instruction recovery, cross-
reference accuracy, function starting point, and CFG construction. They reported incorrectly
disassembled cases existing in these disassemblers. The ground truths were automatically
collected in the compiling and linking procedures when generating binaries with a method
similar to the technique used by Andriesse et al. [7].

In DSV, a major concept is the reachability of instructions, which is implemented using
an over-approximative abstract transition relation. Similarly, Kinder et al. [59], in 2009,
proposed an abstract transition relation for over-approximative control flow construction.
However, this work did not handle indirect jumps. A subsequent work, presented by Kinder
et al. in 2012 [57], introduced a solution to handle indirect jumps. This solution, however,
alternated between over- and under- approximation to construct control flow.

3.3 Property Verification Techniques

To validate the memory-related security properties, different methods have been under in-
vestigation for decades. We here distinguish static verification from runtime monitoring.

3.3.1 Static Property Verification Tools

Table 3.3 provides an overview. We divide the property verification algorithms into four ma-
jor categories: model checking, testing, symbolic execution, and interactive theorem proving.
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Table 3.3: Comparison between WinCheck and other model checking, symbolic execution,
and testing tools.

Tool Type Input language Properties
WinCheck CMC Windows executables Pointer-related
TLA+ MC TLA+ specification LTL
SPIN MC Promela specification CTL∗

CPAChecker MC C programs C assertions
NuSMV SMC SMV model CTL & LTL
SAGE SE Windows applications Abnormal termination
KLEE SE LLVM N/A
MAYHEM SE Binary N/A
BinSec SE Binary N/A

(S/C)MC = (Symbolic/Concolic) Model checking
SE = Symbolic execution

Model Checking

Model checking is a technique that verifies a given property of a program against a finite-
state model of the program. The model and the property of the program are typically for-
mulated using specific model-checking tools, such as TLA+ [118], SPIN [49], UPPAAL [10],
NuSMV [25], or CPAchecker [12]. Model-checking techniques are able to verify whether a
program satisfies certain liveness or safety properties once the model has been formulated.

A key challenge in model checking is to derive a proper model. The input for a model checker
typically is on a high level of abstraction (e.g., PROMELA or timed automata). In the case
of a closed-source binary, there exists no reliable method to derive such a high-level model
from the low-level machine code. WinCheck solves this issue by being directly applicable to
the machine code of the executable. The trade-off is that WinCheck is tailored to specific
properties and does not generalize to a complete logic of temporal properties.

Testing

Testing techniques are grandly employed in software development to validate certain proper-
ties. They provide concrete values as inputs to binaries to expose various problems. Different
testing methods, such as random testing [18, 35, 45, 46], search-based testing [47], or fuzz test-
ing [40], develop various strategies to increase the testing coverage. Unlike model-checking
techniques, the testing inputs are concrete and finite, which means the testing inputs may
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not cover all the paths of the testing. How to enlarge testing coverage is a fundamental
challenge for any testing technique.

Symbolic Execution

Symbolic execution is another extensively used technique to check properties in programs [60].
Symbolic execution uses symbolic, rather than concrete, values as inputs to execute the pro-
gram. Symbolic execution generally aims at providing over-approximative results since the
inputs are symbolic and all the paths are covered. However, a complete symbolic execution
procedure on a large program is challenging because of the state/path explosion problem.
Some whitebox fuzz testing techniques, e.g., SAGE [40], are developed based on advanced
symbolic execution tools. SAGE is employed in detecting security-related errors in large and
complex binary applications [41].

Interactive Theorem Proving

In 2000, Xu et al. [117] developed a system to analyze certain memory security properties
in stripped SPARC executables. This technique was built upon theorem-proving. They
used an induction-iteration method [104] to generate loop invariants. Myreen et al. de-
veloped decompilation-into-logic [72], which is a technique for lifting machine code into a
representation in Higher-Order-Logic so that it can be interactively reasoned over in a the-
orem prover. Klein et al. used a refinement-based approach to verify the binary of the seL4
microkernel [61, 100].

Summary

WinCheck is directly applied on Windows executables and does not require a further step to
lift the binary code to models written in a certain language. In contrast to CPAchecker [12]
and KLEE [16], WinCheck does not require source code. Moreover, WinCheck does not
require the formulation of properties, be it in the form of specifications written in CTL∗,
source-level assertions, or manual guiding of a symbolic execution engine.

WinCheck ensures that – in its concolic execution – memory addresses are always concrete.
This solves the pointer aliasing problem that symbolic techniques inherently suffer from. For
example, when KLEE is given a program with two pointers as parameters, it will simply
assume that these pointers do not alias. This assumption may produce false positives, as
paths may be missed. In contrast, WinCheck carries out concolic execution from the entry
point of the executable, ensuring a concrete memory model while leaving the remainder of the
state as symbolic as possible. It thereby provides a novel trade-off between 1.) automation
and ease-of-use, 2.) scalability, and 3.) applicability.
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3.3.2 Runtime Property Verification Tools

Runtime monitoring of software without source code is an open challenge. Multiple tech-
niques have been proposed to detect memory security errors with source code or debugging
information available at runtime. Intel MPX [75] is a hardware-based solution that serves
as an Intel ISA extension to refrain from some memory security violations. Intel MPX is
promising in that it supports a guarantee against errors such as buffer overflows. Address-
Sanitizer [99] implemented the trip-wire approach in a compiler, which could be used to
detect buffer overflow and use-after-free bugs. CRED [91] and SAFECode [29] employed
object-based methods to guarantee that the operations on pointers do not modify the ob-
jects to which the pointers refer. Both CRED and SAFECode can be applied to detect
buffer overflow. While CRED maintained a high-performance overhead, SAFECode skipped
certain buffer overflows in the same pool, which is partitioned by SAFECode using pointer
analysis. For all of these techniques, source code is necessary for the program detected, which
is different from WinCheck. In contrast, MAI [67] supports runtime detection of fine-grained
memory-related errors on binaries. Runtime strategies inherently deal with the question of
what to do when a violation is encountered. In contrast, a static approach such as WinCheck
aims at showing a violation cannot occur at the very beginning.



Chapter 4

OPEV: OCaml-to-PVS Equivalence
Validation

In this chapter, we introduce the OCaml-to-PVS equivalence validation (OPEV) methodol-
ogy that builds up trust between the translated OCaml code into PVS. The translation is
carried out automatically (for a subset of OCaml) or manually. Moreover, the translation is
error-prone since these two languages are of different natures, where OCaml is a functional
programming language and PVS is a language for formal verification.

The overall workflow of the OPEV methodology is presented in Section 4.1. In Section 4.2, we
introduce the intermediate type system that we developed to incorporate the commonality
between OCaml and PVS languages. Then we demonstrate how to generate test cases
and test lemmas in Section 4.3; and the proofs of the generated test lemmas are shown in
Section 4.4.

4.1 OPEV Workflow

We use Figure 4.1 to demonstrate the overall workflow for OPEV. As can be seen, we use
an intermediate type system, which is introduced in Section 4.2, to cover the commonality
of the type system between OCaml and PVS languages. The intermediate type system is
confined to a subset of the entire OCaml and PVS type system. For each of the functions
written in PVS or OCaml languages, OPEV parses the sources to formulate an intermediate
type annotation. Then OPEV generates test cases, based on the generating rules introduced
in Section 4.3, for each of the functions. OPEV executes the OCaml test cases to get
the results, translates the OCaml outputs into PVS representation, and employs the test
cases and the parsed outputs to construct test lemmas in PVS. The test lemmas serve as
test oracles, which are automatically proved using generic PVS proof strategies that are
manually implemented. If the test lemmas are validated to be false, we realize that there
exist mismatches in the OCaml-to-PVS translation. Then we inspect the test cases and
detect the reasons.

25
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Figure 4.1: The OPEV workflow.

4.1.1 Extensibility

OPEV has already covered the semantics of a large subset of OCaml and PVS for automatic
test generation. To ensure that OPEV can be extended to incorporate more types in the
future, we represent the generated test cases and testing results in the string format to
circumvent the real type system of OCaml and PVS.

For example, in Listing 4.1, suppose we randomly generate [1, 6, 8] as the test value for the
argument l of function rev. We construct a string “let res = rev [1; 6; 8];;” as the OCaml
command and delegate it to the OCaml Toploop library to execute the command. The result
can be extracted from the res variable, which has the value [8; 6; 1]. Then OPEV parses the
result according to the return type of function rev and composes a PVS test lemma, such as
th_rev as shown in Listing 4.2.

Listing 4.1: The definition of a PVS rev function.
rev[A:TYPE](l:list[A]) : RECURSIVE list[A] =
CASES l OF

cons(x, xs): append(rev(xs), cons(x, null))
ELSE null

ENDCASES
MEASURE length(l)
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Listing 4.2: A sample of PVS test lemma for rev function.
th_rev: LEMMA rev((: 1, 6, 8 :)) = ((: 8, 6, 1 :))

The test lemma is also written in the string format. This string-format representation
allows us to avoid writing various functions with different argument types and facilitates the
extension of OPEV.

4.1.2 Non-Executable Semantics

We construct PVS test lemmas rather than directly executing the test cases in PVS because
the semantics of some PVS functions are non-executable. Most of the functions with set-
theoretic semantics in PVS are non-executable, including relational specifications, which are
represented as predicates on sets in PVS. For example, as shown in Listing 4.3, the semantics
of the function filter is non-executable. This is because the filter function introduces what
kind of elements should be included in the result set after the execution of the function but
does not indicate the steps of how to execute the function in PVS executable syntax.

Listing 4.3: A PVS function with non-executable semantics.
filter[A:TYPE](p:[A->bool])(s:set[A]):set[A]=

{x: A | member(x, s) AND p(x)}

Meanwhile, in PVS, functions with non-executable semantics cannot be executed using the
PVS ground evaluator and PVS built-in strategies. For instance, trying to directly execute
the filter function in PVSio, which is a PVS evaluator, will release an error message that
indicates the filter function includes a non-ground expression.

4.2 Intermediate Type Classification

To respectively generate test cases for OCaml and PVS functions, OPEV needs to catch the
commonality between the two languages and dispose of the difference. We, therefore, design
an intermediate type system to bridge the gap between the type systems of OCaml and PVS
languages. Since the types of the two languages cannot be mapped to each other one-to-one,
we divide the types of the two languages into six different classes and make rules to handle
them separately.

The six classes of OPEV’s intermediate type system, as shown in Listing 4.4, are PEmpty,
PBasic, PComplex, PDef, PExt, and PSpec. In the type system, PEmpty represents a dummy
type, which has no concrete content and is used as a placeholder in the type notation. The
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other five classes incorporate a subset of the real PVS/OCaml types.

Listing 4.4: Intermediate type classification.
type pType =
| PEmpty
| PBasic of pBasic
| PComplex of pComplex
| PDef of pDef
| PExt of pExt
| PSpec of pSpec

The relationship between OPEV type classification and OCaml/PVS types is briefly de-
scribed as follows:

• PBasic represents the basic built-in types for both OCaml and PVS, such as bool,
nat, and int.

• PComplex incorporates the generic complex data types that have similar formats in
both OCaml and PVS, such as string, tuple, and list.

• PDef illustrates the user-defined types including datatype, record, and etc.

• PExt stands for external library types. These types provide no concrete implementa-
tions; instead, they supply specific interfaces that can be used to operate on them.
Explicit construction and parsing functions are demanded for these types.

• PSpec includes some types that require special treatment such as functional types.

Based on the class of each intermediate type, a generating rule and a parsing rule are made.
Currently, OPEV manages a subset of the OCaml/PVS type system. To extend the OPEV
type system to incorporate new types, one needs to manually add particular test generating
rules in OPEV for the new types.

4.3 Test Generation

This section introduces the generating rules for all the intermediate types. Suppose we
have a function that is translated from OCaml to PVS. OPEV generates test cases for the
function by classifying each of the function arguments into the five intermediate type classes
and generating multiple concrete values for the function argument based on its intermediate
type representation. Then OPEV normalizes the values to fit them into OCaml and PVS
formats.
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4.3.1 Basic Types

Types in the PBasic class have corresponding built-in types in both OCaml and PVS. The
test generating rules are straightforward. As shown in Listing 4.5, the basic types in the
intermediate language include PUnit, PBool, PChar, PNat, PInt, and PReal.

Listing 4.5: Basic types.
pBasic =
| PUnit
| PBool
| PChar
| PNat
| PInt
| PReal

PUnit is the intermediate unit type for which OPEV will generate () and Unit respectively
for OCaml and PVS. PBool represents the built-in bool type. OPEV randomly generates
a 0 or 1 and translates it to false or true for both OCaml and PVS. For PChar, OPEV
will randomly generate a number between 32 and 126 and then construct a char argument
separately for OCaml and PVS according to the type representation.

PNat represents the nat type that has no explicit definition in OCaml. We set this type based
on PVS’s type notation. OPEV generates a random natural number in a pre-defined range.
Meanwhile, the generating strategy for the PInt type is similar to PNat. OPEV generates a
random integer number in a pre-defined range([-10, 10] by default). The generated integer
follows a uniform distribution, and the pre-defined range can be modified by the user in the
command line. For instance, if the user needs to change the range to [-5, 5], the corresponding
command is as follows:

./opev --range -5 5 library_path

For the PReal type, OPEV employs fractional representation. The numerator and denomi-
nator are generated as random integer numbers, respectively. The denominator specifically
must be nonzero. Then the numerator and denominator are applied to construct the real
type argument. For OCaml, we have to add the “.0” suffix to them and construct the
ratio as numerator.0/.denominator.0. Meanwhile, for PVS, the fraction is represented as
numerator/denominator.

Table 4.1 presents some examples of generated arguments for the basic types. The same
arguments can have different representations in OCaml and PVS.
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Table 4.1: Examples of generated basic arguments.

Type OCaml argument PVS argument
PUnit () Unit
PBool false false
PChar ‘a’ char(97)
PNat 2 2
PInt -10 -10
PReal 3.0/.5.0 3/5

4.3.2 Complex Data Types

Complex data types in OPEV include PString, PTuple, and PList as shown in Listing 4.6.
These types respectively represent the string, tuple, and list types in OCaml and PVS.
For PString and PList types, users can set a length parameter that restricts the maximum
length of the elements, and the tests are generated using this parameter. For some recur-
sively defined complex data types, we do not need to deal with the termination issues since
these data types have corresponding inherent definitions in OCaml and PVS and OPEV has
specific generating rules for each of the built-in types.

./opev --length 16 library_path

Listing 4.6: Complex data types.
pComplex =
| PString
| PList of pType
| PTuple of pType list

A PString argument is viewed as a sequence of char. OPEV firstly creates a list of random
natural numbers, whose ranges are between 32∼126, with a given string length. Then the
list of natural numbers is mapped to a list of char, and the list of char is concatenated to
a string based on the normalizing strategies for both OCaml and PVS.

The PTuple type has an argument, which is a list of OPEV intermediate types representing
the type of each element in the tuple. OPEV generates values for each element, based on
its type, and combines them together to create the final results. For instance, if the tuple
elements are generated as t0, t1, ..., and tn, then the final tuple is (t0, t1, ..., tn).

For a PList type, there is also an argument that is the type of the list element. To create
test cases for a PList type, OPEV first generates an integer to represent the length of the
list, which is confined to a pre-defined maximum length parameter. Then OPEV generates
list elements, following the strategies of creating test cases for the specific list type, with the
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Table 4.2: Examples of complex type arguments.

Type OCaml argument PVS argument
PString “\“HelloWorld” doublequote o “HelloWorld”
PTuple (2, true, ‘a’) (2, true, char(97))
PList [1; 2; 3] (: 1, 2, 3 :)

given length. The list elements are concatenated to construct a list for OCaml and PVS,
respectively, following their type representations. For instance, if the length of a list is n and
the list elements with certain type are generated as x0, x1, ..., and xn−1, OPEV constructs
an OCaml list as [x0; x1; ...; xn−1] and a PVS list as (: x0, x1, ..., xn :).

A few examples of complex data type arguments are shown in Table 4.2. We can see that the
double quotation mark within a PVS string is separated out as a constant, called doublequote,
and combined with the rest string using the o infix operator.

4.3.3 User-Defined Types

In OCaml, developers could use the type keyword to define a new type that is constructed as
a record or a datatype. The user-defined type is composed of various fields, and each field is
denoted with a specific constructor and corresponding type annotation. OPEV sequentially
generates test cases for each field of the user-defined type. It should be noted that this
generating strategy may cause an infinite loop issue if there exist recursive definitions in the
user-defined type. Thus, we set an upperbound for the recursive times to prevent infinite
construction.

Moreover, if the return type of a function is a user-defined type, OPEV requires specialized
normalizing rules to translate the return results from OCaml to PVS. Namely, if a user needs
to employ OPEV to generate tests for a new user-defined type, he/she needs to implement
the normalization function in the source code of OPEV.

In the current version of OPEV, the existing user-defined types include PBit, PBvec, PRat,
PSet, PRecord, PDatatType, and PField as shown in Listing 4.7. The first four types are
defined explicitly in the OCaml source in our case studies. PRecord and PDataType represent
built-in type formats in PVS that have generic semantics, though the names and concrete
definitions can be different. PField is an auxiliary type that is employed to construct the
arguments for PDataType.

PBit and PBvec represent vbit and value types. For the PBit type, OPEV randomly
generates 1 or 0, constructs either true or false for PVS, and sets up Vone or Vzero for
OCaml. The PBvec type is handled using the following steps: OPEV first creates a list of
PBits with a given length; then, the list is translated to string arguments for OCaml and



32 CHAPTER 4. OPEV: OCAML-TO-PVS EQUIVALENCE VALIDATION

Listing 4.7: User-defined types.
pDef =
| PBit
| PBvec
| PRat
| PSet of pType
| PRecord of (string * pType)
| PDataType of (string * pType)
| PField of (string * pType)

PVS, respectively, using pre-defined translation functions.

PRat represents the rational type. In PVS, the rational type is a built-in type that is
a subtype of the real type. To generate test cases for the rational type, OPEV employs
fractional representation to denote a rational number and generates two random integer
numbers respectively as numerator and denominator (denominator cannot be zero). The two
integer numbers are then applied to build up rational arguments using specific construction
functions.

The PSet type is defined to stand for the real set type. In OCaml, a new set type is
represented as a record consisting of a balanced tree and a comparison function. To handle
this set type, in OPEV, we implement a construction method to generate a given number
of elements according to the specific set member type, and the set arguments for OCaml
and PVS can be constructed using the construction function respectively.

PRecord is the OPEV intermediate notation of the record type. A record type is similar to
a lightweight module or class type that contains multiple named fields representing variables
and functions. OPEV does not cover all the types in OCaml. Hence it is challenging to
instantiate a record type by generating each named field of this record. To address the
problem, OPEV applies a roundabout strategy. First, OPEV traverses and records all the
pre-declared instantiations for the corresponding record type in the OCaml source. Then
OPEV selects one instantiation based on the outer conditions, and the name of the selected
instantiated record is used as the final argument.

PDataType consists of a name and multiple fields to represent a user-defined datatype type.
These fields are represented using the PField type, which is an auxiliary type for PDataType.
When OPEV generates test cases for a datatype, it looks up a pre-defined hashtable with
the name of the datatype. Then all the fields’ definitions of the datatype can be retrieved
from the hashtable. Among these fields, OPEV randomly selects one and generates test
cases using the constructor and type annotation of the field. The generated test cases for
the field also serve as the test cases for the whole datatype.

Table 4.3 shows some examples of test arguments for user-defined types. There is no uni-
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Table 4.3: Examples of generated user-defined arguments.

Type OCaml argument PVS argument
PBit Vone true

PBvec Vvecotr([|Vzero|], 0, true) LAMBDA (i:below(1)): TABLE | i
= 0 | FALSE || ENDTABLE

PRat Rational.QI.of_ints 3 5 3/5

PSet Pset.add 2 (Pset.add 1 (Pset.empty
compare)) {x: nat| x = 1 OR x = 2}

PRecord instance_Eq_bool instance_Eq_bool
PDataType Some [1; 2] Some((:1, 2:))

fied format for OCaml and PVS arguments, and each user-defined type requires specific
construction functions.

4.3.4 External Types

External types are the OCaml types that are imported from external libraries, which means
OPEV does not know the detailed implementations of these types other than the interfaces
regarding the types. We have to manually define specific construction functions that map
the OPEV intermediate type to corresponding OCaml and PVS types. OPEV does not
cover all the external types. For some external types that are used in the libraries in the
case studies (Chapter 5), we define generation rules.

For example, in our case studies, a typical external type is Nat_big_num.num, which is
defined in the library file nums.cma. This type is used to handle the situation where big
integer computations are carried out. Meanwhile, in PVS, there are no limits on the range
of the default int and nat types. Thus, in PVS, the test cases can be automatically generated
following the rules for int and nat. On the other hand, in OCaml, we introduce a mapping
function named Nat_big_num.of_int, which converts an integer into a Nat_big_num.num
number.

To represent the external Nat_big_num.num type, OPEV introduces PBigNat and PBigInt
types as shown in Listing 4.8.

Listing 4.8: External library types.
pExt =
| PBigNat
| PBigInt

In PVS, PBigNat and PBigInt types represent the basic nat and int types, and the test cases
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Table 4.4: Examples of generated external arguments.

Type OCaml argument PVS argument
PBigNat Nat_big_num.of_int 5 5
PBigInt Nat_big_num.of_int (-10) -10

can be generated following the rules for PInt and PNat. On the other hand, in OCaml, we
introduce a new construction function that turns an integer number into a Nat_big_num.num
number. This construction function is implemented according to the documentation for the
external library.

As shown in Table 4.4, the construction function for both PBigNat and PBigInt type is
Nat_big_num.of_int.

4.3.5 Functional Types

The challenge of constructing a functional argument lies in that the function domain and
range are potentially infinite. Our strategy of generating concrete test cases for other types
is not applicable to the function type. We initially considered applying the methods in
Haskell QuickCheck [27] to generate a functional argument; however, the generated function
might have different behaviors in OCaml and PVS because they take random generation
seeds. Since we have to generate behaviorally equivalent functions for OCaml and PVS, we
employ a comparatively simple method to generate the functional argument.

First, we define various functions in PVS with specific function patterns. Then OPEV
randomly selects a pre-defined function and applies the function name as the PVS argument.
Meanwhile, the OCaml argument is the corresponding function name similar to the PVS one.

However, if there are no pre-defined functions for certain patterns or there are no matching
PVS and OCaml functions, OPEV constructs a LAMBDA expression, which takes symbolic
arguments as the inputs and returns a randomly generated value as the output. This LAMBDA
expression directly serves as the PVS argument, and a corresponding fun expression is
constructed as the OCaml argument.

As an example, we have a function with pattern int− > int− > int, which is represented as
PFunc[PInt;PInt;PInt] in the intermediate type system as shown in Listing 4.9. We have de-
fined a PVS function named add, which could be used as the PVS argument. Meanwhile, the
corresponding + infix operator can be used as the OCaml argument. However, if none of the
functions with this pattern have been defined in the PVS specification, OPEV automatically
generates a function using the LAMBDA expression.
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Listing 4.9: Function argument for specific pattern.
Function pattern: [PInt; PInt; PInt]
Pre-defined PVS function: add(x: int)(y: int) : MACRO int = (x + y)
Auto-generated PVS function: LAMBDA (x: int)(y: int): 5

4.3.6 Dependent Types

In PVS, a dependent type can be defined explicitly using the TYPE keyword or implicitly in
a function declaration. The generating strategy is to construct arguments for the dependent
type based on its supertype, complying with the constraints of the dependent type. Cur-
rently, the supported constraints include arithmetic and comparison operations. Other than
these types of constraints, OPEV directly generates test cases according to the supertype.

For example, a dependent type in PVS named word is defined as follows. word is a subtype
of nat, and the word type is restricted by a constant N. OPEV employs the constraint to
build up a new range for the natural number and to generate a natural number within the
range as a word type argument.

word : TYPE = {i: nat | i < exp2(N)}

This test generation strategy does not support more complicated constraints than arith-
metic and comparison operations since complicated constraints lead to some redundant test
lemmas that OPEV would reject. Although the redundant test lemmas do not cause any
inconsistency for the equivalence between OCaml and PVS specifications, they narrow the
test coverage for functions with arguments of these dependent types.

4.4 Proof Automation

With the test generation rules, OPEV could automatically generate thousands of test cases
for OCaml, thus could construct multiple test lemmas for each of the PVS functions. It is
impractical to manually prove all the test lemmas. To automate the proof process, we prove
392 general theorems that provide fundamental properties for many functions, such as the
associativity and commutativity of add operations for bit-vectors with the same length.

Listing 4.10: A general PVS theorem.
minus_eq_plus_neg: LEMMA FORALL (n:nat, m:nat, bv1:bvec[n], bv2:bvec[m]): m = n

IMPLIES bv1 - bv2 = bv1 + add_vec_range[m]((bv2), 1)

Using these general theorems, we implement generic PVS strategies based on the pat-
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terns of the functions that are tested. For example, in Listing 4.10, a theorem named
minus_eq_plus_neg proved that the subtraction of two bit-vectors is equivalent to the ad-
dition of the first bit-vector and the negation of the second bit-vector. With this theorem,
testing regarding bit-vector subtraction operation can be rewritten to the combination of
addition and negation operation.

We then leverage a utility in PVS called Proof-Lite [71] to prove the test lemmas on the
translated functions with the pre-implemented PVS strategies. The strategies will be able
to instantiate the general theorems with concrete numbers as in the test lemmas.

Since Proof-Lite validates the test lemmas sequentially, which is not time efficient, we design
a memory management algorithm to validate the test lemmas concurrently while efficiently
managing the memory. In the memory management algorithm, OPEV calls multiple pro-
cesses to validate the test lemmas concurrently, monitors the status of the running machine,
and automatically adjusts the number of activated processes according to the memory usage
of the machine.

4.4.1 Automatic Proof Strategies

We implement a set of generic PVS strategies to automatically prove large-scale test lemmas
with non-executable semantics in PVS. To construct a generic PVS strategy for different
functions, we start from a test lemma and manually prove it. During the manual proof
process, we build up a simple PVS strategy for test lemmas with this pattern. Then we
attempt to prove other tests with different patterns using this PVS strategy. If this strategy
does not work, we prove the new test lemmas manually and get some new PVS strategies.
We combine the PVS strategies for test lemmas with different patterns together using tech-
niques such as branching, backtracking, feature extracting, and summarizing. By repeatedly
carrying out this procedure, we synthesize a unified pattern behind the validation of the test
lemmas. We then build up a generic PVS strategy using the unified pattern. (It is possible
to automate this proof generation, possibly using SMT solvers; we scope that out as future
work.)

For example, in a basic OCaml-to-PVS translation library named OPEV_Value library
(Section 5.1), functions are mainly related to bit-vector operations. The functions in this
library involve conversions between natural numbers and their bit-vector representations.
The conversion from a natural number to a bit-vector is defined as follows in PVS (the
source code is in [84]):

nat2bv(val: below(exp2(N))): {bv: bvec[N] | bv2nat(bv) = val}

The nat2bv function is non-executable since it declares that it is the inverse function of
bv2nat, which defines the conversion from a bit-vector to a natural number. Meanwhile,
multiple functions in the OPEV_Value library call this nat2bv function. Thus, to prove
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test lemmas containing nat2bv function, which has non-executable semantics, we exploit the
relation between nat2bv and bv2nat functions to circumvent the execution of nat2bv function.

For example, the case-split-strat strategy, as illustrated in Listing 4.11, employs the
injectivity and invariance properties of the nat2bv and bv2nat functions. This PVS strategy
is extensively used to prove test lemmas for functions in the OPEV_Value library.

Listing 4.11: A generic PVS strategy.
(defstep case-split-strat (fname &optional (fnum 1))
(let ((rewritestr1 (format nil "~a_inj" fname))

(rewritestr2 (format nil "~a_inv" fname)))
(branch (case-insert-fname fname fnum)

((then (rewrite rewritestr1)(grind)(eval-formula))
(then (hide 2)(rewrite rewritestr2)(grind)(eval-formula))
(then (grind)(eval-formula)))))

"" "")

After completing the generic PVS strategy, we employ Proof-Lite, augmented with our mem-
ory management algorithm, and the PVS strategy to prove all the test lemmas generated
for the functions in the library. With the PVS strategy, OPEV is capable of efficiently vali-
dating hundreds of thousands of test lemmas automatically. The statistics are illustrated in
Chapter 5.



Chapter 5

Case Studies of OPEV

We illustrate the application of OPEV on two case studies: a manually implemented OCaml-
to-PVS translation in Section 5.1 and a Sail-to-PVS parser in Section 5.2. We detect 11
mismatches during the validation of these case studies. Documentation on these bugs is
available in [76]. The validation is carried out on an AMD Opteron server (2.3GHz, 64 core,
128GB).

5.1 Manually Implemented OCaml-to-PVS Translation

OPEV validates a manually implemented PVS library for which the source is a single OCaml
file in the Sail source code [93], which supplies Sail with definitions and operations of bits
and bit-vectors. Since the translation is done manually, the translated PVS library is error-
prone, and it is necessary to increase the reliability of the translation. Table 5.1 illustrates
the statistics for this validation.

We validate ∼200K test lemmas and find six mismatches. For example, a function named
add_overflow_vec_bit_signed carries out two’s complement bit-vector addition operation. In
the implementation of the function in PVS, if the second operand is negative, we ascertain
that there is no overflow and no carry bit for the addition operation. However, in one version
of sail_values.ml [93] (commit ce962ff), overflow is set to true. Thus, there exists a conflict
in the two implementations, and the results parsed from the execution of the OCaml function
cannot be validated in the PVS test lemmas. OPEV reports this difference in intention as
an error.

Table 5.1: Statistics on validating the OCaml-to-PVS translation.

OCaml Source Code Size 1,488 LOC
PVS Destination Code Size 1,533 LOC
# of Validated Functions 150
# of Manually Proved Generic Lemmas 268
# of Auto-Generated Test Lemmas 215,562
# of Mismatches Found 6

38
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5.2 Sail-to-PVS Parser

The Sail language [43], which is a first-order imperative language, has been employed to
describe the semantics of ISAs such as x86, ARM, RISC-V, and PowerPC [43]. To facilitate
the reasoning on these semantics, we implement a Sail-to-PVS Parser to expose the semantics
of many ISAs and their multitudes of variants – already available in Sail – to the community
of PVS users.

The architecture of the parser is shown in Figure 5.1. First, we rely on the Sail compiler [93]
to automatically translate Sail source code to Lem [64], which is designed to serve as a
semantic model that is mathematically rigorous [100] and can be translated to OCaml for
emulation of testing as well as to Isabelle/HOL, Coq, HOL4, and other languages. Then we
employ the Lem compiler to translate the resulting Lem source code into a typed Abstract
Syntax Tree (AST). Both the Sail and Lem compilers are in our trusted computing base. (We
argue that trusting these two compilers is reasonable due to their small codebase. Besides,
they have undergone intensive unit testing in prior work [64].)

Figure 5.1: Architecture of the Sail-to-PVS parser.

Our Sail-to-PVS parser takes this typed AST as input and implements two independent
parts: an embedded translator and a rewrite handler. The translator is embedded in the Lem
source and translates the typed AST into corresponding PVS code using PVS syntax. This
step is challenging since the Lem type system does not support dependent types, which are
widely used in PVS. Besides, Lem originally was designed to translate Sail specifications into
theorem proving languages that do not support dependent types, such as HOL4 and Isabelle.
In addition, at this stage, the generated raw PVS code is error-prone due to differences
between PVS and Lem specification languages. For example, the method of reasoning about
the termination of recursive functions and various formats of pattern matching for different
pattern types are different in PVS and Lem.
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We apply a rewrite handler written in Python to adjust the problematic PVS code. The
rewrite handler performs two tasks: rewriting the pattern matching to ensure that the PVS
code has consistent types and adding measure functions for all the recursive functions. The
total LOC of the Sail-to-PVS parser, including the embedded translator (1,730 lines of
OCaml code) and the rewrite handler (1,033 lines of Python code), is 2,763. Meanwhile, the
Sail-to-PVS parser is still restricted to pure functions in Sail with these modifications.

An important usage of the Sail-to-PVS parser is program verification at the assembly level
(using PVS). For such a usage, it is critically important that the translation is provably cor-
rect. We automatically translate a Lem basic library [64] respectively to PVS and OCaml
using the Sail-to-PVS parser and Sail’s built-in compiler. Although Sail and Lem are ex-
ecutable, the generated PVS code would call some built-in PVS functions, some of which
are non-executable; meanwhile, all of them are pure functions. Since the generated OCaml
code is within the scope of OPEV’s OCaml subset, it enables us to validate the equivalence
between the generated OCaml and PVS source using OPEV. If the equivalence is validated,
our trust that the Sail-to-PVS parser carries out similar functionality as the Sail’s built-in
compiler will increase significantly. Thus, the Sail-to-PVS parser is reliable if the Sail’s
built-in compiler is trustworthy.

Figure 5.2: Application of the OPEV methodology to validate the Sail-to-PVS parser.

We generate small test cases at the beginning, namely 10 test cases for each function, and
attempt to prove all the test lemmas by a default PVS strategy called grind. For the test
lemmas that cannot be proved, we improve the PVS strategies by proving auxiliary lemmas
or by combining multiple strategies together according to the steps described in Section 4.4.
Then we generate large-scale test lemmas and prove them using the corresponding strategies.

Table 5.2 shows the statistics for the library. OPEV determines multiple unprovable test
lemmas in the PVS implementation. In turn, we modify the source code of the Sail-to-PVS
parser, which generates the test lemmas reported in the table. Due to the gap between the
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Table 5.2: Statistics on validation of the Sail-to-PVS parser.

Lem Source Code Size 7,542 LOC
PVS Destination Code Size 10,990 LOC
# of Validated Functions 109
# of Manually Proved Generic Lemmas 124
# of Auto-Generated Test Lemmas 242,685
# of Missmatches Found 5

semantics of the Lem and PVS languages, OPEV detects five mismatches. Without OPEV,
it is practically impossible to manually complete the validation on the translation.



Chapter 6

DSV: Disassembly Soundness
Validation

To evaluate whether a binary file is correctly disassembled requires a lot of sophisticated
work. For instance, some inline data, such as a jump table, is possible to be embedded in
the code section. It is undecidable to distinguish instructions from raw data. Moreover, pre-
dicting where indirect branches jump to is a major challenge that almost all the disassemblers
are committed to finding solutions to.

The evaluation is more challenging when there is no source code for the binary. Since
programming languages, whether imperative, object-oriented, or assembly, have specific se-
mantics and are human-readable, researchers can construct the model of these languages
and validate the soundness of these models. However, machine instructions are written in
a binary file with byte sequences. The formal validation of the disassembly soundness by
verifying model consistency is infeasible here. Validating the soundness of disassembly by
testing is a feasible method. However, it is difficult to monitor the running result for every
single instruction in the binary execution. Besides, the reliability of testing is unconvinced
since it cannot cover all the possible paths during the execution.

In this chapter, we provide a soundness definition of a disassembly process in Section 6.1.
Moreover, in Section 6.2, we discuss a critical assumption required to ensure that the sound-
ness definition reflects the correctness of a disassembly process without ground truth.

6.1 Soundness Definition

To formulate a formal notion of disassembly soundness, we first introduce the types and
notations used in the definition. An element of type Nword is a bit vector with size N. Given
a bit vector w, notation |w| provides the size of the bit vector. The type Instruction
indicates the type of valid x86-64 instructions. In our soundness definition, an instruction is
represented by, among other things, an opcode mnemonic, its operands with size directives,
and possibly certain prefixes.

The definition of soundness is based on three essential components: a function read_bytes
that reads byte sequence from a binary file, a function bytes_of that assembles a single
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instruction into bytes, and an abstract transition relation →A.

The first function read_bytes reads, given an address and a size, a byte sequence from the
binary file. In all the following definitions, the type of the address is expressed as 64word,
and the type of byte is 8word. Then the type annotation of read_bytes is:

read_bytes : 64word 7→ N 7→ [8word]

Function bytes_of maps a single instruction to the corresponding byte sequence representa-
tion, which is the basic work of any assembler. Although the bytes_of function represents
an assembly process, our soundness definition does not consider any specific implementation
of an assembler. Function bytes_of is type-annotated as:

bytes_of : Instruction 7→ [8word]

Let→C denote a deterministic concrete transition relation over concrete addresses, and→∗
C

represents the transitive closure of this transition relation. Modeling this concrete transition
relation is impossible: the relation depends on the current state of registers, memory, and
flags, but also on the state of peripherals, the OS, etc. Let a0 be a binary’s entry address.
An instruction address a is reachable at run-time, if and only if:

a0 →∗
C a

The soundness definition is based on an over-approximative abstraction of this concrete
transition relation, which is defined as →A. This is a non-deterministic transition relation
over addresses: →A is of type 64word 7→ {64word}. This transition relation solely concerns
the 64-bit value of the instruction pointer rip of the concrete state and produces a set of
next instruction addresses.

Definition 6.1. Transition relation →A is a proper abstraction of concrete transition rela-
tion →C , if and only if, for any reachable concrete states s and s′:

s→C s′ =⇒ rip(s)→A rip(s′)

We use →∗
A to indicate the transitive closure of →A.

Finally, the input of the soundness definition is the output of a disassembly process. This
output basically is a partial mapping from byte sequence to instructions. It is denoted as
disasm. We also define an auxiliary function disasm_n. Function disasm_n returns, with the
given current address, the size of the byte sequence that is to be disassembled for the next
single instruction. The two functions are of type:

disasm : [8word] 7→ Instruction

disasm_n : 64word 7→ N
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Definition 6.2. Let a0 be a binary’s entry address and let disasm be some disassemblers’
output. Output disasm is sound, if and only if:

∀a · a0 →∗
A a =⇒ bytes_of(disasm(β)) = β

where β = read_bytes(a, disasm_n(a))

Definition 6.2 indicates that for all reachable addresses a inside a binary file, the bytes β
of the disassembled instruction disasm(β) located at address a are equal to the actual bytes
that are read from the binary. If there exist some reachable instructions whose bytes are not
equal to those in the binary, the disassembler is unsound.

This definition is independent of the inner mechanism of a disassembler. Whether a disassem-
bler is implemented using recursive traversal, linear sweep, or machine-learning is irrelevant
since we only try to validate the consistency between a binary file and the output of the
disassembler. We treat a disassembler as a black box and only consider the output.

6.2 Loose Comparison of Instruction Bytes

For each reachable instruction address, Definition 6.2 compares the bytes produced by re-
assembling a disassembled instruction with the original bytes from the binary. However, a
strict byte-to-byte comparison may incorrectly classify a disassembly process as unsound.
Consider Figure 6.1. The original assembly process is modeled as a asm function, which
maps an instruction to the corresponding bytes. This function is part of the trust base, and
it is not available.

asm : Instruction 7→ [8word]

The ground truth is the original instruction i0, assembled by the original assembler asm to b0.
Both i0 and asm are assumed to be unavailable. The black-box disassembler disasm produces
an instruction i1 from b0. Definition 6.2 suggests that it suffices to reassemble instruction i1
into bytes b1 and then strictly compare b0 and b1 to validate the soundness.

This, however, is not necessarily correct for two reasons. First, the function disasm may
produce an instruction different from i0 but with the same semantics. In such a case,
reassembling may not reproduce the same bytes. Second, function bytes_of may be different
from the original assembler asm (since the original assembler is unavailable). Thus, even if
the disassembler under investigation disasm was able to reproduce the exact instruction i0,
a strict comparison between b0 and b1 may still fail in the soundness validation.

Listing 6.1: An example that does not satisfy the soundness definition.
objdump(0f1f440000) = nop DWORD PTR [rax+rax*1+0x0]
gcc(nop DWORD PTR [rax+rax*1+0x0]) = 0f 1f 04 00
objdump(0f1f0400) = nop DWORD PTR [rax+rax*1]
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instruction (i0) bytes (b0)

instruction (i1)

bytes (b1)

instruction (i2)

Ground truth
asm

disasm bytes_of disasm

Figure 6.1: Comparison per instruction. The dashed box indicates that the ground truth,
i.e., the original instruction and original assembler, are unavailable. The disassembler under
investigation (disasm) is black-box.

For example, we employ gcc as the assembler and objdump as the disassembler and get the
example in Listing 6.1. In this example, b0 is 0f 1f 44 00 00, b1 is 0f 1f 04 00. They
are not equivalent. If we solely compare b0 and b1, we will make the wrong declaration that
the disassembly process carried out by objdump is not sound. However, the disassembled
result is sound since nop DWORD PTR [rax+rax*1+0x0] and nop DWORD PTR [rax+rax*1]
are semantically equivalent. The reason behind this situation is that gcc would automatically
carry out optimization when it encounters certain types of instructions.

Thus, instead of a strict comparison, we will use a loose comparison of bytes. The bytes
b1 produced by reassembling are again disassembled. This produces instruction i2. We
will consider b0 and b1 loosely equal if these instructions are equal after normalization.
The normalization is executed by a normalize function, which rewrites an instruction to a
normalized format following rules such as re-formatting assembly code from AT&T format
to Intel, removing *1 and +0, and normalizing the representation of memory accesses. The
normalized instruction is ensured to be semantically equivalent to the original instruction.

Definition 6.3. Let β0 and β1 be two byte sequences. They are loosely equivalent, notation
β0 ' β1, if and only if:

β0 = β1 ∨ normalize(i0) = normalize(i1)
where i0 := disasm(β0),

i1 := disasm(β1)

We can now summarise a fundamental part of the TCB of our approach. Since there is no
ground truth, this must be assumed and cannot be proven.

Assumption 1. For any instruction i0:

asm(i0) ' bytes_of(disasm(asm(i0)))

implies that instruction i0 has been correctly disassembled by function disasm.



Chapter 7

DSV: Validation Algorithm

In Chapter 6, we define the soundness of the output of a disassembler w.r.t. the original
binary file. According to that definition, there are three components that must be imple-
mented: read_bytes, bytes_of, and the abstract step function →A.

The first two are straightforward. For read_bytes, we employ the readelf utility to get
the binary segment information and implement a Python program to read a byte sequence
from a binary file directly. To implement function bytes_of, we need to translate a single
instruction to its byte-sequence representation. The choice of the assembler, whether gcc,
clang, or some other, is independent of the disassembler under investigation and of the type
of the source binary file.

The third component, an abstract transition relation →A, is more involved. A perfect
and exact implementation of this component does not exist since it is undecidable which
addresses are reachable from the entry point [87]. It is also undecidable to distinguish
instructions from raw data [115]. Implementation of →A requires, among other things,
dealing with indirect jumps and calls, jump tables, data inlined in code, and overlapping
instructions. Specifically, predicting where an indirect branch jumps to is a major challenge
for all existing disassemblers.

In this chapter, we introduce the definition of an inexact abstract transition relation and
the corresponding consequences in Section 7.1. Then we provide an overview of DSV in
Section 7.2. We present the state and memory model of a computer system in Section 7.3.
A solution for the state explosion problem is explained in Section 7.4. Section 7.5 introduces
how DSV builds up instruction semantics for X86/64 ISA. In Section 7.6, we briefly illustrate
some challenges and the corresponding solutions we implement in DSV.

7.1 Consequences of An Inexact Abstract Transition
Relation

We introduce an inexact abstract transition relation since an exact implementation of the
abstract transition relation →A is not feasible. We will use ⇝A to denote this inexact
implementation of the hypothetical exact abstract transition relation→A. We introduce the
following terminology (here a0 denotes the binaries’ entry point):

46
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White An instruction address a is white if it is deemed reachable by the implementation
⇝A, i.e.:

a0 ⇝∗
A a

We can now rephrase the notions of false positive and false negative w.r.t. this terminology.
A false positive occurs when disassembler-output is deemed sound by DSV, whereas it is
incorrect. We define a false positive as the existence of an incorrectly disassembled reachable
instruction that is not white. It is thus reachable at runtime and deemed unreachable
(and therefore missed) by the implementation ⇝A. A false negative, then, is an incorrectly
disassembled unreachable instruction that is white. In other words, it is deemed reachable
by the implementation ⇝A, but unreachable at runtime.

A false positive can happen if the implementation ⇝A under-approximates the concrete
transition relation →C . In other words, it can happen if it is possible that a reachable
instruction is not white. We aim for an implementation that does not suffer from false
positives and therefore require the implementation to be proper (see Definition 6.1): any
reachable instruction is visited. In the case of proper over-approximation, a false negative
can happen, i.e., an unreachable instruction may be white.

Finally, we would like to note that there is no decidable way to determine whether an
instruction address is reachable or not. There is no ground truth and no reliable way of
establishing reachability without source code. In practice, however, it is possible to establish
the unreachability of certain parts of the binary. For example, in the current implementation,
functions called inside an external __cxa_atexit function are not considered to be reachable
(e.g., deconstructors). We thus use the following terminology:

Black An instruction address is black if it is not white and it can be established (e.g., with
conservative manual inspection) that it is unreachable.

Grey An instruction address is grey if it is not white and it is not black, i.e., if it cannot
be established whether it is reachable or not.

Given an over-approximative implementation⇝A, all instruction addresses reported by some
disassembler are either white, black, or grey. The aim is to construct an implementation⇝A

that minimizes the number of grey instructions. Only the case where DSV finds an issue in
a grey instruction constitutes a false negative.

7.2 DSV Overview

In essence, DSV employs a standard forward BMC exploration loop. At all times, three
parameters are maintained:
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s: the current state. A symbolic state is maintained that contains symbolic expressions
for registers, flags, and memory. The initial state solely consists of an assignment of
some concrete values to the stack pointer rsp and the instruction pointer rip.

π: the current path constraint. A symbolic predicate is maintained that contains the
branching conditions of the current path. Its purpose is to prune inconsistent paths
(we check the consistency using the Z3 SMT Solver [32]). Initially, this constraint is
true.

Σ: the stored states. A key-value mapping with as keys instruction addresses and as val-
ues symbolic states. This mapping allows DSV to keep track of which addresses have
been visited and to reduce the traversed state space. Initially, this mapping is empty.

DSV first fetches the instruction i as disassembled by the disassembler under investigation
and validates that instruction (see Section 6.2). It then updates Σ by adding the current
state σ. It may be the case that the current instruction address was already visited. In that
case, a merge must happen between the current state s and the stored state. If the current
state s and the merged state agree (intuitively: they contain the same information), then no
further exploration is necessary. If the instruction address was unvisited, the current state
is inserted into Σ. DSV then concolically executes instruction i to the merged state sm,
given the current path constraint π. This provides a set of pairs of symbolic states and path
constraints; one instruction may induce multiple paths. Each of these pairs is explored.

7.3 State and Memory Model

The state consists of assignments of symbolic expressions to flags, registers, and memory.
Symbolic expressions consist of expressions with a standard set of operators (e.g., +, −, . . .)
and as base operands either immediate values, registers, or flags. Most notably, a symbolic
dereference operator is supported that reads data from memory. An operand may also be
an unconstrained, universally quantified variable. We will use vf to denote a fresh variable.
The symbolic expressions used by DSV are close to that used in existing literature [16].

Since the bit length of all registers is fixed, we model general-purpose registers as a 64-bit
Z3 bit-vector and deal with register aliasing accordingly. We set the initial values of all
the registers, except for rip and rsp, to symbolic values and modify the values of registers
according to the semantics of instructions. The value of each register can be either symbolic
or concrete.

There are different techniques to model memory. To design a space-efficient memory model
that simulates the memory changes during the execution of a binary, we model memory as a
function mem of type 64word 7→ ([8word],N). This function maps memory addresses to byte
sequences and the size of the region starting at the given address. Function mem is partial,
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which means that not all addresses at the memory have explicit content. At all times, all
regions in the range of mem are separate.

In concolic execution, a memory address is either symbolic or concrete. Reading from or
writing to a concrete address follows specific rules. For example, as illustrated in Figure 7.1,
before the execution of mov QWORD PTR [1000], 0xaaf1343, there are two addresses in
the domain of function mem: 998 and 1004. Thus we have mem(998) = (0x10002, 4) and
mem(1004) = (0x0012, 6). Now if we need to read the memory at address 1000 with size 2,
we get 0x1 as the result, which is splitted from mem(998). After the execution of mov QWORD
PTR [1000], 0xaaf1343, we write 0xaaf1343 with size 8 to address 1000. This will affect
the results at both address 998 and 1004. After the overwriting, there are three addresses in
the domain of the updated mem: 998, 1000, and 1008. Thus we have mem(998) = (0x2, 2),
mem(1000) = (0xaaf1343, 8), and mem(1008) = (0x0, 2).

0x10002, 4

998

0x0012, 6

1004

0x2, 2

998

0xaaf1343, 8

1000

0x0, 2

1008

mov QWORD PTR [1000], 0xaaf1343

Figure 7.1: An example of a memory writing operation on the memory model.

Since we keep the stack pointer concrete, all local variables correspond to memory regions
with concrete addresses. The same holds for global variables. Moreover, the Glibc functions
malloc and calloc are modeled in such a way that they return a concrete address that does not
overlap with any existing region in the memory. This concretizes the majority of addresses.
Theoretically, this approach may lead to unsoundness issues. For example, if a program
successfully allocates memory using malloc, then branches are taken based on whether that
(non-null) pointer is greater than some immediate value. To the best of our knowledge, such
behavior is undefined according to the C standard.

Assumption 2. We assume that the control flow of a binary does not depend on the concrete
values returned by memory allocation functions or on the concrete value of the stack pointer.

However, not all memory addresses are concrete: symbolic addresses occur when pointers
are returned by external functions that are not linked statically. In these cases, reading from
a symbolic memory region returns a fresh symbol. Writing to such a memory region will
remove all heap-related regions from the memory but will keep the local stack frame intact.
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7.4 Merging and Agreeing

If the address of the current state s was already visited, the current state s and the visited
state sold are merged (see Algorithm 1). If the current value v at a key k in s is symbolic,
then v is possible to represent any value, and we do not need to change it. However, if the
current value v is concrete, we need to compare v with vold at the same key k in sold to decide
how to merge v and vold to get the new result.

Algorithm 1 Merging algorithm.
1: function MERGE(sold, s)
2: snew ← copy(s)
3: for all (k, v) ∈ s do
4: vold ← sold[k]
5: if v is a concrete value then
6: if vold is a concrete value then
7: if v 6= vold then
8: snew[k]← fresh variable
9: end if

10: else
11: snew[k]← fresh variable
12: end if
13: end if
14: end for
15: return snew
16: end function

The current state s is not explored if state s and merged state sm contain the same infor-
mation, i.e., if the two state agree. Two states agree if they have the same keys and for any
key-value pair (k, e) in s and (k, em) in sm the expression e and em agree.
Definition 7.1. Let fresh(e) denote the set of fresh variables in symbolic expression e. Two
expressions e0 and e1 agree if and only if there exists a bijection β between fresh(e0) and
fresh(e1), such that e0 and e1 are syntactically equal if all fresh variables vf in e0 are replaced
with β(vf ).
Example 7.2. Consider a loop in which register rax is incremented with 4 every iteration.
Let the visited state sold = {rax := vf0 , rdi := vf0 + 100}. After one loop iteration, the
current state s = {rax := vf0 + 4, rdi := vf0 + 100}. The merged state will be sm =
{rax := vf1 , rdi := vf0 + 100} and will be stored. States sm and s do not agree and
exploration will continue. However, after one more iteration, we will obtain state s′ =
{rax := vf1 + 4, rdi := vf0 + 100}. States s′ and state sm will be merged, resulting in
s′m = {rax := vf2 , rdi := vf0 + 100}. States sm and s′m do agree, and therefore the loop is
not unrolled further.
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7.5 Instruction Semantics

There is no need to set up complete semantics for all instructions. In our implementation,
instruction semantics is constructed to change the value of the rip register to guide the
symbolic execution. We only need to build up semantics for instructions that – be it directly
or indirectly – influence the rip register. We will call this the set of relevant instructions.

The set of relevant instructions include push, pop, mov, lea, call, ret, simple arithmetic
instructions, logical instructions, bitwise instructions, jump instructions, etc. According to
the statistics taken in some literature [3], these instructions would make up over 96% of
instructions in multiple C/C++ applications and web browsers. Advanced instructions such
as floating-point instructions and SIMD extensions typically do not impact register rip. It
is not necessary to construct specific semantics for these instructions.

For all the irrelevant instructions, we use unknown semantics by assigning fresh variables any
time an irrelevant instruction is executed. In most cases, an instruction has an opcode and
different operands, and the content of the destination operand is modified by the instruction.
For irrelevant instructions, the semantics assigns some fresh variable vf to the destination
operand, representing that the current status of the corresponding register, flag, or memory
is undefined or undetermined. The fresh variables are handled using the symbolic execution
rules in our DSV SE engine.

7.6 Concolic Execution

As discussed in Section 7.3, we make use of concolic execution that concretizes memory
addresses as much as possible while leaving the remainder as symbolic as possible. As such,
the branching conditions that are taken are generally symbolic. In the case of a conditional
jump based on a symbolic flag value, both paths are taken (sequential execute and jump).
This over-approximates reachability.

A key challenge is to resolve indirect-branch addresses. An indirect branch is a control
flow transfer (jump or call) where the target is computed instead of an immediate. Indirect
branches happen, e.g., in the case of compiled switch statements, function callbacks, or
virtual tables. Three cases may arise:

1. The current state is sufficiently concrete that the computation can be resolved. In this
case, exploration continues.

2. The expression that computes the next value of rip is symbolic; however, the current
state and the path constraint contain sufficient information to both bind and over-
approximate the set of next addresses. In this case, exploration continues to all next
addresses.



52 CHAPTER 7. DSV: VALIDATION ALGORITHM

3. The current state does not contain sufficient information to bind the set of next ad-
dresses; the expression that computes rip contains unbounded symbolic values. An
error message is produced, and we manually investigate how to resolve the issue. Gen-
erally, we need to trace back and see which irrelevant instructions should be considered
relevant. This situation is infrequent since we have modeled the semantics of the most
common instructions based on their usage rate.

With the state model for registers, flags, and memory, we carry out the concolic execution
to construct a CFG for the machine code. Concolic execution is over-approximative. The
vast majority of branches are taken due to symbolic conditions. Meanwhile, rsp is always
concrete, and therefore local variables in the stack frame can be read/written. Besides,
addresses are concrete in the memory allocation functions. The concrete addresses prevent
memory aliasing issues.

In the construction of CFG, indirect jump, indirect call, and return instructions pose a
challenge in how to resolve the indirect-branch addresses. The path constraint provides a
bound on the set of next addresses. Besides, we introduce a trace-back model to fix the
problem of unimplemented instruction semantics. We also implement an algorithm [23]
to solve the challenge of jump table without determined upperbound. However, there still
exists unresolved indirect-branch addresses in the concolic execution since it is an undecidable
problem.
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DSV: Experimental Results

After we implement DSV that realizes the soundness definition of a disassembly process, we
employ the tool to validate the disassembly carried out on the Coreutils library using different
disassemblers. Section 8.1 introduces some of the soundness issues which are detected by
DSV. In Section 8.2, we apply DSV on eight different disassemblers: objdump 2.30, radare2
3.7.1, angr 8.19.7.25, BAP 1.6.0, Hopper 4.7.3, IDA Pro 7.6, Ghidra 9.0.4, and Dyninst 10.2.1,
using 102 test cases from Coreutils-8.31. Here, we evaluate the performance of DSV.

All these experiments are carried out on a machine with Intel Core i7-7500U CPU @ 2.70GHz
× 4 and 16GB RAM. The OS is Ubuntu 20.04.2 LTS, and the Coreutils-8.31 library is
compiled using gcc 7.5.0 through the standard build process.

8.1 Soundness Issues Exposed by DSV

This section summarises some of the soundness issues found by DSV. We mainly focus on
instructions that are erroneously recovered by different disassemblers.

In Section 8.2, we use DSV to evaluate the disassembly results generated by eight disas-
semblers on the Coreutils library. Even though most of the reachable instructions for these
disassemblers are correctly recovered, there are few exceptions where the disassembled in-
struction is incorrect w.r.t. the byte sequence. We report on some cases found by DSV that
are inappropriately disassembled by certain disassemblers. Table 8.1 summarises the found
results, which are disagreed for different disassemblers. Some of the disagreements (row 1,
2 of the table) are trivial and can be argued not to impact soundness. Row 3, 4, 5, and 6 of
the table consist of actual soundness issues.

Row 1 and 2 of Table 8.1 mainly concern different representations of the same semantical
intent. There are cases where the operands of an instruction are not represented since
default behavior is assumed. For instance, both Ghidra and Dyninst (correctly) assume that
immediates are sign-extended to fit the destination operand, if necessary. However, minor
differences may be relevant. For example, the instructions repz ret and ret have the same
semantical intent but their execution time may differ for certain architectures.

Row 3, 4, 5, and 6 concern semantically different instructions. For instance, Dyninst dis-
assembles 4899 to cdq rax, which is not a valid instruction in x86-64 ISA (note that cdq
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Table 8.1: Examples of instruction recovery results for different disassemblers. All the results
are normalized to Intel format.

bytes ob
jdu

mp

rad
are

2

an
gr

Ho
pp

er

BA
P

ID
A

Pr
o

Gh
idr

a

Dy
nin

st

f3c3 repz ret ret rep ret rep retn ret rep ret
4881a4249000
0000fffbffff

and qword ptr [rsp+0x90],
0xfffffffffffffbff

and qword ptr [rsp+
0x90],0xfffffbff

4899 cqo cdq rax
4d0fa3f7 bt r15,r14 bt rdi

,r14
bt r15,r14

48be00000000
00f0ffff

movabs rsi,
0xfffff00000000000

mov rsi,0xffff
f00000000000

mov rsi,0x-17
592186044416

64488b042528
000000

mov rax,qword ptr fs:[0x28] mov rax,0x28

performs sign-extension to 64 bits, whereas cqo performs sign-extension to 128 bits). An
example is shown where Ghidra misrepresents a register (rdi instead of r15). Besides, a
64-bit immediate is wrongly disassembled by Dyninst. Finally, Dyninst sometimes seems to
omit representations of segment registers such as ds and fs.

Except for the examples listed in Table 8.1, there are some ambiguous cases for different
disassemblers. The outputs generated by Dyninst do not have any ptr operator to indicate
the operand size of a memory operand, which leads to ambiguous semantical behavior.
For example, 49837c242800 is translated to cmp [r12 + 0x28],0x0 by Dyninst while the
other disassemblers’ result is cmp qword ptr [r12+0x28],0x0. Without the qword ptr
specifying the size of the operand as 64-bit, we cannot determine what the exact value
reading from the memory is. Thus the result of the cmp instruction is undetermined.

8.2 Coreutils Library

We apply DSV on 102 test cases in the Coreutils library, which are disassembled using
eight disassemblers. For each test case, we report the number of instructions: total, white,
gray, and black. The definition of white, black, or grey instructions are given in Section 7.1.
Roughly speaking, white indicates instructions that are proven to be reachable by DSV, and
black illustrates unreachable instructions. The grey instructions are those that are reported
by the disassembler but are not visited by DSV; the reachability of these instructions is
unknown. Table 8.2 shows the results of basename, expand, mknod, realpath, and dir test
cases in the Coreutils library for different disassemblers. These 5 test cases are selected based
on the number of total instructions and the diversity of various instruction types.
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Table 8.2: Execution results for Coreutils library on different disassemblers. Only 5 of 102
binaries are shown.

# of
total

# of
white

# of
grey

# of
black

Ratio of
grey vs.
white

# of
indirects

Missing
instr Sound

objdump basename 3310 2217 18 1075 0.01 59
expand 3928 2742 112 1074 0.04 79
mknod 4101 2775 216 1110 0.08 65

realpath 5828 2644 89 3095 0.03 72
dir 19029 12751 417 5861 0.03 230

radare2 basename 3409 2217 18 1174 0.01 59
expand 4027 2742 111 1174 0.04 79
mknod 4200 2775 214 1211 0.08 65

realpath 5927 2644 86 3197 0.03 72
dir 19124 12900 320 5904 0.02 231 × ×

angr basename 3415 2217 18 1180 0.01 59
expand 4033 2742 111 1180 0.04 79
mknod 4206 2775 214 1217 0.08 65

realpath 5933 2644 86 3203 0.03 72
dir 19134 12751 413 5970 0.03 230

BAP basename 5894 826 114 4954 0.14 37 ×
expand 7373 1320 205 5848 0.16 56 ×
mknod 7022 1282 162 5578 0.13 43 ×

realpath 11368 1251 108 10009 0.09 46 ×
dir 28906 5718 667 22521 0.12 150 × ×

Hopper basename 3250 2217 18 1015 0.01 59
expand 3845 2742 111 992 0.04 79
mknod 4022 2775 68 1179 0.02 65

realpath 5636 2644 86 2906 0.03 72
dir 18292 12607 350 5335 0.03 230 × ×

IDA Pro basename 3221 2217 18 986 0.01 59
expand 3820 2742 111 967 0.04 79
mknod 3995 2775 68 1152 0.02 65

realpath 5607 2644 87 2876 0.03 72
dir 18220 12751 268 5201 0.02 230

Ghidra basename 3256 2217 18 1021 0.01 59
expand 3826 2742 99 985 0.04 79
mknod 4029 2775 68 1186 0.02 65

realpath 5658 2644 86 2928 0.03 72
dir 18303 12751 267 5285 0.02 230 ×

Dyninst basename 3269 2222 16 1031 0.01 60 ×
expand 3874 2707 123 1044 0.05 79 ×
mknod 4058 2747 214 1097 0.08 64 ×

realpath 5724 2609 85 3030 0.03 71 ×
dir 18694 12845 329 5520 0.03 230 ×
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8.2.1 Instruction Recovery

Most disassemblers are capable to correctly disassemble all the reachable instructions. As
shown in Figure 8.1, for most of test cases in Coreutils library, objdump, angr, BAP, and IDA
Pro achieve an accuracy rate of 100% for single-instruction recovery. Meanwhile, Ghidra and
Dyninst make some errors in the disassembly process for some test cases, and the accuracy
would decrease to around 97.5%.

Figure 8.1: Ratio of correctly disassembled vs. the white disassembled instructions.

8.2.2 Control Flow Recovery

For all test cases, there exists a gap between the number of white instructions, which are
reachable instructions detected by DSV, and the number of total instructions; in other
words, the number of black instructions can be relatively high. This can be accounted for
two reasons.

The first reason is that different disassemblers consider different parts of the binary. For
example, BAP generates the instructions from sections .symtab, .debug_line, .debug_ranges,
and so on, while some disassemblers may solely generate instructions from .text, .plt, and
.plt.got sections.

The second reason lies in the technique that DSV employs to handle external functions.
DSV treats external functions as black boxes and does not go inside the external func-
tions to execute them. Internal functions that are called by external functions may be
considered black. For example, the internal function close_stdout is called by the ex-
ternal function __cxa_atexit (it calls the close function after program exit). Thus, the
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close_stdout function is considered black. Some exceptions include __libc_start_main
and pthread_create. These two external functions execute the function pointer passed
through the rdi register, and the internal functions pointed to are not executed by DSV.
Broader coverage, i.e., fewer black instructions, can be reached by providing semantics to
external functions that call internal ones.

The ratio of grey vs. white instruction is an indication of how accurate control flow has
been recovered. If the ratio is low (zero), then the disassembler highly accurately decides
which instructions are reachable and which are not. If it becomes higher, this may indicate
either the disassembler coarsely over-approximated which instructions are reachable (many
grey instructions) or the disassembler missed instructions. The ratio is, on average, about
4%. As shown in Figure 8.2, BAP usually has the highest ratio since the instructions whose
addresses are stored in indirect jump tables are missed by BAP due to lack of support for
indirect branching. Meanwhile, objdump and angr have similar ratio for most of test cases
, as we use angr to statically generate a CFG (CFGFast) and to disassemble a binary file,
which have similar outputs as objdump.

Figure 8.2: Ratio of grey instructions to white for different disassemblers.

The amount of white instructions per disassembler is an indication of how many instructions
have been reached. objdump, radare2, angr, and Ghidra have similar numbers of white instruc-
tions. Meanwhile, BAP has smaller results in all these test cases since it does not employ
any heuristics to solve the indirect branch problems caused by jump tables. The results for
Dyninst are unstable because there are some instruction-recovery errors in the disassembly
results.
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8.2.3 Soundness Results

Most disassemblers are sound for most of the test cases. We find that Ghidra sometimes
incorrectly recovers instructions. There are three other major exceptions.

First, BAP does not resolve indirect branches. Since BAP essentially reports an empty set of
next addresses for indirect jump tables – whereas DSV wants to continue exploration – DSV
reports a soundness issue. We marked these as missing instructions: the issue is not that BAP
incorrectly recovers instructions, but that it misses instructions by “under-approximating”
control flow.

Additionally, radare2 sometimes translates instructions to data. For example, in dir test
case, radare2 disassembles the bytes ff2552c72100 at address 3888 to data
.qword 0x90660021c75225ff, which should be translated to a call instruction to the malloc
function. This kind of mistranslation leads to missing instructions.

In some situations, Hopper is not capable to correctly determining the instruction boundaries.
For example, in dir test case, at address 0xf2a8, the disassembler should generate an in-
struction sub r12d,0x1. However, Hopper classifies it as data and continues the disassembly
process from address 0xf2a9.

Another exception is Dyninst. There are various examples showing that Dyninst involves
errors in instruction recovery. These errors may cascade since incorrectly recovering in-
structions may also lead to incorrectly assessing which instruction addresses are to be dis-
assembled. For instance, Dyninst cannot recover control flow for the seq test case from the
Coreutils library since incorrectly recovered instructions lead to unrealistic paths.
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WinCheck: Formulation of Properties

We propose a bounded concolic model checker named WinCheck to analyze closed-source
Windows executables. Our tool is capable of detecting three different kinds of memory-
related errors, including buffer overflow, null-pointer dereference, and use after free.

In this chapter, we formally describe the three properties that can be verified using WinCheck
and propose a model of the memory system. To start with, we introduce some types and
functions which are useful in the formal definitions. Type N stands for natural numbers,
and B refers to Bools. Since the concolic model checker supports 64-, 32-, and 16-bit address
systems, the type of the concrete address is represented as Wn, where W represents words
(bit-vectors), and n indicates the number of bytes.

9.1 State Modeling

We have symbolic expressions of type E that have operators such as plus, minus, and times.
The symbolic expressions have four types of operands: registers (notation RAX, RBX, . . .),
memory dereferences (notation ∗[a, sz], where a is a symbolic expression representing the
memory address and sz denotes the size of the memory region), immediate values, and
bottom (notation ⊥). The ⊥ indicates that the corresponding value is undefined.

A state σ of type S stores symbolic expressions for registers, memory regions, and flags. The
memory part of state σ, notation σmem, is modeled as a partial function, which employs a
concrete memory address and a size, and gets the corresponding value from the memory
model, either symbolic or concrete. If the corresponding value does not exist at the given
address, then function σmem would return ⊥. The partial function σmem is type-annotated
as:

σmem :: Wn × N ⇀ E

A symbolic expression is resolvable in a state σ if all its operands are assigned a concrete
value in that state. Note that a symbolic expression containing ⊥ typically is not resolvable.
We use a partial function resolve to evaluate the concrete result from a symbolic expression
in a state. If the symbolic expression is not resolvable in the state, the result of function
resolve would be ⊥.

resolve :: E× S ⇀ Wn

59
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Functions mem_read and mem_write model respectively reading from and writing to mem-
ory. Function mem_read, of type E×N×S 7→ E, takes as input a symbolic address, the size
of the region to be read and the current state. As output, it produces a symbolic value. If
the address is resolvable, the function will look up the resolved address in the current state.
Otherwise, mem_read will return ⊥.

Definition 9.1. Let a be an address, sz be the size in bytes, and let σ be a state. A memory
read, notation mem_read(a, sz, σ), is defined as:

mem_read(a, sz, σ) =
{
σmem(resolve(a, σ), sz) if a is resolvable in σ

⊥ otherwise

Function mem_write, of type mem_write :: Wn × E × N × S 7→ S takes as input a concrete
address, a symbolic value to be written to memory, the size and the current state. In contrast
to reading, memory writing always needs to happen to a concrete address. The state-space
exploration algorithm (see Section 10.5) will have to ensure that any time a memory write
happens, the pointer is resolvable. Its definition simply updates the partial function σmem.

To collect the memory writing information in a specific state, we define a function write_info,
which fetches the next instruction to be executed in the current state, and provides all the
memory regions that are written to by that instruction. For each region, it aims to resolve
its address. If the address is resolvable, it adds a tuple (a, sz) to the returned set, indicating
a resolved memory region with starting address a and size sz. If the address of a region is
not resolvable, function write_info adds a bottom value ⊥ to the set. Function write_info is
type-annotated as:

write_info :: S 7→ {(Wn,N)?}
Here, notation (Wn,N)? indicates an option type, i.e., either a value of type (Wn,N), or
bottom. Similarly, function read_info is defined for memory reads and is of type S 7→
{(Wn,N)?}.

Example 9.2. Let the current state be σ, σ(rax) = 0x1006. Let the next instruction be
mov qword ptr [rax + 8], 42. Then write_info(σ) = {(0x100E, 8)}.

A statepart sp of type SP is either a register, a memory region, or a flag. We define a
function eval to fetch the value stored inside the corresponding statepart in a state.

eval :: S× SP 7→ E

9.2 Memory-Related Properties

The concolic model checker is able to detect memory-related properties, including buffer
overflow, use-after-free, and null-pointer dereference. The buffer overflow errors happen in
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the memory writing process; use-after-free errors occur during both reading and writing;
null-pointer dereferences while reading.

Function buffer_overflow defines when a write executed by function mem_write is considered
a buffer overflow.
Definition 9.3. A memory writing operation leads to buffer overflow, if and only if, at a
state σ, for the memory writing operation with writing address a and size sz, there already
exists a memory block in the state σ with a partial overlap.

buffer_overflow(σ) = ∃(a, sz) ∈W · ∃a′, sz′ ·
{

σmem(a′, sz′) 6= ⊥
(a < a′ ∧ a+ sz > a′) ∨ (a′ < a ∧ a′ + sz′ > a)

where W = write_info(σ)

In words, a buffer overflow is detected if a write occurs to a region (a, sz) that partially
overlaps with a region (a′, sz′) in memory. Note that regions are added to memory either
during a first write (e.g., a local variable in the stack frame is initialized) or when explicitly
allocated on the heap (e.g., via a malloc).
Example 9.4. Let state σ be such that σ(rax) = 0x1006, σmem(0x1010, 8) = 0x3423. Let
the next instruction be mov qword ptr [rax + 8], 42. Then there exists a buffer overflow,
since the new writing address 0x100E with size 8 overlaps with the existing memory region
∗[0x1010, 8] in σmem.

We define a function use_after_free to present the use-after-free error. If a memory record
in the σmem model does not exist or is released following the execution of certain functions,
such as free, then the memory reading/writing operation at the specific memory address
would lead to a use-after-free error.
Definition 9.5. A memory operation leads to a user-after-free, if and only if, σmem model
does not contain the record of the corresponding memory region.

use_after_free(σ) = ∃(a, sz) ∈ A · ¬∃a′, sz′ ·


σmem(a

′, sz′) 6= ⊥
a′ ≤ a
a+ sz ≤ a′ + sz′

where A = read_info(σ) ∪ write_info(σ)

Null-pointer dereference error happens when the memory reading/writing address is invalid,
such as NULL, in a memory operation.
Definition 9.6. In a memory reading/writing operation, null-pointer dereference error oc-
curs, if and only if, there exists a memory address a in the memory operation where a is
NULL. We use a null_pointer_deref function to illustrate the null-pointer dereference.

null_pointer_deref(σ) = ∃(a, sz) ∈ A · a == NULL
where A = read_info(σ) ∪ write_info(σ)



Chapter 10

WinCheck: Algorithm

In the implementation of the WinCheck for binary files, we have encountered multiple chal-
lenges. These challenges are divided into three different categories: symbolic memory ad-
dresses, indirect branches, and state explosion problems. To handle each of these challenges,
we develop various techniques, including a tracing-back system, user-adaptive concretization,
and bounded loop handling.

In this chapter, we introduce how to resolve the symbolic memory address and indirect jump
problems using a tracing-back system in Section 10.1. To ensure that a writing memory
address is concrete, we adopt two different kinds of techniques to concretize a symbolic
source. The first kind of technique, named constraint solving, is introduced in Section 10.2.
Section 10.3 illustrates the second technique which is the user-guided concretization. We
briefly describe how to prevent the state explosion problem in Section 10.4. Finally, the
detailed execution step of the concolic execution is illustrated in Section 10.5.

10.1 Tracing-Back System

The base algorithm of WinCheck is a standard symbolic execution engine, performing a
forwards state-space exploration. However, at some point during exploration, a state may
be encountered that is too symbolic, in which case a trace-back may be triggered. We identify
two causes for triggering a trace-back:

• A memory write occurs, but the region to which is written is unresolvable;

• The next value of the instruction pointer is unresolvable.

The first kind of tracing-back system is used to solve the symbolic memory-writing address
problem. Listing 10.1 shows an example that triggers the tracing-back strategy by writing
to an unresolvable memory address stored at the statepart rsi at state σ2. After repeated
tracing back, the concolic model checker reaches state σ0 and halts since the unresolvable
memory address is caused by call to an external function strrchr. Then how to handle the
external function call at state σ0 to ensure the execution could be carried out successfully is
introduced in Sections 10.2 and 10.3.

62
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Listing 10.1: A list of states that trigger the first kind of trace-back.
σ0 0x4000: call 0x41622c # 41622c <strrchr@GLIBC_2.2.5>
σ1 0x4005: mov rsi, rax
σ2 0x4007: mov qword ptr [rsi], 42

We apply another type of tracing-back system to handle the indirect branches caused by
jump tables. In binary files, indirect jump addresses that are stored in jump tables can be
accessed with the basic jump table address and corresponding jump table indices. In the
concolic execution, the jump table index could be symbolic, which leads to the indirect jump
address issue. For example, as illustrated in Listing 10.2, if the value of rdi is symbolic at
state σ0, then we cannot resolve the value of rax at the jmp rax instruction at state σ4.
Thus, WinCheck traces back until state σ0 is reached. Then the indirect jump issue is solved
using the algorithm introduced in algorithm [23].

Listing 10.2: A typical pattern for jump table without concrete index.
σ0 0x4705: cmp rdi, 4
σ1 0x4709: ja 799
σ2 0x470b: lea rax, [rip+0x20090e]
σ3 0x4712: mov rax, QWORD PTR [rdi+rax*1]
σ4 0x4716: jmp rax

During forwards state-space exploration, let τ = [σ0, . . . , σi, . . . , σn] be the current trace,
where each subsequent state executes a single instruction. At all times, there is exactly one
trace from the initial state σ0 to the current state σn. We use T = [S] to denote the type of
traces (lists of states).

Let σi be a state in which the next instruction assigns a symbolic value to a certain statepart
sp, ensuring that eval(σi+1, sp) = ⊥. An intervention for tuple (σ, sp) is an action undertaken
by the algorithm to prevent this specific symbolization. An intervention may be automated,
e.g., the algorithm can choose to concretize values non-deterministically if it has established
an upper bound to the statepart. An intervention may also consist of asking the user for input
(e.g., when more information for an external function is required). Applying an intervention
thus leads to a non-empty set of new states that is a subset of all concrete states represented
by the more symbolic state σi+1. This effect cascades through the current trace, and thus
applying an intervention produces a set of new traces of the form:

τ ′ = [σ0, . . . , σi, σ
′
i+1, . . . σ

′
n]

Example 10.1. An intervention on σ0 in Listing 10.1 may set the value of rax to a concrete
memory address after the execution. This will produce a new state σ′

1 in which the value of
rax is concrete. Furthermore, the value of rsi is also resolvable after the the execution of
instruction 0x4005: mov rsi, rax. Then we get a new state σ′

2. Finally, in the execution
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of 0x4007: mov qword ptr [rsi], 42, the value fetched from rsi is a resolvable memory
address and the intervention in σ0 in Listing 10.1 leads to a new trace [σ0, σ

′
1, σ

′
2].

Applying one intervention thus leads to a set of new traces, leading to new states {σ′
n, σ

′′
n, . . .},

each of which is “more concrete” than the original current state σn. The exact same holds
when applying a list of multiple interventions subsequently. During a state-space exploration,
one can choose to replace the current state σn with the set of new states – updating the
current trace accordingly – and continue exploration from each of these. This action is
undertaken by function intervene of type:

intervene :: [S× SP]× T 7→ {T}

Function intervene takes as input a list of interventions I and the current trace τ , and
produces the set of new traces by applying each intervention subsequently.

Definition 10.2. Let τ = [σ0, . . . , σi, . . . , σn] be the current trace, and let statepart sp
evaluate to a symbolic value in the current state σn. A trace-back is a list of interventions I
that successfully concretizes statepart sp:

trace_back(I, τ, sp) def
= ∀τ ′ ∈ intervene(I, τ ) · eval(σ′

n, sp) 6= ⊥

Here, σ′
n is the last state of trace τ ′. In words, a trace-back is a list of interventions that,

when applied, ensures that the given statepart is no longer symbolic but has a concrete value
for all new current states. Given the current trace τ , there may be different trace-backs,
i.e., there may be different interventions possible. The algorithm aims to find a minimal
trace-back, i.e., it aims to find the smallest possible intervention that concretizes a given
statepart.

Example 10.3. Consider again Listing 10.1. When the concolic model checker encounters
the instruction mov qword ptr [rsi], 42 at address 0x4007, it halts due to the unresolv-
able memory address stored in rsi. Suppose the current state is σ2, the corresponding
statepart is rsi, and the current trace is τ = [σ0, σ1, σ2]. Then after the execution of
trace_back([(σ2, rsi)], τ), we could get a new trace set [τ ′] = intervene([(σ2, rsi)], τ). For
each of the trace τ ′ inside the trace set, suppose τ ′ = [σ′

0, σ
′
1, σ

′
2], then the value of rsi at the

state σ′
2 is a resolvable memory address.

10.2 Intervention: Constraint Solving

The general concretization strategy is designed to handle the sources of the symbolic memory-
writing addresses according to different types of these sources. As discussed in Section 10.1,
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the concolic model checker locates the sources for the symbolic memory addresses in mem-
ory writing operations using the tracing-back system. Then the concolic model checker con-
cretizes these sources to ensure that the memory address is concrete in the memory-writing
operation.

We employ the path constraint to a state to implement a general concretization procedure.
For a specific state σ, there exists a unique path constraint π of type Π, which upholds the
branching conditions of the trace to state σ. We use a function path_constraint to extract
the corresponding π from the trace to the state σ, function path_constraint is of type T 7→ Π.

The major concretization process is carried out by a function named solve. The function
solve uses the path constraint π and a symbolic expression as inputs and generates a concrete
value set. The solve function is carried out by Z3 SMT Solver [32].

solve :: Π× E 7→ {Wn}

The concretization technique is adaptive to different kind of symbolic sources. We use a func-
tion concretize_solve to represent the concretize procedure. The function concretize_solve is
type-annotated as S× SP 7→ {S}.

Definition 10.4. Let σ be the current state and τ be the current trace to σ. At state
σ, statepart sp is evaluated to a symbolic value. Function concretize_solve carries out the
concretization process in a way:

concretize_solve(σ, sp) def
= {σ′ | eval(σ′, sp) ∈ solve(π, e) ∧ ∀sp′ ̸=sp · eval(σ′, sp′) = eval(σ, sp′)}

where
e = eval(σ, sp)
π = path_constraint(τ)

In words, an intervention based on constraint solving considers the set of all states σ′ where
statepart sp has been concretized according to the results of the solver, but the rest of the
state remains untouched. Concretizing a state is one of the possible interventions executed
by the algorithm.

10.3 Intervention: User-Guided Concretization

The concretization algorithm introduced in Section 10.2 is capable of concretizing the sym-
bolic values in a symbolic expression based on currently available constraints. It may be
the case that tracing back leads to an instruction that overwrites some statepart with an
unconstrained unknown symbolic bottom value. This section discusses the second type of
intervention for dealing with these cases. The sources of the symbolic values are external
functions or initial symbolic values assigned at the starting point.



66 CHAPTER 10. WINCHECK: ALGORITHM

We have modeled certain external functions, such as malloc, calloc, and free. In the
concolic model checker, the execution of these external functions would generate proper
values for each register. Providing such a model for all external functions is infeasible since
the number of external libraries is numerous.

The Windows calling convention dictates which registers are to be preserved by an external
function call (callee-saved registers) and which registers are possibly overwritten (caller-saved
registers). After execution of each external function call, all the caller-saved registers are
set to symbolic values. Moreover, the contents of memory regions pointed to by any pointer
passed as a parameter are overwritten with a symbolic value as well. As such, a trace-back
may lead to a function call.

For example, consider function strcpy. Without intervention, the return value in register
rax will simply be symbolic (⊥). If this symbolic pointer is – anywhere in future exploration
– used to write to, then the algorithm will trace back to this function call. The user will be
asked for information concerning function strcpy.

On the other hand, if the source of the symbolic value directly comes from the starting point,
it is possible that the symbolic value still has a special meaning. For example, in the case
of a standard C main function, the initial value in register rdi is the value of argc, which
is the number of the arguments. Thus, if we need to concretize the symbolic value stored
in rdi, we allow the user to set an upperbound to ensure that the concretized argc value is
within a reasonable range.

The second type of intervention allows the user to concretize bottom values after exter-
nal function calls and stateparts of the initial state. In this strategy, the user can define
specific constraints for these cases. The user-defined constraint will be added to the path
constraint, and the solve function will generate concrete values that satisfy the constraint if
the corresponding symbolic value needs to be concretized.

For example, as shown in Listing 10.3, we define that after the execution of function
__libc_start_main (the function that starts the C main function) the value of register rdi
should be within the range [0, 15], which indicates that the number of function arguments
would be concretized in this range. As another example, the return value of rax is con-
strained to (0, 14] after the execution of function getopt.

Listing 10.3: An example that shows the constraint for certain external functions.
__libc_start_main 0 <= RDI <= 15
getopt 0 < RAX <= 14

Some of the external functions would allocate a fresh memory address to specific stateparts.
In this case, WinCheck provides another rule that allocates a fresh heap pointer for the
specific stateparts after the execution of the external function designated by the user, as
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shown in Listing 10.4. The fresh heap pointer is concrete, and without further information,
the size of the allocated memory region would be a default maximum memory region size.

Listing 10.4: Generate a fresh heap pointer after specific external function.
__errno_location RAX=fresh heap pointer

The value of caller-saved registers is made symbolic by default. However, some functions
may preserve certain of these stateparts. A trace-back would then require the user to specify
that a certain function does not overwrite a state part. Thus, users could define a rule for
a specific external function that certain stateparts are unchanged after the execution of the
function, as illustrated in Listing 10.5.

Listing 10.5: Reserve the value of certain statepart after an external function.
strlen RSI=unchanged

Finally, we allow the user to set constraints on the initial state. Without intervention, the
initial state is entirely symbolic. A trace-back may lead back all the way to the initial
state. This typically happens for the initial value of rdi, which indicates the number of the
command-line arguments. For example, as shown in Listing 10.6, the value of rdi is set to
between [0, 6) in the concretization procedure after the starting point is hit.

Listing 10.6: The constraint for external environment expressions.
starting_point 0 < RDI <= 6

This user-adaptive concretization, on one hand, requires user interaction. However, the trace-
back nature of the algorithm causes this interaction to be limited to exactly the information
that is required to keep pointers concrete. On the other hand, it does not require a virtually
unbounded number of external functions to be modeled.

10.4 Bounded Loop Handling

A substantial but common challenge in the concolic execution is the path explosion problem.
To handle the problem, we prune some infeasible paths using the path constraint. Besides, in
our implementation, the concolic model checker reduces memory usage by sharing unchanged
states between multiple blocks. However, there still exists the situation that the construction
fails due to running out of resources. A major reason is the loop.
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For a bounded loop with concrete loop variables, we simply unroll the loop execution; how-
ever, a large loop count may lead to state space explosion. Moreover, an unbounded loop
or a loop with symbolic loop variables may not be terminated. To solve this problem, we
detect all the loops in the concolic execution and take a record of the counts of each loop’s
visit. If a count of a loop visited is larger than a pre-defined upperbound, then the loop
will terminate directly. This algorithm is straightforward, and it straightforwardly ensures
termination of concolic exploration.

10.5 Concolic Execution

The concolic model checker takes binary files as inputs and checks the memory-related prop-
erties, as defined in Chapter 9, on the binaries. This concolic model checking process can be
divided into concolic execution and property checking processes (see Algorithm 2).

Starting from the initial trace τ0 that only contains state σ0, the concolic model checker
carries out forward exploration. The algorithm considers the current state σn. The next
instruction to be executed is determined by the current state (by its instruction pointer).

If the next instruction at state σn is not a memory-writing instruction or the memory-writing
address is concrete, then the algorithm 1.) performs property checking (Line 12) and then
2.) proceeds with forwards exploration (Lines 13 to 16). Line 12 considers the current
state σn and verifies properties such as the ones detailed in Chapter 9. As soon as one of
the properties does not hold, exploration for the current trace τ is halted, and trace τ is
presented as a counterexample. The function exec_step represents a single non-deterministic
step of the corresponding instruction at state σn:

exec_step : S 7→ {S}

For each of the new state σn+1, we append σn+1 to the trace τ and construct a new trace τ ′.
Then the state exploration continues on the trace τ ′.

If the current instruction does write to a symbolic memory address, an intervention must
occur (Lines 5 to 11). For all memory regions (a, sz) in write_set, if the corresponding address
a is not resolvable in σn, we add (a, sz) to set symbs. If symbs is not empty, WinCheck carries
out the trace-back process for all the unresolvable memory addresses and obtains a list I of
all interventions necessary to perform a successful trace-back (see Definition 10.2). This
produces a new set of traces τ_set. For all the new trace τ ′ insides τ_set, we continue on
the state exploration process using the concolic_exploration function.
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Algorithm 2 Concolic execution that explores the whole state space.
1: function CONCOLIC_EXPLORATION(τ)
2: σn ← last state of τ
3: write_set← write_info(σn)
4: symbs← {(a, sz) ∈ write_set · resolve(a, σn) = ⊥}
5: if symbs 6= ∅ then
6: Obtain I such that ∀sp ∈ symbs · trace_back(I, τ, sp)
7: τ_set← intervene(I, τ )
8: for all τ ′ ∈ τ_set do
9: concolic_exploration(τ ′)

10: end for
11: else
12: property_checking(σn)
13: for all σn+1 ∈ exec_step(σn) do
14: τ ′ ← τ@[σn+1]
15: concolic_exploration(τ ′)
16: end for
17: end if
18: end function



Chapter 11

WinCheck: Experimental Results

In this chapter, we first apply WinCheck on some closed-source Windows executables and
present the results (see Section 11.1) to demonstrate that it is capable of analyzing binaries
without source code availability. Then we apply WinCheck on all the 97 test cases in the
Coreutils-5.3.0 library for Windows to evaluate performance.

We execute all the test cases illustrated in this section on a host with an Intel Core i7-7500U
CPU and 16GB RAM.

11.1 Closed-Source Windows Executables

The binaries used in this section are taken from a standard Windows 10 distribution. This
means they were heavily optimized, and we have no availability over any details on compiler
settings, the build process, etc. The calling conventions of these binaries are unknown, and
they are – often even intra-binary – mixed between, e.g., callee vs. caller stack clean-up.

Table 11.1 shows the results. The first column of the table is the name of the binary, the
second column shows the number of instructions reached by WinCheck, the third column
indicates the total number of paths explored. The fourth column provides the total number
of negative paths. We consider a path to be a negative if it ends in a state with either a
buffer overflow, a use-after-free, or a null-pointer dereference. A negative requires further
manual inspection. In Section 11.5 we provide a discussion on true vs. false negatives. The
fifth column provides the number of paths that contained a state in which an instruction
read from uninitialized memory, but none of the other pointer-related issues occurred that
would classify it as a negative. Column 6 provides the number of instructions that performed
an unresolvable indirect branch, i.e., either a call or a jump whose jump target could not be
concretized.

Finally, Column 7 provides an approximation of the number of instructions not reached.
The actual number of reachable instructions is undecidable. When running a disassembler
such as IDA Pro, this provides an estimate of all instructions in the binary. However, these
instructions are not necessarily reachable, i.e., that number over-approximates the actual
number of reachable instructions. However, to give an impression of the part of the binary
that is actually reached by WinCheck, we report in Column 7 the total number of instructions
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Table 11.1: Memory security verification results for closed-source Windows executables.

Exec name
# of

reached
instrs

# of
paths

# of
negatives

# of unini-
tialized

# of
unresolved
indirects

# of
unreached

instrs

ARP.EXE 2825 996 8 9 3 777

HOSTNAME.EXE 1037 241 0 10 3 110

clip.exe 3642 1078 0 13 10 1732

ftp.exe 3898 1423 0 9 3 6405

logman.exe 6351 2321 0 101 34 11507

msconfig.exe 570 174 0 20 3 16615

ndadmin.exe 1625 591 0 30 5 209

netsh.exe 5028 1696 0 206 5 6125

ping6.exe 3002 1443 0 194 2 4437

replace.exe 1438 245 0 14 18 1034

reported by IDA Pro minus the number of instructions reached by WinCheck.

For the closed-source Windows executables, the number of reached instructions is roughly
38%. In Section 11.3 we provide a more detailed discussion on the reasons for unreached
instructions.

For these Windows executables, ARP.EXE is the only one for which we encountered negatives.
Detailed tracing back information for these errors is provided in a .log file. Listing 11.1
provides an example of a candidate for a null-pointer dereference. The algorithm traces
back the null-pointer, traverses various instructions across function boundaries, and finds
the sources of the null-pointer. We could establish that the negative was a false negative
due to the infeasibility of the path.

Listing 11.1: Null-pointer dereference in the execution of ARP.EXE.
Error: 0x401596 mov eax,dword ptr [ecx]

Null pointer dereference at address 0x0

Trace back to ['rcx'] after 0x401596: mov eax,dword ptr [ecx]
Trace back to ['4294966488'] after 0x401592: mov ecx,dword ptr [esp+0x1c]
Trace back to ['rdi'] after 0x40152b: push edi
Trace back to ['rdi'] after 0x40150a: mov edi,edi
Trace back to ['rbx'] after 0x40376d: mov edi,ebx
Trace back to [] after 0x40375f: xor ebx,ebx
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11.2 Coreutils Library

To illustrate the applicability and scalability of the concolic model checker, we apply it to the
Coreutils-5.3.0 library. Similar to Table 11.1, for each test case in the Coreutils library, we
respectively collect the information regarding the number of reached instructions, number
of paths traversed, number of negative paths, number of unresolved indirect jumps, and
number of unreached instructions.

As shown in Table 11.2, three of the test cases, including cp.exe, mv.exe, and shred.exe,
expose negative paths during the execution. The negative paths in cp.exe and mv.exe
are caused by null-pointer dereference errors. In shred.exe a possible buffer overflow was
encountered.

Listing 11.2 provides more information on the negative encountered in shred.exe. A buffer-
overflow error is reported at address 0x403009 with instruction mov dword ptr [edx],ebx.
The reason lies in that the memory address that is stored in edx is 0x400 at that address. We
repeatedly trace back and finally find that the value of edx comes from the instruction mov
ebx,0x400 at address 0x402961. Writing to the memory address 0x400 at address 0x403009
would lead to a buffer overflow since a partially overlapping memory region already exists
in the memory model.

Listing 11.2: Buffer overflow error.
Error: 0x403009 mov dword ptr [edx],ebx

Buffer overflow at address 0x400

Trace back to ['rdx'] after 0x403009: mov dword ptr [edx],ebx
Trace back to ['4294965620'] after 0x402f46: mov edx,dword ptr [esp+0x24]
Trace back to ['rdi'] after 0x4029a4: mov dword ptr [esp+0x0],edi
Trace back to ['4294965612'] after 0x40b2ba: mov edi,dword ptr [esp+0x24]
Trace back to ['rbx'] after 0x40b1e7: mov dword ptr [esp+0x1c],ebx
Trace back to ['rbx'] after 0x402961: mov ebx,0x400

11.3 Unreached Instructions

As shown in Table 11.2, there are many unreached instructions for each of the test cases.
We make a deep analysis of all the unreached instructions and divide the situation into three
different categories.

First, while most of the functions in a binary file are visited using direct or indirect jump
instructions, some of the functions are called implicitly. For example, as shown in List-
ing 11.3, the address 0x401c20 is pushed into the stack after the execution of push 0x401c20
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Table 11.2: WinCheck results for the Coreutils library.

Exec name # of
reached

# of
paths

# of
nega-
tives

# of
unini-

tialized

# of
unresolved
indirects

# of un-
reached

[.exe 2054 663 0 2 4 9590
basename.exe 1973 875 0 34 4 1475
cat.exe 3023 1292 0 42 4 7444
chgrp.exe 6897 1954 0 14 8 8755
chmod.exe 6566 2029 0 172 11 9385
chown.exe 8239 2658 0 210 4 7798
chroot.exe 1693 722 0 10 4 1913
cksum.exe 1637 637 0 5 4 1992
comm.exe 2614 904 0 14 4 1092
cp.exe 5561 1473 15 10 6 19461
csplit.exe 4642 1746 0 20 6 10512
cut.exe 1739 571 0 24 6 5222
date.exe 7723 2497 0 28 2 8402
dd.exe 5391 2025 0 4 4 10170
df.exe 8448 2896 0 6 4 6458
dir.exe 6730 1725 0 2 7 21050
dircolors.exe 2872 1213 0 32 6 1633
dirname.exe 1981 873 0 27 4 1568
du.exe 9204 3023 0 8 4 12262
echo.exe 1257 513 0 2 4 2204
env.exe 1574 569 0 4 4 1798
expand.exe 2224 721 0 16 4 1861
expr.exe 3666 1223 0 2 4 8598
factor.exe 2395 1013 0 2 4 2720
false.exe 316 16 0 2 4 1723
fmt.exe 2901 848 0 2 4 2116
fold.exe 2308 955 0 5 4 1607
gdate.exe 7723 2497 0 28 2 8402
gecho.exe 1257 513 0 2 4 2204
ginstall.exe 11552 3584 0 17 2 15193
gln.exe 5827 1702 0 9 8 13483
gmkdir.exe 4852 1470 0 17 4 7314
grmdir.exe 2145 643 0 2 4 1408
gsort.exe 7876 2633 0 2 4 10065
head.exe 2867 934 0 34 9 10025
hostid.exe 2176 885 0 25 4 1601
hostname.exe 1577 640 0 6 4 1699
id.exe 2488 655 0 18 5 1610
install.exe 11552 3584 0 17 2 15193
join.exe 4559 1886 0 12 5 2216
kill.exe 2481 1031 0 5 0 1896
link.exe 2499 921 0 19 4 2562
ln.exe 5827 1702 0 9 8 13483
logname.exe 2025 764 0 38 4 1510
ls.exe 6739 1726 0 2 7 21041
md5sum.exe 1744 474 0 1 6 5825
mkdir.exe 4852 1470 0 17 4 7314
mkfifo.exe 2050 681 0 12 9 8549
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mknod.exe 3243 1134 0 27 9 8544
mv.exe 8235 2215 9 5 14 19871
nice.exe 1655 712 0 3 4 2070
nl.exe 3257 918 0 9 12 9392
nohup.exe 2663 1080 0 13 4 1651
od.exe 4123 1735 0 49 4 10536
paste.exe 2329 1024 0 15 4 1718
pathchk.exe 2300 743 0 6 8 7700
pinky.exe 5763 1589 0 8 6 6336
pr.exe 2228 879 0 2 4 12248
printenv.exe 1194 583 0 2 4 1985
printf.exe 3132 1224 0 7 5 5092
ptx.exe 4956 2035 0 7 4 16299
pwd.exe 4600 1328 0 2 4 6043
readlink.exe 4397 1050 0 36 9 5914
rm.exe 7016 2192 0 20 4 14489
rmdir.exe 2145 643 0 2 4 1408
seq.exe 2142 816 0 23 11 1576
setuidgid.exe 2336 878 0 20 4 1459
sha1sum.exe 1735 468 0 1 5 5834
shred.exe 6341 1928 1 49 4 9827
sleep.exe 1884 691 0 3 4 2243
sort.exe 7876 2633 0 2 4 10065
split.exe 3597 1099 0 175 5 9105
stat.exe 5001 1152 0 14 5 8028
stty.exe 3314 1007 0 23 4 3799
su.exe 4734 1150 0 17 5 9281
sum.exe 1258 365 0 2 7 4855
sync.exe 1354 621 0 2 4 1761
tac.exe 3346 1315 0 11 4 14282
tail.exe 4829 1644 0 10 4 10987
tee.exe 2064 891 0 9 4 1305
test.exe 1168 374 0 26 5 9251
touch.exe 7173 2272 0 30 4 6323
tr.exe 4072 1641 0 50 6 2990
true.exe 316 16 0 2 4 1723
tsort.exe 2297 1060 0 16 4 1896
tty.exe 1931 564 0 31 4 1228
uname.exe 2666 755 0 11 5 2250
unexpand.exe 2811 1171 0 3 4 1475
uniq.exe 3048 1373 0 8 4 1988
unlink.exe 1681 754 0 39 4 1957
uptime.exe 2821 851 0 39 4 2420
users.exe 2801 860 0 41 4 3339
vdir.exe 5621 1348 0 2 4 22156
wc.exe 4519 1231 0 2 4 6171
who.exe 4850 975 0 13 4 7801
whoami.exe 2231 817 0 38 4 1480
yes.exe 1407 645 0 2 4 1762
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instruction. Then in the execution of the function at address 0x40401c, the function
__CxxUnhandledExceptionFilter is passed on as a function pointer and is implicitly called.
However, since the definition of the function at address 0x40401c is imported from a Win-
dows DLL file named api-ms-win-core-errorhandling-l1-1-1 .dll, we cannot model
the detail of the function. Thus we do not have an explicit call of the function
__CxxUnhandledExceptionFilter, and all the corresponding instructions in this function are
skipped.

Listing 11.3: Implicitly called function.
0x401c70: push 0x401c20
0x401c75: call dword ptr [0x40401c]
...
0x401c20: LONG __stdcall __CxxUnhandledExceptionFilter(struct

_EXCEPTION_POINTERS *ExceptionInfo)
...
0x40401C ; Imports from api-ms-win-core-errorhandling-l1-1-1.dll
0x40401C ; LPTOP_LEVEL_EXCEPTION_FILTER (__stdcall

*SetUnhandledExceptionFilter)(LPTOP_LEVEL_EXCEPTION_FILTER
lpTopLevelExceptionFilter)

Second, some of the memory content is initialized at linking time, and we cannot get the
corresponding value in a static analysis process. For instance, in HOSTNAME.EXE, we
encounter an unresolved indirect jump at address 0x401b31, where the value of esi is sym-
bolic, as shown in Listing 11.4. After tracing back, we find the value of esi comes from mov
esi, dword ptr [0x403380] instruction at address 0x401b23. Further manual inspection
on the section information of HOSTNAME.EXE showed that address 0x403380 is located
at .data section, and the memory content at address 0x403380 has not been initialized yet.
Thus we cannot concretize the value of esi or find a solution to the symbolic jump address
using a static analysis method, and certain region at the binary file is not reachable in the
concolic execution.

Listing 11.4: Dynamically linking memory content.
0x401b23: mov esi, dword ptr [0x403380]
0x401b29: mov ecx, esi
0x401b2b: call dword ptr [0x404108] ; _guard_check_icall_nop(x)
0x401b31: call esi

Finally, since our tool is implemented using bounded model checking, we will terminate a
loop if the pre-defined bound is exceeded. The decision also leads to unreached instructions
in certain cases. For example, in HOSTNAME.EXE, the instruction at address 0x40162D is
never visited since the condition has never been satisfied for the jnz 0x4016C8 instruction at
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address 0x401627. Thus all the following instructions are not reachable during the bounded
model checking.

Listing 11.5: Unreached instructions caused by conditional jumps.
0x401627: jnz 0x4016C8
0x40162D: lea ecx, [ebp+var_4]
0x401630: call sub_401550
0x401635: test eax, eax

Figure 11.1: Ratio between # of reached instructions vs. # of total instructions.

As can be seen from Figure 11.1, the ratio between the number of reached instructions vs.
the number of total instructions varies from 11% to 71%. Test case test.exe has the lowest
ratio while comm.exe shares the highest ratio. On average, the ratio is around 42%, which
means WinCheck could detect around 42% of the total instructions. After a deep inspection,
we find that the sources of the unreached instructions are mainly implicit called functions
and dynamically allocated memory content. For example, in test.exe, the number of total
instructions is 10419. Inside that, 9096 instructions are directly or indirectly caused by
implicit called functions, unresolved indirect jumps, and dynamically allocated content. To
be more specific, 1031 instructions (divided into 87 instruction blocks) are not reached since
there are no explicit entries to them, and the left 8065 instructions are not reached because
the entries to these instructions are located in the 1031 directly unreached instructions. Then
we can get the conclusion that the reachability ratio could be increased with a refined model
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of the external functions.

11.4 Miscellaneous

In the concolic model checking process, the disassembly process is carried out by IDA Pro
7.6, which has the best performance on the recursive-traversal disassembly on Windows
executables. We have once considered using angr [102] to disassemble the binaries; however,
there are some bugs in the disassembled results. For example, angr sometimes disassembles
data to instructions. In the disassembly process of the HOSTNAME.EXE, angr disassembles the
byte sequence at address 0x401000 as an instruction push eax, while IDA Pro translates the
byte sequence to a data struct _EXCEPTION_POINTERS which is of type ExceptionInfo.

Besides, in the reconstruction of the control flow, angr also makes some errors in the static
analysis. For instance, for basename.exe in Coreutils library, angr decodes the following
instructions:

0x4042ca: and byte ptr [0x61202c73], ah
0x4042ce: and byte ptr [ecx + 0x6e], ah
0x4042d1: and byte ptr fs:[edi + 0x74], ch

Meanwhile, the disassembled results from IDA Pro is as follows.

.text:004042ca and ds:61202c73h, ah

.text:004042d0 outsb

.text:004042d1 and fs:[edi+74h], ch

After repeated checking on the corresponding byte sequence, we are certain the IDA Pro
generated the correct results.

11.5 Discussion

We here provide some discussion on the nature of applying state exploration tools to Windows
executables.

Completeness In this context, completeness means that the state space exploration is over-
approximative: at least all states are visited. It is clear from the results in Section 11.2
that this is not the case: WinCheck is not complete. This has three major causes, which
have been discussed in more detail in Section 11.3. First, bounded model checking is
under-approximative. Second, an unresolved indirect jump may lead to unreached
instructions. A third cause is more tricky: it may be the case that a function pointer
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is stored in a statepart that is read by an external function (a parameter register or
a global part of the state). That external function may then call the function pointed
to. The exploration is complete modulo these issues, i.e., if the bound is not hit, if all
indirect branches can be resolved, and if there are no callbacks executed by external
functions, the full state space is explored. We argue that specifically, the last issue is
inherent in the verification of closed-source binaries.

Soundness Conversely, soundness means that any state reached is actually reachable from
the entry point. Of course, soundness depends on proper user input. Since WinCheck
performs a standard forward exploration from the entry point of the executable, it
is sound modulo the user input. We argue that in the exploration of closed-source
binaries, soundness is a more desirable property than completeness: since a manual
analysis of candidate negatives is hard, time-consuming, and expensive, any reported
path should be relevant.

True vs. false negatives Since the exploration is sound, every negative path that is re-
ported is an actual reachable path. However, still, a manual analysis is required to
see if the reported negative is a true negative. As an example, we consider paths re-
porting an uninitialized read. These reachable paths truly do an uninitialized read,
but whether that is an actual bug is a follow-up question. Manual inspection showed
that many of these paths actually perform a technique introduced by a compiler called
stack probing, where parts of the local stack are read-then-discarded to ensure these
memory regions are paged properly. So indeed, the uninitialized read occurs, but this
does not constitute a true negative.

User interaction The trace-back mechanism thwarts full automation. However, the in-
formation requested is minimized to necessary information only. While doing the
case studies, we have maintained a file storing external function information (see Sec-
tion 10.3) for various external functions shared between the executables. For example,
functions regarding string operations or file- and memory management are included.
This allowed us to perform all experiments with minimal user interaction.
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Conclusions and Future Work

In this dissertation, multiple efforts have been presented. The first two efforts aim to reduce
the TCB of binary verification; meanwhile, the latter shows that binary verification can be
carried out with a smaller TCB since it is based on a disassembly process that has been
validated with the second effort.

The dissertation first presents a methodology called OPEV that provides a high assurance
on the equivalence between OCaml and PVS specifications. OPEV employs an intermediate
type system to capture the commonality of the subset of OCaml and PVS and to generate
test cases for both OCaml and PVS implementations. The reliability of the validation is
ensured by executing large-scale stress tests and automatically proving test lemmas using
generic PVS strategies. OPEV generates more than three hundred thousand test cases and
proofs. We demonstrate the OPEV methodology using two case studies, namely a manual
OCaml-to-PVS translation and a Sail-to-PVS parser. OPEV significantly increases our trust
in the translations.

The dissertation, then, introduces a definition for soundness of the output of a disassembler
w.r.t. the original binary. We propose DSV, a tool for validating whether a binary has been
correctly disassembled. Disassembly is a challenging and undecidable problem that lies at
the base of various research in reverse engineering, formal verification, binary hardening, and
security analysis. Even state-of-the-art disassemblers that have been elaborately designed
and tested have soundness issues, such as whether a disassembly accurately reflects the
semantical behavior of the binary under investigation. DSV finds incorrectly disassembled
instructions and assesses whether the disassembler under investigation could determine at
which addresses instructions need to be recovered correctly. DSV has been applied to validate
the output of eight state-of-the-art disassembler tools on 102 binaries of the Coreutils library.
Soundness issues were exposed, ranging from incorrect instruction recovery to incorrectly
recovered control flow of the binary (leading to missing instructions).

DSV does not assume the existence of ground truth in the form of source code, an LLVM
representation, or debugging information. We, therefore, necessarily make assumptions and
aim to provide an explicit insight into the TCB. The TCB of DSV contains two key assump-
tions. First, we assume that the proposed way of loosely comparing byte sequences allows
DSV to decide whether a single byte sequence correctly corresponds to a single instruction.
Second, DSV employs concolic execution leaving certain parts, such as the stack pointer,
concrete. It is assumed that leaving these parts concrete does not influence the reachability
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of instruction addresses.

The dissertation finally introduces a concolic model checker named WinCheck to detect
memory-related errors in Windows executables. Detecting and eliminating memory-related
errors in the development stage of binary files is an objective that is pursued by many in
academia and industry alike. Various techniques, including testing, symbolic execution,
and formal verification, have been developed to validate source code and binary executables.
However, the state-of-the-art does not provide an off-the-shelf model checker that can directly
be applied to Windows executables.

The main novelty of WinCheck is that it aims to leave any pointer-related information con-
crete, but the rest of the state as symbolic as possible. If need be, WinCheck will trace back
to a point where an intervention can concretize the current state to ensure this characteristic.
Concretization can occur automatically through constraint solving or by asking the user for
specific information regarding external functions or the initial state. By keeping memory
addresses concrete, the pointer-aliasing problem becomes decidable. Moreover, this allows
resolving various indirect branches (dynamically computed jumps), typically a challenge in
binary verification. Finally, concolic execution allows various memory-related properties to
be easily verified, such as use-after-free, uninitialized reads, or buffer overflows.

To show the functionality and performance of WinCheck, we apply the model checker to
two different kinds of test cases. We employ WinCheck on Windows closed-source binaries
to show the functionality and compatibility of the concolic model checker. Moreover, we
apply our tool to the Coreutils library – compiled on Windows – to analyze and show the
performance of the concolic model checker.

12.1 Future Work

For each of the contributions mentioned above, there exist many future research orientations.
We propose some future research directions in this section.

12.1.1 OPEV’s Extension with Proof Automation Rules

Currently, OPEV handles a subset of OCaml types and pure functions. In the future, we
aim to extend the functionality of OPEV and incorporate more test generation rules for it.
We also intend to increase automation in the proof process of OPEV. These enhancements
would allow us to translate multiple mainstream instruction sets (ISA) specifications written
in Sail into PVS [106], a necessary step to reason about the binary code of these architectures
in PVS. For instance, the methodology of lifting ARMv8 binaries into PVS7 [106] based on
translating ARM specification language ASL [86] into PVS is interesting to us to generalize
for other architectures. It allows the translation of the system binary code of ARMv8 into
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PVS, based on PVS generic theories, theory parameters, and dependent types, in place
of monad theory. Therefore, our work would open the door for more future research to
verify the binary code of several mainstream instruction sets based on translating Sail ISAs
specifications into the prototype verification system PVS.

12.1.2 DSV’s Binary Exploration and Supporting More ISAs

DSV essentially is a binary exploration tool. We argue that DSV demonstrates that the
combination of bounded model checking and concolic execution is very applicable in the
context of stripped binaries as it mitigates the complexity of some fundamental issues. Even
though its current version solely focuses on the validation of disassembly, we aim to use the
core algorithm and concepts of DSV for other binary exploration efforts. For example, We
aim to use DSV for validating the correctness of generated control flow and call graphs and
generally for exposing “weird” edges [101] and security vulnerabilities in binaries. Currently,
DSV is restricted to binaries with the x86-64 format. Since our formal definition is general,
we intend to extend our implementation and validation efforts to other ISAs, such as ARM.

12.1.3 Full Exploration and New Functionalities in WinCheck

In WinCheck, a key limitation is the bounded nature, which limits the number of instructions
reached. For aggressively optimized closed-source binaries such as those found on a Windows
machine, we argue that an over-approximative approach such as deriving loop-invariants, or
fully symbolic execution, does not scale to realistic executables or Windows DLLs. In the
near future, we, therefore, aim to find a midway between bounded space state exploration
and fully symbolic state-space exploration that allows full exploration of real-world Windows
executables.

WinCheck verifies pointer-related properties in sequential code. Another interesting future
direction is, therefore, to boost WinCheck to verify properties of concurrent code. For
instance, WinCheck could be enhanced to verify whether the execution of a binary file in
concurrent mode would cause a deadlock or not.

WinCheck currently focuses on low-level properties such as those pertaining to pointer usage.
An interesting future direction is to extend WinCheck to verify higher-level properties such
as information flow security [92] (on Windows binaries). WinCheck’s underlying technique,
i.e., user-guided concretization, would facilitate the incorporation of new functionalities.
Besides, we could incorporate decompilation from Windows binaries to corresponding source
code into WinCheck to verify higher-level properties; and the soundness of this decompilation
process could also be validated using an extended DSV.
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Appendix A

DSV Execution Results

Table A.1: Execution results for Coreutils library on 8 different disassemblers.

# of
total

# of
white

# of
grey

# of
black

Ratio of
grey vs.
white

# of
indirects

Missing
instr Sound

objdump [ 6831 5554 55 1222 0.01 96
b2sum 7662 5828 271 1563 0.05 103
base32 4464 3267 63 1134 0.02 83
base64 4406 3206 62 1138 0.02 83

basename 3310 2217 18 1075 0.01 59
basenc 5892 2628 290 2974 0.11 65

cat 3915 2734 61 1120 0.02 70
chcon 8305 5777 87 2441 0.02 147
chgrp 8793 6214 112 2467 0.02 150

chmod 8429 5919 101 2409 0.02 142
chown 9141 6548 100 2493 0.02 154
chroot 4457 3336 61 1060 0.02 83
cksum 3445 2275 72 1098 0.03 70
comm 4351 3115 61 1175 0.02 86

cp 15805 11551 254 4000 0.02 244
csplit 20111 9033 229 10849 0.03 150

cut 4750 3677 28 1045 0.01 91
date 14454 12122 421 1911 0.03 151

dd 10571 7993 377 2201 0.05 132
df 13036 9468 242 3326 0.03 171

dir 19029 12751 417 5861 0.03 230
dircolors 4223 3063 28 1132 0.01 86
dirname 3238 765 8 2465 0.01 28

du 29764 19356 755 9653 0.04 326
echo 3365 929 13 2423 0.01 34
env 5037 3870 44 1123 0.01 86

expand 3928 2742 112 1074 0.04 79
expr 19538 16778 508 2252 0.03 246

factor 10530 8596 71 1863 0.01 152
false 3016 610 8 2398 0.01 23
fmt 4723 3686 31 1006 0.01 91

94



95

objdump fold 3797 2786 38 973 0.01 78
getlimits 4150 1600 36 2514 0.02 38

ginstall 19407 15318 425 3664 0.03 299
groups 3597 2455 19 1123 0.01 65

head 5086 3947 41 1098 0.01 82
hostid 3170 1987 30 1153 0.02 55

id 4679 3364 110 1205 0.03 76
join 5789 3123 250 2416 0.08 76
kill 3738 2613 40 1085 0.02 67
link 3229 2045 38 1146 0.02 57

ln 9351 5812 240 3299 0.04 154
logname 3191 2004 30 1157 0.01 56

ls 19029 12751 417 5861 0.03 230
make-prime-list 530 406 7 117 0.02 18

md5sum 5573 4256 76 1241 0.02 88
mkdir 6897 5289 147 1461 0.03 107
mkfifo 3575 2389 63 1123 0.03 61
mknod 4101 2775 216 1110 0.08 65

mktemp 4910 3551 74 1285 0.02 107
mv 18420 14398 196 3826 0.01 294

nice 3649 2511 27 1111 0.01 58
nl 18435 15959 492 1984 0.03 227

nohup 3881 2529 94 1258 0.04 73
nproc 3663 2499 61 1103 0.02 66

numfmt 7625 6003 219 1403 0.04 94
od 9185 4379 142 4664 0.03 93

paste 3777 2766 20 991 0.01 71
pathchk 3424 2402 28 994 0.01 59

pinky 4220 1820 26 2374 0.01 68
pr 10087 8397 119 1571 0.01 158

printenv 3126 718 8 2400 0.01 23
printf 6800 5426 64 1310 0.01 99

ptx 24419 20905 799 2715 0.04 265
pwd 3659 2573 27 1059 0.01 72

readlink 5413 2263 106 3044 0.05 59
realpath 5828 2644 89 3095 0.03 72

rm 9137 6288 103 2746 0.02 153
rmdir 5406 4164 75 1167 0.02 80

runcon 3171 768 8 2395 0.01 23
seq 6482 4836 101 1545 0.02 84

shred 7665 5746 264 1655 0.05 133
shuf 7629 5516 342 1771 0.06 135

sleep 3553 2325 45 1183 0.02 69
split 6882 5416 102 1364 0.02 117
stat 11646 9765 115 1766 0.01 173
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objdump stdbuf 6121 4786 58 1277 0.01 96
stty 8644 7062 111 1471 0.02 101
sum 4906 2810 178 1918 0.06 80
sync 3404 2258 58 1088 0.03 60

tac 18421 15823 463 2135 0.03 228
tail 9660 5940 97 3623 0.02 117
tee 3908 2671 54 1183 0.02 78

test 6449 4976 36 1437 0.01 86
timeout 4249 2945 33 1271 0.01 93

touch 12454 10276 235 1943 0.02 140
tr 5525 4129 187 1209 0.05 91

true 3017 610 8 2399 0.01 23
truncate 4110 3002 27 1081 0.01 65

tsort 4201 2812 57 1332 0.02 85
tty 3079 1990 18 1071 0.01 54

uname 3251 2168 12 1071 0.01 54
unexpand 4009 2900 46 1063 0.02 83

uniq 5026 3779 35 1212 0.01 102
unlink 3210 2049 36 1125 0.02 56

uptime 6080 4448 69 1563 0.02 93
users 3483 2269 43 1171 0.02 65
vdir 19029 12751 417 5861 0.03 230

wc 5262 3243 93 1926 0.03 86
who 6493 5237 62 1194 0.01 92

whoami 3204 2016 30 1158 0.01 57
yes 3351 837 22 2492 0.03 34

radare2 [ 6930 5554 54 1322 0.01 96
b2sum 7761 5828 269 1664 0.05 103
base32 4563 3267 61 1235 0.02 83
base64 4505 3206 61 1238 0.02 83

basename 3409 2217 18 1174 0.01 59
basenc 5991 2628 289 3074 0.11 65

cat 4014 2734 59 1221 0.02 70
chcon 8398 5776 83 2539 0.01 146
chgrp 8886 6213 106 2567 0.02 149

chmod 8522 5918 97 2507 0.02 141
chown 9234 6547 93 2594 0.01 153
chroot 4556 3336 60 1160 0.02 83
cksum 3544 2275 70 1199 0.03 70
comm 4450 3115 64 1271 0.02 86

cp 15898 11550 248 4100 0.02 243
csplit 20210 9033 226 10951 0.03 150

cut 4849 3677 27 1145 0.01 91
date 14553 12122 414 2017 0.03 151

dd 10670 7993 322 2355 0.04 132
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radare2 df 13135 9468 239 3428 0.03 171
dir 19124 12900 320 5904 0.02 231 × ×

dircolors 4318 3064 24 1230 0.01 84 × ×
dirname 3337 765 8 2564 0.01 28

du 29857 19355 747 9755 0.04 325
echo 3464 929 13 2522 0.01 34
env 5136 3870 43 1223 0.01 86

expand 4027 2742 111 1174 0.04 79
expr 19637 16778 504 2355 0.03 246

factor 10629 8596 67 1966 0.01 152
false 3115 610 8 2497 0.01 23
fmt 4822 3686 29 1107 0.01 91
fold 3896 2786 37 1073 0.01 78

getlimits 4249 1600 35 2614 0.02 38
ginstall 19500 15317 442 3741 0.03 298
groups 3696 2455 23 1218 0.01 65

head 5185 3947 39 1199 0.01 82
hostid 3269 1987 30 1252 0.02 55

id 4778 3364 110 1304 0.03 76
join 5888 3123 248 2517 0.08 76
kill 3837 2613 40 1184 0.02 67
link 3328 2045 37 1246 0.02 57

ln 9450 5812 236 3402 0.04 154
logname 3290 2004 30 1256 0.01 56

ls 19124 12900 320 5904 0.02 231 × ×
make-prime-list 627 406 55 166 0.14 18

md5sum 5672 4256 75 1341 0.02 88
mkdir 6996 5289 145 1562 0.03 107
mkfifo 3674 2389 62 1223 0.03 61
mknod 4200 2775 214 1211 0.08 65

mktemp 5009 3551 74 1384 0.02 107
mv 18513 14397 190 3926 0.01 293

nice 3748 2511 27 1210 0.01 58
nl 18534 15959 489 2086 0.03 227

nohup 3980 2529 92 1359 0.04 73
nproc 3762 2499 61 1202 0.02 66

numfmt 7724 6003 218 1503 0.04 94
od 9284 4379 140 4765 0.03 93

paste 3876 2766 19 1091 0.01 71
pathchk 3523 2402 26 1095 0.01 59

pinky 4319 1820 25 2474 0.01 68
pr 10186 8397 117 1672 0.01 158

printenv 3225 718 8 2499 0.01 23
printf 6899 5426 63 1410 0.01 99

ptx 24518 20905 793 2820 0.04 265
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radare2 pwd 3758 2573 26 1159 0.01 72
readlink 5512 2263 103 3146 0.05 59
realpath 5927 2644 86 3197 0.03 72

rm 9230 6287 99 2844 0.02 152
rmdir 5505 4164 74 1267 0.02 80

runcon 3270 768 8 2494 0.01 23
seq 6581 4836 100 1645 0.02 84

shred 7764 5746 261 1757 0.05 133
shuf 7722 5515 340 1867 0.06 134

sleep 3652 2325 45 1282 0.02 69
split 6981 5416 99 1466 0.02 117
stat 11745 9765 111 1869 0.01 173

stdbuf 6220 4786 57 1377 0.01 96
stty 8743 7062 109 1572 0.02 101
sum 5005 2810 177 2018 0.06 80
sync 3503 2258 56 1189 0.02 60

tac 18520 15823 459 2238 0.03 228
tail 9759 5940 92 3727 0.02 117
tee 4007 2671 52 1284 0.02 78

test 6548 4976 35 1537 0.01 86
timeout 4348 2945 33 1370 0.01 93

touch 12553 10276 229 2048 0.02 140
tr 5624 4129 186 1309 0.05 91

true 3116 610 8 2498 0.01 23
truncate 4209 3002 26 1181 0.01 65

tsort 4300 2812 55 1433 0.02 85
tty 3178 1990 18 1170 0.01 54

uname 3350 2168 12 1170 0.01 54
unexpand 4108 2900 45 1163 0.02 83

uniq 5125 3779 32 1314 0.01 102
unlink 3309 2049 35 1225 0.02 56

uptime 6179 4448 69 1662 0.02 93
users 3582 2269 43 1270 0.02 65
vdir 19124 12900 320 5904 0.02 231 × ×

wc 5357 3244 90 2023 0.03 84 × ×
who 6592 5237 61 1294 0.01 92

whoami 3303 2016 30 1257 0.01 57
yes 3450 837 22 2591 0.03 34

angr [ 6936 5554 54 1328 0.01 96
b2sum 7767 5828 269 1670 0.05 103
base32 4569 3267 61 1241 0.02 83
base64 4511 3206 61 1244 0.02 83

basename 3415 2217 18 1180 0.01 59
basenc 5997 2628 289 3080 0.11 65

cat 4020 2734 59 1227 0.02 70



99

angr chcon 8410 5777 83 2550 0.01 147
chgrp 8898 6214 106 2578 0.02 150

chmod 8534 5919 97 2518 0.02 142
chown 9246 6548 93 2605 0.01 154
chroot 4562 3336 60 1166 0.02 83
cksum 3550 2275 70 1205 0.03 70
comm 4456 3115 64 1277 0.02 86

cp 15910 11551 248 4111 0.02 244
csplit 20216 9033 226 10957 0.03 150

cut 4855 3677 27 1151 0.01 91
date 14559 12122 414 2023 0.03 151

dd 10676 7993 373 2310 0.05 132
df 13141 9468 239 3434 0.03 171

dir 19134 12751 413 5970 0.03 230
dircolors 4328 3063 26 1239 0.01 86
dirname 3343 765 8 2570 0.01 28

du 29869 19356 747 9766 0.04 326
echo 3470 929 13 2528 0.01 34
env 5142 3870 43 1229 0.01 86

expand 4033 2742 111 1180 0.04 79
expr 19643 16778 504 2361 0.03 246

factor 10635 8596 67 1972 0.01 152
false 3121 610 8 2503 0.01 23
fmt 4828 3686 29 1113 0.01 91
fold 3902 2786 37 1079 0.01 78

getlimits 4255 1600 36 2619 0.02 38
ginstall 19512 15318 442 3752 0.03 299
groups 3702 2455 23 1224 0.01 65

head 5191 3947 39 1205 0.01 82
hostid 3275 1987 30 1258 0.02 55

id 4784 3364 110 1310 0.03 76
join 5894 3123 248 2523 0.08 76
kill 3843 2613 40 1190 0.02 67
link 3334 2045 37 1252 0.02 57

ln 9456 5812 236 3408 0.04 154
logname 3296 2004 30 1262 0.01 56

ls 19134 12751 413 5970 0.03 230
make-prime-list 633 406 55 172 0.14 18

md5sum 5678 4256 75 1347 0.02 88
mkdir 7002 5289 145 1568 0.03 107
mkfifo 3680 2389 62 1229 0.03 61
mknod 4206 2775 214 1217 0.08 65

mktemp 5015 3551 74 1390 0.02 107
mv 18525 14398 190 3937 0.01 294

nice 3754 2511 27 1216 0.01 58
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angr nl 18540 15959 489 2092 0.03 227
nohup 3986 2529 92 1365 0.04 73
nproc 3768 2499 61 1208 0.02 66

numfmt 7730 6003 218 1509 0.04 94
od 9290 4379 140 4771 0.03 93

paste 3882 2766 19 1097 0.01 71
pathchk 3529 2402 26 1101 0.01 59

pinky 4325 1820 25 2480 0.01 68
pr 10192 8397 117 1678 0.01 158

printenv 3231 718 8 2505 0.01 23
printf 6905 5426 63 1416 0.01 99

ptx 24524 20905 793 2826 0.04 265
pwd 3764 2573 26 1165 0.01 72

readlink 5518 2263 103 3152 0.05 59
realpath 5933 2644 86 3203 0.03 72

rm 9242 6288 99 2855 0.02 153
rmdir 5511 4164 74 1273 0.02 80

runcon 3276 768 8 2500 0.01 23
seq 6587 4836 100 1651 0.02 84

shred 7770 5746 261 1763 0.05 133
shuf 7734 5516 340 1878 0.06 135

sleep 3658 2325 45 1288 0.02 69
split 6987 5416 99 1472 0.02 117
stat 11751 9765 111 1875 0.01 173

stdbuf 6226 4786 57 1383 0.01 96
stty 8749 7062 109 1578 0.02 101
sum 5011 2810 177 2024 0.06 80
sync 3509 2258 56 1195 0.02 60

tac 18526 15823 459 2244 0.03 228
tail 9765 5940 92 3733 0.02 117
tee 4013 2671 52 1290 0.02 78

test 6554 4976 35 1543 0.01 86
timeout 4354 2945 33 1376 0.01 93

touch 12559 10276 229 2054 0.02 140
tr 5630 4129 186 1315 0.05 91

true 3122 610 8 2504 0.01 23
truncate 4215 3002 26 1187 0.01 65

tsort 4306 2812 55 1439 0.02 85
tty 3184 1990 18 1176 0.01 54

uname 3356 2168 12 1176 0.01 54
unexpand 4114 2900 45 1169 0.02 83

uniq 5131 3779 32 1320 0.01 102
unlink 3315 2049 35 1231 0.02 56

uptime 6185 4448 69 1668 0.02 93
users 3588 2269 43 1276 0.02 65
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angr vdir 19134 12751 413 5970 0.03 230
wc 5367 3243 92 2032 0.03 86

who 6598 5237 61 1300 0.01 92
whoami 3309 2016 30 1263 0.01 57

yes 3456 837 22 2597 0.03 34

BAP [ 10264 2691 356 7217 0.13 63 ×
b2sum 14190 4193 223 9774 0.05 82 ×
base32 7258 1725 177 5356 0.1 61 ×
base64 7731 1664 177 5890 0.11 61 ×

basename 5894 826 114 4954 0.14 37 ×
basenc 7631 916 142 6573 0.16 34 ×

cat 6875 1362 117 5396 0.09 47 ×
chcon 12773 4080 182 8511 0.04 121 ×
chgrp 14333 4420 139 9774 0.03 127 ×

chmod 14887 4255 188 10444 0.04 118 ×
chown 14455 4739 214 9502 0.05 131 ×
chroot 7584 1370 204 6010 0.15 55 ×
cksum 6386 930 52 5404 0.06 45 ×
comm 8626 1713 139 6774 0.08 66 ×

cp 30012 8460 561 20991 0.07 208 ×
csplit 29985 4668 235 25082 0.05 113 ×

cut 8078 2257 120 5701 0.05 71 ×
date 17099 5451 1144 10504 0.21 114 ×

dd 19694 5461 502 13731 0.09 109 × ×
df 21992 2219 304 19469 0.14 67 ×

dir 28906 5718 667 22521 0.12 150 × ×
dircolors 5608 1634 120 3854 0.07 64 ×
dirname 5654 584 32 5038 0.05 26 ×

du 46684 14645 1074 30965 0.07 287 × ×
echo 5539 653 39 4847 0.06 23 ×
env 8105 2344 129 5632 0.06 66 ×

expand 7373 1320 205 5848 0.16 56 ×
expr 29179 12708 578 15893 0.05 213 ×

factor 16636 7299 164 9173 0.02 142 ×
false 4965 429 32 4504 0.07 21 ×
fmt 7744 2138 142 5464 0.07 67 ×
fold 6526 1249 152 5125 0.12 55 ×

getlimits 7160 1419 59 5682 0.04 36 ×
ginstall 39673 10716 302 28655 0.03 252 ×
groups 6360 1050 119 5191 0.11 42 ×

head 8553 2226 158 6169 0.07 60 ×
hostid 5418 591 126 4701 0.21 30 ×

id 8526 1885 215 6426 0.11 59 ×
join 10113 1538 249 8326 0.16 55 ×
kill 6308 1209 139 4960 0.11 47 ×
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BAP link 5572 663 122 4787 0.18 33 ×
ln 18841 4127 313 14401 0.08 130 ×

logname 5418 609 126 4683 0.21 32 ×
ls 28906 5718 667 22521 0.12 150 × ×

make-prime-list 1167 406 52 709 0.13 18
md5sum 8915 2779 154 5982 0.06 66 ×

mkdir 11711 1672 183 9856 0.11 62 ×
mkfifo 6713 1036 52 5625 0.05 39 ×
mknod 7022 1282 162 5578 0.13 43 ×

mktemp 9206 2103 172 6931 0.08 87 ×
mv 36229 11200 290 24739 0.03 261 ×

nice 5788 875 123 4790 0.14 34 ×
nl 25960 4941 196 20823 0.04 128 ×

nohup 7358 492 40 6826 0.08 23 ×
nproc 6717 878 154 5685 0.18 39 ×

numfmt 12126 3433 187 8506 0.05 70 × ×
od 14225 1494 485 12246 0.32 59 ×

paste 6474 1313 120 5041 0.09 49 ×
pathchk 6123 965 118 5040 0.12 36 ×

pinky 7019 841 47 6131 0.06 37 ×
pr 14900 1824 792 12284 0.43 79 ×

printenv 5188 535 32 4621 0.06 21 ×
printf 11414 1549 162 9703 0.1 59 ×

ptx 38123 6170 221 31732 0.04 115 ×
pwd 6222 1058 118 5046 0.11 51 ×

readlink 10410 1251 91 9068 0.07 46 ×
realpath 11368 1251 108 10009 0.09 46 ×

rm 14956 1768 205 12983 0.12 69 ×
rmdir 8230 765 114 7351 0.15 36 ×

runcon 5375 585 32 4758 0.05 21 ×
seq 11008 969 253 9786 0.26 42 ×

shred 14080 1616 538 11926 0.33 67 ×
shuf 13855 1849 340 11666 0.18 74 ×

sleep 7078 716 44 6318 0.06 38 ×
split 9845 2021 300 7524 0.15 66 ×
stat 15345 1291 129 13925 0.1 48 ×

stdbuf 10669 1360 172 9137 0.13 34 ×
stty 10982 2957 246 7779 0.08 55 ×
sum 8562 1277 220 7065 0.17 52 × ×
sync 5758 768 129 4861 0.17 31 ×

tac 27009 3910 154 22945 0.04 86 ×
tail 17006 3914 167 12925 0.04 94 ×
tee 7402 1196 129 6077 0.11 56 ×

test 9159 1937 377 6845 0.19 42 ×
timeout 6389 1038 118 5233 0.11 47 ×



103

BAP touch 14986 3222 190 11574 0.06 76 ×
tr 8997 1218 189 7590 0.16 41 ×

true 4970 428 32 4510 0.07 21 ×
truncate 6430 1078 149 5203 0.14 40 ×

tsort 7920 978 128 6814 0.13 46 ×
tty 4981 594 114 4273 0.19 29 ×

uname 5652 769 108 4775 0.14 30 ×
unexpand 7445 1065 152 6228 0.14 44 ×

uniq 8375 1385 138 6852 0.1 53 ×
unlink 5504 461 40 5003 0.09 22 ×

uptime 8375 482 40 7853 0.08 22 ×
users 6092 463 40 5589 0.09 22 ×
vdir 28906 848 469 27589 0.55 41 ×

wc 9968 1859 166 7943 0.09 74 ×
who 10487 895 114 9478 0.13 34 ×

whoami 5463 460 40 4963 0.09 22 ×
yes 6156 465 40 5651 0.09 22 ×

Ghidra [ 6666 5554 54 1058 0.01 96
b2sum 7528 5828 108 1592 0.02 103
base32 4378 3267 60 1051 0.02 83
base64 4317 3206 60 1051 0.02 83

basename 3256 2217 18 1021 0.01 59
basenc 5715 2628 50 3037 0.02 65

cat 3850 2734 59 1057 0.02 70
chcon 7817 5564 78 2175 0.01 143 ×
chgrp 8483 6214 106 2163 0.02 150

chmod 8055 5819 97 2139 0.02 140 ×
chown 8808 6548 93 2167 0.01 154
chroot 4382 3336 60 986 0.02 83
cksum 3394 2275 70 1049 0.03 70
comm 4258 3115 49 1094 0.02 86

cp 15179 11551 249 3379 0.02 244
csplit 19529 9033 130 10366 0.01 150 ×

cut 4646 3677 27 942 0.01 91
date 14178 12122 426 1630 0.04 151

dd 10337 7993 373 1971 0.05 132
df 12661 9468 224 2969 0.02 171

dir 18303 12751 267 5285 0.02 230 ×
dircolors 4133 3063 26 1044 0.01 86
dirname 3191 765 8 2418 0.01 28

du 28779 19356 564 8859 0.03 326 ×
echo 3313 929 13 2371 0.01 34
env 4956 3870 43 1043 0.01 86

expand 3826 2742 99 985 0.04 79
expr 18952 16778 484 1690 0.03 246 ×
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Ghidra factor 10249 8596 67 1586 0.01 152
false 2977 610 8 2359 0.01 23
fmt 4619 3686 29 904 0.01 91
fold 3727 2786 37 904 0.01 78

getlimits 4101 1600 36 2465 0.02 38
ginstall 18796 15318 296 3182 0.02 299
groups 3541 2455 23 1063 0.01 65

head 5001 3947 39 1015 0.01 82
hostid 3129 1987 30 1112 0.02 55

id 4583 3364 121 1098 0.04 76
join 5601 3123 135 2343 0.04 76
kill 3684 2613 40 1031 0.02 67
link 3185 2045 37 1103 0.02 57

ln 9049 5812 221 3016 0.04 154
logname 3149 2004 30 1115 0.01 56

ls 18303 12751 267 5285 0.02 230
make-prime-list 606 406 52 148 0.13 18

md5sum 5471 4256 60 1155 0.01 88
mkdir 6708 5289 121 1298 0.02 107
mkfifo 3511 2389 62 1060 0.03 61
mknod 4029 2775 68 1186 0.02 65

mktemp 4806 3551 74 1181 0.02 107
mv 17771 14398 190 3183 0.01 294

nice 3581 2511 27 1043 0.01 58
nl 17881 15959 462 1460 0.03 227 ×

nohup 3824 2529 92 1203 0.04 73
nproc 3604 2499 45 1060 0.02 66 ×

numfmt 7452 6003 113 1336 0.02 94
od 8941 4379 145 4417 0.03 93

paste 3709 2766 19 924 0.01 71
pathchk 3380 2402 26 952 0.01 59

pinky 4144 1820 25 2299 0.01 68
pr 9769 8397 103 1269 0.01 158

printenv 3088 718 8 2362 0.01 23
printf 6649 5426 63 1160 0.01 99 ×

ptx 23675 20905 555 2215 0.03 265 ×
pwd 3615 2573 26 1016 0.01 72

readlink 5263 2263 103 2897 0.05 59
realpath 5658 2644 86 2928 0.03 72

rm 8800 6288 99 2413 0.02 153
rmdir 5293 4164 74 1055 0.02 80

runcon 3133 768 8 2357 0.01 23
seq 6368 4836 100 1432 0.02 84

shred 7475 5746 151 1578 0.03 133
shuf 7419 5516 179 1724 0.03 135
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Ghidra sleep 3495 2325 45 1125 0.02 69
split 6755 5416 83 1256 0.02 117
stat 11321 9765 96 1460 0.01 173

stdbuf 5997 4786 57 1154 0.01 96 ×
stty 8450 7062 109 1279 0.02 101
sum 4797 2810 128 1859 0.05 80
sync 3360 2258 56 1046 0.02 60

tac 17903 15823 444 1636 0.03 228 ×
tail 9297 5940 94 3263 0.02 117
tee 3834 2671 37 1126 0.01 78

test 6298 4976 35 1287 0.01 86
timeout 4175 2945 33 1197 0.01 93

touch 12206 10276 229 1701 0.02 140
tr 5414 4129 69 1216 0.02 91

true 2978 610 8 2360 0.01 23
truncate 4033 3002 26 1005 0.01 65

tsort 4118 2812 55 1251 0.02 85
tty 3039 1990 18 1031 0.01 54

uname 3210 2168 12 1030 0.01 54
unexpand 3906 2900 45 961 0.02 83

uniq 4915 3779 32 1104 0.01 102
unlink 3168 2049 35 1084 0.02 56

uptime 5975 4448 69 1458 0.02 93
users 3437 2269 43 1125 0.02 65
vdir 18303 12751 267 5285 0.02 230 ×

wc 5130 3243 92 1795 0.03 86
who 6369 5237 61 1071 0.01 92

whoami 3162 2016 30 1116 0.01 57
yes 3300 837 22 2441 0.03 34

Dyninst [ 6764 5517 66 1181 0.01 97 ×
b2sum 7573 5754 254 1565 0.04 103 ×
base32 4407 3257 58 1092 0.02 83 ×
base64 4348 3191 62 1095 0.02 83 ×

basename 3269 2222 16 1031 0.01 60 ×
basenc 5777 2622 288 2867 0.11 65 ×

cat 3865 2669 80 1116 0.03 67 ×
chcon 8144 5622 83 2439 0.01 146 ×
chgrp 8640 6079 80 2481 0.01 149 ×

chmod 8289 5741 89 2459 0.02 141 ×
chown 8983 6223 93 2667 0.01 152 ×
chroot 4395 3151 75 1169 0.02 82 ×
cksum 3398 2262 60 1076 0.03 70 ×
comm 4287 3053 63 1171 0.02 86 ×

cp 15503 10771 163 4569 0.02 234 ×
csplit 19899 9477 191 10231 0.02 156 ×
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Dyninst cut 4686 3672 19 995 0.01 91 ×
date 14333 10789 1761 1783 0.16 145 ×

dd 10451 7860 381 2210 0.05 133 ×
df 12827 9398 223 3206 0.02 168 ×

dir 18694 12845 329 5520 0.03 230 ×
dircolors 4162 3045 24 1093 0.01 86 ×
dirname 3201 765 8 2428 0.01 28 ×

du 29379 19223 756 9400 0.04 321 ×
echo 3330 929 13 2388 0.01 34 ×
env 4975 3850 43 1082 0.01 86 ×

expand 3874 2707 123 1044 0.05 79 ×
expr 19339 16775 449 2115 0.03 246 ×

factor 10384 6088 35 4261 0.01 123 ×
false 2984 610 8 2366 0.01 23 ×
fmt 4663 3647 52 964 0.01 90 ×
fold 3746 2775 36 935 0.01 78 ×

getlimits 4103 1295 37 2771 0.03 29 ×
ginstall 19058 12227 461 6370 0.04 274 ×
groups 3546 2461 20 1065 0.01 66 ×

head 5027 3792 38 1197 0.01 81 ×
hostid 3136 1990 28 1118 0.01 56 ×

id 4618 3404 95 1119 0.03 79 ×
join 5706 2801 277 2628 0.1 61 ×
kill 3691 2159 22 1510 0.01 54 ×
link 3193 2068 27 1098 0.01 57 ×

ln 9151 5663 226 3262 0.04 152 ×
logname 3156 2007 28 1121 0.01 57 ×

ls 18694 12845 329 5520 0.03 230 ×
make-prime-list 600 406 55 139 0.14 18 ×

md5sum 5506 4167 74 1265 0.02 88 ×
mkdir 6809 3397 134 3278 0.04 94 ×
mkfifo 3537 2436 30 1071 0.01 61 ×
mknod 4058 2747 214 1097 0.08 64 ×

mktemp 4822 3553 73 1196 0.02 108 ×
mv 18066 10297 162 7607 0.02 228 ×

nice 3611 2514 25 1072 0.01 59 ×
nl 18256 15924 486 1846 0.03 228 ×

nohup 3832 2536 60 1236 0.02 73 ×
nproc 3617 2502 59 1056 0.02 67 ×

numfmt 7554 6061 155 1338 0.03 94 ×
od 9069 4336 136 4597 0.03 92 ×

paste 3733 2723 18 992 0.01 71 ×
pathchk 3387 2306 25 1056 0.01 56 ×

pinky 4157 1822 37 2298 0.02 69 ×
pr 9953 7891 462 1600 0.06 153 ×
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Dyninst printenv 3094 718 8 2368 0.01 23 ×
printf 6729 5363 82 1284 0.02 98 ×

ptx 24187 20967 714 2506 0.03 263 ×
pwd 3606 2546 24 1036 0.01 72 ×

readlink 5315 2270 93 2952 0.04 59 ×
realpath 5724 2609 85 3030 0.03 71 ×

rm 8977 5951 88 2938 0.01 152 ×
rmdir 5352 2230 19 3103 0.01 65 ×

runcon 3140 768 8 2364 0.01 23 ×
seq 6426 4900 121 1405 0.02 84 ×

shred 7545 3254 91 4200 0.03 89 ×
shuf 7488 4869 336 2283 0.07 123 ×

sleep 3507 2327 43 1137 0.02 69 ×
split 6798 5183 107 1508 0.02 116 ×
stat 11494 2742 20 8732 0.01 67 ×

stdbuf 6058 4597 70 1391 0.02 79 ×
stty 8572 6962 117 1493 0.02 100 ×
sum 4840 2757 166 1917 0.06 79 ×
sync 3366 2274 24 1068 0.01 60 ×

tac 18238 8921 136 9181 0.02 166 ×
tail 9522 6068 193 3261 0.03 123 ×
tee 3850 2630 52 1168 0.02 77 ×

test 6385 4939 47 1399 0.01 87 ×
timeout 4173 2947 31 1195 0.01 93 ×

touch 12334 8743 1847 1744 0.21 134 ×
tr 5462 4132 184 1146 0.04 92 ×

true 2984 610 8 2366 0.01 23 ×
truncate 4065 2887 25 1153 0.01 65 ×

tsort 4142 2826 41 1275 0.01 85 ×
tty 3044 1995 16 1033 0.01 55 ×

uname 3216 2171 10 1035 0.0 55 ×
unexpand 3954 2864 43 1047 0.02 83 ×

uniq 4944 3745 30 1169 0.01 101 ×
unlink 3175 2041 31 1103 0.02 56 ×

uptime 5995 4748 61 1186 0.01 108 ×
users 3438 2268 43 1127 0.02 66 ×
vdir 18694 12845 329 5520 0.03 230 ×

wc 5172 3232 76 1864 0.02 89 ×
who 6421 5250 47 1124 0.01 93 ×

whoami 3167 2019 28 1120 0.01 58 ×
yes 3315 837 22 2456 0.03 34 ×

Hopper [ 6654 5554 54 1046 0.01 96
b2sum 7513 5828 108 1577 0.02 103
base32 4370 3267 60 1043 0.02 83
base64 4309 3206 60 1043 0.02 83
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Hopper basename 3250 2217 18 1015 0.01 59
basenc 5703 2628 50 3025 0.02 65

cat 3844 2734 59 1051 0.02 70
chcon 7993 5777 83 2133 0.01 147
chgrp 8453 6214 106 2133 0.02 150

chmod 8111 5919 97 2095 0.02 142
chown 8778 6548 93 2137 0.01 154
chroot 4375 3336 60 979 0.02 83
cksum 3385 2275 70 1040 0.03 70
comm 4252 3115 49 1088 0.02 86

cp 15287 11551 248 3488 0.02 244
csplit 19505 9033 153 10319 0.02 150

cut 4637 3677 27 933 0.01 91
date 14166 11978 509 1679 0.04 151 × ×

dd 10307 7993 373 1941 0.05 132
df 12629 9468 224 2937 0.02 171

dir 18292 12607 350 5335 0.03 230 × ×
dircolors 4122 3063 26 1033 0.01 86
dirname 3185 765 8 2412 0.01 28

du 28729 19356 564 8809 0.03 326
echo 3307 929 13 2365 0.01 34
env 4942 3870 43 1029 0.01 86

expand 3845 2742 111 992 0.04 79
expr 18927 16778 484 1665 0.03 246

factor 10210 8596 67 1547 0.01 152
false 2971 610 8 2353 0.01 23
fmt 4612 3686 29 897 0.01 91
fold 3720 2786 37 897 0.01 78

getlimits 4084 1600 36 2448 0.02 38
ginstall 18737 15318 296 3123 0.02 299
groups 3532 2455 23 1054 0.01 65

head 4989 3947 39 1003 0.01 82
hostid 3121 1987 30 1104 0.02 55

id 4572 3364 121 1087 0.04 76
join 5642 3123 135 2384 0.04 76
kill 3674 2613 40 1021 0.02 67
link 3177 2045 37 1095 0.02 57

ln 9018 5812 221 2985 0.04 154
logname 3141 2004 30 1107 0.01 56

ls 18292 12607 350 5335 0.03 230 × ×
make-prime-list 594 406 52 136 0.13 18

md5sum 5461 4256 60 1145 0.01 88
mkdir 6688 5289 121 1278 0.02 107
mkfifo 3504 2389 62 1053 0.03 61
mknod 4022 2775 68 1179 0.02 65
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Hopper mktemp 4797 3551 74 1172 0.02 107
mv 17717 14398 190 3129 0.01 294

nice 3573 2511 27 1035 0.01 58
nl 17870 15959 485 1426 0.03 227

nohup 3816 2529 92 1195 0.04 73
nproc 3595 2499 45 1051 0.02 66

numfmt 7444 6003 113 1328 0.02 94
od 8906 4379 145 4382 0.03 93

paste 3703 2766 19 918 0.01 71
pathchk 3373 2402 26 945 0.01 59

pinky 4134 1820 25 2289 0.01 68
pr 9771 8253 185 1333 0.02 158 × ×

printenv 3082 718 8 2356 0.01 23
printf 6634 5426 63 1145 0.01 99

ptx 23639 20905 583 2151 0.03 265
pwd 3605 2573 26 1006 0.01 72

readlink 5243 2263 103 2877 0.05 59
realpath 5636 2644 86 2906 0.03 72

rm 8773 6288 99 2386 0.02 153
rmdir 5283 4164 74 1045 0.02 80

runcon 3127 768 8 2351 0.01 23
seq 6355 4836 100 1419 0.02 84

shred 7463 5746 151 1566 0.03 133
shuf 7400 5516 179 1705 0.03 135

sleep 3481 2325 45 1111 0.02 69
split 6754 5416 84 1254 0.02 117
stat 11306 9621 179 1506 0.02 173 × ×

stdbuf 5986 4786 57 1143 0.01 96
stty 8443 7062 109 1272 0.02 101
sum 4789 2810 128 1851 0.05 80
sync 3354 2258 56 1040 0.02 60

tac 17883 15823 444 1616 0.03 228
tail 9384 5940 92 3352 0.02 117
tee 3828 2671 37 1120 0.01 78

test 6286 4976 35 1275 0.01 86
timeout 4157 2945 33 1179 0.01 93

touch 12189 10132 312 1745 0.03 140 × ×
tr 5417 4129 69 1219 0.02 91

true 2972 610 8 2354 0.01 23
truncate 4023 3002 26 995 0.01 65

tsort 4109 2812 55 1242 0.02 85
tty 3033 1990 18 1025 0.01 54

uname 3203 2168 12 1023 0.01 54
unexpand 3924 2900 45 979 0.02 83

uniq 4906 3779 32 1095 0.01 102
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Hopper unlink 3160 2049 35 1076 0.02 56
uptime 5968 4448 69 1451 0.02 93

users 3429 2269 43 1117 0.02 65
vdir 18292 12607 350 5335 0.03 230 × ×

wc 5119 3243 92 1784 0.03 86
who 6353 5237 61 1055 0.01 92

whoami 3154 2016 30 1108 0.01 57
yes 3292 837 22 2433 0.03 34

IDA Pro [ 6615 5554 54 1007 0.01 96
b2sum 7489 5828 108 1553 0.02 103
base32 4344 3267 60 1017 0.02 83
base64 4283 3206 60 1017 0.02 83

basename 3221 2217 18 986 0.01 59
basenc 5672 2628 50 2994 0.02 65

cat 3818 2734 59 1025 0.02 70
chcon 7967 5777 83 2107 0.01 147
chgrp 8426 6214 106 2106 0.02 150

chmod 8085 5919 97 2069 0.02 142
chown 8750 6548 93 2109 0.01 154
chroot 4346 3336 60 950 0.02 83
cksum 3358 2275 71 1012 0.03 70
comm 4227 3115 49 1063 0.02 86

cp 15254 11551 248 3455 0.02 244
csplit 19465 9033 131 10301 0.01 150

cut 4609 3677 27 905 0.01 91
date 14134 12122 423 1589 0.03 151

dd 10284 7993 373 1918 0.05 132
df 12592 9468 225 2899 0.02 171

dir 18220 12751 268 5201 0.02 230
dircolors 4092 3063 26 1003 0.01 86
dirname 3157 765 8 2384 0.01 28

du 28690 19356 564 8770 0.03 326
echo 3279 929 13 2337 0.01 34
env 4913 3870 43 1000 0.01 86

expand 3820 2742 111 967 0.04 79
expr 18891 16778 485 1628 0.03 246

factor 10182 8596 67 1519 0.01 152
false 2943 610 8 2325 0.01 23
fmt 4587 3686 29 872 0.01 91
fold 3693 2786 37 870 0.01 78

getlimits 4059 1600 36 2423 0.02 38
ginstall 18706 15318 296 3092 0.02 299
groups 3502 2455 19 1028 0.01 65

head 4962 3947 39 976 0.01 82
hostid 3093 1987 30 1076 0.02 55
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IDA Pro id 4545 3364 121 1060 0.04 76
join 5616 3123 135 2358 0.04 76
kill 3647 2613 40 994 0.02 67
link 3150 2045 37 1068 0.02 57

ln 8989 5812 222 2955 0.04 154
logname 3115 2004 30 1081 0.01 56

ls 18220 12751 268 5201 0.02 230
make-prime-list 593 406 52 135 0.13 18

md5sum 5435 4256 60 1119 0.01 88
mkdir 6661 5289 121 1251 0.02 107
mkfifo 3476 2389 62 1025 0.03 61
mknod 3995 2775 68 1152 0.02 65

mktemp 4772 3551 74 1147 0.02 107
mv 17681 14398 190 3093 0.01 294

nice 3545 2511 27 1007 0.01 58
nl 17832 15959 462 1411 0.03 227

nohup 3789 2529 92 1168 0.04 73
nproc 3568 2499 45 1024 0.02 66

numfmt 7418 6003 113 1302 0.02 94
od 8878 4379 145 4354 0.03 93

paste 3675 2766 19 890 0.01 71
pathchk 3346 2402 26 918 0.01 59

pinky 4107 1820 25 2262 0.01 68
pr 9744 8397 102 1245 0.01 158

printenv 3053 718 8 2327 0.01 23
printf 6607 5426 63 1118 0.01 99

ptx 23596 20905 555 2136 0.03 265
pwd 3573 2573 26 974 0.01 72

readlink 5212 2263 105 2844 0.05 59
realpath 5607 2644 87 2876 0.03 72

rm 8742 6288 99 2355 0.02 153
rmdir 5256 4164 74 1018 0.02 80

runcon 3100 768 8 2324 0.01 23
seq 6330 4836 100 1394 0.02 84

shred 7438 5746 151 1541 0.03 133
shuf 7379 5516 179 1684 0.03 135

sleep 3452 2325 45 1082 0.02 69
split 6731 5416 84 1231 0.02 117
stat 11273 9765 96 1412 0.01 173

stdbuf 5956 4786 57 1113 0.01 96
stty 8419 7062 109 1248 0.02 101
sum 4761 2810 128 1823 0.05 80
sync 3328 2258 56 1014 0.02 60

tac 17847 15823 444 1580 0.03 228
tail 9363 5940 92 3331 0.02 117
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IDA Pro tee 3803 2671 37 1095 0.01 78
test 6246 4976 35 1235 0.01 86

timeout 4129 2945 33 1151 0.01 93
touch 12160 10276 229 1655 0.02 140

tr 5374 4129 69 1176 0.02 91
true 2943 610 8 2325 0.01 23

truncate 3995 3002 26 967 0.01 65
tsort 4084 2812 55 1217 0.02 85

tty 3005 1990 18 997 0.01 54
uname 3176 2168 12 996 0.01 54

unexpand 3899 2900 45 954 0.02 83
uniq 4880 3779 32 1069 0.01 102

unlink 3132 2049 35 1048 0.02 56
uptime 5936 4448 69 1419 0.02 93

users 3401 2269 43 1089 0.02 65
vdir 18220 12751 268 5201 0.02 230

wc 5091 3243 92 1756 0.03 86
who 6327 5237 61 1029 0.01 92

whoami 3126 2016 30 1080 0.01 57
yes 3265 837 22 2406 0.03 34
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