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ABSTRACT

Caulobacter crescentus goes through a classic dimorphic cell division cycle to adapt to the
stringent environment and reduce intraspecific competition. Caulobacter mother cell gives
rise to two progenies with distinct morphology - a motile swarmer cell equipped with a flag-
ellum and a sessile stalked cell equipped with a stalk. Because of the nature of dimorphic
lifestyle, Caulobacter becomes a model bacterium to study the cell differentiation, signalling
transduction, stress response, and asymmetry development of prokaryotes. The dimorphic
cell cycle of Caulobacter is driven by the elaborate spatiotemporal organization of regula-
tory molecules through regulations of synthesis, degradation, phosphorelay, and localization.
There is a wealth of experimental observations about gene/protein interactions and localiza-
tions accumulated in recent decades, while several mathematical models have been proposed
to study the cell cycle progression in Caulobacter. However, the specific control mechanisms
of stress response and spatial asymmetry establishment are yet clearly elucidated, while these
mechanisms are of fundamental importance to understanding the bacterial survival strategy
and developing the microbial industry.

Here we utilize mathematical modeling to study the regulatory network of cell cycle con-
trol in C. crescentus, focusing on the stress response and asymmetry development. First,
we investigate the starvation response of Caulobacter through the connection of phospho-
transferase systems (PTS) and guanine nucleotide-based second messenger system. We have
developed a mathematical model to capture the temporal dynamics of vital regulatory second
messengers, c-di-GMP (cdG) and guanosine pentaphosphate or tetraphosphate (pppGpp or
ppGpp), under normal and stressful conditions. This research suggests that the RelA-SpoT
homolog enzymes have the potential to effectively influence the cell cycle in response to
nutrition changes by regulating cdG and (p)ppGpp levels. We further integrate the second
messenger network into a temporal cell cycle model to investigate molecular mechanisms
underlying responses of Caulobacter to nutrition starvation. Our model suggests that the
cdG-relevant starvation signal is essential but not sufficient to robustly arrest the cell cycle
of Caulobacter. We also demonstrate that there may be unknown pathway(s) reducing CtrA
under starvation conditions, which results in delayed cytokinesis in starved stalked cells.

The cell cycle development of Caulobacter is determined by the periodical activation and
deactivation of the master regulator CtrA. cdG is an essential component of the ClpXP pro-



tease complex, which is specifically responsible for the degradation of CtrA. We propose a
mathematical model for the hierarchical assembly of ClpXP complexes, together with model-
ing DNA replication, transcription, and protein interactions, to characterize the Caulobacter
cell cycle. Our model suggests that the ClpXP-based proteolysis system contributes to the
timing and robustness of the cell cycle progression.

Furthermore, we construct a spatiotemporal model with Turing-pattern mechanism to study
the morphogenesis and asymmetry establishment during the cell cycle of Caulobacter. We
apply reaction-diffusion equations to capture the spatial dynamics of scaffolding proteins
PodJ, PopZ, and SpmX, which organize two distinct poles of Caulobacter. The spatial
regulations influence the activity and distribution of key cell cycle regulators, governing the
dimorphic lifestyle of Caulobacter. Our model captures major spatiotemporal experimental
observations of wild-type and mutant cells. It provides predictions of novel mutant strains
and explains the spatial regulatory mechanisms of bacterial cell cycle progression.
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GENERAL AUDIENCE ABSTRACT

Cell is the basic unit of life that undergoes a process called ‘cell cycle’ consisting of DNA repli-
cation and cell division to exhibit various functions, abilities, and behaviors. The cell cycle
is well organized by complex regulations in time and space that determine when and where
changes take place. The regulations behind cell cycle development play important roles for
living organisms but are not fully understood. In this dissertation, we utilize mathematical
models and focus on a model bacterium, Caulobacter crescentus, to capture characteristics of
cell cycle and study the underlying regulations. Caulobacter is widely distributed in freshwa-
ter, including environments with poor nutrients. It divides asymmetrically, generating a pair
of daughter cells with different appearances and replicative potentials. Therefore, Caulobac-
ter population has the flexibility to save energy by halting DNA replication and to reduce
the competition with siblings by settling into different places. We utilize the nature of the
asymmetrical division of Caulobacter to quantitatively investigate the control mechanisms of
cell cycle development, including how cells detect and respond to external cues and develop
different organelles at specific times and locations.
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Chapter 1

Introduction

1.1 Cell cycle regulation in bacteria

Bacteria is enormously diverse, with a wide range of cellular volumes and genome sizes [1].
All bacterial species must coordinate their cellular growth, division, shape, and volume with
the inheritance of genetic expression based on environmental changes to survive in diverse
ecosystems worldwide [1, 2]. On the other hand, events and activities of the bacterial cell
cycle have to be precisely operated in time and space. The coordination and regulation
of bacterial cell cycle are referred as ’complex’, which cover not only the transcriptional
control but non-transcriptional mechanisms such as phospho-signalling and subcellular lo-
calization [3].

A few master regulatory proteins constitute a core transcriptional regulatory network to
control the bacterial cell cycle [3]. For instance, CtrA in Caulobacter crescentus directly
controls the transcription of more than 90 genes [3]. It also coordinates with other regulators,
including DnaA and GcrA, to control the initiation of chromosome replication [4].

Many bacterial species go through multiple states in response to environmental changes,
such as asymmetrical cell divisions and morphogenesis [1]. C. crescentus cells always divide
asymmetrically, producing distinct daughter cells to adapt to oligotrophic environments.
Bacillus subtilis cells divide asymmetrically to produce a forespore under nutrient starvation
conditions. The sporulation is determined by a master regulator Spo0A, which is parallel in
many aspects to CtrA in C. crescentus [3, 5]. Both CtrA and Spo0A are response regulators
of two-component transduction signaling pathways (TCS), which are activated (phospho-
rylated) by the phosphorelay kinases CckA-ChpT and Spo0F-Spo0B, respectively [5]. In
addition to the control of DNA replication, phosphorylated CtrA modulates the flagella bio-
genesis and pili structure [3]. Phosphorylated Spo0A regulates the transcription of hundreds
of genes and determines the location of septum [5]. The dynamics of TCS proteins play
important roles in the precise timing and asymmetry development during the asymmetrical

1
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cell cycle.

Moreover, the phosphotransfer pathways provide fast signaling to integrate internal status
and external cues, enabling bacterial cells to rapidly respond to environmental changes. For
example, the nitrogen-related phosphotransferase system (PTSNtr) receives nitrogen signals
from environments and downstream mediates the activity of a bifunctional enzyme SpoT
in C. crescentus. SpoT transfers the metabolic cues into the internal system by regulating
levels of guanine-based second messengers (p)ppGpp and cyclic-di-GMP, which participate
in multiple cell cycle progression activities, such as morphogenesis, cell cycle-dependent
proteolysis, and cell growth [6].

The subcellular localization of key molecules is essential for bacterial cell morphogenesis. In
B. subtilis, Spo0A-regulated transcriptions differ on the two sides of the septum, resulting
in the asymmetry between the mother cell and forespore [5]. C. crescentus cells develop two
poles with distinct spatial localization of proteins, such as the new polar scaffolding protein
PodJ and the old polar scaffolding protein PopZ [7]. Although spatial observations and data
have been accumulated in recent years, the underlying principles and mechanisms are poorly
understood.

1.2 The asymmetrical cell cycle in Caulobacter cres-

centus

Caulobacter crescentus is a model organism for the study of cell cycle regulation and asym-
metry establishment in prokaryotes. It is widely discovered in freshwater and some kinds of
soils, even in oligotrophic environments [8, 9]. The successful survival in harsh environments
benefits from its asymmetrical cell cycle. Caulobacter expresses different organelles in differ-
ent phases and undergoes an asymmetrical cell division during the cell cycle, giving rise to
two distinct daughter cells [10] (Fig. 1.1). One daughter, called ‘swarmer cell’, is equipped
with a flagellum and several pili, which allow the cell to move and search for nutrients in
environments. Swarmer cell is in the G1 phase, where DNA replication and cell reproduction
are halted. The other daughter is called ‘stalked cell’, which expresses a holdfast and a stalk,
clinging to a solid surface in environments. The stalked cell is ready to replicate DNA and
to enter the next reproduction cycle. Given favorable environments, the swarmer cell will
differentiate into a stalked morphological cell by rejecting its flagellum and synthesizing a
stalk [11, 12]. Simultaneously, the Caulobacter cell initiates DNA replication and enters the
S-phase during the differentiation stage.

The asymmetrical lifestyle makes Caulobacter easily synchronized and tracked in wet lab,
which greatly helps molecular data collection [10]. The rapid synchronization of Caulobacter
can be performed in a large-scale format by density centrifugation, which permits gene
expression profiling, western blot assays, and fluorescence analysis [10, 13, 14, 15].
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Figure 1.1: The asymmetrical cell cycle of C. crescentus.
The mother cell produces two distinct daughter cells. The stalked daughter cell is non-motile
with a holdfast. The swarmer daughter cell is motile with pili and a flagellum. The swarmer
cell transforms into a stalked cell before DNA replication commences, while the stalked cell
enters the S-phase and initiates DNA replication immediately.
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1.3 Mathematical models for the study of cell cycle

regulation

With the revolution of biotechnology, a great amount of data for biological systems has
remarkably been made available, from molecule to single-cell and to the population lev-
els [16, 17]. Both temporal and spatial observations for the cell cycle development have been
accumulated from multiple sources of data [14, 7, 13, 15]. To interpret these data, many con-
ceptual models with simple diagrams that describe involved species and their relationships
within cells have been proposed following experiments [7, 18]. However, conceptual mod-
els only superficially explain subsystems rather than a global system with multiple pieces
integrated. It is still challenging to understand and integrate detailed mechanisms of the
complex regulatory system of cell cycle.

Mathematical modeling has been successfully applied in many biological systems to integrate
and provide hypotheses on known and/or unknown pathways and mechanisms to explain ex-
perimental observations [19, 20, 21]. It also has the potential to integrate data from different
sources for different subsystems into a whole-cell model [22]. Additionally, mathematical
models can be used to compare hypotheses and identify which hypothesis is more reasonable
to explain certain experimental observations. Another application of mathematical models is
to predict unrevealed behaviors and phenomena. Mathematical models can suggest further
experimental directions, reduce the range of hypotheses to be verified, and save time and
labor.

1.4 Summary of research

This work aims to integrate various levels and types of experimental observations to for-
mulate a mathematical model that can explain the control mechanisms underlying precise
cell development, asymmetry establishment, and stress responses during the cell cycle of
Caulobacter crescentus.

In Chapter 2, we model a second messenger network to investigate the detection and re-
sponse to environmental nutrition changes in Caulobacter. This work characterizes PTSNtr

with empirical data and explains how PTSNtr enzymes detect external nitrogen and car-
bon signals - the environmental abundance of glutamine, phosphoenolpyruvate (PEP) and
pyruvate (Pyr). Our model quantitatively describes the signal transmission within PTSNtr

via phosphotransfer cascades and the connection to the downstream regulatory second mes-
sengers - guanosine derivative (p)ppGpp and c-di-GMP (cdG). As (p)ppGpp and cdG both
play important roles in key cellular processes, such as cell growth and differentiation, this
model provides a significant perspective to quantitatively explore the bacterial response to
environments.
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In Chapter 3, we propose a deterministic model described by a set of ordinary differential
equations to characterize the underlying mechanisms of cell cycle regulation, which inte-
grates replication, methylation, transcription, and hierarchical proteolysis of key cell cycle
regulators in Caulobacter. ClpXP is a vital protease in Caulobacter, which hierarchically
recruits helpers to constitute different protease complexes that degrade many proteins such
as CtrA, TacA, PdeA, and so on. The second messenger cdG, investigated in Chapter 2,
is a key member of the ClpXP protease complex, which is specifically responsible for the
proteolysis of CtrA. We explicitly model the hierarchical recruitment by ClpXP and use
this quantitative module to simulate the proteolysis of relevant proteins. Considering the
good consistency between our simulations with experimental observations in the dynamics
of mRNA and proteins of wild type as well as mutant strains, our model can be used to
investigate the contribution of proteolysis and predict unknown behaviors of novel mutant
cells. Additionally, the connection between Chapter 2 and Chapter 3 provides a perspective
to understand the environmental response through the cdG-CtrA pathway.

Chapter 4 integrates the second messenger model of Chapter 2 into a large temporal frame of
cell cycle regulation, which is originally proposed by a previous lab member, Dr. Weston [22].
The previous temporal model explained regulatory mechanisms of cell cycle in Caulobacter
by modeling genetic regulations and multiple interactions of essential master regulators. Al-
though our second messenger network (Chapter 2) easily transmits nutrition cues into the
temporal regulatory network, it is not sufficient to capture all behaviors of starved popu-
lations observed in experiments. Thus, we thoroughly reviewed, modified, and improved
the temporal model focusing on pathways related with environmental responses. Roughly
and wrongly modelled pathways have been improved or corrected, such as the adjustment
of ClpXP protease complexes. An important cdG-relevant pathway, ShkA-TacA-SpmX, has
been integrated to reform the modeling of SpmX and CtrA. Other starvation signaling path-
ways, such as RpoD-targeted transcription and supplementary phosphatase CckN-regulated
phospho-signaling, have been taken into the large frame to improve our simulation. Our new
temporal model is able to reproduce and explain a series of observed changes under nutrition
shifts.

In Chapter 5, we provide a spatiotemporal mathematical model to analyze the asymmetry
establishment during the cell cycle in Caulobacter. We combine the Turing-pattern mecha-
nism with interactions among three scaffolding proteins - PodJ, PopZ, and SpmX - to explain
the initial organization of two distinct poles of Caulobacter cells. Building on the network of
scaffolding proteins, we further integrate spatial regulations with phosphotransfer and tem-
poral regulations to explore the non-uniform distributions of key regulators, such as DivK
and CtrA. Our model captures phenotypes of both wild-type and mutant cells. Besides ex-
planation for the spatial development of the asymmetrical cell cycle, this model also provides
predictions of novel mutants, gives a good application of multiobjective parameterization,
and helps to resolve controversial hypotheses.
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2.1 Abstract

Second messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria,
influencing cellular processes such as biofilm formation, transcription, virulence, quorum
sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP
molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus, c-di-
GMP works as a major regulator of pole morphogenesis and cell development. It inhibits
cell motility and promotes S-phase entry by inhibiting the activity of the master regulator,
CtrA. On the contrary, the intracellular (p)ppGpp accumulates under starvation, which helps
bacteria to survive under stressful conditions by regulating nucleotide levels and halting
proliferation. (p)ppGpp responds to nitrogen levels through RelA-SpoT homolog enzymes,
detecting glutamine concentration using a nitrogen phosphotransferase system (PTSNtr).

6
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This work relates the guanine nucleotide-based second messenger regulatory network with
the bacterial PTSNtr system and investigates how bacteria respond to nutrient availability.

We propose a mathematical model to capture the dynamics of c-di-GMP and (p)ppGpp
in C. crescentus and investigate how the guanine nucleotide-based second messenger system
responds to certain environmental changes communicated through the PTSNtr system. In this
chapter, we demonstrate how the PTSNtr system influences (p)ppGpp, c-di-GMP, GMP and
GTP concentrations. While this model does not consider all aspects of PTSNtr signaling, such
as cross-talk with the carbon PTS system, here we present our first effort to develop a model
of nutrient signaling in C. crescentus. Our simulations are consistent with experimental
observations and suggest, among other predictions, that SpoT can effectively decrease cdG
levels in response to nitrogen starvation just as well as it increases (p)ppGpp levels. Thus,
the activity of SpoT (or its homologues in other bacterial species) can likely influence the
cell cycle by influencing both cdG and (p)ppGpp.

2.2 Introduction

Caulobacter crescentus is an oligotrophic, Gram-negative α-proteobacterium, frequently found
in freshwater environments. C. crescentus undergoes asymmetrical cell division, yielding two
distinct progeny cells (Fig. 2.1): a non-motile ‘stalked’ cell (st) immediately re-enters the cell
cycle and initiates DNA replication, while a motile ‘swarmer’ cell (sw) explores its environ-
ment before differentiating into a stalked cell and re-entering the cell cycle [4]. The stalked
cell is equipped with a holdfast to attach to solid surfaces in its environment, whereas the
swarmer cell develops a flagellum to move around in search of a suitable nutrient environ-
ment. The asymmetrical cell cycle affords C. crescentus a certain flexibility to cope with the
vagaries of life in an oligotrophic, aquatic environment [23].

Since asymmetrical cell division plays an essential role in survival for C. crescentus, un-
derstanding how the asymmetry is regulated provides insights into the life cycle of many
bacteria with similar characteristics. Many proteins, genes, and other molecules involved in
the asymmetrical pattern have been reported [23, 24]. CtrA, a master regulator of the C.
crescentus life cycle, regulates more than 100 genes involved in flagellum biogenesis, DNA
replication, and cell division [25, 26]. As CtrA inhibits the initiation of DNA replication,
active CtrA (the phosphorylated form) must be eliminated during the swarmer-to-stalked
(G1-to-S) transition (Fig. 2.1). There are two pathways to inactivate CtrA: proteolysis by
ClpXP [27] and dephosphorylation by CckA [28].

In C. crescentus, the spatio-temporally regulated proteolysis of CtrA requires protease ClpXP
and additional factors called adaptors [27, 29]. The protease complex consists of CpdR,
RcdA, PopA, and a second messenger c-di-GMP (cdG) (Fig. 2.2). ClpXP primed by un-
phosphorylated CpdR localizes at the old pole (Fig. 2.1) and recruits the adaptor RcdA
which directly interacts with PopA. PopA must be bound with cdG to adapt CtrA to the
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entire protease complex, which means cdG is indispensable for CtrA proteolysis. In addi-
tion to regulating CtrA proteolysis, cdG also participates in CtrA dephosporylation through
CckA [28] (Fig. 2.2). CckA is a bifunctional enzyme, which can act as both a phosphatase
and a kinase to regulate the phosphorylation state of CtrA and CpdR. When cdG binds with
CckA, CckA activity favors the phosphatase state over the kinase state. When cdG level
peaks during the G1-to-S transition, the dephosphorylation of CtrA and CpdR is rapidly
stimulated, which allows DNA replication to initiate [30]. In this way, cdG stimulates the
initiation of DNA replication by activating the dephosphorylation and degradation of CtrA
(Fig. 2.2).

Figure 2.1: The asymmetrical cell cycle and nonuniform distributions of molecules
of C. crescentus.
The nascent swarmer daughter cell is differentiated into the stalked morphology and then
initiates DNA replication, while the nascent stalked cell is ready to reproduce. CtrA regulates
cell cycle progression in time and space. CtrA is eliminated during the G1-to-S transition.
The gray intensity indicates the concentrations of CtrA during cell cycle progression. ClpXP,
a protease specific for CtrA, shows up at the flagellated pole of a cell to degrade CtrA. c-di-
GMP cooperates with ClpXP for CtrA proteolysis.

While cdG stimulates the G1-to-S transition, alternative guanine-nucleotide based secondary
messengers, guanosine tetraphosphate and guanosine pentaphosphate ((p)ppGpp), promote
the mobility and cell cycle arrest in C. crescentus. While the exact mechanisms are unknown,
it is understood that (p)ppGpp indirectly promotes the stabilization of CtrA and degradation
of DnaA, as well as interacting with RNA polymerase to influence global gene expression [31].
Additionally, cdG and (p)ppGpp control several key processes to help bacteria adjust to
environmental cues, such as depletion of nutrients [31, 32].
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Figure 2.2: c-di-GMP regulates DNA replication and cell motility through CtrA.
(Left-hand side) cdG directly stimulates the phosphatase activity of CckA, thereby dephos-
phorylating CtrA to allow the initiation of DNA replication. (Right-hand side) cdG is also
required for CtrA proteolysis.

There is evidence that bacteria accumulate (p)ppGpp in response to carbon and/or nitrogen
limitation [31] by regulating RelA-SpoT homolog (RSH) enzymes. Furthermore, bacteria re-
spond to the availability of carbon through cdG-regulated signaling processes [32]. However,
the specific mechanisms by which stressful conditions affect cell cycle progression through
the second messenger system and other key proteins in C. crescentus is not clear.

In this work, we combine cdG, (p)ppGpp, and GTP into one mathematical model to in-
vestigate the dynamics of these second messengers and how they respond to environmental
changes through the PTSNtr. Our model suggests that the concentration of cdG decreases
dramatically following nitrogen deprivation in response to increased synthetase and decreased
hydrolase activity of the bifunctional enzyme, SpoT. This observation suggests a novel mech-
anism by which C. crescentus may regulate its cell cycle in response to nitrogen availability.
Our model also suggests that (p)ppGpp-associated stability of CtrA may be a result of re-
duced cdG activity due to the depletion of GTP. The dynamics of PTSNtr enzymes have
not yet been measured experimentally, however our model predicts how they might behave
under various levels of nitrogen availability. Intracellular glutamine, phosphoenolpyruvate
(PEP), and pyruvate (Pyr) affect the phosphorylation state of PTSNtr enzymes in our model,
which suggests that a stringent response to nutrient availability by guanine nucleotide-based
second messengers may be enforced through both glutamine level and the concentrations of
PEP and Pyr.



Chunrui Xu Chapter 2. Cell cycle control and environmental response ... 10

2.3 Methods

2.3.1 Diagram construction

Metabolism and characterization of c-di-GMP

The cellular concentration of cdG is regulated by its synthesis by diguanylate cyclases
(DGCs) and its degradation by phosphodiesterases (PDEs) [33]. DGCs (like PleD and
DgcB), whose activities reside in the highly conserved GGDEF domain, act as dimers to
produce cdG from two GTP molecules [34]. cdG negatively regulates its own synthesis by
allosterically binding with the I-site of DGCs to inhibit the synthetase activity [33].

PDEs (such as PdeA and PdeB) cleave cdG to linear diguanylate (pGpG) or to GMP, based
on the conserved EAL domain or HD-GYP domain, respectively [34]. As pGpG is eventually
converted into GMP (Fig. 2.3), we ignore pGpG in the model and consider two molecules
of GMP as the product of cdG degradation. In addition, the activity of some PDEs in C.
crescentus is activated by binding GTP [35]. The initial velocity of hydrolysis by PDEs
reaches Vmax/2 when the concentration of GTP is 4µM. Because GTP concentration in
bacteria is much higher than 4µM [36, 37, 38], we assume PDEs are constantly saturated
with GTP and do not include this interaction in our model.

Figure 2.3: Schematic diagram of cdG metabolism.
DGCs catalyze the synthesis of cdG. PDEs cleave cdG into pGpG, which is subsequently
cleaved to two molecules of GMP.

Metabolism and characterization of (p)ppGpp

(p)ppGpp accumulates in most bacteria under stressful conditions, such as nutrient starva-
tion [31, 6]. In C. crescentus, (p)ppGpp delays the entry into S phase and the swarmer-to-
stalked cell transition. This response gives C. crescentus an advantage in nutrient-deprived
environments by maintaining its mobility to search for better environments and by de-
laying DNA replication to conserve energy [32]. C. crescentus utilizes the bifunctional
enzyme SpoT, an RSH homologue, to catalyze the conversion between (GTP)GDP and
(p)ppGpp [39, 6, 40] (Fig. 2.4, Fig. 2.5).

It has been reported that (p)ppGpp inhibits the synthesis of GMP and GDP through binding
the corresponding synthetases, such as HPRT, GMK, and their homologues [41, 42]. The
binding affinity of HPRT for pppGpp is Kd = 3.38 µM in E. coli, but only 0.24 µM in C.
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crescentus [42]. We ignored this inhibition (Fig. 2.5) because the HPRT homologue should
be saturated with basal levels of (p)ppGpp in bacteria (10-50 µM [32, 42]).

Figure 2.4: Metabolism of (p)ppGpp.
SpoT, a bifunctional enzyme in C. crescentus, catalyzes both the synthesis and hydrolysis
of (p)ppGpp. SpoTsd and SpoThd indicate the synthetase and hydrolase activity of SpoT,
respectively.

Nitrogen phosphotransferase system

It has been well documented that (p)ppGpp responds to carbon and nitrogen depriva-
tions [32, 39, 41]. While the specific mechanism underlying carbon starvation is not yet
clear, the mechanism responsible for nitrogen starvation has been recently elucidated [31].
The accumulation of (p)ppGpp following nitrogen starvation is regulated by the nitrogen
phosphotransferase system (PTSNtr) [31, 6].

The PTSNtr consists of three components (EINtr, NPr, and EIIANtr) which form a phosphory-
lation cascade (Fig. 2.5). The first protein EINtr initiates the cascade through autophospho-
rylation using PEP as the phosphoryl donor. Then the phosphoryl group is transferred from
EINtr to NPr and then to EIIANtr. This process is reversible, so three components exchange
phosphate groups and reach a steady state. EIIANtr can transfer its phosphate group to
other unknown molecules [43]. We assume that the rate of phosphoryl transfer from EIIANtr

to these other molecules outside of the PTSNtr is far slower than the transfer rate among
PTSNtr proteins and the exchange with PEP and pyruvate. Therefore, we do not consider
to include a terminal phosphate sink in our model of the PTSNtr.

Glutamine binds to the conserved GAF domain of EINtr (Fig. 2.6) to prevent its autophos-
phorylation. Because glutamine works as a powerful nitrogen signal, enzymes involved in the
PTSNtr become highly phosphorylated under nitrogen starvation when the intracellular level
of glutamine decreases rapidly [31]. The PTSNtr influences cdG dynamics by its effects on
SpoT activity. Bacterial two-hybrid assays and mutant experiments [6] indicate that phos-
phorylated EIIANtr directly interacts with SpoT to inhibit its hydrolase activity, whereas
phosphorylated NPr activates SpoT synthetase activity indirectly (Fig. 2.5). In this way,
the PTSNtr, which senses nitrogen availability through glutamine, subsequently regulates
SpoT activity and (p)ppGpp levels.
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Figure 2.5: Diagram of the second messenger regulatory network.
Glutamine (Gln) acts as the nitrogen signal, which regulates the phosphorylation state of
PTSNtr enzymes. Solid black arrows represent conversion between molecular species. Solid
purple lines indicate transfer of phosphoryl groups between species, where the phosphoryl
transfer is reversible. Dashed lines represent allosteric influences on reaction rates (an arrow-
head represents activation and a bar-head inhibition). Dashed line 1 indicates the product-
inhibition based on cdG binding to the I-site of DGCs. Dashed line 2-1 indicates that
phosphorylated NPr indirectly activates the synthase activity of SpoT, and dashed line 2-2
indicates that phosphorylated EIIANtr directly inhibits the hydrolase activity of SpoT.
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Figure 2.6: Schematic diagram of EINtr structure and phosphate transfer.
The C-terminus of EINtr bears a PEP-binding domain (PBD) and the N-terminus is respon-
sible for binding NPr (NBD). The red dashed arrows indicate the direction of phosphate
transfer. The separate GAF domain senses nitrogen availability by binding glutamine, which
inhibits phosphoryl group transferred from PEP to EINtr.

2.3.2 Mathematical model

Based on the diagram in Fig. 2.5, the reactions of our model are as follows.

The activity of DGCs is subject to the product inhibition through binding of cdG. As two
cdG molecules bind allosterically to each DGC dimer, we assumed that cdG inhibition of
DGC is a cooperative process. Thus we expressed the activity of [DGC] as a Hill function
with a Hill exponent of 2 (Table 2.1, Equation (1)). Unlike DGCs, PDEs act as monomers,
which convert cdG to pGpG or GMP [34]. pGpG is subsequently converted into GMP [31].
We assumed this reaction is very fast and ignored the intermediate pGpG.

2GTP
DGCs−→ c-di−GMP

PDEs−→ 2GMP.

As GDP and GTP can be interconverted and their products, ppGpp and pppGpp, with
similar behaviour [39, 44, 32], we lumped GDP and GTP into a single variable, ‘GTP’,
and ppGpp and pppGpp are also condensed into one variable, (p)ppGpp. These ‘variables’
are interconverted by the synthetase and hydrolase activities of SpoT (SpoTsd and SpoThd,
respectively). To take the direct and indirect effects of NPr∼P and EIIANtr ∼P into consid-
eration [45], we define a variable α (Table 2.1) as the synthetase:hydrolase ratio of SpoT.

(p)ppGpp
SpoThd−−−−⇀↽−−−−
SpoTsd

GTP.

The interconversion of GTP, GDP and GMP is described compactly in our mathematical
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model by the reversible reaction

GTP
kd.GTP−−−−⇀↽−−−−
ks.GTP

GMP.

PEP binds to the C-terminal domain of EI and donates a phosphoryl group to His-189
(Fig. 2.6). Then the phosphoryl group is transferred to the next two enzymes, NPr and
EIIANtr, in sequence [46, 47]. Glutamine binds to an allosteric site of EINtr (the GAF domain)
[48] and inhibits phosphoryl transfer to His-189 [31, 49] (Fig. 2.6). The phosphorylation
cascade is summarized by the following reactions:

EI + PEP
kb1−−−⇀↽−−−
kb−1

EIPEP,

EIPEP
k1(inhibited byGln)−−−−−−−−−−−⇀↽−−−−−−−−−−−

k−1

EI∼PPyr,

EI∼PPyr
kb−2−−−⇀↽−−−
kb2

EI∼P + Pyr,

EI∼Ptot +NPr
k2−−⇀↽−−
k−2

EItot +NPr∼P,

NPr∼P + EIIA
k3−−⇀↽−−
k−3

NPr + EIIA∼P ·

where EI∼Ptot= EI∼P + EI∼PPyr and EItot= EI + EIPEP. EIPEP and EI∼PPyr indicate
EI bound with PEP and EI∼P bound with Pyr, respectively. k±i (i = 1, 2, 3) are the rate
constants of phosphorylation reactions, while kb±j

(j = 1, 2) are the rate constants of binding
reactions.

Here, we make several assumptions to describe PTSNtr reactions effectively:
(1) As PEP binding to EI is a rapid process [46, 50], we assumed that PEP and Pyr binding
reactions are much faster than phosphorylation reactions (reaching quasi-steady state) [46].
Therefore, we converted the binding reactions into algebraic equations (Table 2.1, Equation
(8, 9)).
(2) We assumed that EI∼P and EI∼PPyr phosphorylate NPr at the same rate, but EIPyr

is unstable and immediately dissociates into EI and Pyr. Similarly, we assumed that EI
and EIPEPcan be phosphorylated by NPr∼P, but EI∼PPEP is unstable and immediately
dissociates into EI∼P and PEP.
(3) Since there is limited experimental data for the kinetic rate constants of the nitrogen
PTS, we utilized experiments on the carbon PTS system to estimate these rate constants in
our model. The kinetics of the carbon and nitrogen PTSs are likely very similar as they are
homologues [51, 52].
(4) The total concentrations of EINtr, NPr and EIIANtr are assumed to be constants [53]. We
estimated the total concentrations to be: [EINtr]T = 10µM, [NPr]T = 30µM, and [EIIANtr]T
= 30µM [54, 55, 56].
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The resulting mathematical model consists of seven ODEs and five algebraic equations (Ta-
ble 2.1 and Appendix A.1). Parameters are defined in Table 2.2. Whenever possible, we
estimated parameters from experimental data. Initial conditions in Table 2.3 were estimated
from the intracellular concentrations in bacteria. The maximum concentration of cdG in C.
crescentus is around 2.8µM [57]. The basal levels of (p)ppGpp and GTP in Gram-negative
bacteria during normal conditions are around 50µM and 1000µM [36], respectively. The
ratio of [(p)ppGpp] to [GTP] in C. crescentus varies from 0.15 to 1.9 under rich and limited
nitrogen conditions [58, 59, 40]. We used these values to calibrate our model. The ODEs
were solved in MATLAB with ode15s.

Table 2.1: Equations of the second messenger model.

(1) d[cdG]/dt = ks.cdG · [DGC] · K2
1

K2
1+[cdG]2

· [GTP]2

[GTP]2+K2
m1

− kd.cdG · [PDE] · [cdG]
[cdG]+Km2

(2) d[(p)ppGpp]/dt = ks.(p)ppGpp · {SpoTsd} ·
[GTP]

[GTP]+Km3
− kd.(p)ppGpp · {SpoThd} ·

[(p)ppGpp]
[(p)ppGpp]+Km4

(3) d[GTP]/dt = ks.GTP · [GMP]− kd.GTP · [GTP]− ks.(p)ppGpp · {SpoTsd} ·
[GTP]

[GTP]+Km3

+kd.(p)ppGpp · {SpoThd} ·
[(p)ppGpp]

[(p)ppGpp]+Km4
− 2 · ks.cdG · [DGC] · K2

1

K2
1+[cdG]2

· [GTP]2

[GTP]2+K2
m1

(4) d[GMP]/dt = 2 · kd.cdG · [PDE] · [cdG]
[cdG]+Km2

+ kd.GTP · [GTP]− ks.GTP · [GMP]

(5) d[EI ∼ P]tot/dt = k1 · K4+ϵ[Gln]
K4+[Gln]

· [EIPEP]− k−1 · [EI ∼ PPyr]

−k2 · [EI ∼ P]tot[NPr] + k−2 · [NPr ∼ P][EI]]tot

(6) d[NPr ∼ P]/dt = k2 · [EI ∼ P]]tot[NPr]− k−2 · [NPr ∼ P][EI]]tot

−(k3 · [NPr ∼ P][EIIA]− k−3 · [NPr][EIIA ∼ P])

(7) d[EIIA ∼ P]/dt = k3 · [NPr ∼ P][EIIA]− k−3 · [NPr][EIIA ∼ P]

(8) [EI][PEP] = Kd1 · [EIPEP]

(9) [EI ∼ P][Pyr] = Kd2 · [EI ∼ PPyr]

(10) [EI]T =[EI]+[EIPEP]+[EI ∼ PPyr] + [EI ∼ P]

(11) [NPr]T = [NPr] + [NPr ∼ P]

(12) [EIIA]T = [EIIA] + [EIIA ∼ P]

* SpoTsd = α
1+α , SpoThd = 1

1+α ,α = KSpoT · NPr∼ P
NPr∼ P+K2

/ K3

EIIA∼P+K3
. {SpoTsd} and {SpoThd} represent the

fraction of total SpoT for synthetase and hydrolase, respectively.
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Table 2.2: Parameters of the second messenger model.

parameter description source
ks.cdG = 33.5/min scaled synthesis rate of cdG this study
kd,cdG = 100/min scaled degradation rate of cdG this study

K1 = 0.5µM dissociation constant for product inhibition [60]
Km1=1500µM binding affinity of GTP this study
Km2 = 0.06µM binding affinity of cdG [60]
[DgcB]=0.7µM scaled DgcB level [61]

[basal PDEs]=0.2µM scaled basal PDE level this study
ks.(p)ppGpp = 170µM/min synthesis rate of (p)ppGpp this study
kd.(p)ppGpp = 160µM/min degradation rate of (p)ppGpp this study

K2 = 75µM binding affinity of NPr∼P this study
K3 = 10µM dissociation constant of EIIA∼P this study
KSpoT = 4 constant of SpoT activity this study

Km3 = 1000µM binding affinity of GTP this study
Km4 = 2000µM binding affinity of (p)ppGpp this study
K4 = 75.63µM

parameters of glutamine inhibition [62]
ϵ = 0.1

ks.GTP = 1500/min synthesis rate of GTP this study
kd.GTP = 100/min degradation rate of GTP this study
[EI]T = 10µM

total enzymes levels [54, 55, 56][NPr]T = 30µM
[EIIA]T = 30µM
k1 = 52.4/min

phosphotransfer constants
this study, [62, 47]

k−1 = 67.2/min
k±2 = 1.2× 104/(min · µM)

[53, 47]
k±3 = 3.7× 103/(min · µM)

Kd1 =
kb−1

kb1
= 350µM

dissociation constants [47]
Kd2 =

kb−2

kb2
= 670µM
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Table 2.3: Initial Conditions of the second messenger model.

Variables Initial Conditions (µM)
c-di-GMP 0.3

GTP 1300
(p)ppGpp 100
GMP 20
EI∼P 10
NPr∼P 30
EIIA∼P 30

2.4 Simulations and results

2.4.1 Oscillations of DGCs and PDEs

Two well-known DGCs in C.crescentus are DgcB and PleD [61, 57]. DgcB level stays constant
over the cell cycle, while the concentration and activity of PleD vary [61]. Hence, we model
[DGC] as the sum of constant [DgcB] and variable [PleD]. Because experimental data on the
fluctuation of active (phosphorylated) PleD over the course of the C. crescentus cell cycle is
not available, we used the total PleD fluctuation as a substitute. Fig. 2.7A shows immunoblot
measurements (red dots) of total PleD, extracted by ImageJ from Abel et al [61] and the
corresponding curve fitted by MATLAB (R-square is 0.66). It appears that the second data
point from Abel et al [61] is inaccurate because PleD activity should peak around t=20,
since cdG needs to be produced at a high level at this time to deplete active CtrA and
initiate the G1-to-S transition. Assuming that the second experimental point is an error,
we re-fit the total PleD without this point (Fig. 2.7B, R-square is 0.84). In agreement with
our expectations, the fitted curve in Fig. 2.7B increases during G1-to-S transition and peaks
around 30 min. The corresponding accuracy of curve fitting improves as well. Additionally,
we borrowed the active PleD simulation of a mathematical model proposed by Weston et
al [22] (Fig. 2.7C, magenta curve) which captures the dynamics of phosphorylation of PleD.
Weston’s simulation of PleD∼P (Fig. 2.7C) shows a similar trend with the experimental
data and re-fitted curve of total PleD (Fig. 2.7B,C), which serves to justify our methods for
calibrating a curve for PleD activity. The different scaled levels between Weston’s simulation
and experimental points are due to different normalization methods.

While PdeA is the most active phosphodiesterase enzyme in C. crescentus [63], other PDEs,
including PdeB, PdeC, and PdeD, have been identified in bacterial species B. subtilis, E. coli
and L. monocytogenes [64]. Assuming there are other PDEs in C. crescentus as well, we rep-
resented total [PDE] in our model as the sum of [basal PDE] plus a variable [PdeA] estimated
by the curve-fitting tool in MATLAB applied to quantitative PdeA measurements derived
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from Western blots of Abel et al [65] using ImageJ. The PdeA points and the corresponding
curve are shown in Fig. 2.7D with R-square being 0.77.

Figure 2.7: Curve-fitting of PleD and PdeA data.
(A). Original experimental data of total PleD [61] and a curve fitted to the data by MAT-
LAB. Function is 0.1442×sin( π

75
t+0.5037)+0.7384. (B). Refitted PleD curve after deleting

the second data point. New function is 0.1834×sin( π
75
t+0.5587)+0.7579. (C). Weston’s sim-

ulation [22] of phosphorylated PleD and comparison with re-fitted curve and experimental
data from B. (D). Experimental measurements of PdeA[66] and its fitted curve. Function is
-0.3605× sin( π

75
t+0.1767)+0.361.

2.4.2 Oscillation of c-di-GMP over the cell cycle in C. crescentus

We used experimental data of cdG concentration (peak point) [57] and bacterial nucleotide
concentrations to estimate parameters that are not available in publications. Experimentally,
cdG peaks at the swarmer-to-stalked transition (≈0.28µM) and then decreases until reaching
the lowest value (<0.1µM) in the swarmer cell after cell division. Our simulation of cdG
over time fits experimental data well and shows a stable oscillation through the cell cycle
under nutrient-rich conditions (Fig. 2.8), in agreement with experimental data [57].
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Figure 2.8: c-di-GMP oscillates during the swarmer cell cycle.
Red circles indicate experimental data of c-di-GMP in a single C. crescentus wild-type cell
during one cell cycle [57]. Black line indicates the simulated c-di-GMP in a swarmer cell at
Gln=10000µM, PEP=300µM, and Pyr=1500µM.

2.4.3 Comparison of simulated PTSNtr to carbon-PTS experimen-
tal data

PTS and PTSNtr have a lot in common. Enzymes of PTSNtr (EINtr, NPr, and EIIANtr)
are homologues of carbon-PTS enzymes (EI, HPr, and EIIA/B/C) [51]. They have similar
structures and play parallel roles in nutrient uptake. In addition, these PTSs communicate
with each other by phosphate exchange [48, 67]. PEP acts as the phosphoryl donor for both
carbon and nitrogen PTSs. There are two significant differences between these systems [48]:
(1) Enzymes II in PTS (juxtamembrane EIIB and transmembrane EIIC) assist in the trans-
membrane transport of sugars [68] whereas PTSNtr does not aid in sugar transport [52]. (2)
PTSNtr is regulated by glutamine levels as part of the nitrogen signaling pathway in prokary-
otes, while PTS senses carbon sources in the environment through regulating transport and
phosphorylation of carbohydrates like glucose [54, 68].

There is limited quantitative data for PTSNtr in publications. Based on the similarities
between PTSNtr and PTS, we introduced some parameters obtained from PTS experiments
to simulate PTSNtr [47, 53] (Tabel 2.2). In order to calibrate the PTSNtr model, we set [Gln]
to 0 and compared simulations with carbon PTS experiments.

Kundig and Roseman [69, 46] measured how EI and HPr levels affect phosphorylation of
PTS quantitatively (Table 2.4). We set our initial conditions to the experimental conditions
of the paper, substituting [Npr] and [EINtr] for [Hpr] and [EI], respectively. As there is
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no information about pyruvate concentrations in their experiments, we estimated the [Pyr]
based on one set of experimental data in Table 2.4. The Table indicates that our PTSNtr

simulations fit the experimental data well.

Table 2.4: Effect of EI and HPr (NPr) concentrations on phosphorylation of EI and HPr
(NPr) in PTS system.

Condition Experiment*[69] Simulation
EI(µM) HPr(NPr)(µM) EI∼P+HPr∼P(µM) EI∼P+NPr∼P(µM)
0.157 24.4 6 6.8
0.3125 24.4 6.5 6.9
0.729 24.4 7 7**

1.57 24.4 7.5 7.2
0.729 0 >0*** 0.2
0.729 12.2 3 3.6
0.729 36.6 9.1 10.5

* PEP=160µM.
** This row has been used to estimate Pyr level; Pyr=48.5µM.
*** Too small to recognize the specific value from the original figure [69].

2.4.4 Simulations under different nutrients conditions

Goodwin et al [62] measured quantitatively how glutamine inhibits EINtr activity. In Ta-
ble 2.5, we show model simulations under a range of glutamine levels. Lee et al [70] showed
that cellular glutamine in E. coli is very low under nitrogen-starvation and increases to more
than 10000µM when environmental ammonium is increased. Therefore, in our simulations,
we used [Gln]=1µM to represent limited nitrogen and [Gln]=10000µM to describe abundant
nitrogen.

PEP, the phosphoryl donor of PTSNtr, is an important indicator of carbon availability [71].
However, Osanai et al [72] and Yuan et al [73] showed that PEP and Pyr levels are stable
under nitrogen shifts. Hogema et al [74] measured intracellular PEP and Pyr in E. coli under
different carbon conditions: cells were initially grown in minimal medium (ammonia with
limited carbon) and had PEP and pyruvate concentrations of 2800µM and [Pyr]=900µM,
respectively. After adding 10mM glucose to the medium (now ammonia with high carbon),
PEP and pyruvate concentrations shifted to 300µM and 1500µM, respectively. In consid-
eration of this experimental data, we set ‘[PEP]=300µM, [Pyr]=1500µM, [Gln]=10000µM’
to represent ‘ammonia with high carbon’; and ‘[PEP]=300µM, [Pyr]=1500µM, [Gln]=1µM’
to represent ‘nitrogen-starved’ condition. As cells require carbon and nitrogen to synthe-
size glutamine, we regard limited glutamine (proposed as 1000-2000µM in Table 2.5) and
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‘[PEP]=2800µM and [Pyr]=900µM’ as ‘ammonia with limited carbon’.

Table 2.5: Simulations under different nutrient conditions.

[Gln] 10000µM 2000µM 1000µM 100µM 10µM 1µM

cdG range 0.01-0.28 * 0.01-0.26 0.01-0.25 0-0.09 0-0.03 0-0.02 **

(p)ppGpp (µM) 118 150 187 582 895 939
GTP (µM) 1221 1192 1156 787 493 452

[PEP]=300µM [(p)ppGpp]
[GTP]

0.10 0.13 0.16 0.74 1.8 2.1

[Pyr]=1500µM GMP (µM) 81 79 77 52 33 30
EI ∼ P (µM) 0.5 0.6 0.8 2.0 3.2 3.4
NPr ∼ P (µM) 1.6 1.9 2.4 6.1 9.5 10.2
EIIA ∼ P (µM) 1.6 1.9 2.4 6.1 9.5 10.2

cdG range 0.01-0.20 0.01-0.17 ***0.01-0.13 ***0-0.02 0-0.01 0-0.01
(p)ppGpp (µM) 294 371 458 993 1160 1178

GTP (µM) 1056 984 902 401 244 227

[PEP]=2800µM [(p)ppGpp]
[GTP]

0.28 0.38 0.51 2.5 4.8 5.2

[Pyr]=900µM GMP (µM) 70 66 60 27 16 15
EI ∼ P (µM) 1.1 1.4 1.6 3.7 5.2 5.4
NPr ∼ P (µM) 3.4 4.2 4.9 11.1 15.6 16.3
EIIA ∼ P (µM) 3.4 4.2 4.9 11.1 15.6 16.3

* Proposed to be under condition of ammonia with high carbon.
** Proposed to be under condition of nitrogen starvation.
*** Proposed to be under condition of ammonia with limited carbon.

Table 2.5 summarizes the results of our simulations. cdG oscillations peak at 0.28µM under
’ammonia with high carbon’, and peak at 0.02µM under nitrogen depletion. These results
suggest that depletion of nitrogen should result in cell cycle arrest, which is consistent with
experimental observations [75]. In general, as glutamine concentrations decrease, cdG, GTP
and GMP levels decrease while (p)ppGpp levels increase.

When we simulate conditions of ‘ammonia with limited carbon’, we find that cdG oscillations
decrease in amplitude; however, concentrations are presumably not so low to induce cell cycle
arrest. Thus, our results are consistent with the fact that C. crescentus continues to grow
under such conditions [74]. Interestingly, our results suggest that (p)ppGpp levels should
increase when decreasing carbon availability. Our results suggest that shifts in PEP and
pyruvate concentrations due to limiting carbon availability will make the cell more sensitive
to shifts in nitrogen. Table 2.5 suggests, that shifts in the direction of increased [PEP]
and decreased [Pyr] favor increased activity in SpoT synthetase. Based on steady state
analysis of ODEs in our model, phosphorylation of PTSNtr proteins depends non-linearly on
the [PEP]:[Pyr] ratio (Appendix A2). Increases in the ratio generally trend towards SpoT
synthetase activity, while decreases trend toward hydrolase activity.
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Our simulations show that the shift of c-di-GMP and (p)ppGpp levels in response to changes
of nutrients is due to both a shift in internal glutamine concentration and an adjustment
to the PEP and pyruvate levels (Table 2.5). Our model suggests that the PEP and Pyr
levels regulating PTSNtr is one potential pathway of (p)ppGpp response to carbon avail-
ability. Enzymes within the PTSNtr system become highly phosphorylated under nitrogen
starvation (Table 2.5), which is consistent with the existing qualitative analysis as well [31].
Additionally, our simulation fits the experimental observations (Table 2.6) well.

Table 2.6: Experimental information for concentrations and changes under starvation.

Variables Nutrient-rich Nutrient-starved Species Reference

(p)ppGpp
50µM - E.coli [32]

10-30µM millimolar B.subtilis [42]

GTP

900µM - E.coli [37]
- 3-fold drop (arginine starved) B.subtilis [41]

1000-3000µM - B.subtilis [38]
- 3-fold drop (glucose starved) marine Vibrio [76]

GDP
100µM - E.coli [37]

- 14-fold drop (arginine starved) B.subtilis [41]
GMP 24µM - E.coli [77]

[pppGpp]:[GTP] ratio
≈0.1 ≈0.3 (arginine starved) B.subtilis [58]
0.08 - E.coli [78]

[ppGpp]:[GTP] ratio

≈0.25 ≈1.2 (arginine starved) B.subtilis [58]
0.16 - E.coli [78]

≈0.1
≈1.5 (arginine starved)

C.crescentus [40]≈2.5 (glucose starved)

Response to environmental change

Given the oligotrophic environments C. crescentus populates, we postulate that C. crescentus
would have to respond rapidly to sudden shifts in nutrients in order to increase its fitness in
these environments. Fig. 2.9 shows how C. crescentus responds to environmental nitrogen-
shifts in our simulation. The response time for starvation is within one cell replication cycle,
which means C. crescentus can respond to nutrient deprivation quickly according to our
model. Perhaps even more importantly, our model suggests that C. crescentus also recovers
quite quickly to normal cell cycle oscillations when we reset glutamine to the starting value.
A response within the time frame of one cell cycle would be a useful characteristic for C.
crescentus to survive in oligotrophic environments.
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Figure 2.9: Response to nitrogen-shifts in our simulation.
Blue line indicates simulated levels of cdG, GTP, and (p)ppGpp when [Gln]=10000µM. Red
line indicates simulated levels of these three molecules when glutamine changes to 100µM
at simulation time 600. Yellow line indicates the simulation when the glutamine recovers to
10000µM. The end point of previous simulation is used to be the initial point of the following
simulation at a different glutamine level.
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2.5 Discussion

Progression through the cell cycle in C. crescentus requires precise coordination of metabolic
and morphological events. The guanine nucleotide-based second messenger network, in-
cluding cdG and (p)ppGpp, plays significant roles in regulating bacterial morphology and
metabolism, such as controlling the activity of CtrA and adapting bacteria to environmen-
tal changes. In this study, we proposed a mathematical model to simulate the guanine
nucleotide-based second messenger network, and investigated how this network responds to
nutrient shifts through PTSNtr.

We calibrated our model using experimental data, and investigated two aspects influencing
phosphorylation of PTSNtr in simulations: 1) glutamine levels, which affects autophospho-
rylation of EINtr [48, 31]; and 2) PEP and Pyr levels, which influence the flux of phosphorus
through the PTSNtr system (Table 2.5, Appendix A2).

Simulations of nitrogen deprivation suggest that as (p)ppGpp accumulates in C. crescentus,
GTP and cdG concentrations decrease significantly as a result of increasing SpoT synthetase
activity. While it is suggested that (p)ppGpp stabilizes CtrA in C. crescentus [79], the
exact mechanism is unknown. As cdG is essential for CtrA proteolysis, the stability of
CtrA may increase due to diminished cdG concentration as a result of SpoT synthetase
activity, rather than downstream effects of (p)ppGpp signaling. Thus, we propose that C.
crescentus may respond to nitrogen starvation by stimulating the PTSNtr system to induce
SpoT synthetase activity, resulting in depletion of GTP and cdG levels to induce cell cycle
arrest via stabilization of the chromosome replication inhibitor, CtrA.

Importantly, our results also suggest that changes to intracellular concentrations of PEP and
pyruvate can have a significant impact on SpoT activity. We find that shifts in PEP and
pyruvate concentrations in response to decreased sugar availability result in an increase in
SpoT synthetase activity and an increase in sensitivity to shifts in glutamine concentration.
Thus, two potential avenues to influence the PTSNtr and SpoT are through adjusting PEP
and pyruvate levels as well as glutamine.
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3.1 Abstract

The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmet-
rical cell division driven by precise interactions and regulations of proteins, which makes
Caulobacter an ideal model organism for investigating bacterial cell development and differ-
entiation. The abundance of molecular data accumulated on Caulobacter motivates system
biologists to analyze the complex regulatory network of cell cycle via quantitative modeling.
In this paper, We propose a mathematical model to accurately characterize the underlying
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mechanisms of cell cycle regulation based on the study of: a) chromosome replication, methy-
lation and transcription; b) interactive pathways of five master regulatory proteins including
DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding
mRNAs; c) cell cycle-dependent proteolysis of CtrA through a hierarchical assembly of pro-
tease complex. The temporal dynamics of our simulation results can closely replicate an
extensive set of experimental observations and capture the main phenotype of seven mutant
strains of Caulobacter crescentus. Collectively, the proposed model can be used to predict
phenotypes of other mutant cases, especially for nonviable strains which are hard to culti-
vate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the
metabolism of proteins with similar mechanisms.

3.2 Introduction

Caulobacter crescentus (C. crescentus) is a model organism for exploring cell development
and cell cycle regulation in prokaryotes. C. crescentus undergoes an asymmetrical cell di-
vision producing two distinct progenies: a sessile stalked cell equipped with a stalk and a
motile swarmer cell equipped with a flagellum (Fig 3.1). While the stalked cell immediately
initiates chromosome replication and enters the next cell cycle, the swarmer cell searches
for suitable environments and differentiates into a stalked cell (sw-to-st transition) before
entering the cell cycle replication [80]. The dimorphic lifestyle makes C. crescentus feasible
to survive in oligotrophic waters.

The timed asymmetrical cell progression of C. crescentus is highly regulated by a cell cycle-
dependent regulatory network including four master regulators - DnaA, GcrA, CtrA, and
CcrM [81, 82]. DnaA, GcrA, and CtrA are transcriptional factors that control over 200
cell cycle-regulated genes in C. crescentus. These proteins form a loop to control each
other. DnaA activates gcrA expression, GcrA regulates the expression of ctrA and dnaA,
and CtrA in turn influences the transcription of dnaA [20, 83, 84]. Furthermore, DnaA is
a conserved DNA replication initiator, activating replication by binding directly with the
chromosome origin (Cori) [85]. In addition, there are five binding sites for CtrA on Cori,
where replication initiation is suppressed when being bound by the phosphorylated form of
CtrA (CtrA∼P) [20]. CcrM, a conserved methyltransferase, is turned on at the completion
of DNA replication to fully methylate the motif GANTC, which is carried by promoters
of ctrA, dnaA, and ccrM (see Fig 3.2) [79, 86]. The short window of CcrM allows the
maintenance of hemimethylated chromosome during replication, ensuring the robustness of
cell cycle development. Moreover, CcrM has been reported to influence the expressions of
more than 10% genes [19, 79]. Among these CcrM-regulated genes, more than 100 genes
are likely influenced by a GANTC motif-dependent pathways, while the mechanisms of the
rest genes are not clear [79]. Here, we take the CcrM-dependent methylation of GANTC
motif into the regulatory network. Additionally, SciP is an antagonist of CtrA which is
instrumental in cell cycle regulations but receives little attention. SciP spatiotemporally
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represses the transcription of CtrA-induced genes because most of these genes contain a
SciP binding site upstream of a CtrA binding site in their promoters [81].

A wealth of experimental data for cell cycle-regulated genes and proteins in C. crescentus
have been accumulated in last decade [87, 88]. System biologists have proposed different
quantitative models to analyze underlying mechanisms and pathways of cell cycle regulation.
For example, Li et al. [20, 89] quantitatively modeled the interactions between CtrA, DnaA,
GcrA, and CcrM and studied the simulated behaviors of some mutants. Murray et al. [19]
proposed a simplified model incorporating CtrA, CckA, and GcrA to capture the cell cycle
features of C. crescentus and predict the behaviors of ∆gcrA cells. However, the proteolysis
of CtrA is not explicitly modeled. Li et al. [20, 89] borrowed DivK while Murray et al. [19]
used CckA to describe the proteolysis of CtrA; but both DivK and CckA are indirect factors
influencing the proteolysis of CtrA through phosphorelay pathways [90]. There are a series of
models working on the spatial regulatory networks in C. crescentus. Li et al. investigated the
spatial regulations focusing on CtrA in a stochastic model [91], which preliminarily revealed
roles of spatial phosphorylation on the asymmetrical cell cycle in C. crescentus. Further,
Chen et al. [92] and Xu et al. [93] proposed spatial models for the scaffolding protein PopZ
in C. crescentus, which complemented Li et al.’s model [91] about the initial localization
factors. Although previous mathematical models revealed some mechanisms of Caulobacter
cell development, the mRNA abundance and transcription process based on master regu-
lators have yet been explicitly investigated. Additionally, there is no mathematical model
describing the cyclic proteolysis of master regulator CtrA, which plays important roles for
cell development especially for the sw-to-st transition [27].

In this paper, we focus on five core components–DnaA, GcrA, CtrA, CcrM, and SciP that
control over 90% of cell cycle-regulated genes, and propose a mathematical model that con-
siders the regulation of DNA replication, methylation, and transcription, as well as the
gene-protein and protein-protein interactions. Since CtrA is essential in the cell cycle reg-
ulation and its proteolysis is distinctively and spatiotemporally regulated, we construct a
hierarchical ClpXP complex network for the proteolysis reactions, which is then integrated
into the entire model. The simulated dynamics of mRNA and proteins are consistent with
experimental observations. The ClpXP complex model can be used as a quantitative analy-
sis tool to simulate other cyclic proteolysis in C. crescentus, such as the proteolysis of ShkA
and TacA [94, 95].

3.3 Materials and methods

3.3.1 Model description

The regulatory network of bacterial cell cycle includes a series of complex mechanisms, such
as genetic regulations, degradations, phosphorylation, dephosphorylation, and so on. The
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Figure 3.1: The asymmetrical cell cycle of C. crescentus with spatial distribution
of regulators.
C. crescentus cell grows in G1, replicates DNA in S phase, and prepares for cell division in
G2 phase. The predivisional (PD) cell divides asymmetrically into two different progenies:
motile swarmer (SW) cell and non-motile stalked cell (ST). The dynamics of CtrA, GcrA,
DnaA, CcrM, SciP, RcdA, and CpdR is indicated by color during each stage of the cell cycle.

details of the complex regulatory network will be described in the following.

Module 1: The core regulatory network of cell cycle. The master regulatory network
of C. crescentus, as summarized in Fig 3.3, is composed of DnaA (dnaA), GcrA (gcrA), CtrA
(ctrA), CcrM (ccrM ), and SciP (sciP). Specifically, DnaA promotes the expression of gcrA,
while GcrA inhibits DnaA and activates one of the promoters (P1) of CtrA [85]. Conversely,
CtrA∼P suppresses the initiation of DNA replication [96], activates the transcription of
dnaA [20], inhibits the activity of P1, and activates itself through another promoter (P2) [82].
The accumulation of CtrA promotes the expressions of ccrM and sciP, where CcrM controls
the methylation state of P1 of ctrA [97]. SciP downregulates CtrA and CcrM [81]. The
regulatory network of the five master proteins and mRNAs governs cell cycle-regulated genes,
thereby driving the cell cycle progression [87].

In normal cell cycle progression, active CtrA (phosphorylated form, blue color in Fig 3.1) is
cleared during the sw-to-st transition; CtrA concentrations are generally low in stalked cells
when the Z-ring is closed [98]. The activity of CtrA is controlled by synthesis, degradation,
and phosphorylation, the latter of which is driven by the CckA-dependent pathway [27, 99]
(Fig 3.3). As CckA∼P is the only known phosphoryl donor of CtrA [90], we involve the
CckA-dependent phosphotransfer into our model. CtrA proteolysis depends on a particular
protease complex comprising the protease ClpXP and four additional adaptors–CpdR, RcdA,
PopA, and c-di-GMP (cdG) [27]. While the protease ClpXP presents throughout the entire
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Figure 3.2: Methylation site locations of different genes on C. crescentus chro-
mosome.
The elliptical curve represents the DNA fork in replication. Cori is the origin of DNA
replication and Ter is the termination site. The CcrM methylation site is located upstream
of the dnaA, ccrM and ctrA genes, represented as rectangles.

cell cycle, RcdA and CpdR co-localize at the stalked pole during sw-to-st transition and stay
in the predivisional cell’s stalked compartment (gold and black circles in Fig 3.1) [100]. The
phosphorylation of CpdR is also regulated by CckA, thus CckA regulates the activity of CtrA
through both phosphorylation and proteolysis. Additionally, CtrA controls the expression
of RcdA and CpdR in C. crescentus.

Module 2: Cell cycle-dependent proteolysis of CtrA. The stability and activity of
proteins strictly regulate cell cycle processes. Accordingly, proteolysis plays a significant
role in cell development and response to internal/external stimuli [24, 27]. ClpXP, a highly
conserved protease, is responsible for the proteolysis of a wide range of proteins including
CtrA in C. crescentus [27]. Many substrates of ClpXP are cell cycle-regulated. Although
ClpXP levels do not change significantly throughout the cell cycle, it requires additional
cell cycle-dependent adaptors to cyclically degrade proteins [27]. Substrates of ClpXP-based
proteolysis require different classes of protease complex assemblies [29]. A few substrates,
such as PdeA, only require ClpXP primed by unphosphorylated CpdR; we name this type of
substrates as the first class substrate. Similarly, the second class substrates require primed
ClpXP additionally with RcdA assembled; and the third class substrates, such as CtrA, re-
quire binding between PopA and c-di-GMP connected with the second class protease complex
(see Fig 3.4).

In this study, we use ‘Complex 1’, ‘Complex 2’, and ‘Complex 3’ to name the protease com-
plexes that degrade the first, second, and third class substrates, respectively (see Fig 3.5).
Unphosphorylated CpdR primes ClpXP to function as the first class protease complex (Com-
plex 1) which degrades CpdR in turn [90]. (Table 3.1, Eq. 20). Primed ClpXP (Complex 1)
recruits RcdA (Complex 2) to deliver the second class substrates to the protease ClpXP [29]
(Table 3.1, Eq. 23). Additionally, the RcdA proteolysis has been shown to be catalyzed by
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Figure 3.3: The master regulatory network of C. crescentus.
Solid lines represent activation/inhibition influences of master regulators (DnaA, GcrA,
CcrM, CtrA, SciP) with arrow/bar, respectively. The dashed lines represent the methy-
lation effects on dnaA, ctrA, ccrM genes from CcrM.

Complex 1 [95]. Besides CpdR and RcdA, the third class proteolysis requires PopA bound
with cdG, where cdG-bound PopA directly interacts with RcdA and CtrA ensuring the spe-
cific degradation of CtrA [27]. The diguanylate cyclase PleD and phosphodiesterase PdeA
are included in our system as the main synthetase and hydrolase of cdG, respectively, where
the expression of pleD and pdeA is controlled by CtrA∼P [33]. PdeA is proteolyzed by
Complex 1, shown in Fig 3.5. As PopA bears a GGDEF domain and two receiver domains
akin to PleD, we assume PopA functions as a dimer; thus, PopA dimer binds with two cdG
molecules in the same way as PleD does [101, 102] . Since cdG levels in C. crescentus are
less than 0.3 µM [57], which is much lower than most protein levels, we use cdG to represent
the PopA:2c-di-GMP binding species in this model (Fig 3.5). Moreover, the phosphory-
lation of CpdR is controlled by the kinase CckA, similarly with CtrA [90]. cdG binds to
CckA to inhibit its kinase activity [28], which means cdG participates in the degradation
and dephosphorylation of CtrA. CckA and cdG connect the master regulatory network and
ClpXP-based proteolysis system through CtrA (Fig 3.5).

Only phosphorylated form of PleD is active to catalyze the synthesis of cdG [28]. As the
phosphorylation of PleD is controlled by more than three enzymes, including PleC, DivJ,
CckN, and at least one unknown kinase [103, 104], it is complicated to thoroughly involve
phosphorylation pathway of PleD. We initially assumed that phosphorylated PleD has a
similar trend over cell cycle with total PleD and used total PleD as the synthetase of cdG; but
cdG simulation in predivisional cell was super high, inconsistent with experiments, although
both PleD and PdeA fit data well. We hypothesize PleD∼P is relatively low in predivisional
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cell due to the regulation of its main phosphatase PleC and kinase DivJ. To verify our
hypothesis, we quantify western blots of DivJ and PleC over cell cycle using ImageJ [14, 105]
(Fig 3.6). Experimental data indicates that DivJ almost does not change during the cell cycle
and PleC is high in predivisional cell. Therefore, it is reasonable that PleD∼P decreases in
predivisional cell because of high phosphatase activity of PleC. We fit PleC data points with
trigonometric functions: 80.09 × sin(0.013t + 1.74) + 78.77 × sin(0.013t + 4.85) (Fig 3.6A).
The function of PleC is then introduced into our model to represent the PleC level regulating
the phosphorylation of PleD.

Figure 3.4: Hierarchical proteolysis of the first (eg. PdeA), second (eg. TacA),
and third (eg. CtrA) substrate.
The degradation of different substrates is dependent on the degree of adaptor assembly.
Priming of the protease ClpXP by unphosphorylated CpdR results in PdeA decay, which
recruits additional adaptor RcdA to degrade TacA. RcdA tethers cdG-bound PopA with the
primed ClpXP, which is responsible for the proteolysis of CtrA.

Module 3: Chromosome replication and methylation We build the module for DNA
replication following the recognized principle in Li et al’s work [20], which consists of ini-
tiation, elongation, and termination phases. During the sw-to-st transition, C. crescentus
requires high levels of DnaA and low levels of CtrA to initiate DNA replication [89]. As
DNA synthesis proceeds, the fully methylated chromosome becomes hemimethylated due
to the semiconservative replication. Replication will not be initiated again until CcrM re-
methylates Cori once more [89]. Additionally, the master regulator genes ctrA, dnaA, and
ccrM have CcrM-targeted sequence GANTC in their promoters (see Fig 3.2). Therefore,
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Figure 3.5: Hierarchical diagram of protease complexes.
Solid lines with arrow denote metabolisms; solid lines with filled circles denote binding
processes; dashed lines with arrow denote activation effects. Complex 1 decays the first class
of substrates; Complex 2 degrades the second class of substrates; Complex 3 degrades the
third class of substrates.
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Figure 3.6: Quantification of experimental data of PleC and DivJ.
(A) Black curve is fitted from experimental data [14] by MATLAB. The fitting function is
80.09× sin(0.013t+ 1.74) + 78.77× sin(0.013t+ 4.85). (B) Experimental data of DivJ [105]
indicates DivJ levels sharply drop during the sw-to-st transition and then almost do not
change.
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the methylation state of these genes are likely influenced by CcrM abundance and the pro-
gression of replication. Taken together, the initiation of DNA replication occurs when CtrA
concentration is low, DnaA concentration is high, and Cori is fully methylated. Once initi-
ated, DNA replication continues in a bidirectional manner along circular chromosomes and
terminates in the late predivisional cell [106]. Finally, the newly replicated chromosomes are
separated into two daughter cells with the Z-ring constriction.

We use variables Ini and Elong to model the initiation and elongation phase of DNA replica-
tion, respectively, where Elong was built by Li et al [20] (Table 3.1, Eqs. 1-2). Ini is activated
by DnaA, repressed by CtrA, and affected by the methylation of Cori. When Ini increases
to a threshold, Ini = Pelong, the elongation phase is triggered, where Pelong = 0.05 [89]
(Table. 3.2). DNA replication is terminated when Elong = 1 and we reset Elong = 0
once replication is terminated (see Fig 3.8A). h, indicating the probability of hemimethyla-
tion [20], is introduced in this study to describe the methylation influences on transcript rate
(see Table 3.1, Eqs. 7-12). During the simulation of DNA replication, h is switched from 0
to 1 when the replication fork passes the corresponding gene on chromosome (Table. 3.2). As
the position of dnaA is very close to Cori (see Fig 3.2) and dnaA transcription rate reduces
to half when it is hemimethylated [83], ‘(2−hCori)’ is used to represent the methylation effect
of dnaA [20]. I is introduced for a time delay. The chromosomes are separated with Z-ring
constriction; however, the Z-ring event is not modeled in this study. Experiments indicate
the S-phase period of Caulobacter is approximately 90 min. Here, we introduce a variable
Zring to control the timing of Z-ring constriction and cell division. The increase rate of Zring
is set as a particular constant to control the time for Zring rising from 0 to 1; and we use the
time event Zring = 1 (Table 3.2) to signal the separation of chromosomes, where the count
of chromosomes (Count) goes from 2 to 1 [84]. Throughout the execution of our simulation,
several events representing cellular phenomena, including time points of replication initiation
and chromosome segregation, can be triggered given particular conditions (summarized in
Table 3.2).

3.3.2 Model derivation

Some proteins are not uniformly distributed in Caulobacter cells (see Fig 3.1). As we focus
on temporal dynamics of regulators and their contributions to cell development, we ignore
the non-uniform distributions and assume the whole cell is well-mixed at this stage. We use
the law of mass action to describe the general synthesis/degradation and binding/unbinding
processes, while protein effects–activation and inhibition–are described by Hill functions. To
be more specific,

x
ks,X−→ X

kd,X−→ ∅

is converted as
d[X]

dt
= ks,X · x− kd,X · [X] (3.1)
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where X represents protein, x is the mRNA of X, ks,X is the rate constant of synthesis, and
kd,X indicates the rate constant of degradation.

A + B
k+(bind)

k– (unbind)
C is converted as

d[C]

dt
= k+ · [A] · [B]− k− · [C] (3.2)

A binds to B to produce C, where k+ and k− represent binding and unbinding rates, respec-
tively. Activation and inhibition effects are described by Hill functions as follow:

Ha(X) =
Xn

Jn
a,x +Xn , Hi(X) =

Jn
i,x

Jn
i,x +Xn , (3.3)

where Ha(X) indicates activation, and Hi(X) indicates inhibition. Variables n, J represent
the corresponding Hill coefficient and the microscopic dissociation constant, respectively.

3.3.3 Model parameters

Experimental data. To compare our simulations with experimental observations from
different publications, we first normalize experimental data to [0, 1] as follows:

zi =
xi −min(xi)

max(xi)−min(xi)
, (3.4)

where xi indicates the original data point; zi is the scaled normalized value of experiments.
Second, considering the relative abundance of different species in experiments [13], we set
different targeted ranges for different species in the model. For example, the abundances
of DnaA and CcrM are relatively low while those of CtrA and SciP are relatively high in
experiments [13] and our simulations (Fig 3.10). For the figures in the Result section, the
normalized experimental data are scaled to the range of our simulations to evaluate the
temporal dynamics.

Parameter description. All 86 parameters used in this study are summarized in Table 3.3.
Among them, seven parameters are obtained from previous experimental or modeling publi-
cations (see Table 3.3). The rest of the parameters are split into two groups: 1) 47 parameters
(summarized in Table B.3) that characterize major functionality of mRNAs and proteins,
such as synthesis and degradation, are chosen for optimization; 2) the remaining 32 param-
eters are set with fixed values, including most dissociation constants.

Multiobjective optimization. Let χ ∈ Rp, p = 47 be the vector of parameters to be
estimated in the caulobactor cell cycle model. For this optimization problem, we focus on
two aspects: the quantitative difference between experimental data and simulated results,
and the cell cycle time, both for wild type cells. The reasoning behind the two objectives
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is that the experimental data have inconsistent concentration levels between the beginning
(t = 0 min) and ending (t = 150 min) states of the cell cycle, whereas our model must be
consistent to ensure stable cell cycle regulation. This is also validated in our initial opti-
mization test using a single objective function, where we observe minimizing the difference in
species concentration results in high deviation in cell cycle time, and vice versa. Due to this
conflict, we cannot use the common scalarization scheme to sum up the two objectives using
weights, i.e., F (χ) = w1f1(χ) +w2f2(χ). Our parameter optimization is therefore defined as
a multiobjective optimization problem (MOP). The two objective functions are:

f1(χ) =
1

nm

n∑
i

m∑
j

(xi,j − yi,j)
2, f2(χ) = |Tc − 150|, (3.5)

where xi,j denotes the simulated concentration of species i at time j, yi,j denotes the exper-
imental data of species i at time j, and Tc is the simulated cell cycle time. Here, we have
the experimental data for n = 15 species (see Table B.2) and the number of data points
m varies for different species. Note that we only use available observations of C. crescentus
wild type (WT) cells for parameter fitting. The mutant cases of C. cell are used as our model
validation. The optimization problem to be solved is

min
[L,U ]

f1(χ), min
[L,U ]

f2(χ), (3.6)

where [L,U ] is a search box in Rp for model parameters. See the lower and upper bounds of
parameters in Table B.3.

We apply two MOP algorithms to our optimization problem for comparison: one is the widely
used nondominated sorting genetic algorithm (NSGA-II) [107]; the other is the more recent
VTMOP [108] based on VTdirect [109] and QNSTOP [110, 111] that uses response surface
and trust region methodologies, and an adaptive weighting scheme. Initial values in Table B.1
are the levels of corresponding variables used as the beginning state of each simulated cell
cycle. Fig 3.7 shows the combined Pareto front from both methods after multiple runs with
different optimization settings. Observe that the Pareto front is a nonconvex curve, showing
that the multiobjective optimization problem is very difficult. The best parameter estimates
are found by VTMOP and listed in Table 3.3, with f1 = 1.57 and f2 = 0.02. The sensitivity
of parameters is 18% for experimental data fitting (f1) and 72% for cell cycle time (f2) if we
perturb the parameters of three Pareto points (marked as black circle in Fig 3.7) by 10%.
Note that the sensitivity of the second objective is large when f2 is very close to zero, thus
points near zero are not included in the analysis. The root mean square error (goodness of
fit) is RMS(f1) ≈ 1.51, RMS(f2) ≈ 0.84 for the three selected Pareto points.

3.4 Results

Integrating the hierarchical proteolysis (Fig 3.5) into the master regulatory network (Fig 3.3),
we propose a model to capture the temporal dynamics of cell cycle regulators and glean
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Figure 3.7: Pareto front returned by NSGA-II and VTMOP.
f1(χ) and f1(χ) are the two objective function values. The red point is selected as the best
parameter set for our model.

insights about bacterial protein proteolysis systems. Non-uniform distributions of molecules
in space are ignored at this stage.

3.4.1 Our model accurately describes gene transcription patterns
and temporal dynamics of key regulators during the repli-
cation cycle of Caulobacter wild type cells

Chromosome Replication and Methylation. We follow the DNA replication process
as the rationale to formulate a set of ordinary differential equations (ODEs) modeling ini-
tiation, elongation, and termination of DNA replication as well as methylation states, as
shown in Table 3.1 (Eqs. 1-6). The initiation of DNA replication requires a fully methy-
lated state (both strands methylated, h∗ = 0), while semiconservative replication creates
two hemimethylated copies of genes. As such, the variables h∗ in our model spike when the
corresponding gene is being replicated (Fig 3.8). Later in the cell cycle, the hemimethylated
copies ( h∗ = 1) are re-methylated by CcrM, returning to the fully methylated state. There-
fore, h∗ then plunge as the newly created, hemimethylated copies become fully methylated
by CcrM. The CcrM-dependent methylation in the control system ensures DNA replication
initiates once per cell cycle.

The proteolysis of CtrA is controlled by hierarchical protease complexes. In ad-
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Figure 3.8: Simulation of chromosome status.
(A) Simulated chromosome/DNA replication and elongation process; (B) The probability of
loci (Cori, ccrM, ctrA) being hemimethylated in a single cell cycle.

dition to replication and transcription, we investigate the proteolysis regulation of CtrA, the
essential component of cell cycle control system, and explore the contribution of the conserved
proteolysis module. Based on the hierarchical diagram of protease complexes (Fig 3.5), we
use ODEs to simulate the temporal dynamics of three classes of protease complexes (Eqs.
20-29 of Table 3.1). Since there is no experimental data of protease complexes, we evaluate
our simulations using western blots of CpdR, RcdA, PleD, PdeA, and cdG [90, 112, 61] (see
Table B.2), where numerical values are extracted by ImageJ or GetData, shown as the red
circles in Fig 3.9. Those proteins are essential components of ClpXP-dependent proteolysis
system.

Our simulated CpdR, PleD and PdeA match well the experimental dynamics (see Fig 3.9).
The general trend of modeled RcdA and cdG agrees with experiments, whereas cdG peaks
a little bit late compared with experimental data. The discrepancy may derive from other
regulatory enzymes of cdG or PleD which are not involved in our current model. As most
proteins involved in protease complexes are modeled reasonably, We use the hierarchical
model to simulate the cyclic proteolysis of CtrA (Eq. 17 of Table 3.1). In addition to
degradation regulation, the hierarchical model influences the phosphorylation of CtrA via
cdG and CckA, while phosphorylated CtrA in turn impacts the expression of components
involved in degradation module, including cpdR, rcdA, and pleD.

Temporal dynamics of mRNA and master regulators. We convert the regulatory
network diagram in Fig 3.3 into ODEs shown in Table 3.1 (Eqs. 7-18) to simulate the
temporal dynamics of five master regulators and their mRNA. The proposed hierarchical
protease complexes are applied to simulate the cyclic degradation of CtrA. Figure 3.10A-
E and figure 3.10F-J exhibit the comparisons between simulations (black curves) in our
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Figure 3.9: The dynamics of total CpdR, RcdA, cdG, PdeA, total PleD, and
PleD∼P in simulation with the corresponding experimental data.
.Experimental data of CpdR is from Iniesta et al. [100], RcdA is from McGrath et al. [112],
cdG is from Abel et al. [57], PdeA is from Abel et al. [61], and PleD is from Aldridge et
al. [113].
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model and experimental data (red circles and blue triangles) for mRNA (dnaA, gcrA, ctrA,
ccrM, and sciP) and protein (DnaA, GcrA, CtrA, CcrM, and SciP) levels, respectively. In
general, our simulations fit the experimental observations well. As we capture the genetic
information flowing from mRNA to proteins, the protein concentration curves generally
resemble the corresponding mRNA abundance curves. dnaA transcription is reduced by
hemi-methylation state, which in part explains the dip in our simulation of dnaA during
DNA replication (t ∈ [30, 110] min in Fig 3.10A). Additionally, the expression of dnaA is
activated by CtrA [83] and inhibited by GcrA [114]. Thus, the high levels of GcrA and
low levels of CtrA during sw-to-stalk transition reinforce the decrease of dnaA expression
(Fig 3.10A, G, H). When the replication fork passes ccrM and ctrA right before and after
50 min, hccrM and hctrA are switched from 0 to 1 (Fig 3.8), which explains the increase of
CcrM (ccrM ) and CtrA (ctrA) at the corresponding time (Fig 3.10B,D,I,H). Meanwhile,
the high levels of activator GcrA and low levels of inhibitor SciP amplify the increase of
ctrA. DnaA and CtrA collaborate to regulate the initiation of DNA replication: 1) during
sw-to-st transition, initiator DnaA is high and suppressor CtrA is low, allowing the cell to
initiate replication; 2) during DNA replication, DnaA keeps low and CtrA is high, avoiding
another initiation of replication in the same cycle. Under the combined functions of DnaA
and CtrA, the transcription of of gcrA increases in the beginning and decreases in the
predivisional stage, which agrees with the observation of gcrA transcription (see Fig 3.10B).
sciP expression is activated by CtrA, which is observed in our simulation as well (Fig 3.10E).
We summarize the simulated and observed abundance of five master regulators in a single
cell cycle in a bar chart (Fig 3.11B), where our simulation shows similar translation patterns
with experiments. Fig 3.11A shows the maximum levels of our simulated master regulators,
in which the relative scales agree with experiments [13]. Even though the experimental data
comes from a variety of sources and experimental techniques, visual inspection suggests fair
agreement between the timing of master regulator abundance in simulation and experimental
data.

One objection worth noting is that some of our simulations deviate from the experimental
data at the beginning or the end of the cell cycle. For example in Fig 3.10C, at the end
of the cell cycle, the expression level of ctrA is considerably lower in our simulation than
the experimental data suggest. Additionally, this type of discrepancy can be witnessed in
the simulated GcrA, where the simulated level is lower than experimental observations after
t = 100 min (Fig 3.10G). This disagreement stems from a limitation that the simulated
endpoint has to be equal to the starting point (t = 0 min), because we do not model the
asymmetrical heritage of two distinct daughter cells after progenies are completely separated.
Although there are several mismatches between the simulation and experiments, our model
fits most data points and captures key trends during cell cycle, such as the dynamics of
regulators during sw-to-st transition. Our model exhibits that key regulators interact with
each other through transcription, degradation, and phosphorylation regulations to determine
the timing of cell differentiation and reproduction.
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Figure 3.10: Comparison of mRNA and proteins of master regulators in simulation
with experimental data.
(A-E) Experimental mRNA concentration of dnaA, gcrA, ctrA, ccrM , sciP (curves) with
corresponding simulated data (red circles, from Schrader et al. [88]), and (F-J) simulated
protein concentration of DnaA, GcrA, total CtrA (CtrA∼P), CcrM, SciP (curves) with
experimental data (circles or triangles) over a single cell cycle. For the sources of experimental
data, DnaA data is from Shen et al. [4] and Collier et al. [85]; GcrA data is from Collier et
al. [85] and Tan et al. [81]; CtrA data and CcrM data are both from Reisenauer et al. [115]
and Shen et al. [4]; and SciP data is from Tan et al. [81].
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Figure 3.11: Summary of the simulation results for the five regulators - CcrM,
CtrA, DnaA, GcrA, and SciP.
(A) Relative maximum concentrations of master regulators across one swarmer cell cycle.
(B) Abundance of five master regulators (CcrM, CtrA, DnaA, GcrA, and SciP) from simu-
lated results and experimental data. Horizontal bars represent the time periods of protein
abundance across the swarmer cell cycle. Blue bars indicate the time frame where simulated
protein levels are above the mid-range concentrations and red bars are the corresponding
experimental data from [99].
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3.4.2 Hierarchical protease complexes contribute to the timed cell
cycle progression

Our modeled hierarchical cyclic proteolysis module performs well in the simulation of CtrA.
Here, we explore the contribution of this module for cell development. We replace the
cyclic proteolysis by a constant for CtrA, CpdR, and RcdA, separately, setting Jd,CtrA−ClpXP,
Jd,CpdR, or Jd,RcdA as 0. In the simulation of Jd,CtrA−ClpXP = 0, where the degradation rate of
CtrA is constant, the system still oscillates during cell cycles whereas the amplitude of CtrA
and SciP shows noteworthy reduces. The cycle time increases, resulting in delays of master
regulators in simulation, including CtrA and CcrM (Fig 3.12A). With a constant degradation
of CpdR or RcdA, simulations show severe defects, especially for the dynamics of CtrA.
The oscillation of CtrA almost disappears and methylation states are abnormal under these
conditions (Fig 3.12B,C). In summary, the cyclic proteolysis deriving from the hierarchical
protease complexes shows significant impacts on the system. We further replace all cyclic
complexes with constants, setting Jd,CtrA−ClpXP, Jd,CpdR, and Jd,RcdA as 0 simultaneously.
The corresponding simulation is similar with the Jd,CtrA−ClpXP = 0 mutant, which shows
delayed cell cycles and reduced amplitudes of several species (Fig 3.12D). Simulations of
these cyclic proteolysis mutants suggest the cyclic proteolysis of CtrA is key to regulate
the entire system, because both deletion (Jd,CtrA−ClpXP = 0) and changes (Jd,CpdR = 0
and Jd,RcdA = 0) of CtrA cyclic degradation would screw up the dynamics pattern of both
master regulators and their mRNA. Moreover, the system is more sensitive without the
cyclic proteolysis module. We increased the degradation rate of CtrA to 5-fold for system
with and without the cyclic proteolysis module; wild type system still has an acceptable cell
cycle while cyclic proteolysis mutant systems have severe deficiencies. Taken together, our
model suggests the hierarchical cyclic proteolysis module contributes the timed cell cycle
and robustness of the Caulobacter system.

3.4.3 Our model captures the phenotype of mutant strains

To further test the validity of our model, we use the same equations and initial values to
simulate seven different mutant strains (Fig 3.13). Among these mutant strains, cell cycle of
∆dnaA, where dnaA is knocked out (ks,dnaA = 0), is arrested. The other six mutant strains
are all viable. Our mutant simulations correctly capture the viability of these seven mutant
strains. To be more specific:

∆ccrM : ccrM is verified to be dispensable for cell viability [19]. The doubling time is
about 162±9 min, longer than that for WT. Our simulated ∆ccrM (ks,ccrM = 0) has a 164
min cycle time, which fits the experimental observation well (Fig 3.13A). In our simulation,
all h can not be returned to 0 because there is no CcrM re-methylating the chromosome.
Additionally, experiments have suggested the cell cycle is also regulated by CcrM independent
with GANTC motif. This study does not include the GANTC motif independent influence
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Figure 3.12: Simulated results of mutating the cyclic proteolysis of CtrA, CpdR,
or/and RcdA.
(A). Jd,CtrA−ClpXP = 0 indicates the cyclic proteolysis of CtrA is replaced by a constant.
(B). Jd,CpdR = 0 indicates the cyclic proteolysis of CpdR is replaced by a constant. (C).
Jd,RcdA = 0 indicates the cyclic proteolysis of RcdA is replaced by a constant. (D). The
cyclic proteolysis of CtrA, CpdR, and RcdA are all mutated as constant degradation.
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of CcrM, so the simulation of ∆ccrM only shows the potential of deleting methylation of
GANTC motif by CcrM.

∆gcrA: In gcrA knocked out strain, the doubling time is 40% longer than for the WT [19].
Our simulated gcrAmutant (ks,gcrA = 0) has approximately 10 min longer cell cycle compared
with the WT simulation (Fig 3.13B), which less than the experimental observation. The
gap is likely derived from the forced modeling of Z-ring constriction process, which is not
explicitly modeled in this study.

ctrA∆Ω3: ctrA∆Ω3 contains modifications to the C-terminal amino acids of ctrA, resulting
in a non-proteolizable CtrA allele [116]. Here, we decreases kd,CtrA-ClpXP to 10% of WT in
simulation. In Fig 3.13D, The average CtrA levels increase in simulation with less fluctuation
because of the non-proteolizable CtrA allele. Our simulation suggests the proteolysis of CtrA
is important for its cell cycle-dependent regulation. h in simulated ctrA∆Ω3 can not decrease
to 0, suggesting the levels of CcrM in ctrA∆Ω3 are not sufficient to completely re-methylate
chromosome, while the lower levels of CcrM is caused by higher levels of the inhibitor CtrA.

cdG related mutant strains: cdG0 mutant strain has been verified to be viable, although
it shows morphology defects [28]. In Fig 3.13E, our simulation of cdG0 strain (ks,cdG = 0)
is viable and shows a horizontal shift which may result in morphology defects. The CtrA
levels increase with less fluctuation which is caused by the deletion of cdG. pleD knocked
out mutant (ks,PleD = 0) results in a lower cdG levels (Fig 3.13G), which shows a similar
phenotype with the simulation of cdG0. pdeA mutant increases cdG levels in simulation
(Fig 3.13F, ks,PdeA = 0). Both ∆pleD and ∆pdeA are viable in simulation, consistent with
observations [28, 61]. Oscillations exist but shifts little bit in the simulations of these three
cdG regulated mutants, as shown in Fig 3.13E-G.

3.5 Discussion

The five major regulators–DnaA, GcrA, CcrM, CtrA, and SciP–work in tandem to drive the
cell cycle progression of C. crescentus. Here, we investigated the interactions among master
regulators to study the underlying mechanisms of DNA replication, methylation, transcrip-
tion, and proteolysis of cyclic regulators. We applied the central dogma of molecular biology
to simulate the temporal dynamics of mRNAs and proteins. Furthermore, we mathemati-
cally built a hierarchical model to simulate protease complexes and apply this model to CtrA
degradation. Two MOP approaches (NSGA-II and VTMOP) have been applied to estimate
parameters in this complicated system.

In C. crescentus, the protease ClpXP primed by one assistant adaptor recruits additional
adaptors in sequence [29]. The hierarchical adaptor assembly determines the time and loca-
tion of the proteolysis of hierarchical substrates. Our hierarchical model correctly captures
the key dynamics of CpdR, PleD, and PdeA; it shows fair agreement with the trend of RcdA
and cdG. Additionally, the protease model performs well in modeling the proteolysis of CtrA.
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Figure 3.13: Simulated results of mutant strains: ∆ccrM , ∆gcrA, ∆dnaA, ctrA∆3Ω,
cdG0, ∆pdeA, and ∆pleD.
In knock out mutant simulations, we set ks,i = 0, where i indicates corresponding species
including ccrM , gcrA, dnaA, cdG, PdeA, and PleD. In the simulation of ctrA∆3Ω, the
cyclic proteolysis rate of CtrA is reduced to 10%.
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Deleting the hierarchical protease module causes defects of cell cycle development and pro-
tein oscillations. Considering the fast formation of the protease Complex 3 (ClpXP bound
with CpdR, RcdA, PopA, and cdG), we test the quasi-steady-state assumption (QSSA)
for Complex 3. QSSA shows similar simulated results in both wild-type cells and mutant
cases, suggesting QSSA might be a good approach in reducing model complexity of biological
systems. As a wide range of proteins is degraded by ClpXP protease complex, our model
provides a good quantitative tool to analyze the proteolysis of these proteins in C. crescen-
tus, such as TacA and ShkA. As most components of the hierarchic protease complexes are
conserved in bacterial species, our model has the potential for a wide range of applications.
Moreover, cdG is a significant component of Complex 3 and participates in several essential
pathways of cell cycle regulation in C. crescentus. For example, cdG binds to CckA and ShkA
to induce phosphatase and kinase activity, respectively. While CckA controls the phosphory-
lation/dephosphorylation of several proteins, such as CtrA and CpdR, ShkA:cdG regulates
the phosphorylation of TacA, which downregulates the stalked pole muramidase homolog
SpmX and the stalk length regulator StaR [117]. Additionally, cdG has been verified to
participate in the stress response, contributing to the survival of Caulobacter in oligotrophic
environments [118] (Chapter 2). Due to the importance of cdG, our protease complex model
is potentially a valuable tool for understanding the regulatory network of C. crescentus.

With the advances in experimental technologies, mRNA and protein abundance of master
regulators have been monitored and measured throughout the cell cycle. However, there
is a limited comparison between experiments and simulations. Our results align very well
with the experimental data. Satisfactory simulation results of our model, as indicated by
visual inspection, suggest that the proposed regulatory network appropriately characterizes
the Caulobacter cell cycle progression. This study also suggests the cell cycle dependent
proteolysis of CtrA is significant for the cell cycle regulations and robustness. Our model can
capture major features of seven mutant strains, which has the potential to predict phenotypes
of nonviable mutant strains and functions of involved proteins. As most molecules involved
in our model (CtrA, CcrM, GcrA, DnaA, etc.) are conserved among proteobacteria [119,
120, 27], this framework could be applied to the study of other proteobacteria. Last but not
least, this work is a successful application of multiobjective optimization problem, showing
that MOP is a promising approach for handling conflicting objectives in biological modeling.

Table 3.1: Equations of replication and methylation, transcription, translation, and proteolysis.

Equations of DNA

(1) dIni
dt = ks,Ini ·

(
[DnaA]
ΘDnaA

)4

J4
a,Ini+

(
[CtrA∼P]
ΘctrA

)4
+
(

[DnaA]
ΘDnaA

)4 ·

(
1 + 1

J4
i,Ini+

(
hCori
ΘCori

)4

)
(2) dElong

dt = kelong · Elong4

Elong4+P 4
elong

× Count; (3) dZring
dt = ks,Zring

(4) dhCori
dt = −km,Cori · [CcrM]4

J4
m,Cori+[CcrM]4

· hCori

Continued on next page
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Table 3.1 – Continued from previous page

(5) dhccrM
dt = −km,ccrM · [CcrM]4

J4
m,ccrM+[CcrM]4

· hccrM

(6) dhctrA
dt = −km,ctrA · [CcrM]4

J4
m,ctrA+[CcrM]4

· hctrA

Equations of mRNAs

(7) dIccrM
dt = ks,IccrM ·

(
[CtrA∼P]2

J2
a,ccrM-CtrA+[CtrA∼P]2

· J2
i,ccrM-SciP

J2
i,ccrM-SciP+[SciP]2

)
· hccrM − kd,IccrM · IccrM

(8) dccrM
dt = ks,ccrM · IccrM − kd,ccrM · ccrM

(9) ddnaA
dt = ks,dnaA ·

(
J2
i,dnaA-GcrA

J2
i,dnaA-GcrA+[GcrA]2

)
· (2− hCori)− kd,dnaA · dnaA

(10) dgcrA
dt = ks,gcrA ·

(
[DnaA]2

J2
a,gcrA-DnaA+[DnaA]2

· J2
i,gcrA-CtrA

J2
i,gcrA-CtrA+[CtrA∼P]2

)
− kd,gcrA · gcrA

(11) dsciP
dt = ks,sciP · [CtrA∼P]2

J2
a,sciP -CtrA+[CtrA∼P]2

− kd,sciP · sciP

(12) dctrA
dt = ks1,ctrA ·

(
[GcrA]2

J2
a,ctrA-GcrA+[GcrA]2

· J4
i,ctrA-CtrA

J4
i,ctrA-CtrA+[CtrA∼P]4

· J4
i,ctrA-SciP

J4
i,ctrA-SciP+[SciP]4

)
· hctrA

+ks2,ctrA · [CtrA∼P]2

J2
a,ctrA-CtrA+[CtrA∼P]2

− kd,ctrA · ctrA

Equations of regulatory proteins

(13) d[CcrM]
dt = ks,CcrM · ccrM − kd,CcrM · [CcrM]

(14) d[DnaA]
dt = ks,DnaA · dnaA− kd,DnaA · [DnaA]

(15) d[GcrA]
dt = ks,GcrA · gcrA− kd,GcrA · [GcrA]

(16) d[SciP]
dt = ks,SciP · sciP − kd,SciP · [SciP]

(17) d[CtrA]
dt = ks,CtrA · ctrA−

(
kd,CtrA +

kd,CtrA-ClpXP·[Complex3]2

J2
d,CtrA-CplXP+[Complex3]2

)
· [CtrA]

−kphoCtrA · [CckA ∼ P] · [CtrA] + kdephoCtrA · [CtrA ∼ P]

(18) d[CtrA∼P]
dt = −

(
kd,CtrA +

kd,CtrA-ClpXP·[Complex3]2

J2
d,CtrA-ClpXP+[Complex3]2

)
· [CtrA ∼ P]

+kphoCtrA · [CckA ∼ P] · [CtrA]− kdephoCtrA · [CtrA ∼ P]

Equations of protease complexes

(19) d[CckA∼P]
dt = kphoCckA · (CckAT− [CckA ∼ P])− kdephoCckA · (1 + αcdG · [cdG]) · [CckA ∼ P]

(20) d[Complex1]
dt = k+1 · [ClpXP] · [CpdR]− k−1 · [Complex1]− k+2 · [Complex1] · [RcdA] + k−2 · [Complex2]

(21) d[CpdR]
dt = ks,CpdR · [CtrA∼P]2

J2
a,CpdR-CtrA+[CtrA∼P]2

− kd,CpdR · [CpdR] · [Complex1]
Jd,CpdR+[Complex1] + k−1 · [Complex1]

−k+1 · [ClpXP] · [CpdR] + kdephos,CpdR · [CpdR ∼ P]− kphos,CpdR · [CckA ∼ P] · [CpdR]

(22) d[CpdR∼P]
dt = −kd,CpdR · [CpdR ∼ P] · [Complex1]

Jd,CpdR+[Complex1] + kphos,CpdR · [CckA ∼ P] · [CpdR]

−kdephos,CpdR · [CpdR ∼ P]

Continued on next page
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Table 3.1 – Continued from previous page

(23) d[Complex2]
dt = k+2 · [Complex1] · [RcdA]− k−2 · [Complex2]

+k−3 · [Complex3]− k+3 · [cdG]2 · [Complex2]

(24) d[RcdA]
dt = ks,RcdA · [CtrA∼P]2

J2
a,RcdA-CtrA+[CtrA∼P]2

− kd,RcdA · [RcdA] · [Complex1]
Jd,RcdA+[Complex1]

(25) d[Complex3]
dt = k+3 · [cdG]2 · [Complex2]− k−3 · [Complex3]

(26) d[PleD]
dt = ks,PleD · [CtrA∼P]2

J2
a,PleD-CtrA+[CtrA∼P]2

− kd,PleD · [PleD]− kphosPleD · [PleD] + kdephoPleD · [PleC] · [PleD ∼ P]

(27) d[PleD∼P]
dt = kphosPleD · [PleD]− kdephoPleD · [PleC] · [PleD ∼ P]

(28) d[PdeA]
dt = ks,PdeA · [CtrA∼P]2

J2
a,PdeA-CtrA+[CtrA∼P]2

− kd,PdeA · [PdeA] · [Complex1]
Jd,PdeA+[Complex1]

(29) d[cdG]
dt = ks,cdG · (1 + αPleD · [PleD]) · J2

i,cdG-cdG

J2
i,cdG-cdG+[cdG]2

− kd,cdG · (1 + αPdeA · [PdeA]) · [cdG]

+k−3 · [Complex3]− k+3 · [cdG]2 · [Complex2]

Table 3.2: Event list.
Event description Condition Change(s)
DNA replication initiates Ini = Pelong Ini = 0, Elong = 0.05, DNA = 1.05,

ks,Zring = 0.011, hCori = 1 Count = 2
replication fork passes ccrM locus Elong = 0.2 hccrM = 1
replication fork passes ctrA locus Elong = 0.375 hctrA = 1
DNA elongation terminates Elong = 1 Elong = 0
Z-ring constriction Zring = 1 Zring = 0, ks,Zring = 0, DNA = 1

Count = 1
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Table 3.3: Parameter values. (Parameters marked with ∗ are obtained from publications.)
Parameters of DNA
Rate constants, units = min−1

ks,Ini = 3.104e-4, k∗
elong = 6.53e-3 [20], Pelong∗ = 0.05 [20],

km,Cori = 1.5637, km,ccrM = 2.2763, km,ctrA = 1.4645
Binding constants (dimensionless)
Ja, Ini = 1, Ji, Ini = 1.4565, Jm,Cori = 0.95, Jm,ccrM = 0.95, Jm,ctrA = 0.95
Scaling variables (dimensionless)
ΘCtrA = 6.0, ΘDnaA = 0.5, ΘCori = 0.308
Parameters of mRNAs
Rate constants, units = min−1

ks,IccrM = 0.1105, kd,IccrM = 0.0696, ks,ccrM = 0.2557, kd,ccrM = 0.1005,
ks,dnaA = 0.199, kd,dnaA = 0.0693, ks,gcrA = 5.4235, kd,gcrA = 0.7342,
ks1,ctrA = 1.0035, ks2,ctrA = 0.0937, kd,ctrA = 0.0983, ks,sciP = 0.583, kd,sciP = 0.0523,
Binding constants (dimensionless)
Ja,ccrM-CtrA = 5, Ji,ccrM -SciP = 6, Ji,dnaA-GcrA = 3, Ja,gcrA-DnaA = 1.25, Ji,gcrA-CtrA = 5,
Ja,ctrA-CtrA = 5, Ja,ctrA-GcrA = 3, Ji,ctrA-CtrA = 8, Ji,ctrA-SciP = 8, Ja,sciP -CtrA = 5
Parameters of master regulators
Rate constants, units = min−1

ks,DnaA = 0.0787, k∗
d,DnaA = 0.07 [121], ks,GcrA = 0.032, k∗

d,GcrA = 0.022 [20],
ks,CcrM = 0.0834, k∗

d,CcrM = 0.07 [122], ks,SciP = 0.1294, kd,SciP = 0.0673,
ks,CtrA = 0.0404, k∗

d,CtrA = 0.002 [20], kd,CtrA-ClpXP = 0.053
Phosphorylation constant, units=min−1

kphos,CtrA = 4.2919, kdephos,CtrA = 0.113, kphos,CckA = 1.027, kdephos,CckA = 0.9242
Binding constants (dimensionless)
Jd,CtrA-ClpXP = 4
Parameters of protease complexes
Rate constants, units = min−1

k+
1 = 0.6072, k+

2 = 1.4375, k+
3 = 170.4913, k−

1 = 3.3013, k−
2 = 0.8164, k−

3 = 2.3133,
kphos,PleD = 0.046, kdephos,PleD = 0.0414, ks,CpdR = 1.2227, kd,CpdR = 1.6152,
kpho,CpdR = 1.1239, kdepho,CpdR = 1.3854, ks,RcdA = 0.1642, kd,RcdA = 0.2323,
ks,cdG = 0.0099, kd,cdG = 0.9893,
ks,PleD = 0.0956, kd,PleD = 0.1314, ks,PdeA = 0.012, kd,PdeA = 0.5161
Binding constants (dimensionless)
Ja,CpdR-CtrA = 15, Jd,CpdR = 6, Ja,RcdA-CtrA = 15, Jd,RcdA = 2
Ja,PdeA-CtrA = 5, Jd,PdeA = 5, Ja,PleD-CtrA = 2.5, J∗

i,cdG-cdG = 0.2 [118]
Constants (dimensionless)
CckAT=0.3, [ClpXP]=1, αPdeA = 7, αPleD = 1500, αcdG = 10
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4.1 Abstract

Caulobacter crescentus inhabits aquatic environments, which can thrive with poor nutrients.
it divides asymmetrically during the cell cycle, producing two distinct daughter cells. The
“stalked” cell utilizes a stalk to attach to surfaces in its environment, while the “swarmer” cell
utilizes a flagellum to move and search for more favorable environmental conditions. Given
satisfactory conditions, the swarmer cell differentiates into the stalked morphology and pro-
ceeds with the cell cycle. The molecular mechanism underlying this intriguing behavior is
well studied under nutrient-rich conditions, however, the mechanism of responding to nitro-
gen and carbon starvation is unclear. Here we present a mathematical model to capture
the dynamics of the control mechanism driving the C. crescentus cell cycle. We investigate
known carbon and nitrogen signaling pathways. We demonstrate that these pathways are
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sufficient to explain experimental observations of rapid, robust arrest in swarmer cell popu-
lations. However, the reduced CtrA expression because of starvation introduced should be
determined by other independent pathways. We find that the cdG-dependent starvation re-
sponse is significant for the immediate G1 arrest, while it is not sufficient to arrest cells. We
demonstrate that the reduced DnaA responding to starvation is essential for the G1 arrest
for both swarmer and stalked cells. Our simulations also suggest that the reduction of DivK
and PleD levels may stimulate the G1 arrest of starved cells.

4.2 Introduction

Caulobacter crescentus is a ubiquitous Gram-negative bacterium colonizing freshwater and
certain kinds of soils. It utilizes a dimorphic lifestyle to survive in nutrient-poor environ-
ments [8, 15, 123]. In the G1 phase, the bacterium expresses pili and a flagellum, referred to
as a “swarmer” cell. The pili and flagellum enable the swarmer cell to move and search for
nutrients in its environments [15]. Given suitable environmental conditions, the swarmer cell
will differentiate into a “stalked” cell by releasing its flagellum and synthesizing a stalk [24].
During this differentiation stage, Caulobacter simultaneously initiates chromosome replica-
tion, progressing into the S phase of the cell cycle. The bacterium continues to grow and
synthesizes a new flagellum at the pole opposite to the stalk and assembles a Z-ring near the
middle point. Finally, the cell divides into two progenies with different morphologies [99].
Unlike swarmer cell, the stalked daughter cell is non-motile and reproducible, remaining
attached to the environmental surface.

The asymmetrical cell cycle of Caulobacter requires complex coordination of genetic expres-
sion, proteolysis, phosphorylation, and second messenger signaling. System biologists have
proposed a series of mathematical models to study the temporal regulations of chromosome
replication and cell differentiation of Caulobacter. Li et al. [20, 89] and Weston et al. [22]
have utilized a core cell cycle regulatory network, consisting of four master regulators CtrA,
DnaA, GcrA, and CcrM, to investigate the mechanisms and capture the behaviors of the
cell cycle development in wild type and novel mutant cells. Subramanian et al. [124, 125]
have demonstrated how Caulobacter utilizes the bistability and phosphotransfer of regula-
tory proteins to navigate the cell cycle. Xu et al. have preliminarily explored how second
messengers detect and respond to the environmental nutrition changes through PTS sys-
tems [118] (Chapter 2). However, how Caulobacter cell cycle responds to starvation and the
corresponding detailed mechanisms are yet elucidated. In this study, we are motivated to
develop a mathematical model to explore the cell cycle mechanism in the context of nutrient
stress.

Starvation behaviors of Caulobacter cells. Under carbon or nitrogen starved condi-
tions, C. crescentus arrests its cell cycle, however, the details of arrest are a bit controversial.
Swarmer cells that are introduced to carbon or nitrogen depleted medium immediately ar-
rest at G1. It was thought that swarmer cells arrest and keep their swarmer morphology
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unless the environmental nutrient is replenished [75, 126, 6]. However, Britos et al. [127]
observed that 65% of carbon starved swarmer cells develop stalks and only 11% initiate
DNA replication after 2 hours. Therefore, there is an agreement on the G1 arrest of starved
swarmer populations, but whether swarmer cells develop stalks or remain in the swarmer
morphology is debatable. Gorbatyuk et al. [75] observed that most stalked cells remain in
the pre-divisional phase after 180 min of carbon starvation. However, Ronneau et al. [6]
suggested that starved stalked cells demonstrated delays in S phase and cytokinesis, but
eventually divide and arrest at G1 after 200-260 min. To summarize, these experiments sug-
gest that carbon or nitrogen starved swarmer populations immediately arrest in G1 phase
while starved stalked populations go through a significant delay in cell division and arrest
in G1 phase (Fig. 4.1C).

Response to nutrition signals by second messengers in Caulobacter. Guanine-based
second messengers, (p)ppGpp and cdG, have been reported to influence the cell cycle be-
havior under nitrogen and carbon starvation conditions [6, 40]. As mentioned in Chapter 2,
(p)ppGpp is synthesized from GDP and GTP by the synthetase form of the bifunctional en-
zyme, SpoT, in Caulobacter [44], while the hydrolase form of SpoT converts (p)ppGpp back
into GDP/GTP. The conformation exchange between the SpoT synthetase and hydrolase
state is regulated by the phosphorylation state of enzymes involved in the nitrogen Phos-
photransferase System (PTSNtr) [6]. Carbon and nitrogen starvation signals are detected by
the PTSNtr system through changes of intracellular concentrations of glutamine, pyruvate
(Pyr) and phosphoenolpyruvate (PEP). These molecules directly influence the phosphate
transfer within the PTSNtr system, which downstream determines the activity of SpoT. We
have developed a mathematical model involving the PTSNtr and guanine-based secondary
messenger network (Chapter 2). Our model captures the dramatic increase of (p)ppGpp
level and decreases of GTP and cdG levels under carbon and/or nitrogen starvation [118],
which is consistent with experimental observations [6, 40]. In addition to PTSNtr, the car-
bon PTS system, which is conserved in many bacteria types, may influence SpoT activities
by detecting carbon starvation signals - the concentration of PEP and Pyr. Moreover, the
carbon PTS likely interacts with PTSNtr through phosphate transfer because their enzymes
share some conserved domains [128, 129]. However, the mechanisms underlying the crosstalk
between carbon PTS and PTSNtr are not fully investigated.

Caulobacter cell cycle response to nutrition changes. The depletion of environmental
nutrients targets Caulobacter regulatory proteins to arrest the cell cycle and to conserve en-
ergy to survive [130]. Here, we refer to carbon and nitrogen starvation as “starvation” unless
otherwise stated, because these pathways mostly rely on the same signaling mechanisms.

The proteolysis of master regulator CtrA is inhibited by a SpoT-dependent pathway under
starvation condition [131]. It was previously thought the CtrA is stabilized by (p)ppGpp, the
downstream second messengers regulated by SpoT. However, our second messenger model
(Chapter 2) demonstrated that starvation-induced SpoT activity leads to reduced GTP and
cdG levels. As cdG participates in CtrA proteolysis, it is more likely that SpoT impairs CtrA
proteolysis through the decrease of cdG levels. Despite being stabilized, CtrA levels are still
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Figure 4.1: Nitrogen/Carbon starvation leads to G1 arrest.
(A) In nutrient rich conditions, C. crescentus undergoes an asymmetrical cell cycle. Upon
cytokinesis, the stalked daughter cell immediately enters S phase while the swarmer cell
delays chromosome replication and enters G1. (B) Starved swarmer populations exhibit
immediate G1 arrest. (C) Starved stalked populations show delays in S phase and cytokinesis
followed by G1 arrest. (D) The G1-S transition is dependent on regulations of CtrA∼P and
DnaA (DnaA-ATP), which directly inhibit and promote DNA replication, respectively. In
G1, levels of PleC phosphatase (PleCphos), unphosphorylated DivK (DivKU) and CtrA∼P
are high. During the G1-S transition, PleC levels decrease with the increased levels of kinase
DivJ and cdG, leading to accumulation of SpmX, DivK∼P and CckA phosphatase. As a
result, CtrA∼P levels decrease, chromosome replication initiates, and cells enter S phase.
Solid lines indicate metabolisms, including conversion between two species, synthesis, and
degradation. Dashed lines indicate influential interactions, where an arrowhead indicates a
positive influence and a flat head indicates inhibition.
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reduced to approximately 30% of normal levels in starved cells [127]. It is suggested that
the decrease of CtrA levels is partially dependent on SigT, however the detailed mechanism
has not been determined [127].

Additionally, levels of cell cycle regulator DnaA are rapidly reduced under starvation con-
ditions due to decreased dnaA translation efficiency and constitutive proteolysis by Lon
protease [121]. It has been demonstrated that the depletion of DnaA is dependent on
(p)ppGpp [75], however the mechanism is yet to be elucidated.

Because CtrA and DnaA suppress and activate the initiation of chromosome replication,
respectively, the starvation signaling likely induces the G1 arrest via regulating CtrA and
DnaA stability [131]. However, the detailed mechanism of this possibility is not clear and
should be further explored. First, the half-life of DnaA protein under starvation condition
is 16-20 minutes [126, 121]. It has been reported that 50% of observed swarmer cells enter
S phase around 22 min after synchronization under rich medium [84]. Therefore, there
should be mechanism(s) independent of DnaA to halt DNA replication in starved swarmer
cells, resulting in the G1 arrest. Moreover, while CtrA is first stabilized when starvation
is introduced, only the phosphorylated form (CtrA∼P) can inhibit chromosome replication
and it is unclear whether CtrA remains phosphorylated under starvation.

The phosphorylation status of CtrA is regulated by CckA kinase and phosphatase. As
discussed in Chapter 2, cdG decreases under starvation, which should also reduce CckA
phosphatase activity, promoting dephosphorylation and inactivation of CtrA; however, the
cdG0 strain (deleting cdG) can navigate through the cell cycle without arrest [57]. It demon-
strates that cdG is not sufficient to halt DNA replication. Additionally, the regulator DivK
binds to DivL to switch CckA from kinase to phosphatase [132]. A previous study indicates
that strains depleted of DivK result in G1 arrest [133], which suggests that DivK likely plays
an important role in response to starvation signaling.

Under starvation conditions, DivJ does not localize to the old pole as it typically does under
nutrient-rich conditions [59]. The delocalization of DivJ is likely caused by the decrease of
SpmX, the scaffolding protein that localizes DivJ at the old pole [18], as cdG influences
SpmX levels through a ShkA-ShpT-TacA signaling pathway at the G1 to S transition [94].
cdG is understood to activate the phosphorylation of TacA, which improves the transcription
of spmX [94]. Importantly, SpmX also increases the activity of DivJ kinase.

Figure 3.1D summarizes how the nutrient-regulated SpoT signaling controls the G1-S transi-
tion. However, the underlying nutrient signaling mechanisms and details need further studies.
In this chapter, we integrate our second messenger model [118] into a temporal cell cycle
regulatory network [22] to analyze the molecular mechanisms of nutrition starvation. We find
that the identified signaling pathways can explain many biological observations, but are not
sufficient to explain the delayed cytokinesis of stalked cell populations. A cdG-independent
regulatory pathway has the potential to reduce the levels of CtrA under starvation, causing
the significant delay of cytokinesis in stalked cells. Additionally, we demonstrate that the
cdG-involved second messenger network and DnaA expression both play important roles in
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the G1 arrest of swarmer cells, while both are not sufficient to arrest cells under starvation
conditions. The ‘protection’ of CtrA∼P from cdG at the initial stage of starvation is required
for the G1 arrest. Our analysis also reveals both DivK and PleD activities contribute to the
G1 arrest of starved cells.

4.3 Methods

In this study, we integrate our second messenger model [118] (see Chapter 2) into Weston et
al.’s temporal model [22] with the newly modelled connections between second messengers
and key regulators such as CtrA and CckA. Additionally, we modified and improved Weston
et al.’s model with newly investigated pathways to enhance the biological accuracy. Here
we specify our modifications. The full list of equations is provided in Appendix C1, where
modifications are indicated in the red font.

4.3.1 Modeling PTSNtr/SpoT nutrient signaling cascade through
cdG:

In chapter 2, we modeled the response of secondary messengers - (p)ppGpp, GTP, and cdG
- to starvation signals in Caulobacter [118]. We found that the SpoT enzyme dramatically
influences GTP levels through conversion into (p)ppGpp, which leads to reduced cdG syn-
thesis. On the contrary, we find that cdG synthesis and hydrolysis rates make a negligible
impact on GTP and (p)ppGpp levels because cdG concentrations are negligible compared
to GTP concentrations in C. crescentus [57] and other bacteria species [134]. Based on this
observation, we import GTP levels from the second messenger model [118] (Chapter 2) under
normal and starvation conditions and adjust the synthesis rate of cdG such that:

d[cdG]

dt
=(ks,cdG1 · [PleD ∼ P] + ks,cdG2 · [DgcB]a) ·

[GTP]2

[GTP]2 + J2
s,cdG

− kd,cdG1

· ([PdeA] + PDE) · [cdG]− µ · [cdG] + 2 · (−k+
PopAcdG · [PopA] · [cdG]2

+ (k−
XcdG +Kd,PopA) · [PopA : cdG2]) + 2 · (−k+

PleDcdG · [PleD]T · [cdG]2

+ (k−
XcdG +Kd,PleD) · [PleD : cdG2]T)− k+

CckAcdG · ([CckA]T − [CckA : cdG])

· [cdG] + k−
CckAcdG · [CckA : cdG] + 2 · (−k+

DgcBcdG · (DgcB − [DgcB : cdG2]))

· [cdG]2 + k−
XcdG · [DgcB : cdG2],

(4.1)

where the red text highlights the change made to the cdG differential equation from Weston
et al’s model. Here, Js,cdG indicates the concentration of GTP corresponding to half maximal
synthesis. We input different GTP levels to adjust the synthesis of cdG under normal and
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starved conditions in this study, where Js,cdG = 1500µM , [GTP]=1221µM for nutrient rich
condition and 227µM for starved condition (obtained from Xu et al. [118] or Chapter 2).

Therefore, the fractional term [GTP]2

[GTP]2+J2
s,cdG

is reduced to 5.6%-fold under starvation.

4.3.2 cdG regulates the morphogenesis of Caulobacter through
ShkA-TacA-SpmX pathway

cdG regulates SpmX accumulation, which recruits DivJ to the old pole, at the G1-S transi-
tion [7]. cdG synthesis is impaired from starvation [118] and DivJ delocalization has been
observed in starved Caulobacter cells [59, 94], which suggests that SpmX synthesis is dra-
matically reduced under such conditions. In weston et al’s model [22] SpmX is modelled via a
simplistic function to reduce model complexity. In order to accurately capture the molecular
mechanism of starvation signaling in Caulobacter, we modify the modeling of SpmX with its
transcription regulation.

cdG controls the expression of spmX through the ShkA-TacA pathway. Phosphorylated
TacA controls the transcription of SpmX [18, 94], which recruits and activates DivJ at the
stalked pole [135] (see Fig. 4.1). TacA is activated by a phosphorelay system, including a
hybrid histidine kinase ShkA and a phosphotransferase protein ShpA [94]. cdG binds to
ShkA to induce the kinase activity of ShkA [133, 136]. ShkA kinase transfers phosphates
to a His residue of the phosphotransferase ShpA, which are then received by the receiver
domain of TacA in sequence [133, 94]. Additionally, a few HisKA-family kinases, such as
ShkA, EnvZ [137], and WalK [138], share a conserved HXXXT domain. As EnvZ and WalK
are reported as bifunctional enzymes [139, 140], we assume ShkA is also bifunctional, where
ShkA is the phosphatase form and ShkA:cdG is the active kinase form.

We were unable to find information regarding temporal regulation of ShpA in the literature.
Thus, we turn to a similar CckA-ChpT-CtrA pathway, where ChpT concentrations are stable
throughout the cell cycle [30]. We assume that ShpA level is constant throughout the cell
cycle; thus, the kinetics of ShpA transfer can be collapsed into the transfer of phosphates
between ShkA and TacA directly, to simplify the model.

CtrA∼P directly promotes the expression of shkA [141] and tacA [94]. Additionally, ShkA
and TacA are both proteolyzed by ClpXP, but depend on different arrangements of adaptor
molecules [94]. The proteolysis of ShkA requires the adaptors PopA, cdG, RcdA and CpdR,
while TacA proteolysis only requires CpdR and RcdA [94]. Therefore, the ShkA-TacA
pathway includes both cdG-mediated activation and cdG-dependent degradation. We model
the ShkA-TacA pathway as follows:
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d[ShkA]

dt
= ks,ShkA · [CtrA ∼ P]

[CtrA ∼ P] + Ja,ShkACtrA

− (kd,ShkA1 + µ) · [ShkA]

− kd,ShkA2 · [ClpXP]Complex ·
[ShkA]

[ShkA]T + Jd,ShkA

− k+
ShkAcdG · [cdG] · [ShkA] + k−

ShkAcdG,

d[ShkA : cdG]

dt
= −(µ+ kd,ShkA1) · [ShkA : cdG]

− kd,ShkA2 · [ClpXP]Complex ·
[ShkA : cdG]

[ShkA]T + Jd,ShkA

+ k+
ShkAcdG · [cdG] · [ShkA]− k−

ShkAcdG,

(4.2)

where ks,ShkA is the synthesis rate of ShkA and Ja,ShkACtrA indicates the dissociation con-
stant between CtrA∼P and the shkA promoter. kd,ShkA1 and kd,ShkA2 represent the basal
degradation rate and ClpXP-dependent degradation rate, respectively. [ClpXP]complex is the
complex of ClpXP, cdG, RcdA and CpdR, as described later. Jd,ShkA is the dissociation
constant between ShkA and the ClpXP complex. k+

ShkAcdG and k−
ShkAcdG represent binding

and unbinding rates between ShkA and cdG, respectively.

Regulation of TacA is described as:

d[TacA]

dt
= ks,TacA · [CtrA ∼ P]

[CtrA ∼ P] + Ja,TacACtrA

− (kd,TacA1 + µ) · [TacA]

− kd,TacA2 · [RcdA : CpdR] · [TacA]

[TacA]T + Jd,TacA

− kphos,TacA · [ShkA : cdG] · [TacA] + kdephos,TacA · [ShkA] · [TacA ∼ P],

d[TacA ∼ P]

dt
= −kd,TacA2 · [RcdA : CpdR] · [TacA ∼ P]

[TacA]T + Jd,TacA
+ kphos,TacA · [ShkA : cdG] · [TacA]

− (µ+ kd,TacA1 + kdephos,TacA · [ShkA]) · [TacA ∼ P],

(4.3)

where ks,TacA represents the synthesis rate of TacA. kd,TacA1 and kd,TacA2 indicate the rates of
basal degradation and degradation catalyzed by the protease complex, ClpXP:CpdR:RcdA,
respectively. kphos,TacA and kdephos,TacA indicate the phosphorylation and dephosphorylation
constants of TacA, respectively.

The modified equation of SpmX is given by:

d[SpmX]

dt
= ks,SpmX · [TacA ∼ P]

[TacA ∼ P] + Ja,SpmXTacA

− (kd,SpmX + µ) · [SpmX], (4.4)

where ks,SpmX and kd,SpmX represent the synthesis and proteolysis rates of SpmX, respectively.
Ja,SpmXTacA indicates the binding affinity between TacA∼P and spmX promoter.
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In addition to recruiting DivJ, SpmX stimulates the kinase activity of DivJ. DivJ kinase
activity is upregulated by interacting DivK as well. However, it is unclear how much the
activity is influenced when DivJ is bound to just SpmX, just DivK, or both molecules.
For simplicity, we assume that DivJ activity is negligible when not bound by either SpmX
or DivK, and that DivJ is at 100% activity when bound by both, DivK and SpmX. We
further assume that the phosphorylated and unphosphorylated forms of DivK impact the
DivJ activity to a similar degree. Hence, we model the active DivJ kinase as follows:

[DivJ]A = ([DivJ : DivK ∼ P] + [DivJ : DivK])

· ((1− ϵDivJDivK) · (
min([SpmX], [DivJ]T)

[DivJ]T
) + ϵDivJDivK)

+ ϵDivJSpmX · [DivJ] · min([SpmX], [DivJ]T)

[DivJ]T
,

(4.5)

where ϵDivJSpmX dictates the fraction of activity DivJ has when only bound to SpmX and
ϵDivJDivK is the fraction of DivJ activity when only bound to DivK. The function min([SpmX], [DivJ]T)
represents the fraction of DivJ bound by SpmX.

4.3.3 Modifications to modeling the ClpXP and adaptor complex

The degradation of TacA is dependent on the ClpXP:CpdR:RcdA complex, where the in-
dependent interaction between RcdA and CpdR:ClpXP was not considered in Weston et
al’s model [22]. Here, we assume that RcdA may interact with CpdR independently of its
phosphorylated state, and therefore we define the concentration of the RcdA:CpdR complex
as:

[RcdA : CpdR]T =

[CpdR]T + [RcdA] +KRcdACpdR −
√
([CpdR]T + [RcdA] +KRcdACpdR)2 − 4 · [CpdR]T · [RcdA]

2

(4.6)

where KRcdACpdR is the dissociation constant for the RcdA:CpdR complex. As only unphos-
phorylated CpdR interacts with the ClpXP complex to catalyze proteolysis [27], we calculate
the concentration of RcdA bound to unphosphorylated CpdR such that:

[RcdA : CpdR] = [RcdA : CpdR]T · [CpdR]

[CpdR]T

Additionally, it was shown that the proteolysis of RcdA adaptor is targeted by the CpdR:ClpXP
complex [95], which was modelled in Weston et al. [22]; however, in vivo expression patterns
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of RcdA do not reflect significant proteolysis at the timing of CpdR expression [142, 143].
Therefore, we have removed this insignificant interaction in our model and obtain the fol-
lowing differential equation for RcdA:

d[RcdA]

dt
= ks,RcdA · [CtrA ∼ P]2

[CtrA ∼ P]2 + J2
a,RcdACtrA

− (µ+ kd,RcdA) · [RcdA], (4.7)

where ks,RcdA and kd,RcdA are the synthesis and degradation rates, respectively, and J2
a,RcdACtrA

corresponds to concentration of CtrA∼P that leads to half-maximal rates of synthesis of
RcdA.

4.3.4 An unknown kinase phosphorylating PleD and DivK and a
newly identified phosphatase CckN dephosphorylating DivK∼P
are introduced

PleD, the primary synthetase of cdG, is active in its phosphorylated form (PleD∼P) and
is regulated by DivJ kinase and PleC phosphatase [113]. Previous experiments have mea-
sured that SpmX is expressed in ∆divJ and double mutant ∆divJ∆pleC strains, while
transcription of spmX decreases to 1/4 of wild type cells in ∆pleD [94]. Together with the
cdG-ShkA-TacA-SpmX pathway introduced in Section 4.3.2, these results indicate that PleD
is phosphorylated and active in ∆divJ and ∆divJ∆pleC strains. Therefore, there must be
an unknown kinase responsible for the phosphorylation of PleD independently of DivJ and
PleC. Moreover, significant levels of phosphorylated DivK have been identified in ∆divJ
and double mutant ∆divJ&pleC :: Tn5 strains [14]. As DivJ and PleC are the only known
kinases of DivK, this result indicates that an unknown kinase must regulate DivK as well.
These observations suggest that there is at least one unknown kinase acting on DivK and
PleD. We assume the unknown kinase regulating PleD and DivK is the same one and name
this mystery kinase ‘MysK’ for short. Here, we include ’MysK’ as an independent parameter
in the phosphorylation reaction of DivK and PleD (see Appendix C1).

As the ∆divJ&pleC :: Tn5 strain expresses DivK∼P at ∼27% of WT levels [14], we also
justify that DivK∼P must have a significant basil rate of hydrolysis relative to MysK activity,
otherwise DivK∼P levels should be much greater than 27% of WT in the presence of a
sufficient kinase. In support of an additional phosphatase, CckN has been identified as a
phosphatase for DivK. Furthermore, it was shown that CckN makes little impact on the
phosphorylation of DivK in the presence of DivJ and PleC, but makes a profound impact
in their absence [104]. Additionally, the expression of cckN is induced in stationary phase,
depending on the accumulation of (p)ppGpp [104]. As (p)ppGpp increases in responding to
starvation signals, CckN likely increases under starvation conditions.

The transcription of cckN is stimulated by CtrA∼P, while its degradation depends on ClpX
with unknown adaptor(s) [104]. The observation of CckN abundance over cell cycle time
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indicates that CckN is quickly and dramatically degraded during the G1-to-S transition,
faster than the degradation of CtrA. We speculate that the unknown adaptor(s) in CckN-
specific protease complex likely behave similarly with PopA:cdG2 although it is independent
with PopA based on mutant analyses [104]. Here, we borrow PopA:cdG2 to simulate the
degradation of CckN and model the phosphatase CckN as follows:

d[CckN]

dt
= ks,CckN · [CtrA ∼ P]4

[CtrA ∼ P]4 + J4
a,CckNCtrA

− (µ+ kd,CckN1) · [CckN]

− kd,CckN2 · [PopA : cdG2] ·
[CckN]

[CckN] + Jd,CckN

,

(4.8)

CckN is integrated into the dephosphorylation reaction of DivK (See Appendix C1).

4.3.5 RpoD-regulated transcriptions are affected by starvation

The sigma factor RpoD (σ70) in Caulobacter directly mediates the transcription of house-
keeping genes, while sigma factors are observed to respond to stresses and influence down-
stream gene transcriptions in other bacteria, such as E. coli and B. subtilis [144]. RpoD
levels are reduced to 78% in 30 min after carbon starvation in Caulobacter, suggesting a
RpoD-dependent pathway of stringent response [144]. RpoD targets the promoter of many
genes, including ctrA, divK, pleC, pleD, rcdA, and so on [141]. Moreover, high-throughput
proteome analyses show that DivK levels, CtrA levels, and PleD levels decrease to 70%,
40%, and 10% in wild type cells upon 60 min carbon deprivation, respectively; while the rest
RpoD-downstream proteins do not significantly shift under starvation [127]. Considering
the importance of CtrA, DivK, and PleD in cell cycle regulation, we take RpoD-regulated
pathways into our model. We introduce ‘RpoD’ as an adjustable parameter, being 1 in
nutrient-rich condition and 0.1 in starved condition, into the modeling of synthesis of DivK,
CtrA, and PleD (See Appendix C1).

4.3.6 Modelling other starvation signaling pathways

(p)ppGpp influences numerous other molecules in response to starvation. SpoT is required
for the rapid proteolysis of DnaA upon starvation, which is confirmed by ∆spoT mutant
analysis [126]. We reduce DnaA synthesis (ks,DnaA) in our model to simulate the inhibition
of DnaA translation efficiency under stress. (p)ppGpp constrains cell size and slows down cell
growth under starvation, where the underlying mechanisms have not been identified [59, 131].
In this study, we reduce the average cell growth rate from normal conditions by 1/3 to capture
decreased growth rates under starvation. While evidence suggests that there is no significant
growth in Caulobacter colonies after 8 hrs of monitoring starvation [75], we assume that there
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must be some growth in the initial stages of starvation response as stalked cells continue to
proceed through their cell cycle slowly and divide before G1 arrest [6].

4.3.7 Improvement to SciP modeling

As SciP binds to several genes targeted by CtrA to perturb promoter activity, including the
ctrA promoter [81]. Meanwhile, CtrA in turn activates expression of sciP through the sciP
promoter. The interaction between SciP and CtrA is essential for the robustness of DNA
replication regulation, which is involved in Chapter 3 andWeston et al.’s model [22]. Here, we
incorporate the observation that SciP binds to its own promoter to impair transcription [141].
The improved equation of SciP is as follows:

d[SciP]

dt
= ks,SciP · [CtrA ∼ P]2

[CtrA ∼ P]2 + J2
a,SciPCtrA

·
J2
i,SciPSciP

J2
i,SciPSciP + [SciP]2

− (µ+ kd,SciP) · [SciP],(4.9)

where ks,SciP and kd,SciP are the synthesis rate and degradation rate, respectively. µ indicates
the dilution rate due to C. crescentus cell growth. Ja,SciPCtrA and Ji,SciPSciP describe the
affinity of CtrA:sciP -promoter and SciP:sciP -promoter binding, respectively.

4.3.8 Deriving parameter sets

In general, we use the same parameterization algorithm, the Monte-Carlo Markov-Chain
method, as described in Weston et al’s model [22]. However, different list of mutant strains
are used for estimating parameters in this research as follows: PpleC::Tn, ∆ccrM , ∆gcrA,
∆pleD, divLA601L, ctrA∆3Ω, ctrAD51E, PpleC::Tn&∆divJ , ∆divJ .

To be specific, we start from a seed parameter set P=(p1, p2, ..., pn). A temporary parameter
set, P

′
= (p

′
1, p

′
2, ..., p

′
n), is generated as follows:

p
′

i = pi(1 + ξi ·N(0, σ)),

where ξi is a Boolean variable, either 0 or 1, which is randomly determined by a MATLAB
built-in function. N(0, σ) is a normal distribution with a mean of 0 and a standard deviation
of σ.

Whether P
′
replaces P as the new parameter set is determined by the following algorithm

(same in Weston et al’s model [22]):

P = P
′
if g ⩽ T,
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Table 4.1: Signaling targets and arrest statistics.

Paradigm Description Parameters changes
Fractional Arrested∗

1stG1 2ndG1 1stG2 2ndG2

Signal 1

Introducing stress response
through cdG-dependent

pathway.

ks,DnaA = 0
ks,cdG1 = 0.056ks,cdG1

ks,cdG2 = 0.056ks,cdG2 SW 100% 0 0 0
Inhibiting DnaA synthesis. µ = 0.0018 ST 2.1% 96.9% 0.5% 0

Decreasing all RpoD-dependent transcriptions RpoD=0.1
increasing CckN synthesis ks,CckN = 1.5ks,CckN

Signal 2

Introducing stress response
through cdG-dependent

pathway.

ks,DnaA = 0
ks,cdG1 = 0.056ks,cdG1

ks,cdG2 = 0.056ks,cdG2

Inhibiting DnaA synthesis. µ = 0.0018
Decreasing all RpoD-dependent transcriptions RpoD=0.1 SW 100% 0 0 0

increasing CckN synthesis ks,CckN = 1.5ks,CckN ST 3.1% 96.4% 0 0

Decreasing CtrA.
ks,CtrA1 = ks,CtrA1/30
ks,CtrA1 = ks,CtrA1/30

Signal 3

Inhibiting DnaA synthesis. ks,DnaA = 0
µ = 0.0018

Decreasing all RpoD-dependent transcriptions RpoD=0.1 SW 13.3% 86.7% 0 0
increasing CckN synthesis ks,CckN = 1.5ks,CckN ST 0.5% 99% 0 0

Decreasing CtrA.
ks,CtrA1 = ks,CtrA1/30
ks,CtrA1 = ks,CtrA1/30

Signal 4
Introducing stress response
through cdG-dependent

pathway.

ks,cdG1 = 0.056ks,cdG1

ks,cdG2 = 0.056ks,cdG2 SW 10.2% 0 0 0
µ = 0.0018 ST 0.6% 0 0 0

* 1st G1 corresponds to cells with immediate G1 arrest (no chromosome replication). 2nd G1 corresponds to cells that divide
and then arrest at G1. 1st G2 corresponds to cells that initiate chromosome replication but never divide. 2nd G2 corresponds
to cells that replicate DNA twice but only divide once.
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T = min(exp(
f(P)− f(P

′
)

τ
), 1),

where g is a random number between 0 and 1. f represents the cost function. The cost
function in this research is determined in Appendix C2.

4.4 Results

4.4.1 Investigating performance of model

To study the response of Caulobacter, we first improve Weston et al’s model [22] and integrate
the network with our second messenger network (Chapter 2), the ShkA-TacA-SpmX path-
way, mystery kinase, CckN phosphatase, RpoD-related transcription, and several signaling
mechanisms (Figure 4.2).

To ensure our new model and parameter sets are in sufficient agreement with experimentally
observed behavior, we analyze the prediction of mutant strain viability by the new model
(Fig, 4.3A). The success rate in predicting the viability of 35 mutant strains, 70 types
of cell populations (SW and ST) in total, is about 80%, which is reasonable considering
the complexity of our model and the large number of predicted strains. Additionally, we
compare the temporal dynamics of key regulators in WT swarmer cell in simulation with
this in experiments (Fig. 4.3B), which matches very well with the experimental observations.

Given that Caulobacter arrests at G1 under starvation and CtrA∼P regulates the G1-S
transition, we conduct further analysis to ensure that our model can accurately capture
the regulation of CtrA phosphorylation. CckA is regulated by DivK and cdG [28]. The
model in Chapter 2 suggests that cdG should be depleted due to SpoT activity in starvation
conditions [118], but the behavior of DivK phosphorylation has not been investigated, to the
best of our knowledge, under carbon or nitrogen stress. To ensure our model can predict
DivK∼P levels reliably, we evaluate DivK∼P levels measured in mutants from two different
papers: 1) Wheeler and Shapiro (1999) [14]; 2) Radhakrishnan et al. (2008) [18]. We conduct
our own quantitative analysis of the Western blots provided by Wheeler and Shapiro and
Radhakrishnan et al. utilizing ImageJ software (Table 4.2). Our simulation of DivK(∼P)
shows reasonable agreement with experimental analysis.
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Figure 4.2: Wiring diagram of regulatory interactions captured by the model.
A box with a plus or minus sign indicates whether the protein indicated by the same
color (e.g., green = GcrA) activates or inhibits expression of the gene. The sigma factor
RpoD is indicated as yellow where its promoter regulation is indicated in yellow box. Dot-
headed solid line indicates the binding of species (e.g., PopA and RcdA form the PopA:RcdA
complex). Chemical conversion of one molecular species to another is indicated by an arrow.
Proteolysis is depicted by an arrow from a protein to four black circles. Dashed arrows
indicate an ‘influence’ (e.g., catalysis) of a protein on a chemical reaction. A dashed orange
arrow indicates spatial influence. A bright blue S indicates an element of starvation signaling,
where arrow represents activation and bar represents inhibition influence (see Table 4.1).
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Figure 4.3: Model and parameter sets fit experimental data reasonably well.
(A) The fraction of total simulations that failed (F/T fraction) is plotted for each mutant
case. A simulation is considered as ‘failed’ if it predicts cell cycle arrest when experimental
observations report a viable cell cycle, or vice versa. Mutant simulations in this chapter
have the same parameter setting with Weston et al. [22]. 150 parameter sets were chosen
at random from the parameter set collection and simulated for both swarmer cell (SW) and
stalked cell (ST). The black dashed line corresponds to an arbitrary threshold (25%) that
we use to compute the success rate of strain prediction. Strains labeled with red font were
included in the parameterization cost function (see Method). (B) For 50 randomly selected
parameter sets, we plot swarmer-cell simulations in comparison to experimental data. Data
collected as follows: [CckAK]: Jacobs et al. [145]; [CpdR]: Iniesta et al. [143]; [cdG]: Abel
et al. [57]; [SciP]: Tan et al. [81]; [CcrM]:+, Zhou and Shapiro [146]; [CcrM]: solid square,
Grunenfelder et al. [147]; [GcrA]: Holtzendorff et al. [114]; [DnaA]: Cheng and Keiler [148];
[CtrA∼P]: Jacobs et al. [145]; [CtrA]T: Mcgrath et al. [142]. In all plots except [cdG], [CtrA]T
and [CtrA∼P], concentrations are unitless and normalized to the experimental data, which
predict relative concentrations over time are normalized to one. [CtrA]T and [CtrA∼P]
experimental data are also unitless, however, absolute CtrA concentrations in our model are
a prediction and therefore the data is normalized to the simulation output. The absolute
concentration of cdG is quantified from the source of the data, and the simulation of cdG is
not normalized.
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Table 4.2: DivK∼P levels in various mutant strains.
Normailzed DivK∼P (%) Normailzed Ratio DivK∼P

DivKT
(%)

Source of Data Ref [14] Ref [18] Model Results Ref [18] Ref [14] Model Results
Source of Analysis This study∗ This study∗ This study This study∗ This study∗ This study

WT 100 100 100 100 100 100
∆spmX - 36 46 36 - 43
∆divJ 8 4 0.1 4 7 0.1
∆pleC 142 179 160 225 170 185

∆spmX&∆pleC - 187 147 222 - 169
∆divJ&∆pleC 7 - 27 - 7 28

* Analysis conducted using ImageJ software.

4.4.2 Introducing known signaling mechanisms of starvation (Sig-
nal 1) successfully captures the first G1 arrest of swarmer
population and the secondary G1 arrest of stalked popula-
tion

Given reasonable agreement of our model with experimental data, we proceed to investigate
how our model responds to environmental signals. The exact mechanism of nutrient signaling
is not clear in many cases. For instance, it is observed that GcrA levels decrease significantly
under carbon starvation [141], but whether this is a downstream consequence of shifts in
transcription factor activity (e.g. due to shifts in CtrA activity) or due to an independent
signaling mechanism is unclear. Here, we first introduce a signal that we define as ’Signal 1’
(Table 4.1) of starvation and compare simulations with observations. Signal 1 composes of
1) inhibition to the translation of dnaA; 2) impaired synthesis of cdG due to the response
of the PTSNtr-SpoT pathway [118]; 3) reduced growth rate; 4) decreased RpoD-dependent
transcription of ctrA, divK, and pleD ; and 5) increased CckN.

When introducing Signal 1 at t=0 (G1 phase/swarmer cell), we find that the cell cycle arrests
immediately (Figure 4.4A and Table 4.1), which is observed by experiments [75, 126, 6]. We
call this the first G1 arrest. When introducing Signal 1 at t=45 (S phase/stalked cell), the
cell cycle appears to be relatively unhindered but arrests at the G1 stage after cytokinesis
(Figure 4.4B and Table 4.1). We call this the secondary G1 arrest. Although the secondary
G1 arrest is observed in experiments, stalked cells introduced to starvation should also exhibit
significant delays in cytokinesis [6]. Therefore, Signal 1 can explain the G1 arrest of starved
cells, while the stalked cycle-cycle delay is not captured.

To identify whether or not Signal 1 can adequately explain DnaA and CtrA expression
patterns, we plot simulations against temporal protein expression data from a population
of nitrogen starved swarmer cells, retrieved from Gorbatyuk et al. [75] (Figure 4.4C and
D). We find that Signal 1 adequately explains DnaA expression but does not capture the
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Figure 4.4: Cell cycle response of starvation Signal 1.
(A) Swarmer cell simulation of Signal 1 response. Plot of chromosome count and Z-ring
constriction (first panel) and select normalized protein concentrations (second and third
panel). Concentrations are normalized to average WT expression. When the Zring variable
is equal to 1, the Z-ring is fully open. It is closed when Zring is equal to 0. The corresponding
position in the cell cycle is indicated in the illustration above. A double arrow indicates
when the nutrient signal is introduced. A red “X” represents that swarmer cells arrest in the
stage indicated (G1 phase for this figure). (B) Stalked cell simulation of Signal 1 response.
Stalked cells arrest at the secondary G1 as indicated in the illustration. All other details
are the same as in “A”. (C) CtrA expression levels in swarmer cell simulations relative
to normalized data extracted from Gorbatyuk et al. [75]. (D) DnaA expression levels in
swarmer cell simulations relative to normalized data extracted from Gorbatyuk et al. [75].
(E) Protein expression levels 30 and 60 minutes after nutrient depletion relative to nutrient
rich conditions. ‘Exp’ indicates experimental observations from Britos et al. [127]. ‘Sim’
indicates average simulation values from 30 and 60 minutes into simulations of swarmer,
stalked and pre-divisional cells.
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pattern of CtrA. Additionally, we compare the simulated abundance of CtrA, DnaA, DivK,
and PleC under Signal 1 with their experimental measurements under carbon starvation
conditions (30 min and 60 min after starvation was introduced) [127] in Fig. 4.4E. We find
Signal 1 can capture the general response of most indicated proteins except for CtrA. Our
simulation results suggest the decrease of RpoD-regulated ctrA expression in our model is
not sufficient to overcome the initial stabilization of CtrA caused by the cdG shift. As
CtrA levels are eventually reduced under starvation, there should be cdG-independent and
might be RpoD-independent pathways controlling the response to starvation. Moreover,
the successful prediction of GcrA response to starvation indicates the current pathways are
substantially sufficient to reduce GcrA in starved cells, so we do not need to introduce
independent GcrA pathways to simulate the starvation response in Caulobacter.

4.4.3 The decreased expression of CtrA contributes to observed
delays in cytokinesis of starved stalked cells

In the simulation with Signal 1, the CtrA levels do not reduce as low as Britos et al indi-
cates [127], which suggests that there are likely unknown pathways controlling CtrA under
starvation condition. Moreover, Signal 1 can not explain the obvious delay in cytokinesis
observed in starved stalked cells.

Here, we introduce Signal 2 (Table 4.1), integrating the enforced reduction of CtrA expression
with Signal 1, to investigate the influence of reduced CtrA. Not surprisingly, Signal 2 still
performs well in the simulation of starved swarmer cells and DnaA expression pattern under
starvation conditions (Fig. 4.5A and D). Additionally, the expression pattern of CtrA and
its abundance changes under starvation are accurately captured by simulations with Signal
2 (Fig. 4.5C and E). Importantly, Signal 2 can explain the delayed cytokinesis of starved
stalked cells (Fig. 4.5B), which suggests the reduced CtrA contributes to the observed delay in
cytokinesis for stalked cells under starvation condition. Moreover, the simulation of [CtrA]T
and [CtrA∼P] in swarmer cell (Fig. 4.5A and C) suggests that phosphorylated CtrA levels
are relatively high at the initial stage of starvation introduction to inhibit the initiation of
chromosome replication, although the total levels of CtrA reduce.

4.4.4 cdG-dependent pathways play important roles in the re-
sponse to starvation signals

cdG shifts dramatically under different concentrations of environmental nutrients, and it
regulates the activity and abundance of the master regulator CtrA through several path-
ways [118]. Here, we delete the cdG-dependent pathways from Signal 2, calling it Signal 3
(Table 4.1), to study the contribution of cdG in the response to starvation.

Without the cdG-dependent pathways, our simulated swarmer population exhibits the sec-
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Figure 4.5: Starvation Signal 2 simulations fit experimental observations well with
the exception of CtrA expression.
(A) Swarmer cell simulation of Signal 2 response. Red “X” indicates immediate G1 ar-
rest. Other details are identical to Figure 4.4A. (B) Stalked cell simulation of Signal 2
response. Red “X” indicates the secondary G1 arrest in stalked daughter cell. Other details
are identical to Figure 4.4A. (C) CtrA expression levels in swarmer cell simulations relative
to normalized data extracted from Gorbatyuk et al. [75]. (D) DnaA expression levels in
swarmer cell simulations relative to normalized data extracted from Gorbatyuk et al. [75].
(E) Protein expression levels 30 and 60 minutes after nutrient depletion relative to nutrient
rich conditions. Details specified in Figure 4.4E.



Chunrui Xu Chapter 4. Molecular mechanisms of cell cycle arrest in carbon ... 70

ondary G1 arrest in 86.7% of our parameter sets, while only 13.3% of our parameter sets
indicate immediate cell cycle arrest at G1 for swarmer cells (Table 4.1). Our research sug-
gests the cdG-involved second messenger network proposed in Chapter 2 is significant for
the immediate G1 arrest of swarmer cells in starved environments. Additionally, although
the simulation with Signal 3 performs well in predicting shifts of key proteins including CtrA
after 30 min and 60 min of starvation introduced (Fig. 4.6E), it can not exactly capture the
expression pattern of CtrA under starvation condition (Fig. 4.6C). Taken the simulation of
Signal 3 and previous simulations with Signal 1 and Signal 2 together, our model suggests
that the immediate G1 of swarmer cells results from a relatively high level of CtrA∼P in-
hibiting the DNA replication. Our simulation further suggests that cdG decreases under
starvation condition to ’protect’ CtrA∼P and inhibits the S-entry.

Additionally, the simulation with starvation Signal 3 together with previous starvation Signal
1 indicates that the decrease of DnaA in swarmer cells under starvation is not sufficient to
prevent chromosome replication. A closer investigation reveals that DnaA levels are about
35-45% of peak levels at the timing of chromosome replication. Leslie et al. showed that
Caulobacter cells in stationary phase have DnaA levels that are approximately 10-18% of ex-
ponential phase [121]. Furthermore, since cells still divide, albeit slowly, in stationary phase,
this suggests that 10-18% of typical DnaA levels (compared to a nutrient rich simulation)
should be sufficient for chromosome replication. Altogether, these investigations suggest that
the rate of DnaA depletion is not fast enough to explain G1 arrest from starvation signaling.
Therefore, the reason of G1 arrest under starvation is that CtrA∼P remains sufficiently high
to inhibit chromosome replication, at least until DnaA can be sufficiently depleted.

4.4.5 cdG-dependent pathways are not sufficient to arrest cells

We keep the reduced growth rate and cdG-dependent pathways in Signal 4 to investigate
whether the important cdG-related response is sufficient to capture observations of starved
cells. We find neither swarmer cells nor stalked cells arrest as experiments suggest in the
simulation with Signal 4 via most parameter sets (Table 4.1, Fig. 4.7A and B). Our simulation
agrees with the experimental observation that cdG0 strain (deleting cdG) is not arrested.

We also try other combinations of starvation response pathways shown in Table C3.1. When
adding reduced DnaA expression into Signal 4, calling it Signal 5a, the simulated swarmer
cells with 92.3% parameter sets can arrest at the first G1 stage, while the simulated stalked
cells with 98.4% parameter sets can arrest at the secondary G1 stage. Therefore, our model
suggests that the reduced level of DnaA is essential for the cell cycle response to star-
vation, although it is not enough to stimulate the rapid G1 arrest of swarmer cells. We
further explore the significance of RpoD-dependent transcription of ctrA, divK, and pleD
with Signal 5b-5d (Table C3.1). Signal 5c (adding decreased RpoD-regulated divK expres-
sion) increases the fraction of first G1 arrest of swarmer cells from 92% to 100%, while
Signal 5d (adding decreased RpoD-regulated pleD expression) improves this index to 97%.



Chunrui Xu Chapter 4. Molecular mechanisms of cell cycle arrest in carbon ... 71

Figure 4.6: Starvation Signal 3 is not sufficient to arrest swarmer cells in the first
G1 stage.
(A) Swarmer cell simulation of Signal 3 response. Swarmer cell is not arrested at the first
G1 phase. Other details are identical to Figure 4.4A. (B) Stalked cell simulation of Signal
3 response. Red “X” indicates the secondary G1 arrest in the stalked daughter cell. Other
details are identical to Figure 4.4A. (C) CtrA expression levels in swarmer cell simulations
relative to normalized data extracted from Gorbatyuk et al. [75]. (D) DnaA expression
levels in swarmer cell simulations relative to normalized data extracted from Gorbatyuk et
al. [75]. (E) Protein expression levels 30 and 60 minutes after nutrient depletion relative to
nutrient-rich conditions. Details specified in Figure 4.4E.
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Figure 4.7: Starvation Signal 4 is not sufficient to arrest cells.
(A) Swarmer cell simulation of Signal 4 response. Swarmer cell is not arrested in this case.
Other details are identical to Figure 4.4A. (B) Stalked cell simulation of Signal 4 response.
Stalked cell is not arrested in this case. Other details are identical to Figure 4.4A. (C)
CtrA expression levels in swarmer cell simulations relative to normalized data extracted
from Gorbatyuk et al. [75]. (D) DnaA expression levels in swarmer cell simulations relative
to normalized data extracted from Gorbatyuk et al. [75]. (E) Protein expression levels 30
and 60 minutes after nutrient depletion relative to nutrient rich conditions. Details specified
in Figure 4.4E.
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Both reduced divK expression and reduced pleD expression help to improve the simulation
performance of swarmer population arrest, while the divK expression plays more important
roles.

4.5 Discussion

In this study, we investigate the molecular mechanism behind Caulobacter cell cycle arrest
from nutrient starvation. Our model has good agreement with experimental observations
in the phenotypes of WT and mutant cells under nutrient-rich condition (Fig. 4.3, Ta-
ble. 4.2). Based on the rationality of this model, we further explore the contribution of
known starvation-relevant pathways (Signal 1) and find that these pathways are sufficient
to capture most characteristics of starved cells except for two observed phenomena: 1) the
delayed cytokinesis of stalked cells and 2) the expression pattern of CtrA which does not
reduce to a low level which experiments suggest. Therefore, we enforce the reduction of CtrA
level in Signal 2, which solves the above two problems. This suggests that nutrient signals
must influence CtrA via additional mechanisms to explain reduced CtrA expression under
carbon and nitrogen starvation. The delayed cytokinesis in starved stalked cells seems to be
a consequence of the slowed synthesis of Z-ring proteins which are controlled by CtrA∼P.
Altogether, CtrA∼P remains high at the initial starvation stage because cdG is reduced,
and it is required to decrease to delay the cytokinesis in starved stalked populations.

In previous work (Chapter 2) [118], Xu et al. demonstrated that cdG levels are likely depleted
due to the accumulation of (p)ppGpp, thus providing a link between (p)ppGpp regulation
and CtrA proteolysis. cdG is also responsible for the accumulation of SpmX at the G1-S
transition via TacA and ShkA [94]. Modelling the ShkA-TacA-SpmX pathway reinforces the
relationship between cdG and phosphorylation state of CtrA. We expand on this work here
and find that the sole cdG response is not sufficient for cell cycle arrest (Table 4.1, Signal 4).
However, when we remove the impaired cdG from the starvation signal (Signal 3), we find
that immediate G1 arrest in swarmer cells is heavily compromised. Thus, while the proposed
signal from Chapter 2 is not sufficient on its own to explain starvation response behavior,
it is an essential component of the starvation response. Our simulation results suggest that
the cdG-dependent stabilization of phosphorylated CtrA is essential for the G1 arrest of
starved cells, while the following reduction of total CtrA levels is caused by unclear control
mechanisms. Similarly, our simulations with Signal 5a and Signal 3 suggest the reduced
expression of DnaA is essential but not sufficient for the rapid G1 arrest of swarmer cells
population. Our model suggests that the Caulobacter response to starvation signals is under
multifaceted regulations and interactions.

In addition to essential players in starvation response control, such as cdG and DnaA, there
are a few regulators that contribute to the robust and rapid G1 arrest. We individually
introduce the RpoD-regulated expression of divK and pleD in starvation signals, which play
roles in phospho-signaling. DivK affects the phosphorylation of CtrA and CpdR through
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switching CckA from kinase to phosphatase state, while PleD is the major synthetase pro-
ducing cdG from GTP molecules. The simulation results suggest that the reduced expression
of both divK and pleD stimulate the G1 arrest, where divK is more powerful than pleD.
Additionally, a newly discovered DivK phosphatase CckN has demonstrated elevation in re-
sponse of (p)ppGpp [104]. Comparing the simulation result of Signal 1 and Signal 5d, with
and without the shift of CckN, we find that the CckN-pathway also helps cells to arrest at
G1 when nutrition is depleted.

In summary, our results indicate that numerous aspects of the cell cycle machinery are targets
of starvation signals. The phosphorylation of CtrA together with DnaA determine the G1
arrest, while CtrA also influences the cytokinesis delay under starvation. Although second
messengers are small molecules with relatively low levels in Caulobacter cells compared with
proteins, they play key roles in detecting and responding to starvation signals.
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5.1 Abstract

Caulobacter crescentus is a model organism to investigate the spatial asymmetry of prokary-
otes. The dimorphic cell division cycle of Caulobacter crescentus is driven by the asym-
metrical localization and periodical appearance of key regulatory proteins that control cell
fate, such as the master regulator CtrA. The spatial regulations of phosphotransfer and pro-
teolysis of CtrA are characterized by two distinct signaling hubs at opposite poles of the
Caulobacter cell, where the scaffolding protein PodJ and PopZ work as the central organizer
at the flagellated pole and the stalked pole respectively. In this study, we use a modified
Turing-pattern mechanism to simulate the spatiotemporal dynamics of scaffolding proteins,
accounting for the initial arrangement at distinct poles. Additionally, the non-uniform dis-
tributions of key regulators involved in two phosphotransfer modules, DivJ/PleC-DivK and
DivL-CckA-CtrA, are investigated based on the network of scaffolding proteins. Our math-

75
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ematical model captures key features of wild-type and mutant strains, and we predict the
distribution of CtrA∼P in mutant strains.

5.2 Introduction

The asymmetrical distribution of proteins in prokaryotic cells contributes to diverse biolog-
ical processes, including morphogenesis, stress response, and signal transduction [149, 150].
The oligotrophic aquatic bacterium, Caulobacter crescentus (Caulobacter), is a model or-
ganism for investigating the bacterial cellular asymmetry, in which at least 10% of proteins
are non-uniformly distributed across cells [149, 151]. Caulobacter undergoes a dimorphic cell
cycle regulated by asymmetrically distributed proteins, such as the master cell cycle regula-
tor CtrA, producing two distinct progenies: a motile non-replicable swarmer cell with a high
level of phosphorylated CtrA (CtrA∼P) and a sessile replicable stalked cell with a low level
of CtrA∼P [125] (Fig. 5.1). As phosphorylated CtrA inhibits the initiation of DNA repli-
cation by targeting the chromosome replication origin (Cori) in Caulobacter, the swarmer
daughter cell is required to reduce the CtrA∼P level to reproduce. The nascent swarmer
cell goes through a phase named swarmer-to-stalked (sw-to-st) transition given suitable en-
vironments, reducing the level of CtrA∼P and differentiating into the stalked morphology,
whereas the stalked cell can immediately enter the next replication cycle [152, 3, 15]. The
predivisional cell, with a flagellum at the ‘new’ pole and a stalk at the ‘old’ pole, establishes
a spatial gradient of CtrA∼P, with high levels near the flagellated end and low levels near the
stalked end (Fig. 5.1). Then, the cell divide asymmetrically producing distinct daughters,
where the new swarmer cell enters the sw-to-st transition stage and the new stalked cell
re-commences DNA replication (Fig. 5.1). Additionally, CtrA is an essential transcriptional
factor controlling the expression of over 90 genes in C,crescentus [153, 25]. During the sw-
to-st transition, the flagellum of swarmer cell is shed and replaced by a stalk and holdfast,
which is also regulated by the level of CtrA∼P.

As CtrA is of great importance for DNA replication, gene transcription, and cell cycle regula-
tion, its spatial concentration gradient is a decisive factor for the establishment of asymmetry
in Caulobacter. The abundance of active CtrA is determined through three pathways: syn-
thesis, proteolysis, and phospho-signaling. The temporal regulation of CtrA synthesis has
been well studied [20]. There are two ctrA promoters: the weaker promoter (P1) is in-
hibited by CtrA∼P and the stronger promoter (P2) is activated by CtrA∼P. Additionally,
three other major regulators - DnaA, GcrA, and CcrM - collaborate with CtrA constitut-
ing a pivotal regulatory network to orchestrate the cell cycle and ensure the robustness of
Caulobacter [22, 20, 89]. Li et al. [20, 89] converted the regulatory network into quantitative
models, investigating the mechanisms underlying cell-cycle-based DNA replication, methy-
lation, and protein metabolism. Simulation results of Li’s model reproduced the temporal
dynamics of key regulators in wild type (WT) and relevant mutant cells, and predicted
the phenotype of novel mutants. Murray et al. proposed a simplified mathematical model
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involving GcrA, CtrA, and CcrM in the cell cycle regulatory network in Caulobacter [19].
Weston et al. constructed a CtrA-centric temporal mathematical model, suggesting that the
unphosphorylated CtrA competes with the phosphorylated form for binding to the Cori [22].
However, these models fail to account for the localization of essential regulators, which are
fundamental to the polar morphogenesis and asymmetry establishment in Caulobacter.

The phosphorylation state of CtrA is regulated by two phosphotransfer modules: DivL-
CckA-CtrA and DivJ/PleC-DivK (Fig. 5.2, yellow and green boxes), where CckA and PleC
are bifunctional histidine kinases working as either a kinase or phosphatase for their response
regulators - CtrA and DivK, respectively [125, 154, 30, 124]. CckA mediates the phos-
phorylation/dephosphorylation of CtrA and CpdR via a phosphotransferase ChpT, while
unphosphorylated CpdR is an essential component of the ClpXP protease complex specif-
ically responsible for the proteolysis of CtrA [155]. Thus, CckA regulates the activity of
CtrA through both phosphotransfer and proteolysis. Although CckA level remains constant
throughout the cell cycle, its subcellular localization varies [156]. Time-lapse microscopy in-
dicates that CckA has no preferential localization in swarmer stage and accumulates at the
flagellated pole (new pole) during stalked and predivisional stages (Fig. 5.1, fluorescent yel-
low). Around 30% observed WT cells have a strong old-polar accumulation of CckA during
the stalked stage, which suggests that the old pole may serve as a depot for surplus CckA,
and CckA localized at the old pole is dispensable for normal cell cycle development [155, 30].
The switch between kinase and phosphatase of CckA is allosterically mediated by DivL and
cyclic-di-GMP (cdG) [157]. DivL stimulates the kinase activity of CckA, whereas CckA
binding with cdG or DivL:DivK∼P complex leads to the increase of CckA phosphatase
activity [157, 132, 151]. Therefore, DivL connects the two phosphotransfer modules by in-
teracting with DivK and CckA. Additionally, DivL is required for the new-polar localization
of CckA [157, 158]. Another binding partner of CckA which may contribute to its localization
is PopZ [159].

DivJ functions as a kinase phosphorylating DivK whereas PleC is the major phosphatase
of DivK [160, 149]. In addition, PleC can function as a kinase of DivK in a specific state
which is stimulated by DivK∼P [154]. Experiments have indicated that phosphorylated
DivK accumulates at the old pole during most time of the cell cycle, while it is temporarily
localized at the new pole in the predivisional stage and released from the new pole after
cytokinesis [160] (Fig. 5.1, red). Interestingly, DivJ and PleC are localized at opposite poles
during the cell cycle of Caulobacter : DivJ is localized at the old pole and PleC is localized
at the new pole [14, 18] (Fig. 5.1, orange and purple). The function and polar localization
of DivJ and PleC regulate the spatial phosphorylation and dephosphorylation of DivK.
Therefore, DivK is phosphorylated at the old pole and dephosphorylated at the new pole,
resulting in a lower level of DivK∼P in the swarmer compartment after cytokinesis [149].

Chen et al. [151] and Tropini et al. [149] have constructed mathematical models to simulate
the development of CtrA∼P gradient in predivisional cells via CckA-relevant and DivK-
relevant reactions, respectively. Their models account for the phenotype of relevant mutants
and suggest that Caulobacter establishes robust asymmetry before cytokinesis. Subramanian



Chunrui Xu Chapter 5. Turing-pattern model of scaffolding proteins ... 78

Figure 5.1: Dynamic localization of key proteins over the cell cycle of C. crescen-
tus.
CtrA∼P develops a spatial concentration gradient during the cell cycle (gray). The three
scaffolding proteins, PopZ, PodJ, and SpmX, interact with each other and recruit (directly
or indirectly) client proteins at specific poles, including DivJ [18], PleC [7], DivK [18],
CckA [159], DivL [159], and CpdR [159].

et al. [125] proposed an ‘inhibitor-sequestration’ model, suggesting that new-polar DivK∼P
is sequestrated by PleC kinase, so that CckA can retain its kinase activity at the new pole
in the predivisional stage.

These spatial modelling work provided certain insights into mechanisms of spatial regulations
and morphogenesis of bacteria; however, in these models, initial non-uniform localizations
were enforced and the source of localization could not be well explained. Normally, spatial
orchestration is fulfilled by scaffolding proteins which initially occupy particular areas and
recruit binding partners to the same or neighbouring area [161]. The localization and ac-
tivity of several key regulators involved in the CtrA-centric network are dependent on the
localization and interactions of three scaffolding proteins - PodJ, PopZ, and SpmX in C.
crescentus [161, 18]. PodJ is localized at the flagellated pole, SpmX at the stalked pole, and
PopZ at both poles during the cell cycle of Caulobacter [161, 18] (Fig. 5.1, blue, violet, and
black). PodJ and SpmX directly bind to PleC and DivJ respectively, causing the new-polar
PleC and old-polar DivJ [7, 18]. Additionally, the localization of DivK, DivL, CckA and
CpdR are dependent on PopZ [159, 18, 162]. Mutant analysis indicates the new-polar DivL
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is determined by PodJ [135]. As PleC and DivL, recruited by PodJ at the new pole, are
binding partners of DivK, PodJ likely influences the localization of DivK as well.

Several hypotheses have been proposed for the initial polar localization of scaffolding pro-
teins [161]. One suggests the nucleoid occlusion may result in polar distributions because
poles, which are devoid of chromosomes, can provide sufficient space for the assembly of pro-
teins [163]. Other suggestions indicate some unique elements of poles, such as the negative
polar curvature [164, 165], lipid [165, 166] or peptidoglycan [167] composition, may cause
polar accumulation of scaffolding proteins.

Chen et al. [92] and Subramanian et al. [168, 21] utilized the Turing-pattern mechanism to
investigate the spatial dynamics of PopZ. The PopZ model suggests there is an unknown nu-
cleating factor at the new pole recruiting PopZ to stabilize the bipolar accumulation. In this
study, we use a similar reaction-diffusion mechanism to investigate the initial localization
of three scaffolding proteins - PopZ, PodJ, and SpmX. We use protein-protein interactions
together with Turing-pattern to simulate the temporal and spatial dynamics of scaffolding
proteins and their client proteins. In our study, PodJ functions as a nucleating factor re-
cruiting PopZ, which is sufficient to ensure the bipolar pattern of PopZ. Moreover, we apply
the scaffolding protein network to explore the non-uniform distribution of CtrA, DivK, and
CckA. Our mathematical model correctly reproduces two signaling hubs at two poles of
a wild type cell and the phosphorylation state of DivK of mutant cells. Additionally, we
predict the distribution of DivK∼P and CtrA∼P in mutant cases.

5.3 Methods

5.3.1 Reaction-diffusion equations and compartment-based dis-
cretization

We apply a reaction-diffusion model to capture the spatiotemporal dynamics of proteins. The
governing partial differential equation (PDE) for a generic protein S is as follows (Eq. 5.1):

∂C

∂t
= Chemical ReactionRates +D

∂2C

∂x2
, (5.1)

where C(x, t) is the concentration of protein S. D denotes the diffusion coefficient of S.

We use a compartment-based scheme to convert continuous equations to discrete compart-
ments to solve PDEs. In addition, the compartment-based method allows us to extend the
determined model to its stochastic version in our future work. Here, the total cell length (L)
is divided into 10 even compartments of length l = L/10. Therefore, we convert the PDE
into 10 ODEs as follows:
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dC1

dt
= CR+ D(C2−C1)

l2

dCi

dt
= CR+ D(Ci+1−Ci)

l2
+ D(Ci−1−Ci)

l2
, i = 2− 9

dC10

dt
= CR+ D(C9−C10)

l2

(5.2)

The first compartment represents the new pole of Caulobacter cell and the tenth compart-
ment is the old pole.

The number of compartments influences the computational complexity of the model. To
initially test the rationality of our work and efficiently search parameter space, we used a
four-compartment model at the first stage shown in Appendix D 3. The four-compartment
model makes the computation simple enough yet still provides sufficient spatial information.
Moreover, it is more efficient to search the parameter space through a model with a small
number of compartments. After the model is initially verified and parameters estimated,
we extended the four-compartment scheme to a ten-compartment model to provide more
accurate simulations, as described above. In principle, the compartment-based model can
be extended to greater numbers of compartments.

As the Caulobacter cell is growing as a result of new cell wall materials being added uni-
formly along the long axis [169], we assume each compartment grows exponentially with
time (Eq. 5.3).

dl

dt
= µl. (5.3)

During the swarmer cell cycle, a swarmer cell grows, over the course of 150 min, from ∼2 µm
at birth to ∼4.4 µm at separation [170, 171], so we calculate µ = 1

150min
log
(
4.4
2

)
≈ 0.0053

min−1.

Localizations of PodJ, PopZ, and SpmX based on an activator-
substrate depletion (A-SD) type of Turing pattern

Turing Pattern [172] has often been used to explain periodic patterns in space, such as spots
and stripes on coats of animals, bacterial colony formation, and the MinCD system in E.
coli [21]. The stable formation of A-SD type Turing Pattern requires two criteria [21, 93]:

1. the activator species is formed from the substrate by an autocatalytic reaction;

2. the substrate species diffuses significantly faster than the activator [173, 21].
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In the Caulobacter system, the three scaffolding proteins (PodJ, PopZ, and SpmX) satisfy
the two criteria of A-SD Turing-pattern formation. These proteins have monomeric and
polymeric forms in cells, while the monomer diffuses much faster because of lower molec-
ular mass [7, 174, 21]. PodJ, PopZ, and SpmX self-assemble in vitro and in vivo [161].
Furthermore, these proteins show branched accumulations in overexpressed and filamentous
conditions [175, 176, 21, 7, 174], implying autocatalytic polymerization processes. A-SD
Turing pattern has the potential to exhibit unipolar, central, and bipolar accumulations of
product corresponding to various Turing wavelengths [21]. The characteristics of Turing pat-
tern fits well with the observation of PopZ localization that PopZ has an old-polar focus in
shorter nascent swarmer cells (Fig. 5.1) and accumulates at both poles in longer stalked cells
and predivisional cells (Fig. 5.1). Therefore, we utilize a Turing pattern model to explain
the spatial dynamics of PopZ. In order to stabilize the bipolar pattern for PopZ, we also
include its interaction with PodJ, a nucleating factor biasing PopZ localization to poles [7]
(Eq. 5.4).

d[PopZm]

dt
= ks,PopZ − (kd,PopZ + µ) · [PopZm] + kdepol,PopZ · [PopZp]

− kdnv,PopZ · (1 + αPopZPodJ · [PodJLT]) · [PopZm]

− kaut,PopZ · [PopZm] · [PopZp]
2 +DPopZm · ∂

2[PopZm]

∂x2

d[PopZp]

dt
= −(kd,PopZ + µ) · [PopZp]− kdepol,PopZ · [PopZp]

+ kdnv,PopZ · (1 + αPopZPodJ · [PodJLT]) · [PopZm]

+ kaut,PopZ · [PopZm] · [PopZp]
2 +DPopZp ·

∂2[PopZp]

∂x2

(5.4)

where [PopZm] and [PopZp] are the concentrations of PopZ monomer and polymer, respec-
tively. [PodJLT] denotes the total concentration of long form PodJ ([PodJLm] + [PodJLp]).
ks,PopZ and kd,PopZ represent the synthesis and degradation rate of PopZ. kdepol,PopZ indicates
the rate constant of de-polymerization, while kdnv,PopZ and kaut,PopZ are the rate constants
for the de novo and autocatalytic polymerization of PopZ, respectively. αPopZPodJ describes
the recruitment by PodJ. DPopZm and DPopZp are the diffusion coefficients of monomer
and polymer of PopZ respectively, where DPopZm ≪ DPopZp. The diffusion coefficients of
species except for polymers in this study are estimated by an empirical function in E.coli
(Eq. 5.5) [177].

D = α(MW )−2 +D0, (5.5)

where α = 4.3× 103µm2s−1kDa2, D0 = 0.65µm2s−1 and MW is for the molecular weight of
the protein.

In addition, PopZ at the old pole recruits SpmX, which inhibits the localization of PodJ [7,
93]. Thus, we take interactions of PopZ-SpmX and SpmX-PodJ into our Turing pattern
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model to explain the periodical localizations of PodJ and SpmX (Fig. 5.2 blue box, Eq. 5.6,
Table. D1.1 Eq. (1)). PodJ shows bipolar localization when it is expressed alone in E. coli,
suggesting that PodJ itself has an intrinsically high affinity with poles [7]. Furthermore,
co-expressed SpmX and PodJ in E. coli results in dispersed PodJ [7]. Additionally, PodJ
accumulates at both poles in ∆spmX mutant strains, while accumulation of PodJ is reduced
in SpmX overexpressed strains [7]. Taken together, these experiments suggest that SpmX
suppresses the assembly of PodJ (Fig. 5.2 blue box). Here, the inhibition effect of SpmX on
PodJ is modeled in Eq. 5.6.

d[PodJLm]

dt
= ks,PodJ · ((1− ϵ) · SpodJ + ϵ) + ks,PodJ2 ·

J2
i,PodJCtrA

J2
i,PodJCtrA + [CtrA ∼ P]2

− (kd,PodJ1 + kd,PodJ2 · [PerP] + µ) · [PodJLm] + kdepol,PodJ · [PodJLp]

− kdnv,PodJ · [PodJLm]−
kaut,PodJ

1 + αPodJSpmX · [SpmXT]
· [PodJLm] · [PodJLp]

2

+DPodJLm · ∂
2[PodJLm]

∂x2

d[PodJLp]

dt
= −(kd,PodJ1 + kd,PodJ2 · [PerP] + µ) · [PodJLp]− kdepol,PodJ · [PodJLp]

+ kdnv,PodJ · [PodJLm] +
kaut,PodJ

1 + αPodJSpmX · [SpmXT]
· [PodJLm] · [PodJLp]

2

+DPodJLp ·
∂2[PodJLp]

∂x2

(5.6)

where αPodJSpmX indicates the inhibition from SpmX on the polymerization of PodJ proteins.
Ji,PodJCtrA describes the binding affinity between CtrA∼P and podJ promoter, which models
the suppression of podJ expression by transcriptional factor CtrA∼P [130]. ((1−ϵ)·SpodJ+ϵ)
represents the methylation regulation of podJ expression, which is explained in next section
(see ‘Chromosome replication, methylation, and cell division’).

5.3.2 Chromosome replication, methylation, and cell division

In addition to CtrA, other regulators control the chromosome replication to ensure the
robustness of Caulobacter system. One key regulator is DnaA, which activates the initiation
of replication by binding to Cori [85]. During DNA replication, fully-methylated chromosome
turns into hemi-methylated. CcrM, a conserved DNA methyltransferase that methylates
promoters with methylation sites, is turned on around the completion of replication [79].
In this study, we do not explicitly model chromosome replication and methylation because
these processes are not closely associated with spatial regulations, although they are vital
to temporal checkpoints of cell cycle. As increased DnaA and reduced CtrA∼P levels of
initiating the DNA replication are concurrent, we take a threshold of [CtrA∼P] as an event
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Figure 5.2: A schematic diagram of the spatiotemporal regulatory network.
Red dashed lines indicate the localization effects by scaffolding proteins. Black dashed
lines indicate the metabolism effects. Arrows are for activation and bars are for inhibition
effect. ‘Meth’ indicates methylation-controlled transcription. The red square with minus or
plus represent CtrA-regulated inhibition or activation of transcriptions. Four black spots
represent the products of degradation. The line with solid circles at ends describes the
binding reaction.

to initiate the DNA replication [19] (Table 5.1). When [CtrA∼P] is reduced to a level lower
than the threshold (Θ), replication initiates and that time is recorded as Tini. The replication
period time (S-phase) of WT cells is approximately 90 min [84]. Here we do not explicitly
model the signal for replication termination. Instead, we set replication termination time,
Tterm = Tini+90 min. For promoters with methylation sites (ctrA, pleC, perP, and podJ ), we
use (1 − ϵ)S + ϵ to model the methylation regulation by CcrM (see yellow rectangles with
‘Meth’ in Fig. 5.2):

• S=0: fully-methylated promoters with lower rate of transcription.

• S=1: hemi-methylated promoters.

where ϵ is a small number indicating the suppressed expression of genes when fully methylated
(Eq. 5.6, Table D1.1). Experiments suggest that the bacterial chromosome arrangement
likely preserve the linear order of genes [178]. Therefore, we calculate the approximate time



Chunrui Xu Chapter 5. Turing-pattern model of scaffolding proteins ... 84

when replication fork passes the corresponding gene based on its genome coordinate [179,
141]. When the replication fork passes the gene, S is set to 1; when replication terminates,
S is set back to 0. All switching parameters for these events are listed in Table 5.1.

Z-ring closure is not modelled in this study. Here, we assume that the completion time of
compartmentalization (z-ring closed) is 5 min after DNA replication terminates, formulated
as t = Tterm+5 min. The simulated cycle completes about 25 min after the compartmen-
talization. Then the two daughter cells are assumed to be completely separated. The cycle
timeline is shown in Fig. 5.3. Note that the assumptions of time for specific events, such
as the Z-ring closure and progenies separation, come from experimental observations of WT
cells. For mutant cases where the levels of CtrA∼P are either too low or too high to trigger
the ‘DNA replication’ event (Table 5.1), we enforce we enforce following operations:

1. if the average [CtrA∼P] is already lower than the threshold Θ (Table 5.1) at t=15 min,
Tini=15 min;

2. if the average [CtrA∼P] has never been lower than Θ until t=300 min, the simulation
is forced to stop.

Table 5.1: Events and switches of parameters.
event description condition change at the event

replication initiation
average [CtrA∼P]
changes from > to <Θ

Tini = t

replication fork passes ctrA t>90×37%+Tini SctrA=1
replication fork passes pleC t>90×65%+Tini SpleC=1
replication fork passes perP t>90×74%+Tini SperP=1
replication fork passes podJ t>90×87%+Tini SpodJ=1
replication termination t>Tterm All ‘S’s are switched to 0

Figure 5.3: Schematic simulated cell cycle timeline for a WT cell.
The DNA replication initiates when the average [CtrA∼P] changes from higher than Θ to
lower than Θ. DNA replication needs 90 min to terminate, where Tterm=Tini+90 min. Z-ring
is completely closed 5 min after the replication termination, and the daughter cells need 25
min to completely separate.
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In addition to methylation, transcription of certain genes is regulated by CtrA∼P (see red
squares with plus and minus in Fig. 5.2). We use Hill functions to describe transcriptional
activation and inhibition by CtrA∼P as follows:

Ha(CtrA ∼ P) =
[CtrA ∼ P]n

Jn
a,CtrAP + [CtrA ∼ P]n

, (5.7)

Hi(CtrA ∼ P) =
Jn
i,CtrAP

Jn
i,CtrAP + [CtrA ∼ P]n

. (5.8)

where the subscripts a and i denote activation and inhibition. n is the Hill coefficient and J
is the dissociation constant between CtrA∼P and the corresponding promoter.

Finally, because mRNAs in Caulobacter diffuse slowly (≈ 0.03µm2min) [180] and poles are
void of chromosome [163], we assume that the translation of proteins only take place in
central compartments. Thus, the synthesis rate (ks) is set as 0 in polar compartments.

5.3.3 Multiobjective optimization

We use MATLAB’s built-in multiobjective genetic algorithm to estimate parameters. There
are in total 110 parameters in this model. Parameters are split into two groups: fixed
and optimized parameters. 69 parameters are fixed, including 1) 33 parameters that are
estimated from experimental or mathematical publications, and 2) 36 parameters that were
initially estimated from our preliminary trials of scaffolding protein models, such as the model
included in Xu et al. [93], and tuned slightly and manually in this study. The remaining 41
parameters are chosen for optimization. Let χ ∈ R41 be the vector of estimated parameters.
We define two objective functions as follows:

f1(χ) =

cycle3∑
cycle2

(
PodJ∑
CtrA

n∑
i

(xi − yi)
2 +max(0, |Tini − 25| − 5)2, (5.9)

f2(χ) =

cycle3∑
cycle2

SpatialCost, (5.10)

where xi indicates the simulated value at time i and yi indicates the experimental data point
at time point i of WT cells. n varies for different species. We compare simulation results
for the second and the third cycle so that we may avoid bias in initial values. The first
objective function include the temporal fitting cost of two species: PodJ and CtrA, as well
as the initiation time fitting cost for DNA replication in the WT simulation. The second
objective function indicates the spatial fitting cost of WT simulation that includes three
types of penalties to ensure experiment-similar simulation of spatial dynamics for DivK and
PopZ:
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1. PopZ concentration in new-polar compartment is less than in central compartments,

2. PopZ concentration in old-polar compartment is less than in new-polar compartment,

3. DivK∼P concentration in new-polar compartment is less than in central compartments.

Details of objective functions are in our codes at https://github.com/chunruixu/Turing-
pattern-model-of-scaffolding-proteins.git. Note that these objective functions only include
temporal data of PodJ and CtrA, the spatial observations of PopZ and DivK; and the
initiation time of DNA replication. Other WT observations and mutant phenotypes are not
included in parameter optimization and are used to validate our model.

Additionally, to improve the efficiency of searching parameters, we first apply the optimiza-
tion to the four-compartment model described in Appendix D3. The parameters derived
from the optimized four-compartment model are used as the seed to search for optimized
parameters in the ten-compartment model.

5.4 Results

To simulate mutant cells, we make appropriate changes to some of the parameters, as spec-
ified in Table S1.4. For WT cell type the simulation is run for three cell cycles and we plot
results of the third cycle. For mutant cells that DNA replication initiates before 300 min in
our simulation, we plot results of the second cycle. For mutant cells that DNA replication
does not initiates before 300 min, we plot simulated results of 0-300 min.

5.4.1 A-SD Turing-pattern accurately captures the spatiotempo-
ral dynamics of scaffolding proteins

The simulated spatial dynamics of scaffolding proteins in wild type swarmer cells are shown in
heat-maps (Fig. 5.4), where the top line indicates the new pole and the bottom line indicates
the old pole. PopZ simulation shows stable bipolar localization over the cell cycle. To be
specific, the second focus of PopZ starts to present at approximately 60 min, matching with
experimental data [7] (Fig. 5.4(a)). SpmX, recruited by PopZ, sharply accumulates at the
old pole at approximately 10-20 min in our simulation, which also agrees with experimental
data (Fig. 5.4(b)) [18]. Full PodJ (the long form PodJ indicated as PodJL) is localized at
the new pole and is truncated by the protease PerP to turn into a short form PodJ (PodJS)
(Fig. 5.1, blue) [7, 181]. PodJS remains at the flagellated pole until it is degraded during the
sw-to-st transition of the next cell cycle, where the new flagellated pole of the previous cycle
turns into the old pole (Fig. 5.1). Later, PodJL is newly synthesized and localized at the
new pole of the new cycle (Fig. 5.4(c)) because old polar SpmX inhibits the polymerization
of PodJL. The simulation results of PodJL and PodJS are consistent with experiments. To
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specify, PodJL proteins occupy the new pole during the S-phase in simulation, while PodJS
proteins are localized at the old pole at the beginning of cell cycle, which are inherited from
the mother cell (Fig. 5.4(c)(d)). In the predivisional stage, PodJS proteins re-accumulate at
the new pole (Fig. 5.4(d)). The assumption that synthesis of proteins only takes place in
central compartments impairs the polar localization of Turing pattern; however, our system
is robust enough to reproduce polar localizations of scaffolding proteins in wild type cells.
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Figure 5.4: The spatial dynamics of scaffolding proteins in ten-compartment spa-
tial simulations over one cell cycle of the Caulobacter swarmer cell.
(a-d)PopZ, SpmX, long form PodJ, and short form PodJ. X-asix indicates time of cycle,
while Y-axis represents the distance to the midpoint of long-axis of cells. Top and bottom
compartment indicates the new pole and old pole, respectively. Color denotes the scaled
concentration of indicated species.

5.4.2 The spatial gradients of CtrA∼P and DivK∼P are repro-
duced by our model

With the mechanisms of A-SD Turing pattern formation, the three scaffolding proteins -
PodJ, PopZ, and SpmX - can initially occupy specific polar areas through polymerization
and protein-protein interactions. Here, we build a spatiotemporal regulatory network for
the asymmetry development over the cell cycle on the basis of scaffolding proteins network
(Fig. 5.2). In addition to the three scaffolding proteins, we include key enzymes DivJ, PleC,
DivL, DivK, CckA, the master regulator CtrA and its proteolysis promoter CpdR (Fig. 5.2,
green and yellow boxes).

DivJ and PleC are recruited by scaffolding proteins to localize at the old pole and new pole,
respectively, to function as a major kinase and phosphatase of DivK. The opposite local-
izations of DivJ and PleC provide the foundation of spatial gradient for DivK∼P. DivK∼P
binds to DivL to control the switch of CckA phosphatase and kinase [182, 183]. As CckA
kinase and phosphatase regulate the phosphorylation state of CtrA and CpdR, the distribu-
tion of DivK∼P likely influences the distribution of CtrA∼P. Additionally, PopZ has been
reported to directly bind to DivL and CpdR [159], and PodJ participates in the localization
of DivL [135, 184]. Therefore, the spatial regulation of scaffolding proteins is multifaceted.
Detailed molecular mechanisms involved in the three modules, scaffolding proteins module
(blue box in Fig. 5.2), phosphotransfer module of DivJ/PleC-DivK (green box), and phos-
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photransfer module DivL-CckA-CtrA (yellow box), are explained in Appendix D 2. We
convert the diagram in Fig. 5.2 into a set of PDEs shown in Table. D1.1, and then convert
the PDEs into a system of ODEs using the compartment-based discretization explained in
Methods.

Fig. 5.5 shows the simulated spatial dynamics of proteins involved in the two phospho-
transfer modules. Overall, the simulations of proteins shown in Fig. 5.5 match well with
experimental observations. In Fig. 5.5(c), phosphorylated DivK accumulates in the stalked
compartment after the cell division, which is consistent with experiments (Fig. 5.1) [160].
In detail, DivK∼P is not only localized at the old pole over the cell cycle, but also shows
a temporary accumulation at the new pole in the predivisional stage, which has been ob-
served in experiments [160]. The general asymmetrical distribution of DivK in simulation
is caused by the new polar PleC and old polar DivJ, because DivJ and PleC regulate the
phosphorylation state of DivK and bind to DivK to influence its localization ( Fig. 5.2 and
Fig. 5.5(a-b)).

Experiments show that DivL is stably localized at the new pole during S phase and less
frequently localized at the old pole (Fig. 5.1, olive) [185]. Our model captures the new-polar
accumulation of DivL, which is mainly recruited by PodJ (Fig. 5.5(d)). CckA is dispersed
in the nascent swarmer cell and shows a strong new-polar accumulation later (Fig. 5.5(f)),
which agree with experiments (Fig. 5.1) [30, 155]. Following cell division, simulations exhibit
a higher level of unphosphorylated CpdR in the stalked compartment (Fig. 5.5(g)) and a
higher level of phosphorylated CtrA in the swarmer compartment (Fig. 5.5(h)), which are
consistent with the asymmetrical life-cycle of Caulobacter. Furthermore, the mechanism that
unphosphorylated CpdR promotes the proteolysis of CtrA reinforces the reduced levels of
CtrA∼P in the stalked compartment.

5.4.3 The consistency in temporal dynamics between our simula-
tion and experiments further demonstrates the rationality
of this model

We further compare the temporal dynamics of PodJL, PodJS, SpmX, DivJ, PleC, DivK, and
CtrA in model simulation and experiments (Fig. 5.6). Generally, our temporal simulation fits
well with experimental data although there are some minor mismatches. PodJS is degraded
at the beginning of the cell cycle,while PodJL keeps increasing until PerP is expressed in the
late S-phase, which converts PodJL into PodJS (Fig. 5.6(a)). SpmX levels grow slowly, while
most of SpmX at the end of cycle is in the stalked compartment, which explains the low
levels of SpmX at the birth of a swarmer cell (Fig. 5.6(b)). Similarly, because most of DivJ is
localized at the old pole, the nascent swarmer cell inherits less DivJ, which explains the lower
level of DivJ at t=0 min (Fig. 5.6(c)). Compared with experimental data, the simulated PleC
shows a slightly delayed turning point, but it still catches the general trend (Fig. 5.6(d)). The
decrease of CtrA (Fig. 5.6(f)) during the sw-to-st transition is used to signal the initiation
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Figure 5.5: Spatial dynamics of client proteins (or complex) in ten-compartment
simulations, including PleC, DivJ, DivK∼P, DivL without binding to DivK∼P,
DivL:DivK∼P complex, CckA, unphosphorylated CpdR, and CtrA∼P.

time of DNA replication and methylation-regulated synthesis in this model (see ‘Methods’,
Table 5.1). The simulated initiation time of DNA replication is approximately 29 min after
previous cell separation. This is reasonable and works well in simulating the timing of cell
cycle.
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Figure 5.6: Comparison of simulated temporal dynamics with corresponding ex-
perimental observations over one cell cycle of a Caulobacter swarmer cell.
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proteins. Triangle, plus, and asterisk represent data points from indicated publications.
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5.4.4 Interactions among scaffolding proteins and higher polar
affinity are required for their proper localization patterns

PopZ is a critical scaffolding protein recruiting core regulators of CtrA, such as SpmX, DivL,
and CpdR [159]. Therefore, it is imperative to look into the mechanisms underlying the lo-
calization of PopZ [7]. While PopZ stably shows bipolar accumulation in wild type cells, no
detectable PopZ accumulates at the new pole in the ∆podJ mutant, suggesting the recruit-
ment by PodJ is required for the stable second focus of PopZ [7]. Here, we model the ∆podJ
mutant by setting the synthesis rate of PodJ as 0, in which podJ expression is completely
deleted (Table. D1.3). In the wild type simulation, PodJ works as the factor biasing PopZ
from the monopolar accumulation to the bipolar accumulation. When the biasing effect of
PodJ disappears, PopZ can not ensure its polar localization. There are other candidate fac-
tors reinforcing the new polar accumulation of PopZ, such as ParA, TipN and ZitP, which
interact with PopZ at the new pole [7, 21, 186]. Additionally, unique characteristics of poles,
such as curvature and composition of polar cell walls, may provide a higher affinity for scaf-
folding proteins like PopZ [161]. As the specific mechanism of polar affinity independent
of PodJ is unclear, we assume a higher polymerization rate of PopZ at poles to enforce
the polar affinity in our model. Specifically, auto-catalytic polymerization rate of PopZ
(kaut,PopZ) is 25% higher in polar compartments than in central compartments. Likewise, the
auto-catalytic polymerization rate of PodJ is 25% higher in polar compartments.

With the assumption of higher polar affinity, our model reproduces the phenotype of ∆podJ
that PopZ localizes at the old pole without PodJ, while PleC is dispersed across the cell
(Fig. 5.7(a)). Our model indicates that PodJ is required for the new polar focus of PopZ and
PleC. Additionally, SpmX and DivJ keep co-localized with PopZ in the ∆podJ simulation.

Next, we investigate the spatial regulation of PopZ via ∆popZ mutant (ks,PopZ = 0). Instead
of accumulate at one pole, PodJ shows bipolar pattern but less accumulation in the ∆popZ
simulation, which is consistent with experiments (Fig. 5.7(b)) [7, 162]. Our simulation
also captures the features of ∆popZ observed in experiments that the polar localizations
of SpmX, DivJ, CpdR and DivK are severely impaired (Fig. 5.7(b) and Fig. D4.1) [162].
The delocalization of DivJ is likely caused by the delocalization of SpmX. Moreover, the
bipolar localization of PodJ is likely a result of delocalized SpmX because SpmX works as
an inhibitor of PodJ localization [7, 93].

To further investigate the function of SpmX, we set ks,SpmX = 0 to simulate ∆spmX strains
(Table.D1.3). In our simulation, PodJ exhibits bipolar localization, while DivJ is dispersed.
The new-polar localization of PopZ is weakened, which is likely caused by two pathways: 1)
partial PodJ is localized at the old pole, which means that the new-polar recruitment by
PodJ is reduced; 2) The absence of SpmX results in weaker kinase activity of DivJ, so that
DivK∼P level decreases, CtrA∼P level increases, PodJ level is reduced because of higher
inhibition by CtrA∼P (Fig. 5.2), and less PopZ is polymerized at the new pole in sequence.
Experiments of ∆spmX indicate that the number of cells with bipolar PodJ and ectopic
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midcell PodJ increases [7]. Thus, our model can capture certain behavior of ∆spmX cells.

Taken together, our A-SD Turing model can reproduce most phenotypes of deleted mutant
cases relevant to scaffolding proteins. Our work suggests that interactions among PopZ,
PodJ, and SpmX are indispensable for their correct localization. Additionally, there should
be a higher polar affinity for PopZ and PodJ.
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Figure 5.7: Spatial simulations of ∆podJ, ∆popZ, and ∆spmX.

5.4.5 DivL determines the new-polar localization of DivK in the
predivisional stage

A previous study has shown that the phosphorylated form of DivK preferentially localizes
at the cell poles [150]. Among the currently known binding partners of DivK, PleC and
DivL show significantly higher affinity with DivK∼P in vivo, whereas DivJ can bind to
both phosphorylated and non-phosphorylated forms [182]. Therefore, we consider the fol-
lowing complexes of DivK in our model: PleC:DivK∼P, DivL:DivK∼P, DivJ:DivK∼P, and
DivJ:DivKu (DivKu denotes unphosphorylated DivK, see Appendix D2). Our model can
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reproduce the phenotype of DivK spatial dynamics in DivJ and PleC mutants, as described
below.

DivJ is necessary for the polar localization of DivK. DivJ binds to DivK and functions
as the major kinase phosphorylating DivK [150]. Without DivJ (see the ∆divJ mutant,
Table. D1.3), DivK∼P levels drop dramatically and DivK is delocalized [150, 187, 15]. DivK
in the kinase-defective DivJ strain (DivJ-H338A) can localize at the old pole but fails to
localize at the new pole [150]. Our simulations of ∆divJ and DivJ-H338A (Fig. 5.8(a)(b)) are
consistent with experimental observations, which agree that DivJ determines the old polar
localization of DivK and DivJ kinase activity is required for the new polar accumulation of
DivK. PleC has been reported to determine the new polar release rather than the localization
of DivK, because DivK∼P keeps occupying the new pole after z-ring closure in ∆pleC
and PleC-H610A mutant strains [150, 160, 22]. Here, we simulate ∆pleC and PleC-H610A
(inactive kinase and phosphatase PleC mutation) in Fig. 5.8(c)-(d), where DivK∼P fails to
release from the new pole after cell division. We also check the function of kinase activity of
PleC in the simulation of PleC-F778L (kinase-defective pleC strain), where DivK shows WT
like dynamics, consistent with experiments (Fig. 5.8(e)) [160]. Therefore, our model together
with experimental observations suggests that the kinase activity of PleC is dispensable for
the transient new polar accumulation of DivK in the predivisional stage.

Based on these results, we speculate that either the localized PleC or DivL or both function as
the physical binding partner to recruit DivK∼P at the new pole, which requires the kinase
activity of DivJ. We utilize Our spatial model to explore two hypothetical mutant cases,
‘delocalized PleC’ mutant (kfb,PleC = 0) and ‘delocalized DivL’ mutant (αb,DivLPodJ = 0,
deleting the recruitment of PleC by PodJ), to further study the effects of PleC and DivL.
DivK fails to accumulate at the new pole in delocalized DivL mutant, while delocalized
PleC mutant exhibits WT similar dynamics in simulation (Fig. 5.8(f)(g)). Therefore, we
suggest that DivL plays a more important role in recruiting DivK∼P at the new pole in the
predivisional stage.

To sum up, our model agrees with experimental observations that the DivJ kinase activity
is required for the new-polar accumulation of DivK, while PleC is required for the timely
release from the new pole [150]. Additionally, our mutant simulations suggest that PleC
localization and kinase activity are not necessary for the localization of DivK, while DivL is
required for the new polar localization of DivK.

5.4.6 Our model captures key characteristics of phosphotransfer
processes

In ∆divJ strain, the level of DivK∼P is reduced and CtrA-dependent transcriptions in-
crease [188, 15]. The observed phenotype of ∆divJ is successfully captured by our model
(Fig. 5.8(a)). The simulation of ∆pleC shows increased levels of DivK∼P and reduced lev-
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Figure 5.8: DivK(∼P) and CtrA∼P dynamics in ∆divJ, DivJ-H338A, ∆pleC, PleC-
H610A, PleC-F778L, delocalized PleC, and delocalized DivL mutant strains.
The total DivK rather than DivK∼P is observed in two DivJ mutant cases because DivJ
can bind to unphosphorylated DivK while PleC and DivL prefer to bind to phosphorylated
DivK. In ‘delocalized PleC’ and ‘delocalized DivL’ mutant simulation, the recruitment by
PodJ on PleC and DivL is deleted, respectively.
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Table 5.2: Phosphorylation state of DivK in mutant strains.
mutant WT ∆spmX ∆divJ ∆pleC ∆podJ

DivK∼P
1 Exp2 1 0.36 [18] 0.04 [18] 1.79 [18] 1.50 [5]

Sim 1 0.28 0.09 4.02 1.27
1 DivK∼P levels are normalized with respect to the level in wild-type cells.
2 Experimental data in Radhakrishnan et al. [18] is quantified using ImageJ.

els of CtrA∼P, which is consistent with experiments as well (Fig. 5.8(c)) [188, 124]. We
further quantitatively compare the simulated levels of DivK∼P in four mutant cases with
the corresponding experimental measurements in Table 5.2. Numbers in Table 5.2 indi-
cate normalized levels with respect to WT cells (both for simulation and experiment). Our
simulation captures the key trends of DivK∼P level in mutant cases and matches with ex-
perimental data. DivK∼P level dramatically decreases in ∆spmX and ∆divJ because the
kinase activity of DivJ is largely impaired or deleted (Table 5.2, Fig. D4.1, Fig. 5.8(a)). As
PleC mainly functions to dephosphorylate DivK, ∆pleC mutation results in the increased
DivK∼P (Table 5.2, Fig. 5.8(c)). In addition, the higher level of DivK∼P in ∆podJ sug-
gests that PodJ likely inhibits rather than activates the kinase activity of PleC, which is a
debatable issue in Kowallis et al. [161].

Because DivK∼P inhibits the phosphotransfer to CtrA∼P through interacting with DivL,
mutations that impact the localization or/and abundance of DivK∼P should affect the es-
tablishment of CtrA∼P spatial gradient by amount or degree.

Here, our model provides predictions of CtrA spatial dynamics for some relevant mutant
strains (Fig. 5.8, Fig. D4.1). ∆pleC and PleC-H610A mutant strains, failing to release
DivK∼P from the new pole, exhibit severe reverse distribution of CtrA∼P in simulation
(Fig. 5.8(c) and (d)). Our model predicts the spatial gradient of CtrA∼P almost disappears
in ∆divJ , DivJ-H338A, and ∆popZ mutant cases. Our model predicts the spatial gradient
of CtrA∼P almost disappears in ∆divJ , divJ-H338A and ∆popZ mutant strains. All other
mutant simulations in this study show higher levels of CtrA∼P in the swarmer compartment,
but the ‘delocalized PleC’ and ∆podJ mutant simulations display shallower CtrA∼P gradient
(Fig. 5.8, Fig. D4.1). These predictions suggest that mutations in activity of key enzymes,
such as the DivJ kinase and PleC phosphatase, seem to have more severe phenotypes than
localization mutations.

5.5 Discussion

In this study, we integrate the Turing-pattern mechanism with protein-protein interactions
of scaffolding proteins to study polarity establishment in C. crescentus. The mutant analysis
of scaffolding proteins indicates that PopZ and PodJ should have a higher affinity with poles.
Jacob et al. has proposed a hypothesis that the cell membrane only grows in a central zone
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of bacterial cells [189], which has been supported by subsequent evidences [190, 191, 192].
Therefore, the unique curvature and less new wall insertion of cell poles may cause the higher
affinity of PodJ and PopZ with poles suggested in this study. In addition to using different
auto-catalytic polymerization rates in different types of compartments (this study), it is
reasonable to apply different growth rates in polar and central compartments in modeling.
We tried a different-growth-rate model with an assumption that the growth rate of poles is
half of the growth rate of centers (with the difference of auto-catalytic polymerization rates
of PodJ and PopZ being removed). The different-growth-rate model successfully reproduced
the polar accumulation of WT, ∆podJ and ∆spmX mutant simulations, while PodJ failed
to localize at the pole in ∆popZ simulation. Our trial verified that the slower growth rate
of pole contributed to at least part of the polar localization of scaffolding proteins. Chen
et al. [92] has constructed a two-dimensional model to describe the poles and central zones
of C. crescentus cells with different shapes, which provides an idea to differentiate poles
from middle areas. Additionally, other proteins, such as ZitP and TipN, has the potential
to stabilize the polar accumulation of PopZ. They are not currently modelled in this study
yet [186].

We model the CtrA-relevant phosphotransfer cascades based on a scaffolding protein net-
work to investigate the relationships among localization, activity and asymmetry within
Caulobacter cells. The activities of proteins are closely associated with localization. We
directly include the activation of DivJ kinase by SpmX, the activation of PleC kinase by
DivK∼P, and the inhibition of PleC kinase by PodJ in this model, where the activation or
inhibition is influenced by the spatial distribution of corresponding proteins. Moreover, the
spatial regulation of phosphorylation/dephosphorylation and proteolysis affects the activity
and abundance of key regulators. The activation of DivJ kinase by DivK∼P is ignored for
simplification at this stage. Our model reproduces the asymmetry establishment over the
cell cycle and captures the key characteristics of phosphotransfer cascades (Fig. 5.5, Fig. 5.8,
Table. 5.2), while more associations between localization and activity can be discussed in
the future.

We apply the multi-objective optimization genetic algorithm (GA) in this spatiotemporal
model to estimate parameters. Objective functions of spatial dynamics and temporal dy-
namics of two species, and timing of replication initiation in WT cells are used to minimize
the disparity between simulations and experiments. To increase the efficiency, we first apply
the GA optimization in the four-compartment model and get a bundle of parameter sets that
work well (Fig. D4.2). We next apply the parameter set optimized by the four-compartment
model as the seed set of parameters to search the parameter space in the ten-compartment
model with the same set of PDEs. With a set of parameters that was already selected
based on a coarse discretization, it is easier to reach a set of parameters that enable the
ten-compartment model to capture phenotypes of WT cells. To verify the feasibility and
efficiency of starting from a model with less number of compartment, we further run this
model with the same set of parameters and different numbers of compartments (Fig. 5.9).
The simulation time is approximately a quadratic function of the compartment number.
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Thus, this trial suggests that using a small number of compartment helps to improve the
efficiency of searching parameters.

Figure 5.9: The simulation time increases with the number of compartment as a
quadratic function.
x-axis indicates the number of compartment, and the y-axis indicates the simulation time of
one cell cycle in this spatial model. The quadratic function is estimated by the built-in tool
of MATLAB as: y = 0.097x2 + 2.216, where the R-square is approaching 1.

To summarize, our spatiotemporal model is built on the foundation of the A-SD Turing model
to explain the asymmetrical localization of regulators and the establishment of polarity. It
captures the phenotypes of WT and mutant strains and provides predictions in mutant
cases that are not experimentally observed and in hypothetical mutant cells that can be
experimentally tested (Table. 5.3). This work investigates the functions and associations of
localizing and phosphotransfer reactions during the cell development, which can be utilized to
predict the behavior of bacterial mutant cases that are difficult to be cultivated or operated.
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Table 5.3: Predictions provided by the spatiotemporal model

predictions cell types
higher polar affinity for PodJ and PopZ all cell types
distributions of SpmX and DivJ ∆podJ (Fig. 5.7(a))
distribution of PopZ ∆spmX (Fig. 5.7(c))

DivK∼P spatial gradient
‘delocalized PleC’ and ‘delocalized DivL’ (Fig. 5.8(f)(g));
∆podJ , ∆popZ, and ∆spmX (Fig. D4.1)

CtrA∼P spatial gradient

delocalized PleC’ and ‘delocalized DivL’ (Fig. 5.8(f)(g));
∆podJ , ∆popZ, and ∆spmX (Fig. D4.1)
∆divJ , divJ-H338A, ∆pleC, pleC-H610A, pleC-F778L (Fig. 5.8)



Chapter 6

Summary and future directions

6.1 Overview of this dissertation

In this dissertation, we have applied mathematical models to investigate control mechanisms
of stressful responses and spatial cell cycle regulations in Caulobacter crescentus.

Chapters 2-4 were motivated by the important roles of cdG in controlling the cell cycle of C.
crescentus, especially in influencing the master cell cycle regulator CtrA. The intracellular
levels of cdG and its antagonists (p)ppGpp fluctuate during the cell cycle progression and
under stressful conditions, influencing the synthesis and proteolysis of key regulators in C.
crescentus [31]. As the stress signaling pathways are relatively conserved in prokaryotes
and regulate the bacterial interactions with host cells, it is attractive to study the under-
lying mechanisms of stressful responses starting from cdG-relative networks. cdG regulates
the activity of CtrA through two pathways - proteolysis and phospho-signaling. cdG is a
significant component of ClpXP protease complex, where the conserved protease ClpXP hier-
archically recruits adaptors to specifically degrade substrates [29]. The hierarchical assembly
of ClpXP complex determines the degradation of different substrates in time and space. The
proteolysis of CtrA requires ClpXP to recruit CpdR, RcdA and cdG bound PopA in se-
quence. Thus, the dynamics of involved adaptors, including cdG, spatiotemporally mediate
the abundance of CtrA [27, 29]. Additionally, cdG mediates the switch between kinase and
phosphatase state of the histidine kinase CckA [157, 193] and ShkA [133], which control the
phosphorylation and dephosphorylation of CtrA. Thus, cdG plays an important role in the
phosphorylation state of CtrA [124, 155]. Although cdG has been verified to regulate the
cell cycle progression and environmental responses of C. crescentus, the detailed relation-
ships between environmental cues and cdG as well as downstream pathways are not clear.
In Chapter 2, we propose a temporal model of the cdG-centered second messenger network
to study how second messengers respond to external changes. The hierarchical assembly of
ClpXP protease complex is modelled in Chapter 3 and Chapter 4 to improve the simulation

98
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of proteolysis of CtrA and other regulators such as PdeA and TacA. Moreover, we have intro-
duced known targets of starvation signals in the temporal model in Chapter 4 and provided
predictions of stress response and cell cycle arrest to different signals in C. crescentus.

Chapter 5 was motivated by Subramanian et al’s spatial models, which include spatial regu-
latory networks of scaffolding protein PopZ, Z-ring mediator FtsZ, and proteins involved in
phosphotransfer modules [21, 125]. Their spatial models explained the dynamic localization
of some key regulators; however, some sources of localization are missing and individual spa-
tial model can not be integrated into one system because of these absent factors. In Chapter
5, we propose a Turing pattern model integrated with the interactive network of three scaf-
folding proteins - PopZ, PodJ, and SpmX. Our model provides a reasonable explanation
of stable localization of scaffolding proteins and downstream client proteins, which fills in
gaps of Subramanian et al’s work. Additionally, we provide a simple temporal frame for
the spatial regulatory network, integrating the control mechanisms of DNA replication and
methylation in Chapter 5. Thus, spatial studies can be combined with temporal perspectives
to investigate the bacterial cell cycle control from a comprehensive viewpoint.

6.2 Future directions

Although our work can answer a series of questions for environmental responses and spatial
regulations in C. crescentus, there are still several unclear and exciting directions that can
be further investigated.

6.2.1 Other pathways of environmental responses

phosphoenolpyruvate:sugar phosphotransferase system

In Chapter 2, we investigated the response to carbon and nitrogen starvation through the
nitrogen phosphoenolpyruvate phosphotransferase system (PTSNtr), where we took [PEP],
[Pyr] and [Gln] as adjustable carbon and nitrogen signals. In addition to detecting nutri-
tion signals through PTSNtr, many bacteria can incorporate carbohydrates via the phospho-
enolpyruvate:sugar phosphotransferase system (PTS) [194, 195]. Similarly with PTSNtr, the
Enzyme I (EI) of PTS accepts the phosphoryl group from PEP and transfers the phosphoryl
group to downstream enzymes HPr and EIIs (EIIA, EIIB, etc) [68]. Interestingly, PTS and
PTSNtr in the same bacterium likely share a number of functional motifs, which enables the
cross-talk between different phosphotransferase systems [129]. The exchange of high-energy
phosphates between separate phosphotransferase systems has been observed in vivo and in
vitro [129, 196]; however, the biological significance and mechanisms of the cross-talk are
not clear. Therefore, for the response to nutrition signals, our work can be extended by
1). introducing [PEP] and [Pyr] as dynamical variables rather than adjustable parameters,
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and 2). including carbohydrate PTS into our system to globally understand environmental
responses for both carbon and nitrogen shifts.

UV Radiation and extreme abundance of salt and ethanol

Our work already included multiple-faceted regulatory networks and it has the potential to
integrate separate modules into one comprehensive system in the cell cycle progression of
Caulobacter. It is efficient to utilize our model to study the responses to different environ-
mental cues, such as ultra-violet (UV) lights, heat shock, salt and Ethanol stresses and so
on.

UV light waves have the ability to cause mutations in DNA [197]. When a DNA mutation
occurs, a cell must repair the DNA before the chromosome(s) replicate and duplicate the
mutation. However, in Caulobacter, the cell cycle is arrested in the predivisional stage [198],
which is typically associated with the completion of chromosome replication. Therefore,
there must be repair pathways to avoid inheriting a mass of mutations during the DNA
replication in Caulobacter cells. One known pathway of response to DNA mutations in
Caulobacter is the SOS response regulon. In normal cells, the SOS repair is repressed by the
LexA protein, which binds to the ‘SOS box’ of targeted DNA; when the cell detects DNA
damages, LexA is released from SOS box, thus the genes of the SOS response regulon can be
transcribed [198, 199]. SidA is the primary SOS-induced division inhibitor in Caulobacter.
Besides SidA, there is a second division inhibitor, DidA, which is induced by DNA damage
but independent with SOS system [198]. Both SidA and DidA target Z-ring proteins to
block cytokinesis in response to DNA mutations [198, 199]. Additionally, CtrA is inhibited
in response to light-induced DNA mutations independent of the SOS regulon, although the
mechanism is unknown [2, 198].

Ethanol and salt concentrations impair bacterial function as they can damage proteins [200].
Under such stressful conditions, the bacteria must conserve their resources towards repairing
their cell walls and therefore will arrest their cell cycle to conserve energy. Caulobacter cells
respond to salt and Ethanol stress by arresting the cell cycle at the S to G2 transition,
likely by shifting the activity of CckA towards the phosphatase state [201]. While the
mechanism that results in the shift of CckA activity is unknown, it is hypothesized that
it responds directly to external stimulation by the stressors. Because CckA phosphatase
drives dephosphorylation and proteolysis of CtrA, the stimulation of CckA phosphatase
likely targets CtrA activity to arrest the cell cycle.

While some aspects of the stress signalling pathways have been elucidated, it is unknown
whether these pathways are sufficient to explain corresponding experimental observations.
Additionally, some detailed mechanisms are missing. Our model can be extended by inte-
grating these known pathways and applied to identify the mechanisms and the contribution
of these mechanisms of responding to different stress signals.
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6.2.2 A comprehensive spatiotemporal model

Chapters 2-4 and Chapter 5 respectively offered temporal and spatial insights on how the
Caulobacter cells navigate the asymmetrical cell cycle. One future goal is to integrate more
distinct modules and construct a comprehensive deterministic model to thoroughly study
the control mechanisms of Caulobacter cell cycle.

Integration of temporal regulations with spatial networks

In Chapter 5, to concentrate on the study of spatial control mechanisms, we simplified the
modeling of DNA replication initiation, elongation, segregation and the Z-ring closure during
cell division. A CtrA-determined replication initiation and a fixed duration of replication and
cell separation were applied. For future research, our model can be extended by integrating
the temporal work in Chapter 4 with the spatial model in Chapter 5. To be specific, the core
regulatory network with DnaA and GcrA, two major transcriptional factors collaborating
with CtrA to regulate the chromosome duplication, can be integrated into the spatial model.
CtrA-regulated and DnaA-regulated pathways both control Caulobacter cell development
and improve the robustness of Caulobacter system. Including both pathways in modeling
DNA replication can improve the accuracy of our model and its tolerance to disturbance.
Another improvement is to integrate the temporal regulation of Z-ring development. The Z-
ring formation is highly regulated by a series of Z-ring proteins, while many of these proteins
are controlled by CtrA∼P [141, 202, 203]. The shift of [CtrA∼P] should influence the timing
of cell division. Hence, including the CtrA-regulated Z-ring dynamics will further improve
our model and help in analyzing and predicting the viability and arrest of mutant strains.

Spatial regulations of chromosome replication, separation, and Z-ring formation

In Chapter 5, the model suggested PopZ and PodJ have higher affinity with poles, where
the underlying mechanisms are unknown. In addition to a slower growth rate of poles and
potential nucleating factors ZitP and TipN that had been discussed in Chapter 5, the biased
location of genes likely contributes to the polar localization of PopZ and PodJ. Although
bacterial chromosome is folded and dynamically distributed, experimental visualizations sug-
gest that gene locations are linearly consistent with their genome coordinates [178]. Instead
of simply assuming the synthesis of proteins only takes place in middle compartments as de-
fined in Chapter 5, the spatial dynamics of genes can be modelled by the genome coordinates
and the movement rate of replication forks.

The segregation of chromosomes is also involved in the spatial regulatory network. The
scaffolding protein PopZ binds to parS/ParB centromeric complex, which captures the mi-
gration of one chromosome from one pole to the other [21, 204]. Additionally, ParA interacts
with PopZ and DNA, the asymmetrical distribution of which is required in the chromosome



Chunrui Xu Appendix 102

migration [204]. The detailed mechanisms underlying the ParA-ParB regulatory system are
still being debated and need further studies.

The Z-ring construction is spatially regulated by FtsZ, which forms polymers and recruits
other Z-ring proteins for Z-ring development [205, 206, 207]. The midcell localization of FtsZ
is a consequence of chromosome segregation. MipZ, a protein promoting the depolymeriza-
tion of FtsZ, forms a complex with ParB. Hence, MipZ is localized at two poles with the
segregation of chromosome [21, 208]. As a result, the maximum concentration of FtsZ is
near the midpoint of the cell, where [MipZ] is very low. Our previous model provided the
foundation of investigating and integrating the spatial dynamics of chromosome and Z-ring
complex, which likely in turn influences the localization of scaffolding proteins [209].

6.2.3 Stochastic version of the spatiotemporal model

This dissertation focused on the deterministic simulations of cell cycle control in Caulobacter,
which is to predict average behaviors at the population level. However, deterministic models
can not answer questions related to inherent noise and randomness in cells [210]. Our plan
is to convert the deterministic model into a stochastic version to capture the variations
of cell development. One concerned point of the stochastic model is the computational
complexity. For the current version of our deterministic spatial model, the parameterization
is already highly time-consuming. The computational time will dramatically increase with
the consideration of randomness [211]. Hence, it is imperative to improve the efficiency of
stochastic simulation in future work.



Appendix A. Supplementary Material
for Chapter 2

A1. Calculations for ODEs

A set of equations in Table 2.1 in the main text of Chapter 2 can be simplified further.

From Equation 8 and Equation 9, we can get the relationship between [EI] and [EIPEP], as
well as [EI ∼ P] and [EI ∼ PPyr]:

[EIPEP] = [PEP][EI]
Kd1

[EI ∼ PPyr] = [Pyr][EI∼P]
Kd2

(A1.1)

We plug Equation A1.1 and Equation 10 into Equation 5 and write the expression as follows:

d[EI ∼ P]tot
dt

= k1 · K4+ϵ[Gln]
K4+[Gln]

· [PEP][EI]
Kd1

− k−1 · [Pyr][EI ∼ P]
Kd2

− k2 · [EI ∼ P]tot[NPr] + k−2 · [NPr ∼ P][EI]tot
(A1.2)

where [EI] =
[EI]T−[EI∼P](1+

[Pyr]
Kd2

)

1+
[PEP]
Kd1

; [EI]tot = [EI]T−[EI ∼ P]tot, [EI ∼ P]tot = [EI ∼ P](1+ [Pyr]
Kd2

).

With the same method, we plug Equation 11 and Equation 12 into Equation 6 and Equation
7. Then we can rewrite Equation A1.2, 6, and 7 as follows:

d[EI ∼ P]tot
dt

= k1 · K4+ϵ[Gln]
K4+[Gln] ·

[PEP][EI]
Kd1

− k−1 · [Pyr][EI ∼ P]
Kd2

− k2 · [EI ∼ P]tot([NPr]T − [NPr ∼ P]) + k−2 · [NPr ∼ P][EI]tot

d[NPr ∼ P]

dt
= k2 · [EI ∼ P]tot([NPr]T − [NPr ∼ P])

− k−2 · [NPr ∼ P][EI]tot
− k3 · [NPr ∼ P]([EIIA]T − [EIIA ∼ P])
+ k−3 · ([NPr]T − [NPr ∼ P])[EIIA ∼ P]

d[EIIA ∼ P]

dt
= k3 · [NPr ∼ P]([EIIA]T − [EIIA ∼ P])

− k−3 · ([NPr]T − [NPr ∼ P])[EIIA ∼ P]

(A1.3)
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In this manner, the seven ODEs and five algebraic equations in Table 2.1 can be rewritten
rewritten as seven ODEs:

d[cdG]

dt
= ks.cdG · [DGC] · K2

1

K2
1+[cdG]2

· [GTP]2

[GTP]2+K2
m1

− −kd.cdG · [PDE] · [cdG]
[cdG]+Km2

d[(p)ppGpp]

dt
= ks.(p)ppGpp · {SpoTsd} ·

[GTP]
[GTP]+Km3

− kd.(p)ppGpp · {SpoThd} ·
[(p)ppGpp]

[(p)ppGpp]+Km4

d[GTP]

dt
= ks.GTP · [GMP]− kd.GTP · [GTP]− 2 · ks.cdG · [DGC] · K2

1

K2
1+[cdG]2

· [GTP]2

[GTP]2+K2
m1

+ kd.(p)ppGpp · {SpoThd} ·
[(p)ppGpp]

[(p)ppGpp]+Km4
− ks.(p)ppGpp · {SpoTsd} ·

[GTP]
[GTP]+Km3

d[GMP]

dt
= 2 · kd.cdG · [PDE] · [cdG]

[cdG]+Km2

+ kd.GTP · [GTP]− ks.GTP · [GMP]
d[EI ∼ P]tot

dt
= k1 · K4+ϵ[Gln]

K4+[Gln] ·
[PEP][EI]

Kd1
− k−1 · [Pyr][EI ∼ P]

Kd2

− k2 · [EI ∼ P]tot([NPr]T − [NPr ∼ P]) + k−2 · [NPr ∼ P][EI]tot
d[NPr ∼ P]

dt
= k2 · [EI ∼ P]tot([NPr]T − [NPr ∼ P])

− k−2 · [NPr ∼ P][EI]tot
− k3 · [NPr ∼ P]([EIIA]T − [EIIA ∼ P])
+ k−3 · ([NPr]T − [NPr ∼ P])[EIIA ∼ P]

d[EIIA ∼ P]

dt
= k3 · [NPr ∼ P]([EIIA]T − [EIIA ∼ P])

− k−3 · ([NPr]T − [NPr ∼ P])[EIIA ∼ P]
(A1.4)
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A2. Phosphorylation of PTSNtr is non-linearly depen-

dent on the [PEP]:[Pyr] ratio in simulation.

We simulate EIIANtr ∼P under various PEP and Pyr levels in Table A2.1 to investigate how
[PEP], [Pyr], and [PEP]:[Pyr] ratio affect phosphorylation of PTSNtr proteins.

Table A2.1: Effect of [PEP]:[Pyr] ratio on phosphorylation of EIIANtr in simulation.

[PEP]

[EIIANtr ∼P]µM [Pyr]
500µM 1000µM 1500µM 2000µM

500µM 3.1 2.3 2.0 1.8
1000µM 3.8 2.8 2.5 2.3
1500µM 4.1 3.0 2.7 2.5
2000µM 4.3 3.2 2.8 2.6

Based on steady state analysis of ODEs, [EIIA∼P]
[EIIA]

, [NPr∼P]
[NPr]

, and [EI∼P]tot
[EI]tot

are dependent on
[PEP]2(Kd2+[Pyr])
[Pyr]2(Kd1+[PEP])

in our model, which means the phosphorylation fraction of PTSNtr proteins

is non-linearly dependent with [PEP]:[Pyr] ratio.
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Table B.1: Initial values of model variables.
DNA variables Initial values Master regulator vars. Initial values
Ini 0.0383 CcrM 0.435
Elong 0 DnaA 2.638
DNA 1 GcrA 3.841
Count 1 SciP 12.485
Zring 0 CtrA 1.973
hCori 0 CtrA∼P 3.960
hccrM 0
hctrA 0
mRNA variables Initial values Protease complex vars. Initial values
ccrM 0.173 Complex 1 0.211
dnaA 3.154 CpdR 1.045
gcrA 4.525 CpdR∼P 0.042
sciP 6.335 Complex 2 0.187
ctrA 0.658 RcdA 0.789

Complex 3 3.407
CckAP 0.042
cdG 0.511
PleD 0.526
PleD∼P 0.663
PdeA 0.228
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Table B.2: Sources for experimental data used to evaluate our models.
Species Data source Species Data source
ccrM [88] CcrM [115, 4]
dnaA [88] DnaA [4, 85]
gcrA [88] GcrA [85, 81]
sciP [88] SciP [81]
ctrA [88] CtrA [115, 4]
CpdR [100] RcdA [112]
PleD [113] PdeA [61]
cdG [57]

Table B.3: Parameter optimization with lower and upper bounds and starting point.
Parameter [L,U] Starting Parameter [L,U] Starting
km,Cori [0.35, 5.6] 1.4 km,ccrM [0.35, 5.6] 1.4
km,ctrA [0.35, 5.6] 1.4 ks,IccrM [0.025 0.4] 0.1
kd,IccrM [0.016675, 0.2668] 0.0667 ks,ccrM [0.064, 1.024] 0.256
kd,ccrM [0.02, 0.32] 0.08 ks,dnaA [0.0605,0.968] 0.242
kd,dnaA [0.015, 0.24] 0.06 ks,gcrA [1.4, 22.4] 5.6
kd,gcrA [0.15, 2.4] 0.6 ks,sciP [0.125, 2] 0.5
kd,sciP [0.01, 0.16] 0.04 ks1,ctrA [0.2475, 3.96] 0.99
ks2,ctrA [0.0225, 0.36] 0.09 kd,ctrA [0.02075, 0.332] 0.083
ks,DnaA [0.01625, 0.26] 0.065 ks,GcrA [0.007, 0.112] 0.028
ks,CcrM [0.02125, 0.34] 0.085 ks,SciP [0.0295, 0.472] 0.1183
kd,SciP [0.015, 0.24] 0.06 ks,CtrA [0.0108, 0.1728] 0.0432
kd,CtrA-ClpXP [0.015, 0.24] 0.06 k+

1 [0.15, 2.4] 0.6
k−
1 [0.75, 12] 3 ks,CpdR [0.175, 2.8] 0.7

kd,CpdR [0.375, 6] 1.5 kdephos,CpdR [0.25, 4] 1
kphos,CpdR [0.25, 4] 1 k+

2 [0.275, 4.4] 1.1
k−
2 [0.25, 4] 1 ks,RcdA [0.0375, 0.6] 0.15

kd,RcdA [0.05, 0.8] 0.2 k+
3 [35, 560] 140

k−
3 [0.5, 8] 2 ks,cdG [0.0025, 0.04] 0.01

kd,cdG [0.25, 4] 1 ks,PleD [0.025, 0.4] 0.1
kd,PleD [0.0375, 0.6] 0.15 kphosPleD [0.01, 0.16] 0.04
kdephosPleD [0.01, 0.16] 0.04 ks,PdeA [0.0025, 0.04] 0.01
kd,PdeA [0.125, 2] 0.5 kphoCtrA [1.25, 20] 5
kdephoCckA [0.25, 4] 1 kdephoCtrA [0.025, 0.4] 0.1
kphoCckA [0.25, 4] 1
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C1. New Equations

Here, we provide equations of the model in Chapter 4 and compare with Weston et al.’s
model [22]. New equations and terms are shown in red font.

Table C1.1: Equations.

(1)d[CtrAU]
dt = RpoDctrA·ks,CtrA1 · (1−mCtrA · (2MctrA − 1)) · ϵCtrA−GcrA·Ja,CtrAGcrA+[GcrA]

Ja,CtrAGcrA+[GcrA] · (1− [CtrA∼P]
Ji,CtrACtrA+[CtrAU]+[CtrA∼P])

+ks,CtrA2 ·
ϵCtrACtrA·J2

a,CtrACtrA∼P+[CtrA∼P]2

J2
a,CtrACtrA∼P+[CtrAU]2+[CtrA∼P]2

· J2
i,CtrASciP

J2
i,CtrASciP+[SciP]2

− (µ+ kd,CtrA1 + kd,CtrA2 · [ClpXP]complex

Jd,CtrA+[CtrA∼P]+[CtrAU]
) · [CtrAU]

+kdephos,CtrA · [CckAP] · [CtrA ∼ P]− kphos,CtrA · [CtrAU] · [CckAK]

(2)d[CtrA∼P]
dt

= −(µ+ kd,CtrA1 + kd,CtrA2 · [ClpXP]complex

Jd,CtrA+[CtrA∼P]+[CtrAU]
) · [CtrA ∼ P]− kdephos,CtrA · [CckAP] · [CtrA ∼ P]

+kphos,CtrA · [CtrAU] · [CckAK]

(3)d[DnaA]T
dt

= ks,DnaA · Ji,DnaAGcrA

Ji,DnaAGcrA+[GcrA]
· (1− 2 ·mDnaA · (1−MdnaA))− (µ+ kd,DnaA) · [DnaA]t

(4)d[DnaA∼ATP]
dt

= ks,DnaA · Ji,DnaAGcrA

Ji,DnaAGcrA+[GcrA]
· (1− 2 ·mDnaA · (1−MdnaA))

−(µ+ kd,DnaA +RepSwitch) · [DnaA ∼ ATP]

(5)d[GcrA]
dt

= ks,GcrA · ϵGcrADnaA·Ja,GcrADnaA+([DnaA]T−[DnaA∼ATP])

Ja,GcrADnaA+([DnaA]T−[DnaA∼ATP])
· J2

i,GcrACtrA

J2
i,GcrACtrA+[CtrA∼P]2

− (µ+ kd,GcrA) · [GcrA]

(6)d[SciP]
dt

= ks,SciP · [CtrA∼P]2

[CtrA∼P]2+J2
a,SciPCtrA

· J2
i,SciPSciP

J2
i,SciPSciP+[SciP]2

− (µ+ kd,SciP) · [SciP]

(7)d[DivK]
dt

= RpoDdivK ·ks,DivK1 + ks,DivK2 · [CtrA∼P]2

J2
a,DivKCtrA+[CtrA∼P]2

− (µ+ kd,DivK) · [DivK]− (kphos,DivK1 · [DivJ]A
+kphos,DivK2 · [PleC]K+kphos,DivK3 ·MysK) · [DivK] + (kdephos,DivK1 · [PleC]+kdephos,DivK2 · [CckN]) · [DivK ∼ P]
−kb,DivJDivK · [DivJ] · [DivK] + (kub,DivJDivK + kd,DivJ) · [DivJ : DivK]− kb,DivLDivK · [DivL] · [DivK]
+(kub,DivLDivK + kd,DivL) · [DivL : DivK]

(8)d[DivK∼P]
dt

= −(µ+ kd,DivK) · [DivK]− (kdephos,DivK1 · [PleC]+kdephos,DivK2 · [CckN]) · [DivK ∼ P]
+(kphos,DivK1 · [DivJ]A + kphos,DivK2 · [PleC]K+kphos,DivK3 ·MysK) · [DivK]
+2 · ((kub,PleCDivKP + kd,PleC + kd,DivK) · [PleC : DivK ∼ P2]− kb,PleCDivKP · [PleC] · [DivK ∼ P]2)
−kb,DivJDivKP · [DivJ] · [DivK ∼ P] + (kub,DivJDivKP + kd,DivJ) · [DivJ : DivK ∼ P]

Continued on next page
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Table A.1. – Continued from previous page
−kb,DivLDivKP · [DivL] · [DivK ∼ P] + (kub,DivLDivKP + kd,DivL) · [DivL : DivK ∼ P]

(9)d[CckN]
dt

= ks,CckN · [CtrA∼P]4

[CtrA∼P]4+J4
a,CckNCtrA

− (µ+ kd,CckN1) · [CckN]− kd,CckN2 · [PopA : cdG2] · [CckN]
[CckN]+Jd,CckN

(10) [DivJ]
dt

= ks,DivJ − (µ+ kd,DivJ) · [DivJ]− kb,DivJDivKP · [DivJ] · [DivK ∼ P] + (kub,DivJDivKP + kd,DivK)
·[DivJ : DivK ∼ P]− kb,DivJDivK · [DivJ] · [DivK] + (kub,DivJDivK + kd,DivK) · [DivJ : DivK]

(11)d[DivJ:DivK]
dt

= kb,DivJDivK · [DivJ] · [DivK]− (kub,DivJDivK + kd,DivK ++kd,DivJ + µ) · [DivJ : DivK]

(11)d[DivJ:DivK∼P]
dt

= kb,DivJDivK∼P · [DivJ] · [DivK ∼ P]− (kub,DivJDivK∼P + kd,DivK ++kd,DivJ + µ) · [DivJ : DivK ∼ P]

(12)[DivJ]A = ([DivJ : DivK ∼ P] + [DivJ : DivK]) · ((1− ϵDivJDivK) · (min([SpmX],[DivJ]T)
[DivJ]T

) + ϵDivJDivK)

+ϵDivJSpmX · [DivJ] · min([SpmX],[DivJ]T)
[DivJ]T

(13) [DivL]
dt

= ks,DivL − (µ+ kd,DivL) · [DivL]− kb,DivLDivK∼P · [DivL] · [DivK ∼ P]
+(kub,DivLDivK∼P + kd,DivK) · [DivL : DivK ∼ P]

(14)d[DivL:DivK∼P]
dt

= kb,DivLDivK∼P · [DivL] · [DivK ∼ P]− (kub,DivLDivK∼P + kd,DivK + kd,DivL + µ) · [DivL : DivK ∼ P]

(15) [CckA]T
dt

= ks,CckA − (µ+ kd,CckA) · [CckA]T
(16)d[CckA:cdG]

dt
= kb,CckAcdG · [cdG] · ([CckA]T − [CckA : cdG])− (kub,CckAcdG + kd,CckA + µ) · [CckA : cdG]

(17)[CckA : DivL]T =
[CckA]T+[DivL]T+KCckADivL−

√
([CckA]T+[DivL]T+KCckADivL)2−4·[CckA]T·[DivL]T

2

(18)[CckA]P = [CckA:DivL]T·[DivL:DivK∼P]
[DivL]T

+ [CckA : cdG]−
[CckA:cdG]· [CckA:DivL]T·[DivL:DivK∼P]

[DivL]T

[CckA]T

(19)[CckA]K = [CckA]T − [CckA]P
(20)d[PleC]

dt
= ks,PleC · (2− 2 ·MPleC)− (µ+ kd,PleC) · [PleC]− kb,PleCDivKP · [PleC] · [DivK ∼ P]2 + (kub,PleCDivKP

+2 · kd,DivK) · [PleC : DivK ∼ P2]

(21)d[PleC:DivK∼P2]
dt

= kb,PleCDivKP · [PleC] · [DivK ∼ P]2 − (kub,PleCDivKP + 2 · kd,DivK + kd,PleC + µ)
·[PleC : DivK ∼ P2]

(22)
d[PleC]pole

dt
= kPleCbinding · ([PleC]T − [PleC]pole) · [PodJ]

[PodJ]·V+JPleCPodJ
− (kPleCbinding + kd,PleC + µ) · [PleC]pole

(23)d[PodJ]
dt

= ks,PodJ · [GcrA]
[GcrA]+Ja,PodJGcrA

· Ji,PodJDnaA

Ji,PodJDnaA+[PodJ]
· (2− 2 ·MPodJ)− (µ+ kd,PodJ1 + kd,PodJ2 · [PerP]) · [PodJ]

(24)d[PerP]
dt

= ks,PerP · [CtrA]2

[CtrA]2+J2
a,PerPCtrA

· (2− 2 ·MPerP)− (µ+ kd,PerP) · [PerP]
(25)d[Ini]

dt
= (1− 2 ·mini · (1−MIni)) · (1− [DNA : CtrA ∼ P2])

5 · ( [DNA∼ATP]
[DNA∼ATP]+Ja,IniDnaA

)2 − kd,Ini · [Ini]
(26)[DNA]F = Kd1

Kd1+2·CtrA∼P+(1−σCtrAU:Cori)·(2·[CtrAU]+
[CtrAU]2

Kd2
+

[CtrAU]+[CtrA∼P]

Kd2
)

(27)[DNA : CtrA ∼ P2] =
[CtrA∼P]2·[DNA]F

Kd1·Kd3

(28)d[Elong]
dt

= kelong ·RepSwitch

(29)d[CcrM]
dt

= ks,CcrM · [CtrA]2

[CtrA]2+J2
a,CcrMCtrA

· Ji,CcrMDnaA

Ji,CcrMDnaA+[DnaA]
· (2− 2 ·MCcrM)− (µ+ kd,CcrM) · [CcrM]

(30)d[TacA]
dt

= ks,TacA · [CtrA∼P]
[CtrA∼P]+Ja,TacACtrA

− (kd,TacA1 + µ) · [TacA]− kd,TacA2 · [RcdA : CpdR] · [TacA]
[TacA]T+Jd,TacA

−kphos,TacA · [ShkA : cdG] · [TacA] + kdephos,TacA · [ShkA] · [TacA ∼ P]

(31)d[TacA∼P]
dt

= −kd,TacA2 · [RcdA : CpdR] · [TacA∼P]
[TacA]T+Jd,TacA

+ kphos,TacA · [ShkA : cdG] · [TacA]
−(µ+ kd,TacA1 + kdephos,TacA · [ShkA]) · [TacA ∼ P]

(32)d[SpmX]
dt

= ks,SpmX · [TacA∼P]
[TacA∼P]+Ja,SpmXTacA

− (kd,SpmX + µ) · [SpmX]

(33)d[ShkA]
dt

= ks,ShkA · [CtrA∼P]
[CtrA∼P]+Ja,ShkACtrA

− (kd,ShkA1 + µ) · [ShkA]− kd,ShkA2 · [ClpXP]Complex · [ShkA]
[ShkA]T+Jd,ShkA

Continued on next page
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Table A.1. – Continued from previous page
−kb,ShkAcdG · [cdG] · [ShkA] + kub,ShkAcdG · [ShkA : cdG]

(34)d[ShkA:cdG]
dt

= −(µ+ kd,ShkA1) · [ShkA : cdG]− kd,ShkA2 · [ClpXP]Complex · [ShkA:cdG]
[ShkA]T+Jd,ShkA

+kb,ShkAcdG · [cdG] · [ShkA]− kub,ShkAcdG · [ShkA : cdG]

(35)dZproteins
dt

= ks,Zp · [CtrA]2

[CtrA]2+J2
a,ZpCtrA

− (µ+ kd,Zp1 + kd,Zp2 · [ClpAP]) · [Zproteins]

(36)d[Zring]
dt

= −kZconstrict ·MipZswitch · [Zproteins]5

(JZring+θZ·[Zring])5+[Zproteins]5

(37)dV
dt

= µV
(38)µ = T−1 · ln Vdiv

Vbirth

(39)d[CpdR]
dt

= ks,CpdR · ϵCpdRDnaA·Ja,CpdRDnaA+[DnaA]T
Ja,CpdRDnaA+[DnaA]T

· [CtrA]2

[CtrA]2+J2
a,CpdRCtrA

· Ji,CpdRGcrA

Ji,CpdRGcrA+[GcrA]
− (µ+ kd,CpdR) · [CpdR]

+kdephos,CpdR · [CpdR ∼ P] · [CckA]P − kphos,CpdR · [CpdR] · [CckA]K
(40)d[CpdR∼P]

dt
= −kdephos,CpdR · [CpdR ∼ P] · [CckA]P + kphos,CpdR · [CpdR] · [CckA]K

(41)d[RcdA]
dt

= ks,RcdA · [CtrA∼P]2

[CtrA∼P]2+J2
a,RcdACtrA

− (µ+ kd,RcdA) · [RcdA]

(42)d[cdG]
dt

= (ks,cdG1 · [PleC ∼ P] + ks,cdG2 · [DgcB]a)· [GTP]2

[GTP]2+J2
s,cdG

− kd,cdG1 · ([PdeA] + PDE) · [cdG]

−µ · [cdG] + 2 · (−k+
PopAcdG · [PopA] · [cdG]2 + (k−

XcdG +Kd,PopA) · [PopA : cdG2])

+2 · (−k+
PleDcdG · [PleD]T · [cdG]2 + (k−

XcdG +Kd,PleD) · [PleD : cdG2]T)− k+
CckAcdG

·([CckA]T − [CckA : cdG]) · [cdG] + k−
CckAcdG · [CckA : cdG]

+2 · (−k+
DgcBcdG · (DgcB − [DgcB : cdG2])) · [cdG]2 + k−

XcdG · [DgcB : cdG2]

(43)d[PopA]
dt

= ks,PopA · Ji,PopAGcrA

Ji,PopAGcrA+[GcrA]
− (µ+ kd,PopA) · [PopA]− kb,PopAcdG · [PopA] · [cdG]2

+kub,PopAcdG · [PopA : cdG2]

(44)d[PopA:cdG2]
dt

= kb,PopAcdG · [PopA] · [cdG]2 − (µ+ kd,PopA + kub,PopAcdG) · [PopA : cdG2]

(45)[RcdA : CpdR]T =
[CpdR]T+[RcdA]+KRcdACpdR−

√
([CpdR]T+[RcdA]+KRcdACpdR)2−4·[CpdR]T·[RcdA]

2

(46)[RcdA : CpdR] = [RcdA : CpdR]T · [CpdR]
[CpdR]T

(47)[ClpXP]Complex =
[RcdA:CpdR]

[RcdA:CpdR]+
KClpXPCpdR

V

· [PopA : cdG2]

(48)d[PdeA]
dt

= ks,PdeA · [CtrA∼P]
[CtrA∼P]+Ja,PdeACtrA

− (µ+ kd,PdeA1) · [PdeA]− kd,PdeA2 · [PdeA]
[PdeA]+Jd,PdeA

(49)[DgcB]a = max(DgcB − PdeA, 0) · DgcB−[DgcB:cdG2]
DgcB

(50) [DgcB:cdG2]
dt

= kb,DgcBcdG · (DgcB − [DgcB : cdG2]) · [cdG]2 − (µ+ kub,XcdG) · [DgcB : cdG2]

(51)d[PleD]
dt

= ks,PleD1 · [CtrA∼P]2

[CtrA∼P]2+J2
a,PleDCtrA

+ ks,PleD2·RpoDpleD − (µ+ kd,PleD) · [PleD]− kphos,PleD · ([DivJ]A +MysK)

·[PleD] + ( 1
10

+ 9
10

· [PleC]tot−[PleC]pole
[PleC]tot

) · kdephos,PleCPleD · [PleC] · [PleD ∼ P] + kdephos,CckNPleD · [CckN]
−kb,PleDcdG · [PleD] · [cdG]2 + kub,PleDcdG · [PleD : cdG2]

(52)d[PleD∼P]
dt

= −(µ+ kd,PleD) · [PleD] + kphos,PleD · ([DivJ]A +MysK) · [PleD]− ( 1
10

+ 9
10

· [PleC]tot−[PleC]pole
[PleC]tot

)

·kdephos,PleCPleD · [PleC] · [PleD ∼ P]− kdephos,CckNPleD · [CckN] · [PleD ∼ P]− kb,PleDcdG · [PleD ∼ P] · [cdG]2

+kub,PleDcdG · [PleD ∼ P : cdG2]

(53)d[PleD:cdG2]
dt

= −(µ+ kd,PleD) · [PleD : cdG2]− kphos,PleD · ([DivJ]A +MysK) · [PleD : cdG2]

+( 1
10

+ 9
10

· [PleC]tot−[PleC]pole
[PleC]tot

) · kdephos,PleCPleD · [PleC] · [PleD ∼ P : cdG2] + kdephos,CckNPleD · [CckN]
·[PleD ∼ P : cdG2] + kb,PleDcdG · [PleD] · [cdG]2 − kub,PleDcdG · [PleD : cdG2]

Continued on next page
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(54)d[PleD∼P:cdG2]
dt

= −(µ+ kd,PleD) · [PleD ∼ P : cdG2] + kphos,PleD · ([DivJ]A +MysK) · [PleD : cdG2]

−( 1
10

+ 9
10

· [PleC]tot−[PleC]pole
[PleC]tot

) · kdephos,PleCPleD · [PleC] · [PleD ∼ P : cdG2]− kdephos,CckNPleD · [CckN]
·[PleD ∼ P : cdG2] + kb,PleDcdG · [PleD ∼ P] · [cdG]2 − kub,PleDcdG · [PleD ∼ P : cdG2]
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C3. Other starvation signals

Table C3.1: Additional signaling targets and arrest statistics.

Paradigm Description Parameters changes
Fractional Arrested∗

1stG1 2ndG1 1stG2 2ndG2

Signal 5a

Introducing stress response
through cdG-dependent

pathway.

µ = 0.0018
ks,cdG1 = 0.056ks,cdG1 SW 92.3% 6% 1.7% 0
ks,cdG2 = 0.056ks,cdG2 ST 1% 98.4% 0 0

Inhibiting DnaA synthesis. ks,DnaA = 0

Signal 5b

Introducing stress response
through cdG-dependent

pathway.

µ = 0.0018
ks,cdG1 = 0.056ks,cdG1

ks,cdG2 = 0.056ks,cdG2 SW 92.3% 7.1% 0.5% 0
Inhibiting DnaA synthesis. ks,DnaA = 0 ST 1% 98.4% 0 0

Decreasing RpoD-dependent ctrA transcription RpoDctrA=0.1

Signal 5c

Introducing stress response
through cdG-dependent

pathway.

µ = 0.0018
ks,cdG1 = 0.056ks,cdG1

ks,cdG2 = 0.056ks,cdG2 SW 100% 0 0 0
Inhibiting DnaA synthesis. ks,DnaA = 0 ST 1.6% 96.9% 0/5% 0/5%

Decreasing RpoD-dependent divK transcription RpoDdivK=0.1

Signal 5d

Introducing stress response
through cdG-dependent

pathway.

µ = 0.0018
ks,cdG1 = 0.056ks,cdG1

ks,cdG2 = 0.056ks,cdG2 SW 97.3% 2.8% 0 0
Inhibiting DnaA synthesis. ks,DnaA = 0 ST 1% 97.4% 1% 0

Decreasing RpoD-dependent pleD transcription RpoDpleD=0.1
* Same definitions with Table 4.1.



Appendix D. Supplementary Material
for Chapter 5

D1. Equations, parameters, initial conditions, and mu-

tant lists

Table D1.1: PDEs of the spatiotemporal model (Equations of PopZ and PodJL are shown in the main text)

(1) d[PodJS]
dt = (kd,PodJ1 + kd,PodJ2 · [PerP]) · ([PodJLm] + [PodJLp])− (µ+ kd,PodJS) · [PodJS]

(2) d[SpmXm]
dt = ks,SpmX · [CtrA∼P]2

[CtrA∼P]2+J2
a,SpmXCtrA

− (kd,SpmX + µ) · [SpmXm]− kdnv,SpmX · (1 + αSpmXPopZ · PopZT) · [SpmXm]

−kaut,SpmX · [SpmXm] · [SpmXp]
2
+ kdepol,SpmX · [SpmXp] +DSpmXm · ∂2[SpmXm]

∂x2

(3)
d[SpmXp]

dt = −(kd,SpmX + µ) · [SpmXp] + kdnv,SpmX · (1 + αSpmXPopZ · [PopZT]) · [SpmXm]

+kaut,SpmX · [SpmXm] · [SpmXp]
2 − kdepol,SpmX · [SpmXp] +DSpmXp

· ∂2[SpmXp]
∂x2

(4) d[CtrAu]
dt = ks,CtrA1 · (1− [CtrA∼P]

Ji,CtrACtrA+[CtrAT] ) · ((1− ϵ) · SctrA + ϵ) + ks,CtrA2 · [CtrA∼P]
Ja,CtrACtrA+[CtrAT]

−(kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + µ) · [CtrAu]− kb,CtrAuCckAkin · ([CckAf,kin] + [CckAb,kin]) · [CtrAu]

+(kub,CtrAuCckAkin + kd,CckA) · ([CtrAu : CckAf,kin] + [CtrAu : CckAb,kin])

+kdephoCtrA · ([CtrAP : CckAf,ph] + [CtrAP : CckAb,ph]) +DCtrA · ∂2[CtrAu]
∂x2

(5) d[CtrA∼P]
dt = −(kd,CtrA1 + kd,CtrA2 · [CpdRuT]

Jd,CtrA+[CpdRuT] + µ) · [CtrA ∼ P]

−kb,CtrAPCckAph · ([CckAf,ph] + [CckAb,ph]) · [CtrA ∼ P] + kphoCtrA · ([CtrAu : CckAf,kin] + [CtrAu : CckAb,kin])

+(kub,CtrAPCckAph + kd,CckA) · ([CtrAP : CckAf,ph] + [CtrAP : CckAb,ph]) +DCtrA · ∂2[CtrA∼P]
∂x2

(6) d[PleCf ]
dt = ks,PleC · ((1− ϵpleC) · SpleC + ϵpleC)− (kd,PleC + µ) · [PleCf ]− kfb,PleC · [PodJp] · [PleCf ] + kbf,PleC · [PleCb]

−kb,PleCDivKP · [PleCf ] · [DivK ∼ P] + (kub,PleCDivKP + kd,DivK + kdephoDivK) · [PleCf : DivKP]

+DPleC · ∂2[PleCf ]
∂x2

(7) d[PleCb]
dt = −(kd,PleC + µ) · [PleCb] + kfb,PleC · [PodJp] · [PleCf ]− kbf,PleC · [PleCb]

−kb,PleCDivKP · [PleCb] · [DivK ∼ P] + (kub,PleCDivKP + kd,DivK + kdephoDivK) · [PleCb : DivKP]

(8) d[PleCf :DivKP]
dt = −(kd,PleC + kd,DivK + kub,PleCDivKP + kdephoDivK + kph2kin,PleC1 + µ) · [PleCf : DivKP]

Continued on next page

113



Chunrui Xu Appendix 114

Table. D1.1 – Continued from previous page

+kb,PleCDivKP · [PleCf ] · [DivK ∼ P]− kfb,PleC · [PodJp] · [PleCf : DivKP]

+kbf,PleC · [PleCb : DivKP] +DPleCDivKP · ∂2[PleCf :DivKP]
∂x2

(9) d[PleCb:DivKP]
dt = −(kd,PleC + kd,DivK + kub,PleCDivKP + kdephoDivK + kph2kin,PleC2 + µ) · [PleCb : DivKP]

+kb,PleCDivKP · [PleCb] · [DivK ∼ P] + kfb,PleC · [PodJp] · [PleCf : DivKP]

−kbf,PleC · [PleCb : DivKP]

(10)
d[PleCf,kin]

dt = −(kd,PleC + µ) · [PleCf,kin]− kfb,PleC · [PodJp] · [PleCf,kin] + kbf,PleC · [PleCb,kin]

+kph2kin,PleC1 · [PleCf : DivKP] +DPleC · ∂2[PleCf,kin]
∂x2

(11)
d[PleCb,kin]

dt = −(kd,PleC + µ) · [PleCb,kin] + kfb,PleC · [PodJp] · [PleCf,kin]− kbf,PleC · [PleCb,kin]

+kph2kin,PleC2 · [PleCb : DivKP]

(12) d[DivJf ]
dt = ks,DivJ − (kd,DivJ + µ) · [DivJf ]− kfb,DivJ · [SpmXp] · [DivJf ] + kbf,DivJ · [DivJb]

−kb,DivJDivKP · [DivJf ] · [DivK ∼ P] + (kub,DivJDivKP + kd,DivK) · [DivJf : DivKP]

−kb,DivJDivKu · [DivJf ] · [DivKu] + (kub,DivJDivKu + kd,DivK) · [DivJf : DivKu] +DDivJ · ∂2[DivJf ]
∂x2

(13) d[DivJb]
dt = −(kd,DivJ + µ) · [DivJb] + kfb,DivJ · [SpmXp] · [DivJf ]− kbf,DivJ · [DivJb]

−kb,DivJDivKP · [DivJb] · [DivK ∼ P] + (kub,DivJDivKP + kd,DivK) · [DivJb : DivKP]

−kb,DivJDivKu · [DivJb] · [DivKu] + (kub,DivJDivKu + kd,DivK) · [DivJb : DivKu]

(14) d[DivJf :DivKu]
dt = −(kd,DivJ + kd,DivK + kub,DivJDivKu + kphoDivK,DivJf

+ µ) · [DivJf : DivKu]

+kb,DivJDivKu · [DivJf ] · [DivKu]− kfb,DivJ · [SpmXp] · [DivJf : DivKu] + kbf,DivJ · [DivJb : DivKu]

+DDivJDivK · ∂2[DivJf :DivKu]
∂x2

(15) d[DivJb:DivKu]
dt = −(kd,DivJ + kd,DivK + kub,DivJDivKu + kphoDivK,DivJb

+ µ) · [DivJb : DivKu]

+kb,DivJDivKu · [DivJb] · [DivKu] + kfb,DivJ · [SpmXp] · [DivJf : DivKu]− kbf,DivJ · [DivJb : DivKu]

(16) d[DivJf :DivKP]
dt = −(kd,DivJ + kd,DivK + kub,DivJDivKP + µ) · [DivJf : DivKP] + kphoDivK,DivJf

· [DivJf : DivKu]

+kb,DivJDivKP · [DivJf ] · [DivK ∼ P]− kfb,DivJ · [SpmXp] · [DivJf : DivKP] + kbf,DivJ · [DivJb : DivKP]

+DDivJDivK · ∂2[DivJf :DivKP]
∂x2

(17) d[DivJb:DivKP]
dt = −(kd,DivJ + kd,DivK + kub,DivJDivKP + µ) · [DivJb : DivKP] + kphoDivK,DivJb

· [DivJb : DivKu]

+kb,DivJDivKP · [DivJb] · [DivK ∼ P] + kfb,DivJ · [SpmXp] · [DivJf : DivKP]− kbf,DivJ · [DivJb : DivKP]

(18) d[PerP]
dt = ks,PerP · ((1− ϵ) · SperP + ϵ) · [CtrA∼P]2

J2
a,PerPCtrA+[CtrA∼P]2

− (kd,PerP + µ) · [PerP] +DPerP · ∂2[PerP]
∂x2

(19) d[DivKu]
dt = ks,DivK1 + ks,DivK2 · [CtrA∼P]2

J2
a,DivKCtrA+[CtrA∼P]2

− (kd,DivK + µ) · [DivKu]

−kphoDivK,PleCkin
· ([PleCf,kin] + [PleCb,kin]) · [DivKu] + kdephoDivK · ([PleCf : DivKP] + [PleCb : DivKP])

−kb,DivJDivKu · ([DivJf ] + [DivJb]) · [DivKu] + (kub,DivJDivKu + kd,DivJ) · ([DivJf : DivKu] + [DivJb : DivKu])

+DDivK · ∂2[DivKu]
∂x2

(20) d[DivK∼P]
dt = −(kd,DivK + µ) · [DivK ∼ P] + kphoDivK,PleCkin

· ([PleCf,kin] + [PleCb,kin]) · [DivKu]

−kb,PleCDivKP · ([PleCf ] + [PleCb]) · [DivK ∼ P] + (kub,PleCDivKP + kd,PleC) · ([PleCf : DivKP] + [PleCb : DivKP])

Continued on next page
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−kb,DivJDivKP · ([DivJf ] + [DivJb]) · [DivK ∼ P] + (kub,DivJDivKP + kd,DivJ) · ([DivJf : DivKP] + [DivJb : DivKP])

−kb,DivLDivKP · ([DivLf ] + [DivLb]) · [DivK ∼ P] + (kub,DivLDivKP + kd,DivL) · ([DivLf : DivKP] + [DivLb : DivKP])

+kph2kin,PleC1 · [PleCf : DivKP] + kph2kin,PleC2 · [PleCb : DivKP] +DDivK · ∂2[DivK∼P]
∂x2

(21) d[DivLf ]
dt = ks,divL − (kd,DivL + µ) · [DivLf ]− kfb,DivL · (αDivLPopZ · [PopZp] + αDivLPodJ · [PodJp]) · [DivLf ]

+kbf,DivJ · [DivLb]− kb,DivLDivKP · [DivLf ] · [DivK ∼ P] + (kub,DivLDivKP + kd,DivK) · [DivLf : DivKP]

+DDivL · ∂2[DivLf ]
∂x2

(22) d[DivLb]
dt = −(kd,DivL + µ) · [DivLb] + kfb,DivL · (αDivLPopZ · [PopZp] + αDivLPodJ · [PodJp]) · [DivLf ]− kbf,DivJ · [DivLb]

−kb,DivLDivKP · [DivLb] · [DivK ∼ P] + (kub,DivLDivKP + kd,DivK) · [DivLb : DivKP]

(23) d[DivLf :DivKP]
dt = −(kd,DivL + kd,DivK + kub,DivLDivKP + µ) · [DivLf : DivKP] + kb,DivLDivKP · [DivLf ] · [DivK ∼ P]

−kfb,DivL · (αDivLPopZ · [PopZp] + αDivLPodJ · [PodJp]) · [DivLf : DivKP] + kbf,DivJ · [DivLb : DivKP]

+DDivLDivKP · ∂2[DivLf :DivKP]
∂x2

(24) d[DivLb:DivKP]
dt = −(kd,DivL + kd,DivK + kub,DivLDivKP + µ) · [DivLb : DivKP] + kb,DivLDivKP · [DivLb] · [DivK ∼ P]

+kfb,DivL · (αDivLPopZ · [PopZp] + αDivLPodJ · [PodJp]) · [DivLf : DivKP]− kbf,DivJ · [DivLb : DivKP]

(25)
d[CckAf,kin]

dt = ks,CckA − (kd,CckA + µ) · [CckAf,kin] + kbf,CckA · [CckAb,kin]

−kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CckAf,kin]

+(kpk,CckA1 + kpk,CckA2 · ([DivLf ] + [DivLb])) · [CckAf,ph]

−(kkp,CckA1 + kkp,CckA2 · ([DivLf : DivKP] + [DivLb : DivKP])) · [CckAf,kin]

−kb,CtrACckAkin · [CckAf,kin] · [CtrAu] + (kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrACckAkin + kphoCtrA)·

[CtrAu : CckAf,kin] +DCckA · ∂2[CckAf,kin]
∂x2

(26)
d[CckAb,kin]

dt = −(kd,CckA + µ) · [CckAb,kin]− kbf,CckA · [CckAb,kin]

+kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CckAf,kin]

+(kpk,CckA1 + kpk,CckA2 · ([DivLf ] + [DivLb])) · [CckAb,ph]

−(kkp,CckA1 + kkp,CckA2 · ([DivLf : DivKP] + [DivLb : DivKP])) · [CckAb,kin]

−kb,CtrACckAkin · [CckAb,kin] · [CtrAu] + (kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrACckAkin + kphoCtrA)·

[CtrAu : CckAb,kin]

(27)
d[CckAf,ph]

dt = −(kd,CckA + µ) · [CckAf,ph] + kbf,CckA · [CckAb,ph]

−kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CckAf,ph]

−(kpk,CckA1 + kpk,CckA2 · ([DivLf ] + [DivLb])) · [CckAf,ph]

+(kkp,CckA1 + kkp,CckA2 · ([DivLf : DivKP] + [DivLb : DivKP])) · [CckAf,kin]− kb,CtrAPCckAph · [CckAf,ph]·

[CtrA ∼ P] + (kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrAPCckAph + kdephoCtrA)·

[CtrAP : CckAf,ph] +DCckA · ∂2[CckAf,ph]
∂x2

(28)
d[CckAb,ph]

dt = −(kd,CckA + µ) · [CckAb,ph]− kbf,CckA · [CckAb,ph]

Continued on next page
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+kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CckAf,ph]

−(kpk,CckA1 + kpk,CckA2 · ([DivLf ] + [DivLb])) · [CckAb,ph]

+(kkp,CckA1 + kkp,CckA2 · ([DivLf : DivKP] + [DivLb : DivKP])) · [CckAb,kin]− kb,CtrAPCckAph · [CckAb,ph]·

[CtrA ∼ P] + (kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrAPCckAph + kdephoCtrA) · [CtrAP : CckAb,ph]

(29)
d[CtrAP:CckAf,ph]

dt = −(kd,CckA + kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrAPCckAph + kdephoCtrA + µ)·

[CtrAP : CckAf,ph] + kb,CtrACPckAph · [CckAf,ph] · [CtrA ∼ P] + kbf,CckA · [CtrAP : CckAb,ph]

−kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CtrAP : CckAf,ph]

+DCtrACckA · ∂2[CtrAP:CckAf,ph]
∂x2

(30)
d[CtrAP:CckAb,ph]

dt = −(kd,CckA + kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrAPCckAph + kdephoCtrA + µ)·

[CtrAP : CckAb,ph] + kb,CtrAPCckAph · [CckAb,ph] · [CtrA ∼ P]− kbf,CckA · [CtrAP : CckAb,ph]

+kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CtrAP : CckAf,ph]

(31)
d[CtrAu:CckAf,kin]

dt = −(kd,CckA + kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrAuCckAkin + kphoCtrA + µ)·

[CtrAu : CckAf,kin] + kb,CtrAuCckAkin · [CckAf,kin] · [CtrAu] + kbf,CckA · [CtrAu : CckAb,kin]

−kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CtrAu : CckAf,kin]

+DCtrACckA · ∂2[CtrAu:CckAf,kin]
∂x2

(32)
d[CtrAu:CckAb,kin]

dt = −(kd,CckA + kd,CtrA1 + kd,CtrA2 · [CpdRuT]
Jd,CtrA+[CpdRuT] + kub,CtrAuCckAkin + kphoCtrA + µ)·

[CtrAu : CckAb,kin] + kb,CtrAuCckAkin · [CckAb,kin] · [CtrAu]− kbf,CckA · [CtrAu : CckAb,kin]

+kfb,CckA · (αCckAPopZ · [PopZp] + αCckADivL · [DivLbT] ·
αDivLPodJ·[PodJp]

αDivLPopZ·[PopZp]+αDivLPodJ·[PodJp]
) · [CtrAu : CckAf,kin]

(33) d[CpdRf ]
dt = ks,CpdR · [CtrA∼P]2

J2
a,CpdRCtrA+[CtrA∼P]2

− (kd,CpdR + µ) · [CpdRf ]− kfb,CpdR · [PopZp] · [CpdRf ] + kbf,CpdR · [CpdRb]

−kphoCpdR · ([CckAf,kin] + [CckAb,kin]) · [CpdRf ] + kdephoCpdR · ([CckAf,ph] + [CckAb,ph]) · [CpdR ∼ P]

+DCpdR · ∂2[CpdRf ]
∂x2

(34) d[CpdRb]
dt = −(kd,CpdR + µ) · [CpdRb] + kfb,CpdR · [PopZp] · [CpdRf ]− kbf,CpdR · [CpdRb]

(35) d[CpdR∼P]
dt = −(kd,CpdR + µ) · [CpdR ∼ P] + kphoCpdR · ([CckAf,kin] + [CckAb,kin]) · [CpdRf ]

−kdephoCpdR · ([CckAf,ph] + [CckAb,ph]) · [CpdR ∼ P] +DCpdR · ∂2[CpdR∼P]
∂x2

Table D1.2: Parameters of the ten-compartment simulation∗.

parameter source parameter source
ks,PopZ=0.24 this study, [21] kd,PopZ=0.05 [21]
kdepol,PopZ = 0.15 this study kaut,PopZ = 15(pole) this study, [21]
kdnv,PopZ = 2.5 this study, [21] αPopZPodJ = 100 this study
DPopZm

= 835 [212] DPopZp
= 0.0005 [21], this study

ks,PodJ = 0.01 this study ϵ=0.1 [19]
Continued on next page
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Table D1.2 – Continued from previous page
ks,PodJ2 = 0.0154 GA Ji,PodJCtrA = 1.7634 GA
kd,PodJ1 = 0.007 [181] kd,PodJ2 = 0.05 [181]
µ=0.0053 [171] kdepol,PodJ = 0.2 this study
kaut,PodJ = 90(pole) this study, [21] kdnv,PodJ = 2 this study, [21]
αPodJSpmX = 30 this study DPodJm = 100 [7]
DPodJp = 0.0005 [21], this study kdeg,PodJS=0.05 [?]
ks,SpmX = 0.0123 GA Ja,SpmXCtrA = 0.082 GA
kd,SpmX = 0.01 this study kdnv,SpmX =1E-3 this study
αSpmXPopZ = 50 this study kaut,SpmX = 0.1 this study
kdepol,SpmX =4E-4 this study DSpmXm

= 200 [174]
DSpmXp

= 0.0005 [21], this study ks,CtrA1 = 0.5444 GA

ks,CtrA2 = 1.9193 GA Ja,CtrACtrA = 5.8361 GA
Ji,CtrACtrA = 1 this study kd,CtrA1 = 0.0038 [116]
kd,CtrA2 = 0.1306 GA Jd,CtrA = 0.024 GA
kb,CtrAuCckAkin = 3 this study kub,CtrAuCckAkin = 0.6563 GA
kd,CckA = 0.2 this study kdepho,CtrA = 140 [19, 151], this study
DCtrA = 427 [213] kb,CtrAPCckAph = 3 this study
kub,CtrAPCckAph = 1.0807 GA ks,PleC = 0.0219 GA
ϵpleC = 0.15 this study kd,PleC = 0.02 this study
kfb,PleC = 572.1086 GA kbf,PleC = 0.1 this study
kb,PleCDivKP = 4.9589 GA kub,PleCDivKP = 1.2 this study
kd,DivK = 0.014 this study kdephoDivK = 165.7573 GA
DPleC = 71 [213] kph2kin,PleC1 = 1.5149 GA
DPleCDivKP = 63 [213] kph2kin,PleC2 = 0.1515 this study
ks,DivJ = 0.008 this study kd,DivJ = 0.035 [22]
kfb,DivJ = 20 this study kbf,DivJ = 0.5 this study
kb,DivJDivKP = 1 this study kub,DivJDivKP = 1.3254 GA
kb,DivJDivKu = 1 this study kub,DivJDivKu = 1.0009 GA
DDivJ = 108 [213] kphoDivK,DivJf = 0.18.7 GA
DDivJDivK = 84.5 [213] kphoDivK,DivJb = 176.0863 GA
ks,PerP = 1.2112 GA Ja,PerPCtrA = 2.5841 GA
kd,PerP = 0.04 [22] DPerP = 853 [213]
ks,DivK1 = 0.001 this study ks,DivK2 = 0.4682 GA
Ja,DivKCtrA = 2.2878 GA kphoDivK,PleCkin

= 0.2086 GA
DDivJDivK = 1319 [213] kb,DivLDivKP = 89.7649 GA
kub,DivLDivKP = 1.1 this study kd,DivL = 5.5412 GA
ks,DivL = 0.0846 GA kfb,DivL = 1 this study
kbf,DivL = 1 this study αDivLPopZ = 0.0039 GA
αDivLPodJ = 9.5636 GA DDivL = 76.6 [213]
DDivLDivK = 66.4 [213] ks,CckA = 0.1714 GA

Continued on next page
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Table D1.2 – Continued from previous page
kd,CckA = 0.2 this study kfb,CckA = 1 this study
kbf,CckA = 0.5 this study αCckAPopZ = 0.0034 GA
αCckADivL = 213.2857 GA kpk,CckA1 = 2.0784 GA
kpk,CckA2 = 644.8741 GA kkp,CckA1 = 0 this study
kkp,CckA2 = 563.2248 this study DCckA = 87.3 [213]
DCtrACckA = 65 [213] ks,CpdR = 2.3443 GA
ja,CpdRCtrA = 0.0596 GA kd,CpdR = 0.4298 GA
kfb,CpdR = 0.0785 GA kbf,CpdR = 12 this study
kphoCpdR = 3.1971 GA kdephoCpdR = 4 this study
DCtrACckA = 1638.6 [143] Θ=0.517 GA
∗Units: all protein ‘concentrations’ in this model are dimensionless; all diffusion coefficients have units µm2min

−1
;

all α’s are dimensionless; all other parameters are rate constants with units min−1.

‘GA’ indicates the parameter is estimated by genetic algorithm; ‘this study’ denotes the parameter is tuned manually;

‘this study’ with specific reference indicates the parameter is first obtained from publications and tuned slightly.

Table D1.3: Mutant Simulations
mutant setting mutant setting
∆podJ ks,PodJ = 0, ks,PodJ2 = 0 ∆popZ ks,PopZ = 0
∆spmX ks,SpmX = 0 ∆divJ ks,divJ = 0

DivJ-H336A kphoDivK,DivJf = 0, kphoDivK,DivJb = 0 ∆pleC ks,PleC = 0
PleC-F778L kphoDivK,PleCkin

= 0 delocalized PleC kfb,PleC = 0
PleC-H610A kdephoDivK = 0, kphoDivK,PleCkin

= 0 delocalized DivL αDivLPodJ = 0
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D2. Statements of detailed mechanisms and diagram.

DivJ/PleC-DivK module

DivJ is a principal kinase of DivK while PleC mainly works as a phosphatase to dephospho-
rylate DivK∼P [149]. DivJ and PleC are binding partners of SpmX and PodJ, respectively,
while SpmX activates the kinase activity of DivJ [18]. In this study, we introduce Xf and
Xb to indicate free protein and protein bound to anchor(s). For example, DivJb repre-
sents DivJ bound to SpmX, where SpmX is the anchor of DivJ (Fig. 5.2). Because bound
DivJ is a more active kinase than free DivJ, we set kphoDivK,DivJb is significantly larger than
kphoDivK,DivJf (Table. D1.1).

In addition to phosphatase, PleC can function as a kinase with specific conformation, while
the kinase activity of PleC is stimulated by DivK∼P [154]. Therefore, we include the tran-
sition from PleC phosphatase (PleCf :DivK∼P and PleCb:DivK∼P) to kinase (PleCf,kin and
PleCb,kin) (Fig. D2.1). We describe the detailed reactions among DivJ, PleC and DivK in
the green box of Fig. D2.1.

DivL-CckA-CtrA/CpdR module

In addition to binding with DivJ and PleC, the spatial distribution of DivK is regulated by
binding to DivL [182, 183]. DivL is a binding partner of PopZ [159] and indirectly anchored
to PodJ [135, 184]. Here, we introduce αDivLPodJ and αDivLPopZ to describe the recruitment
of DivL by PodJ and PopZ, respectively (Table. D1.1, Fig. D2.1). In summary, the spatial
regulatory network indicates the scaffolding protein PodJ impacts DivK distribution through
PleC-dependent and DivL-dependent pathways.

DivL, the connector between the two phosphotransfer modules, has been reported to directly
control the kinase and phosphatase switch of CckA by varying conformations [158]. The
binding between DivL and DivK∼P inhibits the kinase activity of CckA [132, 182]. Here,
we construct a simplified model for the kinase-phosphatase switch of CckA: the complex
DivL:DivK∼P promotes the conversion of CckA from kinase into phosphatase state, while
DivL without binding to DivK∼P stimulates the kinase activity of CckA (Yellow module
in Fig. 5.2, Table. D1.1, Fig. D2.1). DivL is also suggested to regulate the localization of
CckA [130, 214, 132, 158], while CckA is a binding partner of PopZ [159]. To simplify the
modelling of CckA, we assume CckA has two types of binding sites: a localization site that
binds to DivL or PopZ to decide the location of CckA, and a catalytic regulatory site that
binds to DivL or DivL:DivK∼P complex to decide the conformation and activity of CckA.
The two sites are assumed to be independent (Fig. D2.1).

Moreover, CpdR is a binding partner of the scaffolding protein PopZ. We introduce CpdRf

and CpdRb to indicate the recruitment by PopZ. To simplify the model, we assume unphos-
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phorylated CpdR binds to PopZ, while phosphorylation only takes place in the free form of
CpdR.

Figure D2.1: Details of reactions involved in the DivJ/PleC-DivK and DivL-CckA-
CtrA modules.
Red dashed lines with arrows are recruitments by indicated scaffolding proteins.
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D3. The four-compartment model.

In the four-compartment model, the total cell length (L) is divided into four compartments,
with two poles of length 0.2L each and two central compartments of length 0.3L each.
Diffusion across the boundary between neighbouring compartments causes compensatory
changes in the concentrations of the diffusing species within each compartment. Hence, we
describe the reaction and diffusion of protein S in a four-compartment model by a set of four
ODEs for Ci(t), the concentration of S in compartment i at time t [93]:


dC1

dt
= CR+ 4D(C2−C1)

(l1+l2)2

dCi

dt
= CR+ 4D(Ci+1−Ci)

(li+1+li)2
+ 4D(Ci−1−Ci)

(li−1+li)2
, i = 2, 3

dC4

dt
= CR+ 4D(C3−C4)

(l3+l4)2

(D3.1)

where li indicates the length of compartment i.

D4. Supplementary results of spatial model.
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Figure D4.1: DivK∼P and CtrA∼P dynamics in the simulation of ∆podJ, ∆popZ,
and ∆spmX.
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Figure D4.2: WT simulation of the four-compartment model.
The upper (a)-(l) spatial figures indicate the spatial dynamics over one replication cell cycle
of long form PodJ, short form PodJ, PopZ, SpmX, PleC, DivJ, phosphorylated free DivK,
free DivL, DivL:DivKP complex, CckA, unphosphorylated CpdR, and phosphorylated CtrA.
The lower (a)-(f) indicate the temporal dynamics over one replication cell cycle. Other details
are identical to Figure 5.6.
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[32] Dimpy Kalia, Gökçe Merey, Shizuka Nakayama, Yue Zheng, Jie Zhou, Yiling Luo, Min
Guo, Benjamin T Roembke, and Herman O Sintim. Nucleotide, c-di-gmp, c-di-amp,
cgmp, camp,(p) ppgpp signaling in bacteria and implications in pathogenesis. Chemical
Society Reviews, 42(1):305–341, 2013.

[33] Urs Jenal and Jacob Malone. Mechanisms of cyclic-di-gmp signaling in bacteria. Annu.
Rev. Genet., 40:385–407, 2006.



Chunrui Xu Appendix 126

[34] Tilman Schirmer and Urs Jenal. Structural and mechanistic determinants of c-di-gmp
signalling. Nature Reviews Microbiology, 7(10):724–735, 2009.

[35] Matthias Christen, Beat Christen, Marc Folcher, Alexandra Schauerte, and Urs Jenal.
Identification and characterization of a cyclic di-gmp-specific phosphodiesterase and
its allosteric control by gtp. Journal of Biological Chemistry, 280(35):30829–30837,
2005.

[36] Rebecca M Corrigan, Lauren E Bellows, Alison Wood, and Angelika Gründling.
ppgpp negatively impacts ribosome assembly affecting growth and antimicrobial tol-
erance in gram-positive bacteria. Proceedings of the National Academy of Sciences,
113(12):E1710–E1719, 2016.

[37] Junutula R Jagath, Marina V Rodnina, and Wolfgang Wintermeyer. Conformational
changes in the bacterial srp receptor ftsy upon binding of guanine nucleotides and srp.
Journal of Molecular Biology, 295(4):745–753, 2000.

[38] Manoja Ratnayake-Lecamwasam, Pascale Serror, Ka-Wing Wong, and Abraham L
Sonenshein. Bacillus subtilis cody represses early-stationary-phase genes by sensing
gtp levels. Genes & Development, 15(9):1093–1103, 2001.

[39] Vasili Hauryliuk, Gemma C Atkinson, Katsuhiko S Murakami, Tanel Tenson, and Kenn
Gerdes. Recent functional insights into the role of (p) ppgpp in bacterial physiology.
Nature Reviews Microbiology, 13(5):298–309, 2015.

[40] Cara C Boutte and Sean Crosson. The complex logic of stringent response regulation in
caulobacter crescentus: starvation signalling in an oligotrophic environment. Molecular
Microbiology, 80(3):695–714, 2011.

[41] Allison Kriel, Alycia N Bittner, Sok Ho Kim, Kuanqing Liu, Ashley K Tehranchi,
Winnie Y Zou, Samantha Rendon, Rui Chen, Benjamin P Tu, and Jue D Wang.
Direct regulation of gtp homeostasis by (p) ppgpp: a critical component of viability
and stress resistance. Molecular Cell, 48(2):231–241, 2012.

[42] Brent W Anderson, Kuanqing Liu, Christine Wolak, Katarzyna Dubiel, Fukang She,
Kenneth A Satyshur, James L Keck, and Jue D Wang. Evolution of (p) ppgpp-
hprt regulation through diversification of an allosteric oligomeric interaction. eLife,
8:e47534, 2019.
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De Bolle, and Régis Hallez. A nad-dependent glutamate dehydrogenase coordi-
nates metabolism with cell division in caulobacter crescentus. The EMBO Journal,
34(13):1786–1800, 2015.



Chunrui Xu Appendix 142

[208] Martin Thanbichler and Lucy Shapiro. Mipz, a spatial regulator coordinating chromo-
some segregation with cell division in caulobacter. Cell, 126(1):147–162, 2006.

[209] Wei Zhao, Samuel W Duvall, Kimberly A Kowallis, Chao Zhang, Dylan T Tomares,
Haley N Petitjean, and W Seth Childers. Scaffold-scaffold interactions regulate cell
polarity in a bacterium. bioRxiv, 2020.

[210] Narendra S Goel and Nira Richter-Dyn. Stochastic models in biology. Elsevier, 2016.

[211] Minghan Chen and Yang Cao. Analysis and remedy of negativity problem in hybrid
stochastic simulation algorithm and its application. BMC Bioinformatics, 20(12):1–16,
2019.

[212] Kousik Sundararajan and Erin D Goley. Cytoskeletal proteins in caulobacter cres-
centus: spatial orchestrators of cell cycle progression, development, and cell shape.
Prokaryotic Cytoskeletons, pages 103–137, 2017.

[213] Uniprot: the universal protein knowledgebase in 2021. Nucleic Acids Research,
49(D1):D480–D489, 2021.

[214] Christos G Tsokos and Michael T Laub. Polarity and cell fate asymmetry in caulobac-
ter crescentus. Current Opinion in Microbiology, 15(6):744–750, 2012.


