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Abstract: Many strawberry growers in some areas of the United States rely on customers to pick the
fruits during the peak harvest months. Unfavorable weather conditions such as high humidity and
excessive rainfall can quickly promote fruit rot and diseases. This study establishes an elementary
farm information system to demonstrate timely information on the farm and fruit conditions (ripe,
unripe) to the growers. The information system processes a video clip or a sequence of images from
a camera to provide a map which can be viewed to estimate quantities of strawberries at different
stages of ripeness. The farm map is built by state-of-the-art vision-based simultaneous localization
and mapping (SLAM) techniques, which can generate the map and track the motion trajectory using
image features. In addition, the input images pass through a semantic segmentation process using a
learning-based approach to identify the conditions. A set of labeled images first trains an encoder-
decoder neural network model. Then, the trained model is used to determine the fruit conditions from
the incoming images. Finally, the fruit in different conditions is estimated using the segmentation
results and demonstrated in the system. Generating this information can aid the growers’ decision-
making process. Specifically, it can help farm labor direct traffic to specific strawberry locations
within a farm where fruits need to be picked, or where berries need to be removed. The obtained
system can help reduce farm revenue loss and promote sustainable crop production.

Keywords: semantic segmentation; deep learning; SLAM

1. Introduction

The rapid development of technology, especially in robotics and computer vision,
has significantly influenced the future of agriculture. As addressed in detail in [1], the
benefits of developing a robotic agriculture system are multifold, including but not limited
to increasing production, reducing cost, and aiding environmental sustainability. Re-
cently, robotic agricultural systems have been facilitated by the success of various machine
learning (ML) algorithms. Comprehensive overviews of applications of ML algorithms
in agriculture can be found in [2,3]. As reviewed, the application of ML algorithms in
agriculture sees superior results in yield prediction, disease detection, weed detection, crop
quantity estimation, species recognition, animal welfare, soil management, etc. Among
the categories mentioned above, the research on crop quantity estimation receives much
attention, which can bring economic benefits and support environmental welfare. For
crop quantity estimation, the objective is usually the classification of the crop according
to quality levels (e.g., [4,5]) and reporting its dimensions and mass for quality inspection
(e.g., [6,7]).

This study proposes an elementary system that reports timely strawberry farm infor-
mation in two categories (ripe, unripe) to the growers. The information system consists of

Biol. Life Sci. Forum 2022, 16, 22. https://doi.org/10.3390/IECHo2022-12488 https://www.mdpi.com/journal/blsf

https://doi.org/10.3390/IECHo2022-12488
https://doi.org/10.3390/IECHo2022-12488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/blsf
https://www.mdpi.com
https://orcid.org/0000-0002-9070-978X
https://orcid.org/0000-0003-2193-8519
https://sciforum.net/event/IECHo2022
https://doi.org/10.3390/IECHo2022-12488
https://www.mdpi.com/journal/blsf
https://www.mdpi.com/article/10.3390/IECHo2022-12488?type=check_update&version=1


Biol. Life Sci. Forum 2022, 16, 22 2 of 7

a farm mapping module built by Simultaneous Localization and Mapping (SLAM) tech-
niques. A fruit quality demonstration module is shown on the map, fulfilled by semantic
segmentation algorithms using computer vision. It is worth noting that the system can be
expanded to classify more fruit conditions or to monitor other crops without much effort.

SLAM has been applied for agricultural mapping in recent years. In [8], a SLAM
solved by Extended Information Filter (EIF) is used to detect olive stems. The data is
collected by a range sensor laser and a monocular vision system. The detection of olive
stems from the environment is by a support vector machine (SVM). It is shown in [8]
that the map construction is consistent with the natural environment, and the detection
of the stems is robust. In [9], a tree and fruit detection algorithm is proposed with field
mapping generated by a SLAM (Gmapping) algorithm. In this paper, the ORB-SLAM 3 [10]
estimates the motion trajectory and builds the environment map using vision sensors. The
ORB-SLAM 3 is one of the state-of-the-art visual SLAM algorithms and has been widely
used in various kinds of autonomous system applications (e.g., [11,12]), and the main
objective to employ this technique is to track the location of the data-collection system and
build a map autonomously and efficiently.

Semantic segmentation of an image refers to the process of partitioning an input
frame into various segments and objects with semantic labels. All the pixels in a frame
are labeled to identify their corresponding categories. The results of this process can
provide understandable information to analyze and utilize. During recent years, deep
learning (DL) approaches have demonstrated significant improvements on such tasks. Sev-
eral notable architectures have been developed, including Fully Convolutional Networks
(FCN) [13], Segnet [14], Fast Regional Convolutional Neural Network (Fast RCNN) [15],
Faster RCNN [16], Masked-RCNN [17], etc. This paper uses an encoder-decoder framework
named U-Net [18] for the segmentation task. U-Net has found its application in precision
agriculture (e.g., [19,20]) very recently. The main advantage of U-Net is the efficient usage
of available data by data augmentation, so the network can be trained from a considerably
small number of images, which adapts to the reality of limited data in some scenarios
in agriculture.

2. Methods

This section presents the deep learning model for semantic segmentation of the fruit
and the SLAM techniques for building the map of the field. A general flowchart of the
system is shown in Figure 1. The primary sensor for collecting data is the camera sensor.
The images are then utilized in the semantic segmentation and SLAM modules. A set of
images is selected for the segmentation task for manual labeling as a training dataset. After
the neural network model is trained, it is used to classify the fruit conditions in specific
frames. For the SLAM task, the feature points are detected in the frames and used to
estimate the camera motion and build the map. Note that some other types of sensor data
(e.g., inertial measurement unit (IMU), depth, etc.) can also be collected to support the
SLAM algorithm, depending on the configuration of the autonomous system. However, in
this paper only image data is used. All images were from various experiments conducted
in the strawberry fields at the Hampton Roads, Agricultural Research and Extension Center,
Virginia Tech University.
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An image augmentation step is performed to increase the size of the training dataset 
for the neural network, including flipping, rotating, and adding random noise to the ex-
isting images. In this step, the training dataset is expanded to contain 240 images. Next, a 
customized U-Net [18] model is trained for the segmentation. The architecture in general 
follows the original one, as shown in Figure 3. We changed the tensor sizes of the input 
and output layers so that the model fits for the input image size from the camera 
(960 ൈ 704ሻ and the number of classification classes (4 classes) of the output image. Com-
pared with the original architecture, more convolution layers are also added to generate 
a better-trained network model. 
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2.1. Fruit Image Semantic Segmentation

The first task of the system is to develop a convolutional network model to accomplish
semantic segmentation. The interest of object identification is to distinguish the fruit from
other items and detect its conditions. First, a set of 30 photos are manually labeled by the
open-source program ‘labelme’ [21]. Four classes are considered: (1) flag (red, only appears
in one image), (2) ripe strawberries (green), (3) unripe strawberries (yellow), and (4) labels
(blue). Figure 2 shows a sample photo and it’s corresponding manually labeled image.
Although it is preferred to have accurately labeled images at the pixel-level precision to
achieve the best training results, the labeled images do not need to be perfect for training a
reasonably good semantic segmentation model.
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Figure 2. (a) strawberry field photo; (b) corresponding labeled image (ground truth).

An image augmentation step is performed to increase the size of the training dataset
for the neural network, including flipping, rotating, and adding random noise to the
existing images. In this step, the training dataset is expanded to contain 240 images. Next,
a customized U-Net [18] model is trained for the segmentation. The architecture in general
follows the original one, as shown in Figure 3. We changed the tensor sizes of the input and
output layers so that the model fits for the input image size from the camera (960 × 704)
and the number of classification classes (4 classes) of the output image. Compared with the
original architecture, more convolution layers are also added to generate a better-trained
network model.
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It should be noted that there are some limitations to the training dataset. For example,
the number of images is not very large, the manually labeled data are not pixel-wise precise,
and only “ripe strawberries”, “unripe strawberries”, and “labels” are mainly segmented
from the images in the current results. However, the same neural network model can be
easily adapted when additional training images with more categories are labeled. This
feature can help provide more detailed information for the growers from the images.

2.2. Farm Mapping by SLAM

The second task is to utilize the state-of-the-art SLAM algorithm to build a farm map.
ORB-SLAM 3 [10] is applied in this paper. In each frame, the customized set of ORB feature
points are detected. Then the feature points are used to estimate the camera motion and
determine the keyframes to establish a graph (shown in green color). The blue rectangles
represent the camera’s pose (i.e., position and orientation). Finally, the graph is optimized
using g2o [22] to obtain the best estimation of the motion trajectory and the map.

Figure 4 presents the optimized trajectory of the camera and the environmental map
by the sparse map points. The camera is moved to circle one ridge in the strawberry field in
the test. The window on the right shows the current frame and the detected feature points
in the green square. The window on the left shows the graph to estimate the camera’s
trajectory and the map points (points of previous frames in black color, of the current frame
in red color) in the world frame projected from feature points detected in the frames. Note
that ORB-SLAM only reconstructs a sparse map for efficiency considerations, which is
sometimes not intuitive to visualize the environment. However, useful information like the
trajectory and density of feature points can be obtained to locate potential areas of interest.
More details are explained in Section 3.
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Figure 4. Simultaneous Localization and Mapping (SLAM) Visualization Results.

3. Results and Discussion

For the fruit semantic segmentation task, the model is trained using TensorFlow 2.4 in
Google Colab. After the model is obtained, we test the trained model with two new images,
and the prediction results are shown in Figure 5. Most ripe and unripe strawberries can
be identified correctly in the images. The predictions can also identify parts of the ripe
strawberries covered by the leaves. This feature provides information to the growers after
the visible and accessible strawberries being picked by the visitors.
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Figure 5. Learning model test results: (a) test strawberry field photos; (b) predicted labeled images.

Next, a video clip of the strawberry field is processed using the ORB-SLAM 3 pipeline.
The camera is close to a ridge and moves straightly in this test. Figure 6 shows a demo
result of the whole system. From the ORB-SLAM result, it can be observed that there are
more map points in the areas of the plants and fewer map points in the aisles. Therefore,
the areas with dense map points (for example, the area circled in the purple rectangle in
Figure 6) are potentially the areas of interest to be inspected more carefully. Given the
trajectory estimation result, the exact time when the camera passes by the areas of interest
can be obtained, and the frame at that timestamp can be extracted, as shown in Figure 6.
Then the image is processed with the learned network model, and the segmentation result
can provide the fruit condition information at this location. As the example in Figure 6, it
can be seen that there are tens of strawberries in this area of interest, but most of them are
unripe. By providing all results along the camera motion trajectory, the system can help the
growers perform fewer manual inspections and get informed of the general conditions of
the farm.
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4. Conclusions

In this paper, we implemented an elementary information system for growers to get
informed of the fruit conditions on a farm. The system consists of a semantic segmentation
module and a visual SLAM module. By training and using an encoder-decoder neural
network model, strawberries can be detected in an image, and different conditions can be
classified. The state-of-the-art feature-based visual SLAM technique provides the motion
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trajectory of the camera as well as a brief farm map. The density of feature points can
give information on potential areas to inspect. Finally, from the trajectory estimation, the
input images at the specific times when the camera passes by the regions of interest can be
checked and used in the segmentation module to provide detailed information of those
areas. For future work, the cameras are preferred to be installed on a small mobile robot for
scoping the crop farm autonomously, which will significantly save on labor for manually
collecting the images and video clips of the environment.
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