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Abstract: In this study, a type of nonlinear observer design is studied for a class of nonlinear systems.
For the construction of the nonlinear observer, SOS-based optimization tools are utilized, which for
some nonlinear dynamical systems have the advantage of transforming the problem into a more
tractable one. The general problem of nonlinear observer design is translated into an SOS polynomial
optimization which can be turned into an SDP problem. For a study problem, simultaneous state and
disturbance estimation is considered, a cascaded nonlinear observer using a certain parameterization
is constructed, and computation techniques are discussed. Cascade nonlinear observer structure is
a design strategy that decomposes the problem into its components resulting in dimension reduc-
tion. In this paper, SOS-based methods using the cascade design technique are represented, and a
simultaneous state and disturbance signal online estimation algorithm is constructed. The method
with its smaller components is given in detail, the efficacy of the method is demonstrated by means
of numerical simulations performed in MATLAB, and the observer is designed using numerical
optimization tools YALMIP, MOSEK, and PENLAB.

Keywords: nonlinear dynamical systems; nonlinear observer design; SOS; ISS; PMSM

1. Introduction

In the era of smart grids and sustainability, renewable energy sources have become
more popular, requiring certain advanced forecasting methods to estimate and monitor
the operation to maximize the efficiency and stability of the overall system [1]. A PMSM
(Permanent Magnet Synchronous Motor) is a type of electrical motor that is used in EVs, and
some variations of it are used in energy harvesting, such as the ones used in wind and tidal
sources [2–4]. These types of harvesting mechanisms require estimation algorithms to be
used in a general control algorithm and system monitoring purposes [5]. In this paper, SOS
(Sum of Squares) programming-based nonlinear observer design is considered. In addition
to state estimation, disturbance estimation is also studied. The resulting nonlinear observer
design is detailed, with an emphasis on the parameterization and the computational aspect
of the terms.

Estimation methods have gained prominence with the advent of control methods and the
need to maximize efficiency and guarantee the safety of operations in the face of disturbance
signals [6]. There are estimation algorithms that are used in nonlinear system state estimation,
some of which can be listed as EKF (Extended Kalman Filter) [7], UKF (Unscented Kalman Fil-
ter) [8], PF (Particle Filter) [9], MHE (Moving Horizon Estimator) [10,11], SMO (Sliding Mode
Observer) [12], HGO (High Gain Observer) [13], Gain scheduling LTI-based observers [14], TS
(Takagi–Sugeno) observers [15], adaptive observers [16], ESO (Extended State Observer) [17],
and multiple model observers [18]. EKF tends to be the one that results in a systematic design
procedure. Although EKF results in accurate estimation performance for non-problematic
nonlinear systems depending on the noise and the initial condition terms that can affect the
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operation, some numerical problems can arise during the estimation process and the error
signals might diverge, which requires some additional control algorithms to be implemented
that monitor the health of the estimations and the stability of the error dynamics [19]. UKF
and PF are variations of EKF whose main focus is to address the non-gaussian process and
measurement noise terms that EKF tolerates to a certain extent [20]. In the presence of nonlin-
ear dynamics, the usual assumptions that enable KF (Kalman Filter) to operate efficiently no
longer hold, and the PDF of the noise terms evolves during the operation. PF mainly focuses
on this aspect of the problem, and consistent construction of the estimated PDF (Probability
Density Function) profile of the noise terms is performed in each sampling step which has
a computational price that cannot be tolerated by high dimensional nonlinear dynamical
systems [21]. MHE is a different type of estimation algorithm that does not depend on an
observer design. Instead, MHE considers the problem of state estimation a type of estimation
that can be formulated and solved by employing online solvers to produce an estimate which
is computed to minimize some stated objective term. That type of approach, although different
from the usual controller or observer design, has the advantage of resulting in a tractable ob-
server design method. With the help of specific nonlinear optimization techniques, nonlinear
state estimation can be performed quite efficiently. In systems where there are symmetrical
structures or intrinsic information is known a priori, explicit MHE methods can be used, as
in the case of explicit MPC (Model Predictive Control), where a controller is designed for
each specified region in the state space, and explicit MHE results in a set of observers, each of
which is valid in a stated region in the state space—a technique that bridges the area of online
computational methods and classical controller design techniques [22,23]. SMO is a nonlinear
observer algorithm as its controller counterpart; it employs discontinuous functions and high
gains to dominate the terms that prevent the stability of the error dynamics. SMO, due to its
structure, has the ability to tolerate the exogenous signals that may deteriorate the estimation
accuracy, especially if the exogenous signals enter the system through the dynamics of the
measured states [24]. HGO is an observer like in SMO; it utilizes discontinuous terms to
eliminate the obstructing terms. HGO requires the dynamical system to have a triangular
form that limits the systems to which it can be implemented but results in a straightforward
design technique [25]. TS observers are another observer type that provides a systematic
approach to constructing the observer. It directly uses the information on the state space
region that the system operates and, using Luenberger Observer-like structure, proposes an
adaptive observer that is parameterized. The terms are computed using the LMI (Linear
Matrix Inequality) optimization methods that are used in constructing LTI controllers and
observers. In a way, it attempts to reduce the nonlinear observer problem into a set of linear
observer design problems. The method works especially well when the system allows express-
ing the premise variables that can be considered as the scheduling variables in terms of the
measurement signals [26]. There are extensions of TS observer design that suggest expressing
the system using the polynomial terms that can be exploited using SOS optimization tools,
and for low dimensional problems, it offers a clear approach [27]. Adaptive observers are
mainly constructed where there is an uncertain term that prevents conventional observer
design techniques from being implemented, and the observer is required to account for this
parameter uncertainty. As in the case of adaptive controller design, Barbalat’s Lemma and
variations thereof are used to construct the observer that results in stable error dynamics [28].

Observer design mainly depends on the nonlinearity present in the system, which
can be an isolated nonlinearity that can be circumvented by certain algebraic manipu-
lations or a parameter-dependent nonlinearity that may require some adaptive scheme
to be implemented [29]. In this paper, nonlinearity stemming from polynomial terms is
considered where the general system does not include any discontinuous nonlinearity such
as a switching term.

In this paper, the SOS-based optimization approach to constructing a nonlinear ob-
server is represented. The approach can be summarized as turning the problem of observer
design into designing a function that is used in the observer to inject a signal so that the
estimation error dynamics are stable. The stability aspect in the design of the observer



Sustainability 2022, 14, 10650 3 of 12

is different compared to the classical controller design since there is an external signal
that affects the estimation process. Although this issue for some special problems can be
circumvented, the observer design generally results in finding a dynamical system such
that the error dynamics are input to a stable state where the disturbance signal in this
context can be expressed as the estimated signal, which is derived in the following sections.
Additionally, the true disturbance signal can also be accounted for by designing a system
that renders the error dynamics input to a stable state where the estimation guarantees
certain performance bounds.

This paper is organized as follows. In Section 2, the PMSM model is given. SOS
programming is explained in Section 3. The observer design using SOS programming is
detailed in Section 4. For the specific problem, observer design to estimate motor speed
is given in Section 5, and load estimation is given in Section 6. The simulation results are
presented in Section 7, and the overall assessment of the method is addressed in Section 8.

2. PMSM Model

In this study, a simplified PMSM model is used as the benchmark for testing the SOS
based nonlinear observer algorithm. Detailed information on the PMSM model can be
found in [30]. The model that is used is simplified to put the emphasis on the observer
design and present the design procedure such that it is not excessively problem dependent.
The PMSM dynamical equations are given as

d
dt

x1 = p1x1 + p2x3 sin(x4) + p3u1 (1)

d
dt

x2 = p1x2 − p2x3 cos(x4) + p3u2 (2)

d
dt

x3 = p4x1 sin(x4)− p4x2 cos(x4) + p5x3 − w (3)

d
dt

x4 = x3 (4)

where x1 and x2 denote the currents in the alpha and beta axis, which are produced from
the Clark and Park transformations that are generally carried out to simplify the control
of electrical motors in the FOC scheme [31]. The motor rotor speed is denoted by x3,
and x4 denotes the rotor position. The inputs to the system, u1 and u2, denote the stator
voltage terms in the alpha and beta axis. The disturbance term is denoted by w, which
represents the effect of load being applied during the operation, which deteriorates the
control and observation performance. For the sake of brevity, the parameters are given by
{p1, . . . , p5} that are related to the motor structure and materials. To facilitate the algebraic
manipulations that are used to construct the observer, a variation of this model is obtained
by defining new state terms as given by

x5 = cos(x4) (5)

x6 = sin(x4) (6)

This leads to the new set of state dynamics given by

d
dt

x1 = p1x1 + p2x3x6 + p3u1 (7)

d
dt

x2 = p1x2 − p2x3x5 + p3u2 (8)

d
dt

x3 = p4x1x6 − p4x2x5 + p5x3 − w (9)

d
dt

x4 = x3 (10)
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d
dt

x5 = −x3x6 (11)

d
dt

x6 = x3x5 (12)

Using this model, the observer is designed to estimate the states and the disturbance
term where the measurement states are given as

y1 = x1 (13)

y2 = x2 (14)

where the currents are measured, which is generally done in the field of sensorless control.

3. SOS Optimization

In the study of polynomial construction for specified purposes, there are some con-
straints that are imposed on the decision object, which is a polynomial in this context.
Positivity can be a constraint for the polynomial to be determined, and there is no straight-
forward condition that can be imposed on the coefficient of the polynomial to be com-
puted [32]. Although this issue might be a certain consideration for some problems, the
positivity constraint can be changed with a sufficient condition which is to express the
polynomial as the sum of squared terms, which results in a tractable formulation [33].
Positivity of a polynomial is a reoccurring constraint for many control problems, such as
Lyapunov function construction to produce a certificate of stability where the polynomial
in question is required to be positive, and the derivative of the polynomial needs to be
negative, which is also can be stated as an SOS optimization problem [34].

To present the idea of representing the positivity constraint with the SOS constraint, a
polynomial in x ∈ Rn, which is given by

p(x) > 0 (15)

where this constraint can be changed with the following

p(x) ∈ Σx (16)

where Σx denotes a set of SOS polynomials in x. This can also be stated as

p(x) ∈ Σx → p(x) > 0 (17)

where the SOS constraint is a sufficient condition, and this then can be turned into an SDP
problem as

p(x) = m(x)[Q]mT(x)
Q = QT ≥ 0

→ p(x) > 0 (18)

where m(x) denotes the monomials in x. Depending on the problem, these monomial
terms can be constructed using the special information about the system in general so
as to reduce the problem dimension. In the first constraint, the problem can be seen as
linear programming, and the second constraint is an SDP constraint [35]. The problem of
determining whether a given polynomial is positive can be formulated using the stated
sufficiency condition as an SDP feasibility problem which can be solved in polynomial
time [36].

4. SOS Based Nonlinear Observer Design

In this section, nonlinear observer designs using SOS optimization tools are given.
To demonstrate the idea, first how SOS tools can be used to find a Lyapunov function
to prove the stability of a given nonlinear dynamical system and then prove the ISS of a
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given system is formulated in the SOS optimization framework, which is necessary for
constructing the observer design [37].

4.1. SOS Optimization Stability Constraints

For a given nonlinear dynamical system which is expressed as

.
x = f (x) (19)

To prove stability, a Lyapunov function which is denoted by V(x) is required to be
computed such that the following assumptions

V(x) > 0, x 6= 0

∂V(x)
∂x f (x) < 0, x 6= 0

(20)

hold, and those constraints can be stated as

V(x) ∈ Σx

− ∂V(x)
∂x f (x) ∈ Σx

(21)

which is explicitly written as

V(x) = m1(x)[P]mT
1 (x)

−∂V(x)
∂x

f (x) = m2(x)[Q]mT
2 (x)

P = PT ≥ 0

Q = QT ≥ 0

(22)

where m1(x) and m2(x) denote the vector of monomials in the indeterminate of the given
problem. The first two constraints are coefficient matching which can be formulated as a
set of equality constraints. The last two constraints can be formulated as SDP, which results
in an SDP feasibility problem.

4.2. SOS Optimization ISS Constraints

Another important problem in formulating the observer design is the constraint of
input the state stability. Input to state stability is a property of a system with exogenous
input being stable in the asymptotical sense when the exogenous signal is zero and the
trajectories of the system being bounded by a norm-like function of the exogenous input [38].
Before the general formulation, a set of function sets are defined. The class K function set
is defined as the set of scalar functions, each α : [0, ∞)→ [0, ∞) being strictly increasing
and α(0) = 0. The class K∞ function set is defined as the set of scalar functions, each
α : [0, ∞)→ [0, ∞) being a class K function and α(s)→ ∞ as s→ ∞ . Class K∞ functions
are used in the definition of the ISS problem [39]. Therefore, to formulate the problem in
the SOS optimization framework, another polynomial class is given, namely univariate real
even polynomials that are given by

α(s ) =
N

∑
k=1

cks2k (23)

where each term is a monomial of a squared term. Furthermore, univariate real even
polynomials satisfying the condition

s
dα(s)

ds
≥ 0, ∀s ∈ R (24)
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can be shown to be classK∞ functions, where these new given constraints can be formulated
as an SOS problem. With the help of this property, the following theorem is given.

Theorem 1. The given system,
.
x = f (x, w) (25)

is ISS if there exist univariate real even polynomials αmin, αmax, σ, α and a polynomial V, as well
as SOS polynomials s1, s2, s3, sξ where ξ ∈ {αmin, αmax, σ, α} such that

V(x)− αmin(‖x‖) = s1(x), ∀(x, w) ∈ Rn ×Rp (26)

αmax(‖x‖)−V(x) = s2(x), ∀(x, w) ∈ Rn ×Rp (27)
.

V − σ(‖w‖) + α(‖x‖) = −s3(x, w), ∀(x, w) ∈ Rn ×Rp (28)

.
V =

∂V(x)
∂x

f (x, w) (29)

and such that

s
dξ(s)

ds
= sξ(s), ξ ∈ {αmin, αmax, σ, α}, ∀s ∈ R (30)

Proof of Theorem 1. The proof is given in [40]. �

The ISS problem formulated in the SOS optimization framework can help to construct
nonlinear observers.

4.3. SOS Based Observer Design

Consider the system
.
x = f (x) + g(x)u

y = Hx
(31)

The observer is given as

.
x̂ = f (x̂) + g(x̂)u + R(x̂, u, y)H[x− x̂] (32)

where the error terms are defined as

e = x− x̂ (33)

and the error dynamics are

.
e = [ f (x)− f (x̂)] + [g(x)− g(x̂)]u− R(x̂, u, y)H[e] (34)

which can be written as

.
e = [ f (x̂ + e)− f (x̂)] + [g(x̂ + e)− g(x̂)]u− R(x̂, u, H[x̂ + e])H[e] (35)

and the resulting error dynamics can be implicitly expressed as

.
e = f2(e; x̂, u) (36)

where f2() is obtained from the definitions of the f , g and R terms, where the expression
R(x̂, u, y) must be designed such that the error dynamics are ISS.
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5. Observer Design for Speed Estimation

The dynamics of the states measured are given as

d
dt

x1 = p1x1 + p2x3x6 + p3u1 (37)

d
dt

x2 = p1x2 − p2x3x5 + p3u2 (38)

for which the observer dynamics can be written as

d
dt

x̂1 = p1 x̂1 + p3u1 + R1(x̂1)[x1 − x̂1] (39)

d
dt

x̂2 = p1 x̂2 + p3u2 + R2(x̂2)[x2 − x̂2] (40)

The corresponding error dynamics are given as

d
dt

x̃1 = p1 x̃1 + p2x3x6 − R1(x̂1)[x̃1] (41)

d
dt

x̃2 = p1 x̃2 − p2x3x5 − R2(x̂2)[x̃2] (42)

where R1(x̂1) , R2(x̂2) are designed such that the given error dynamics

d
dt

x̃1 = f1(x̃1; x̂1, x3, x6) (43)

d
dt

x̃2 = f2(x̃2; x̂2, x3, x5) (44)

are inputs to a stable state. The expressions R1(x̂1), R2 (x̂2) are determined as explained in
the previous section. The problem can be transformed into an SOS feasibility optimization
problem, and the coefficients of the injection functions are computed.

The observation algorithm produces the injection signals that lead to the online calcu-
lation of the x3x5 and x3x6 terms that can help to estimate the load disturbance signal in
the secondary stage of the general observation algorithm.

6. Observer Design for Load Estimation

Using the cascade nonlinear observer scheme in the first stage of the observation
algorithm, the x5 and x6 terms are estimated, and these two terms are then used in the
second stage observer to estimate w terms that perturb the process of estimation. The speed
and load dynamics of the plant are given as

d
dt

x3 = [p4x1x6 − p4x2x5] + p5x3 − w (45)

d
dt

w = 0 (46)

where the dynamics of the load are assumed to be constant, and speed dynamics are
affected by the load term. Using the dynamics of the speed and the load, the following
estimator is suggested.

d
dt

x̂3 = [p4x1x6 − p4x2x5] + p5 x̂3 − ŵ + R21(x̂3, ŵ)[x3 − x̂3] (47)

d
dt

ŵ = R22(x̂3, ŵ)[x3 − x̂3] (48)
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where the x5. and x6 signals are assumed to be known due to the fact that in the previous
stage of the observation, the algorithm is constructed such that x3x5 and x3x6 signals are
estimated to a certain degree. The error dynamics are given as

d
dt

x̃3 = p5 x̃3 − w̃− R21(x̂3, ŵ)[x̃3] (49)

d
dt

w̃ = −R22(x̂3, ŵ)[x̃3] (50)

where R21(x̂3, ŵ), R22(x̂3, ŵ) are designed such that the given error dynamics

d
dt

x̃3 = f3(x̃3, w̃; x̂3, ŵ) (51)

d
dt

w̃ = f4(x̃3, w̃; x̂3, ŵ) (52)

has inputs to state stability. The resulting observer has the ability to estimate the load signal
online with specified robustness against the input voltage fluctuations and load deviations
during the operation.

7. Numerical Simulations

For the PMSM model that is given in Section 2 and using the observer that is designed
as detailed in Section 3, to analyze the performance of the nonlinear observer that is
designed using numerical optimization tools YALMIP, MOSEK, and PENLAB, a set of
numerical simulations are conducted using MATLAB [41–43]. The parameters of the PMSM
model are given as [p1, p2, p3, p4, p5] = [−1, 10, 10,−1.5,−1]. The speed estimator terms
are given as

R1(x̂1) = 92.7 + 1.2(x̂1)
2 (53)

R2(x̂2) = 92.7 + 1.2(x̂2)
2 (54)

and the load-estimation-related terms are given as

R21(x̂3, ŵ) = 1.16 + 0.53(x̂3)
2 + 0.53(ŵ)2 (55)

R22(x̂3, ŵ) = −8.7− 1.2(x̂3)
2 − 1.2(ŵ)2 (56)

The resulting Lyapunov function for the estimation error dynamics is omitted due
to space considerations. The simulation-related input and disturbance terms are given in
Table 1.

Table 1. Simulation input and disturbance terms during the operation.

Time (s) Voltage Inputs Load Term

0–25 u1 = 10 sin(2π[5]t)
u2 = 10 sin(2π[5]t + π/2)

w = −10

25–50 u1 = 10 sin(2π[5]t)
u2 = 10 sin(2π[5]t + π/2)

w = 5

50–60 u1 = 20 sin(2π[5]t)
u2 = 20 sin(2π[5]t + π/2)

w = 5

The state estimates that are produced by the first stage of the nonlinear observer are
given in Figure 1, where the true x1, x2 states and x3, x5 states are estimated.
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Using the x5, x6 estimates produced by the first stage of the nonlinear observer, x3 and w
terms are estimated. In Figure 2, the estimation performance of x3x5 and x3x6 terms that are
denoted by x35 and x36 are given. Using the x5 and x6 terms, the x3 speed state is estimated,
and it is given in Figure 2. Additionally, the load estimation error signal is given in Figure 2,
which demonstrates the effect of load and input voltage fluctuations on the estimation and
the capability of the observer to suppress the deteriorating effects of the changes.

In the second stage of the numerical simulations, the parameter uncertainty case is
studied where parameters of the plant are perturbed, and the performance of the estimation
algorithm, which is designed based on the nominal parameters given previously, is ana-
lyzed. As can be seen in Figure 3, the estimator is sufficient in dealing with the parameter
uncertainty, where the parameters are perturbed up to 10% in the series of simulations. In
general, the disturbance estimation is affected by the parameter uncertainty case, where
the state estimation performance of the system stays unaffected.
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8. Conclusions

In the paper, an SOS-optimization-based nonlinear observer design is studied. The
final observer is designed to estimate the states and disturbance signals simultaneously.
Considering a PMSM model, the design methodology is given in detail, and the perfor-
mance of the observer is assessed using a numerical simulation. To reduce the general SOS
optimization computation complexity and the problem dimension in general, exploiting
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the PMSM model structure, a cascaded nonlinear observer scheme is employed. In addition
to that, since the measurements are a linear combination of the state vector, the general
injection function is written as the function of the estimate terms, which also reduces the
SOS optimization problem dimension. The given ISS problem formulation in terms of SOS
optimization is another important step in formulating the general nonlinear observer de-
sign problem as an SOS feasibility problem which can be solved with the help of numerical
optimization tools such as YALMIP, MOSEK, and PENLAB.
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