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Abstract 

Background: Social organisms synchronize behaviors as an evolutionary-conserved means for 

thriving. Synchronization under threat, in particular, benefits survival and occurs across species, 

including humans, but the underlying mechanisms remain unknown, due to the scarcity of the 

relevant animal models. Here, we developed a rodent paradigm in which mice synchronize 

classically conditioned fear response and identified an underlying neuronal circuit. 

Methods: Males and female mice were trained individually in an auditory fear conditioning and 

then tested 24 h later as dyads allowing unrestricted social interaction during exposure to the 

conditioned stimulus, under the visible or infrared illumination to eliminate visual cues. The 

synchronization of the immobility or freezing bouts was quantified by calculating the effect size 

Cohen’s D for the difference between the actual freezing time overlap and the overlap by chance. 

The inactivation of the dorsomedial prefrontal cortex, dorsal hippocampus, or ventral 

hippocampus was achieved by local infusions of muscimol. The chemogenetic disconnection of 

the hippocampus-amygdala pathway was performed by expressing hM4D(Gi) in the ventral 

hippocampal neurons and infusing CNO in the amygdala. 

Results: Mice synchronized cued but not contextual fear. It was higher in males than in females 

and attenuated in the absence of visible light.  Inactivation of the ventral but not dorsal 

hippocampus or dorsomedial prefrontal cortex abolished fear synchronization. Finally, the 

disconnection of the hippocampal-amygdala pathway diminished fear synchronization. 

Conclusions: Mice synchronize expression of conditioned fear relying on the ventral 

hippocampus-amygdala pathway, suggesting that the hippocampus transmits social information 

to the amygdala to synchronize threat response. 

 

 

Introduction 
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From invertebrates to humans, social organisms coordinate various activities, including defense 

from predators, foraging, raising progeny, and migration (1-5). One simple form of coordination is 

aligning of movement (1, 6). In humans, it is called nonverbal interpersonal synchrony is an 

indicator of social normality. It correlates with prosocial behaviors; it is increased by oxytocin, and 

decreased in schizophrenia, borderline personality disorder, and autism (7-13). 

While many species coordinate body movement (1), only few publications report such 

coordination in rodents. For example, rats shuttle together to obtain reward in an operant task 

(14) and aggregate in response to predator smell or bright light (15-17). Mice aggregate in the 

presence of a spider-robot, and being inside the aggregation attenuates the threat-induced 

gamma oscillations in the amygdala (18). Prairie voles follow the leader-animal to generate a 

uniform response to an owl attack (19-21).  The few examples of coordinated threat responses 

suggest that rodents can be used to study basic mechanisms of emotional synchronization. 

Although the mouse is a gregarious species with robust social modulation of threat responses 

(22-27), no study has established a quantitative paradigm for social synchronization of threat 

response in mice. Here, we provide such a paradigm based on the classical Pavlovian 

conditioning and identify a neuronal circuit essential for synchronization of classically conditioned 

fear response. 

 

Methods and Materials 

All experiments were performed according to a Virginia Tech IACUC-approved protocol. 

 

Animals 

Breeding trios of one C57BL/6N male and two 129SvEv females produced 129SvEv/C57BL/6N 

F1 hybrid male and female mice weaned at p21 and housed four littermates per cage with the 

same sex as described (23). Subjects underwent tests at p75-p90. 7-10 days before testing, mice 

were split two per clean cage with a quarter of the Nestlet material from the originating cage. 
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Fear conditioning 

Mice in each dyad were trained independently in two separate conditioning chambers (Med 

Associates, St. Albans, VT) as described (28) and then tested together as dyads in a single 

chamber. For cued fear training, each animal spent the first 2 min in the chamber without stimuli 

and then received four pairings of the conditioned stimulus (CS) and unconditioned stimulus (US) 

given in variable intervals (60-180 s). The CS was a 30 s, 8 kHz, 80 dB tone, and the US was a 

0.5 mA 0.5 s electrical shock co-terminated with CS. Mice returned to the home cage 30 s after 

the last CS-US pairing. Cued fear was tested once one day later or twice one day and three days 

later in the DREADD experiments and in the muscimol inactivation of vHPC in Fig3. First, the 

animals spent 1 min in a new context without CS and 2 min with CS. For contextual fear training, 

each animal spent 2.5 min in the chamber without stimuli and then received three 0.8 mA 2 s 

footshocks separated by 1 min and returned to the home cage 30 s after the last shock. Contextual 

fear was tested one day later by placing the dyads in the training chamber for 3 min. Videos were 

recorded at four frames per second, exported as AVI files with MJPEG compression using the 

Freezeframe system (Actimetrics, Wilmette, IL), and then converted to the mp4 format using a 

Python script. 

 

Quantification of freezing, freezing overlap, freezing synchrony, and leader-follower relationship. 

Annotators, unaware of the treatment of the animals, manually identified and recorded the first 

and last video frames of each freezing bout using a Python script. A freezing bout was defined as 

the lack of movement except for respiration for at least four consecutive video frames. From the 

annotation, another Python script generated freezing duration for each animal, freezing overlap 

for each dyad (duration of simultaneous freezing), and graphic representation of their temporal 

dynamics. We defined freezing synchrony as the standardized difference (Cohen’s D effect size) 

between the observed and chance freezing overlaps. The chance overlaps were obtained by 
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performing 1000 random circular permutations of the freezing timelines and computing the 

freezing overlap for each. The synchrony was obtained by subtracting the mean of chance 

overlaps from the observed overlap and dividing it by the standard deviation of chance overlaps.  

To evaluate the leader-follower relationship within each dyad, we calculated the “leadership bias” 

and “% maximum leadership.” First, dyad members were assigned arbitrarily as #1 and #2 

(Fig3BC), or specifically as #1 for the cannulated and #2 for the non-cannulated member 

(Fig3DE). Then, we counted the matched transitions, in which one animal (follower) followed 

another (initiator), and summated the counts as the “leadership bias” using +1 when subject #1 

was the initiator and -1 for subject #2 as the initiator (FigS14). In the case of perfect leadership, 

where one member always takes the leadership, the absolute value of the “leadership bias” 

equals the total number of the matched transitions (theoretical maximum). To standardize the 

leadership measure across dyads, we expressed leadership bias as % of theoretical maximum 

(% maximum leadership) at the end of the test session. The signed “% maximum leadership” 

identifies the leader animal (positive for subject #1 and negative for subject #2). 

 

Surgeries and intracranial infusions 

Viral injections. Pseudotype 5 viral vectors pAAV-hSyn-hM4D(Gi) (Addgene), pAAV-hSyn-EGFP 

(Addgene) or pAAV-hSyn-Chronos-GFP (UNC Vector Core) at the titer of 1012 viral particles per 

mL were injected bilaterally in two locations, 0.2 μL per site, targeting the intermediate 

hippocampus (from bregma: -3.4 mm posterior, ±3.4 mm lateral; from the brain surface: -1.65 mm 

ventral) and ventral hippocampus (from bregma: -3.4 mm posterior, ±3.8 mm lateral; from the 

brain surface: -2.6 mm ventral) following the surgical procedure described in (29). 

Cannulation. Ten to 14 days before fear conditioning, mice received implantation bilaterally with 

guide cannulas, made in the lab from hypodermic tubes or purchased from Plastic One (Roanoke, 

VA) to target dmPFC (from bregma: 1.5 mm anterior, ±0.5 mm lateral, from the brain surface: -

0.8 mm ventral), vHPC (from bregma: -3.3 mm posterior, ±3.3 mm lateral, from the brain surface 
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-2.8 mm ventral) or BLA (from bregma: -1.8 mm posterior, ±3.2 mm lateral, from the brain surface 

-3.5 mm ventral). Dummy cannulas were placed in the guide cannulas to prevent clogging. 

Intracranial infusion. During seven days before testing, animals were handled for 2-3 min daily, 

including removal and reattachment of dummy cannulas. One day before fear conditioning 

training, mice were habituated to infusion using the vehicle: (in mM) 150 NaCl, 10 D-glucose, 10 

HEPES, 2.5 KCl, 1 MgCl2, pH 7.35 (30) in the home cage in the presence of the partner. The 

infusion cannula extended 1 mm over the guide cannula. The infusion volume was always 150 nL 

per site, and the infusion rate was 75 nL/min. Muscimol (1.17 mM) or vehicle were infused one 

hour before fear testing. In DREADD experiments, the infusate was CNO (3 μM) or vehicle, 

infused 45-50 min before testing. In all experiments, except in Fig3DE, both mice in the same 

dyad received identical infusions. 

Position verification for cannulas and viral transduction. After the final test, each animal, 

anesthetized with 2.5% Avertin (prepared by mixing 10 g of 2,2,2-tribromoethyl alcohol (Aldrich 

T4,840-2) with 10 ml of tert-amyl alcohol (Aldrich 24,048-6), diluting 1:40 by PBS and filter-

sterilization), received an intracranial infusion of Chicago Sky Blue (0.2 %), followed by 

transcardial perfusion with 4% paraformaldehyde. Fluorescent and visible light microscopy 

identified the sites of viral transduction and cannulation. 

 

Whole-cell recording 

Slice preparation and whole-cell recording from amygdala neurons were done as described in 

(31). Briefly, the internal solution of the recording pipette was 120 K-gluconate (in mM), 5 NaCl, 

1 MgCl2, 10 HEPES, 0.2 EGTA, 2 ATP-Mg, and 0.1 GTP-Na. 470 nm 1 ms light pulses from an 

LED lamp (Thorlabs) through a ×40 objective lens (Olympus, Center Valley, PA) stimulate the 

hippocampal axons expressing Chronos at 0.3 to 2.5 mW every 30 sec. Stimulus intensity was 

adjusted to obtain EPSCs at about 80% of the maximum. 
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Data analysis 

Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA) 

and Python scripts using SciPy statistical functions (scipy.stats), and R.   Normality was tested 

using the Shapiro–Wilk test (TableS3). Datasets with normal distribution were compared using 

the one-sample t-test or the paired t-test as indicated. The datasets with non-normal distribution 

were compared using the Mann–Whitney test, the Wilcoxon matched-pairs test, and the Wilcoxon 

signed-rank test. All the tests were two-sided. The two-tailed p-value was calculated for the 

Spearman correlation analysis. The effects were deemed significant with p < 0.05. The effect size 

as a bootstrap 95% confidence interval (CI) was computed and plotted using the data analysis 

with bootstrap-coupled estimation (DABEST) in Python 1(32). For each comparison, 5000 

reshuffles of each group were performed. 

 

Data and code availability 

All primary data, including video files, are available from authors upon reasonable request. In 

addition, codes for data analysis and statistics are provided with example data as part of the 

replication package. It is available at 

https://github.com/wataruito/codes_in_Emotional_sync_Ito_et_al. 

 

Results 

To study synchronization of fear response, we trained mice individually and then tested them in 

dyads of cage-mates on the following day. During training, repeated auditory conditioned stimuli 

(CS) were paired with electrical footshocks as the unconditioned stimulus (US). During testing, 

mice were allowed unrestricted social interaction while exposed to CS in a different context 

(Fig1A). To quantify synchrony of freezing within each dyad, we calculated the Cohen’s D effect 

size for the simultaneous freezing above chance. As shown in Fig1C, the difference between the 
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observed freezing overlap (L) and the mean of permutation-generated freezing overlaps (C: 

chance overlap) was divided by the standard deviation (SD) of the chance overlaps (Fig1B, C). 

Both sexes synchronized freezing but males synchronized more than females (Fig1D, 

left). In males, synchrony did not correlate with the following freezing measures: % freezing 

average, % freezing of the high freezer, % freezing of the low freezer, and the difference of % 

freezing between high and low freezers (Fig1E, FigS1), the mean duration, or the number of 

freezing bouts (FigS3, TableS2). In females, synchrony also did not correlate with all freezing 

measures except a weak correlation with % freezing of the low freezer (R2=0.3, p=0.03) (Fig1G, 

FigS1) and the mean duration of freezing bouts (FigS3, TableS2).  

Visual, auditory, olfactory, and somatosensory social cues can convey information about 

the partner's state. Testing dyads under infrared illumination aimed to examine the role of vision. 

Most males failed to synchronize, whereas most females synchronized (p=0.048) (Fig1D, right), 

and there was a significant sex*lighting interaction (F(1,57)=7.0, p=0.015). The freezing under the 

infrared light was lower in both sexes (males: p<0.0001, females: p=0.005) (Fig1E-H), consistent 

with earlier findings (33). Nevertheless, synchrony did not correlate with the freezing measures 

(Fig1F, H, FigS1). 

To examine synchronization of contextual fear, we trained a separate cohort of males by 

exposure to electrical footshocks and tested them in the training context 24 h later. Unlike cued 

freezing, mice did not synchronize bouts of contextual freezing (FigS12). Notably, in all the above 

cohorts, freezing strongly correlated between partners regardless the level of fear synchrony 

(FigS2, TableS1). 

In search of the brain regions involved in synchronization, we focused on three areas, the 

dorsomedial prefrontal cortex (dmPFC), dorsal hippocampus (dHPC), and ventral hippocampus 

(vHPC). They all encode social information (34-37), contribute to social memory (37) and 

modulate fear expression (22, 38-41). Therefore, each structure can contribute to integrating 

social and emotional information required for synchronized freezing. To this end, each structure 
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was inactivated by bilateral muscimol infusion (Fig2A, B, E, H) in both animals of each dyad 1 h 

before testing. These experiments were performed on males because males synchronized 

stronger than females. The vHPC inactivation diminished synchrony without affecting freezing 

(Fig2I, J) and duration or number of freezing bouts (FigS5). Whereas inactivation of dHPC or 

dmPFC did not attenuate synchrony but decreased freezing (Fig2C, F), consistent with the 

described effects of such inactivation on fear expression (38, 42-44). In all experiments, 

synchrony did not correlate with freezing measures of the dyad (Fig2D, G, J, FigS4).  

To confirm the role of vHPC in synchrony and examine how vHPC determines the leader 

of the freezing transitions, we repeated the muscimol infusion experiments but used within the 

dyad comparisons to absorb the effects of variability among individual dyads. After training, all 

dyads were tested twice: 24h (TEST1) and 72h (TEST2) later.  We ran two independent cohorts: 

both dyad members received muscimol or vehicle infusion in vHPC (cohort #1), or only one 

member received the infusions (cohort #2). The order of infusion was counterbalanced between 

muscimol and vehicle (Fig3A). The repeated testing per se caused fear extinction but no effects 

on synchrony (FigS8). Muscimol significantly decreased synchrony in cohort #1 (Fig3B), 

reconfirming that vHPC is needed for synchrony, but not in cohort #2 (Fig3D), indicating that 

synchrony remains when one of the animals has a functional vHPC. Muscimol had no effect on 

% freezing or duration and number of freezing bouts (FigS7), and synchrony did not correlate with 

freezing measures (Fig3B, 3D, FigS6). 

Next, we calculated the “leadership bias” as a metric of which dyad member and how 

much takes more leadership, and the “% maximum leadership” as the normalized leadership bias. 

In the case of the perfect leadership, when subject #1 or #2 leads all freezing transitions, the 

leadership bias is + (total transition number) or – (total transition number), and the % maximum 

leadership is +100% or -100%, respectively (explained in Methods and Materials and FigS14). 

Among the two cohorts, in 73.8% of test sessions (31 out of 42), the % maximum 

leadership was below 30 %, and there was little or no progressive increase of the absolute 
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leadership bias along with the transition number (Fig3C, E, left and middle, solid lines), indicating 

the lack of strong leaders. However, muscimol infusion increased the number of dyads with higher 

% maximum leadership (above 30 %) from 1 to 5 in cohort #1 and from 1 to 4 in cohort #2 (Fig3C, 

E, left and middle, broken lines). When only one mouse received muscimol (cohort #2), that 

mouse took more leadership, as shown by significantly increased % maximum leadership (Fig3E, 

right). Furthermore, the increase was observed regardless of the leadership status (leader or 

follower) when injected with vehicle. In contrast, when both mice received muscimol infusion 

(cohort #1), the % maximum leadership did not change (Fig3C, right). 

 

The input from vHPC to the amygdala is necessary for context-dependent control of cued 

fear (45, 46). The hippocampal-amygdala axons originate primarily from the CA1 and subicular 

neurons in the temporal/caudal half of the Ammon Horn, which includes the ventral and 

intermediate hippocampus (here collectively referred to as ventral hippocampus) (47, 48). To test 

whether these axons are necessary for the social synchronization of freezing, we 

chemogenetically suppressed their terminals in the amygdala. Whole-cell recording confirmed the 

effectiveness of such suppression, using amygdala slices from mice co-injected with AAV-hSyn-

hM4Di-mCherry and AAV-hSynChronos-GFP in the hippocampus. One μM CNO in the bath 

suppressed EPSCs evoked in the BLA neurons by blue light pulses by 90.4±3.8 %  (Fig4A). 

For behavioral testing, we injected mice with AAV-hSyn-hM4Di-mCherry in the ventral 

hippocampus (Fig4C), 25-30 days later implanted cannulas for CNO infusion in the basolateral 

amygdala (BLA) and allowed mice to recover for 14-17 days.  

All dyads were tested twice, at 24h (TEST1) and 72h (TEST2) after training. Forty min 

before each test, mice received CNO or vehicle infusion in BLA in counterbalanced order (Fig4B). 

The infusions were counterbalanced because repeated testing per se caused fear extinction in 

some cohorts, although it did not affect synchrony (FigS11). In males, CNO decreased synchrony 

but had no effect on % freezing (Fig4D upper) or the duration or number of freezing bouts (Fig 
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S10). Synchrony also did not correlate with freezing measures (FigS9). In females, CNO 

decreased synchrony and freezing (Fig4E upper). It also decreased the duration of freezing bouts 

but not the bouts number (FigS10). Despite the strong effect of CNO on both synchrony and 

freezing in females, synchrony only correlated with % freezing in the low freezers, and the 

correlation was weak (R2=0.18, p=0.03, FigS9). To control for non-specific effects of CNO,  

separate groups of mice underwent the same procedures, except they received AAV-hSyn-GFP 

(6 male dyads) or AAV-hSyn-Chronos-GFP (4 male and all female dyads). CNO had no effect on 

synchrony or freezing, and there was no correlation between synchrony and freezing measures, 

even in the female group (Fig4D, E lower, FigS9). In all cohorts in DREADD disconnection and 

muscimol inactivation experiments, synchrony and freezing did not change significantly between 

the first and second halves of the session (FigS13). 

 

Discussion 

The main goal of this work was to establish a mouse paradigm and a quantitative measure for 

social synchronization of an affective behavior. The key findings are that freely interacting mice 

synchronize freezing response to an auditory conditioned stimulus and the ventral hippocampus 

to amygdala pathway is required for this synchronization. 

Most studies on behavioral synchrony focus on rhythmic movements. They define 

synchrony as the degree of congruence between behavioral cycles of two subjects (49) and 

quantify it by coherence and cross-correlation (7, 8, 10, 50).  

Such metrics are not applicable in this study because of limited sampling: testing of 

conditioned fear is limited to a few minutes and not repeatable multiple times. The resulting small 

number of freezing bouts is insufficient for evaluating rhythmicity or periodicity. Therefore, we 

defined synchrony more broadly, as simultaneous affect (51) and operationally as simultaneous 

behavior (49). We quantified synchrony based on the duration of simultaneous freezing or 

freezing overlap. Because there is, however, always some overlap occurring by chance, which 
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increases with higher freezing, we calculated freezing synchrony as the difference between the 

observed freezing overlap and the freezing overlap by chance, normalized to the standard 

deviation of the chance overlap. This metric factors out the chance overlap and allows comparison 

among dyads with different levels of freezing. In fact, throughout this study, synchrony in most 

cohorts did not correlate with freezing measures, which included the % freezing average of dyad 

members, % freezing of the high and low freezer, % freezing difference between dyad members, 

and duration or number of freezing bouts. It suggests that most animals respond to social cues 

and coordinate behavior independently from the level of fear. As an exception, in some but not all 

female cohorts, synchrony correlated with freezing of the low freezer and with duration of freezing 

bouts but the correlation was weak. Nevertheless, they suggest differences in how males and 

females integrate social and emotional information. 

 While both sexes synchronized freezing, males synchronized it more than females, 

suggesting sex differences within the circuits involved in synchronization. One mouse study 

reported lower sociability of females (52), which could explain the lower synchrony. However, 

other studies did not detect sex differences in the sociability of mice (53, 54), suggesting that 

sociability and synchrony require separate circuits. The lack of synchrony in most male dyads 

under infrared light suggest that males rely primarily on vision; whereas the ability to synchronize 

in most females suggests that females can use other sensory modalities. On the other hand, the 

freezing level under IR was lower for both sexes. It may result from fear reduction and (or) a 

switch from passive (freezing) to active (escape) threat response (55). Therefore, the sex 

differences in synchrony under IR may arise at the fear expression level, not only from the different 

reliance on vision. 

Fear synchrony did not require dmPFC, similar to dmPFC-independence of social 

motivation in mice (56, 57), although, in a rat study, dmPFC was found necessary for social 

motivation (58).  Meanwhile, dmPFC-dependent social cognition drives empathy-like behavior 

and hierarchy formation (59). Perhaps, social motivation and synchrony are evolutionary older, 
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making them less dependent on the prefrontal cortex. However, our study does not rule out that 

dmPFC modulates fear synchrony, same as it modulates social motivation (59). 

Inactivation of the vHPC or its terminals inside the amygdala disrupted fear synchrony. 

Given the reports of the hippocampal involvement in the attention process (60) and, in particular, 

the role of the ventral hippocampus in the attention tasks in rodents (61), the impaired synchrony 

can arise from the loss of attention. Furthermore, the recently discovered “social neurons” in the 

ventral hippocampus (62) can participate in social attention, potentially encode conspecific 

information and route it to the amygdala. 

 Notably, vHPC inactivation or disconnection from the amygdala did not change the overall 

freezing level but diminished synchronization. It suggests that the role of the social neurons is to 

adjust the temporal pattern of amygdala activity but not its level. Two types of hippocampal 

commands, which initiate and terminate freezing, could provide such temporal adjustments. The 

reported parallel pathways, excitatory hippocampal-amygdala input to the basal and central nuclei 

(46, 47), and GABAergic input to the basal amygdala (63, 64) might transmit the opposing 

commands. 

Our analysis of the leader-follower relationship revealed that most dyads did not have 

fixed leaders driving the transitions in and out of freezing; instead, the leadership is flexible, and 

dyad members followed each another. However, when vHPC was inactivated in only one mouse 

in a dyad, the treated mouse increased the leadership, suggesting that the vHPC is required for 

the ability to follow the partner. 

Interestingly, the contextual freezing showed no synchronization. One hypothesis is that 

the contextual fear circuitry lacks the mechanism for the accurate timing of events. Indeed, BNST, 

which is required for contextual fear expression, mediates fear responses when the timing of an 

aversive event is uncertain (65-67); therefore, it is unlikely to respond precisely to the partner’s 

behavioral transitions. Another hypothesis is based on two facts: testing context fear activates 

dHPC (68-70), and dHPC strongly projects to vHPC through the longitudinal pathway via CA2 
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(71-73). The activated dHPC may interfere with vHPC from processing social cues via the CA2 

route. 

Overall, this study adds one additional example to the list of synchronized behaviors in 

several species (74), the conditioned freezing in mice, and opens up studies of synchronized 

behaviors in mice. 
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Figure legends 

 

Figure 1. Synchronization of auditory fear differs between sexes and relies on vision more 

strongly in males than in females. A) Scheme for testing fear synchrony.  Fear conditioning 

training on day 1 and testing on day 2. Blue rectangles and red vertical bars represent CS and  

US, respectively. B) Examples of freezing timelines in dyads with high (upper, synchrony=3.4) 

and low (lower, 0.14) freezing synchrony. CS onsets at 60 s are zoomed in. Freezing bouts of 

animal 1 and 2 are shown in blue and orange, and freezing overlaps in green. C) Computing 

freezing synchrony. The observed freezing overlap L is taken from the freezing timelines. The 

timelines are then randomly permutated 1000 times, giving 1000 permutated overlaps, from which 

the mean chance overlap C and the standard deviation SD are calculated. SYNCHRONY = (L-C) 

/ SD. D) Summary diagrams for synchrony in male and female dyads tested under visible or 

infrared lights. Independent dyads were tested under visible and infrared light. Horizontal bars 

indicate means±SEM. The visible synchrony panel (left) includes the effect size as a bootstrap 

95% confidence interval (CI, vertical line) and the resampled distribution of the mean difference 

(orange) computed by DABEST(32). The effect size is aligned with the mean of the female test 

groups. Under the visible light, synchrony was significant in both sexes (one-sample t-test: males: 

p<0.0001, n=17, females: p=0.002, n=16) and higher in males (two-sample t-test: p=0.007). 

Under the infrared light, synchrony was not significant in males (Wilcoxon signed-rank test: n=14) 

but significant in females (one-sample t-test: p<0.05, n=14). One-sample t-test: * p<0.05, ** 

p<0.01, **** p<0.0001, two-sample t-test: ## p<0.01. E-H) Scatter plots of synchrony vs. freezing 

in males under visible light (E), males under infrared light (F), females under visible light (G), and 
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females under infrared light (H). Freezing (%) is the average of two mice in each dyad. No 

significant correlation was found. 

 

Figure 2. Fear synchrony requires the ventral hippocampus. A) Experimental timeline. 

Independent dyads were infused with vehicle or muscimol. B, E, H) Examples of dye injections in 

the muscimol inactivation sites in the dmPFC (B), dHPC (E), and vHPC (H). C, F, I) Summary 

diagrams for synchrony (left) and % freezing average (right) in dyads with both mice injected in 

dmPFC (C) (n=9/10 with vehicle/muscimol), dHPC (F) (n=8/7), and vHPC (I) (n=8/8). For 

synchrony, comparisons to 0 were made by the one-sample t-test in C and Wilcoxon signed-rank 

test in F and I. For synchrony and freezing average, comparisons between groups were made by 

the two-sample t-test in C and Mann-Whitney test in F and I. * p<0.05, # p<0.05, ** p<0.01, ## 

p<0.01, *** p<0.001.  Horizontal bars indicate means±SEM. The resampled distribution of the 

mean difference (orange) and the 95% confidence interval (vertical line) are shown on the right. 

The effect size is aligned with the mean of the test group (muscimol). D, G, J) Scatter plots of 

synchrony vs. freezing for the dmPFC (D), dHPC (G), and vHPC (J) inactivation experiments. 

Freezing (%) is the average of two mice in each dyad. No significant correlation was found. 

 

 

Figure 3. Ventral hippocampal is required for synchrony and suppresses leadership. A) 

Experimental scheme of behavioral testing with muscimol suppression. B, D) Left: Schematics of 

muscimol injections. Right: Summary diagrams of synchrony (left), % freezing averages of both 

dyad members (middle), and freezing-synchrony scatter plot (right). No significant correlation was 

found. Open and black circles represent dyads infused with vehicle and muscimol, respectively 

(n=10 (B), 11 dyads (C)). C, E) Left and middle: Trajectories of the absolute leadership bias along 

the matched transitions. Dashed lines represent dyads with the % maximum leadership above 

30%. Right: % maximum leadership after infusion of vehicle and muscimol. The gray shades 
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represent the >30% and <-30% cutoffs. Connected data points represent the same dyad. Positive 

and negative % maximum leadership indicates that animal #1 or #2 exhibited stronger leadership, 

respectively. In C, #1 and #2 were assigned arbitrarily. In E, #1 was assigned to the animal 

receiving infusions. Wilcoxon matched-pairs test: * p<0.05. The resampled mean difference 

distribution (orange) and the 95% confidence interval (vertical line) are shown. The effect size is 

aligned with the mean of the test group (muscimol). 

 

Figure 4. Fear synchrony requires the ventral hippocampal input to the amygdala. A) 

DREADD suppression of the ventral hippocampal terminals in BLA ex vivo. Left: schematics of 

viral injection, ex vivo stimulation, and whole-cell recording. Middle: example of EPSC evoked in 

a BLA neuron by blue light stimulation of the vHPC terminals in the absence of CNO (black), and 

after 10 min of perfusion with 1 μM CNO (red), shown as averages of 5 consecutive sweeps. 

Right: summary of EPSC changes (no CNO vs. CNO), recorded from 5 BLA neurons, and % 

suppression by 1 μM CNO. Wilcoxon signed-rank test: #### p<0.0001. Horizontal bars indicate 

means±SEM. B) Experimental scheme of behavioral testing with DREADD suppression. C) Left: 

Schematics of viral injection and cannula placement. Right: Fluorescent images of the 

hippocampal (vHPC) and amygdala (AMYG) slices from mice injected with AAV-hSyn-hM4Di-

mCherry (upper row) and AAV-hSyn-GFP (lower row) in the ventral/intermediate hippocampus. 

D, E) Summary diagrams (males in D, females in E) of synchrony (left), % freezing average 

(middle), and freezing-synchrony scatter plot (right) in the dyads expressing hM4Di-mCherry 

(upper row, DREADD disconnection, n=13 (male), 12 (female)) or GFP or Chronos-GFP (lower 

row, CNO/virus controls, n=10 (male), 11 (female)), both mice in the dyad infused with vehicle 

(open circle) or 3 μM CNO (black filled circle) in the amygdala. No significant correlation was 

found in DE, most right column. The connected data points represent the same dyads. Freezing 

(%) is the average of two mice in each dyad. Wilcoxon matched-pairs test: * p<0.05, ** p<0.01. 
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The resampled mean difference distribution (orange) and the 95% confidence interval (vertical 

line) are shown. The effect size is aligned with the mean of the test group (CNO). 
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