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VTMOP is a Fortran 2008 software package containing two Fortran modules for solving computationally

expensive bound-constrained blackbox multiobjective optimization problems. VTMOP implements the algo-

rithm of [32], which handles two or more objectives, does not require any derivatives, and produces well-

distributed points over the Pareto front. The first module contains a general framework for solving multiob-

jective optimization problems by combining response surface methodology, trust region methodology, and an

adaptive weighting scheme. The second module features a driver subroutine that implements this framework

when the objective functions can be wrapped as a Fortran subroutine. Support is provided for both serial and

parallel execution paradigms, and VTMOP is demonstrated on several test problems as well as one real-world

problem in the area of particle accelerator optimization.
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1 INTRODUCTION

Multiobjective optimization problems (MOPs) arise in many disciplines of science and engi-
neering and are prevalent in the field of multidisciplinary design optimization [60]. In such prob-
lems, a multidisciplinary team of engineers must collaborate to design a large complex system,
such as an aircraft, balancing design tradeoffs spanning different engineering subfields. In this
context, the solution to the MOP is a multidimensional tradeoff surface, called the Pareto front, de-
scribing the interactions between several conflicting design criteria. Understanding the shape of
the Pareto front allows the design engineers to make an informed decision about how to balance
design tradeoffs a posteriori based on the results of the design optimization. Specific examples of
MOPs in engineering are described by [19], who present a ship-hull design problem, and by [67],
who describe a chemical engineering problem.

The standard form for a MOP is a real vector-valued minimization problem. The multiobjective
cost function F is of the form F : X → Y , whereX ⊂ Rd is the feasible design space andY ⊂ Rp is
the feasible objective space. For y, z ∈ Rd , the notation y < z indicates that y is componentwise less
than z, and the notation y <

= z indicates that y is componentwise less than or equal to z, allowing
for the possibility thaty = z. This article considers MOPs whereX is a simply bounded set, meaning
that X = [L,U ] = {x ∈ Rd : L <

= x <
= U } for some L,U ∈ Rd with L < U . Then Y is the image

of [L,U ] under F . Conceptually, F can be decomposed into p scalar cost functions fi : X → R,
i = 1, . . . ,p such that F (x ) = ( f1 (x ), . . . , fp (x ))�.

The solution to a MOP is defined by the partial ordering ≤ on Y . For Y ,Z ∈ Y , Y ≤ Z if Y
is componentwise less than or equal to Z , with strict inequality in at least one component. An
objective value F (x∗) is said to be nondominated if F (x ) �≤ F (x∗) for all x ∈ X. If F (x∗) is nondom-
inated, then x∗ is said to be efficient, and the pair (x∗, F (x∗)) is Pareto optimal. The Pareto front
is given by the set of all nondominated objective points and often is accompanied by the set of
all efficient designs, called the efficient set. The Pareto front has dimension at most p − 1 and can
be nonsmooth or even discontinuous. Further reading on MOPs can be found in [33]. To discuss
the convergence of algorithms, it is convenient to use some additional terminology. In particular,
a point x† is locally Pareto optimal if there is no y in a neighborhood of x† such that F (y) domi-
nates F (x†). Additionally, when discussing the solutions returned by a multiobjective solver, the
term approximately nondominated may be used to indicate an objective value F (x̂ ) that is not dom-
inated by any other objective points evaluated by the solver. Then x̂ is approximately efficient, and
(x̂ , F (x̂ )) is approximately Pareto optimal.

Remark 1.1. When discussing MOPs, one should distinguish the design and objective spaces. In
this article, x , y, and z denote points in the design space, and X , Y , and Z are reserved to denote
points in the objective space (or a projection of the objective space, as described in Section 3.1).
Each of these entities may be annotated with a superscript to index points or vectors from a set or
sequence or with a subscript to denote the components of a point or vector.
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This article focuses on blackbox MOPs. A process, such as the objective function F , is said to
be a blackbox when it can be evaluated at specified inputs to obtain outputs, but the process
provides no additional information that is not immediately available in its output. Often, blackbox
functions are the result of physical experiments or computationally expensive numerical simula-
tions that require substantial computing resources and time for each evaluation. In some cases, a
blackbox multiobjective function F could imply that each component function fi is an individual
blackbox, which must be evaluated separately at a great computational expense. In other cases, all
components of F may be obtained through a single integrated simulation.

This article presents the VTMOP software package for solving computationally expensive black-
box MOPs subject to simple bound constraints. Distinctive features of VTMOP are that it (1) han-
dles any p >

= 2, (2) does not require derivative information, and (3) devotes considerable effort to
produce well-distributed points over the Pareto front. VTMOP also features a solver subroutine
that can be used to solve MOPs when F is available as a Fortran callable function; a “return-to-
caller” interface that can be used when F must be decoupled from the optimization algorithm;
both parallel and serial execution paradigms; a checkpointing system for storing and recovering
function evaluation and iteration data; and support for user-defined local optimization and surro-
gate modeling procedures.

The article is organized as follows: Section 2 provides some background on multiobjective op-

timization algorithms (MOAs) and widely distributed software packages. Section 3 outlines the
VTMOP algorithm and worker subroutines. Section 4 presents two interfaces for solving blackbox
MOPs using VTMOP: a return-to-caller interface and a driver subroutine, both of which use the
worker subroutines outlined in Section 3. Section 5 is a brief summary of the VTMOP users’ man-
ual. Section 6 provides performance results for VTMOP on several analytic test problems. Finally,
Section 7 demonstrates VTMOP’s performance on a real-world particle accelerator optimization
problem.

2 ALGORITHMS AND SOLVERS FOR MULTIOBJECTIVE OPTIMIZATION

This section reviews MOAs and techniques to solve blackbox MOPs of the form

min
x ∈[L,U ]

F (x ), (1)

where the minimization is understood as Pareto optimality. In general, the solution to
Equation (1) can be an uncountably infinite set, described by a (p−1)-dimensional manifold in the
objective space. (When the Pareto front has dimensionality less than p − 1, this indicates that at
least one objective could be eliminated.) The MOAs presented in this section produce a set of ap-
proximately nondominated objective points (and corresponding approximately efficient designs),
which provide a discrete approximation to the Pareto front.

2.1 Multiobjective Optimization Techniques and Algorithms

Three fundamentally different approaches can be used to solve MOPs. The first approach consists
of a priori methods, where the decision makers are able to express some preference about the
tradeoff before viewing the results of the optimization. In these cases, the decision-maker typically
supplies a preference function that reduces the MOP to a scalar optimization problem. The second
approach consists of a posteriori methods, where the decision-maker is not able to express any
preference until after viewing the results of the optimization procedure. This class is the most
general class of methods and the subject of this article. The third class consists of “human-in-the-
loop” algorithms, where the decision-maker is able to progressively provide feedback on preference
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while the algorithm is running. A summary of all three techniques can be found in [51]; a detailed
survey of a posteriori techniques for computationally expensive blackbox MOPs is given by [39].

A standard a posteriori technique for solving blackbox MOPs is to use multiple scalarization

functions. Scalarization reduces a MOP to a scalar optimization problem by composing a scalar-
ization function G : Rp → R with F . The resulting function G ◦ F can be minimized by using a
scalar blackbox optimization solver to find a single (approximately) nondominated point. Optimiz-
ing different scalarizations can produce a discrete set of approximately nondominated points, thus
approximating the Pareto front. Further reading on general scalarization schemes can be found in
Chapter 4 of [33]. One common scalarization scheme is the weighted sum method, which uses a
vector of nonnegative weights w = (w1, . . . ,wp ) to produce a “weighted average” cost function

Gw

(
F (x )

)
=

p∑
i=1

wi fi (x ). (2)

Whenw > 0, any minimizer of Equation (2) is Pareto optimal. However, if any of the component
functions fi are nonconvex, then it is possible that not every point on the Pareto front can be
obtained by solving Equation (2) for any vector of weights w . Furthermore, naïvely minimizing
Equation (2) using weights that are spaced equally tends to produce clusters of objective values
and can leave gaps along the Pareto front. These give the decision-maker a poor understanding of
its true shape. Therefore, effective weighted sum scalarization depends on an adaptive weighting

scheme. Further reading on weighted sum scalarization can be found in Chapter 3 of [33].
One issue with scalarization techniques is that each subproblem must be solved individually

as a blackbox scalar optimization problem. Therefore, the cost of solving the MOP is many times
that of solving each scalar subproblem. When F is computationally expensive to evaluate, this
can be prohibitive. The response surface methodology (RSM) can be used to mitigate these
expenses [53]. In the multiobjective RSM, a computationally cheap (to evaluate) surrogate function
is fit to each objective function by using values from evaluating the objective at experimental
design points. Then multiple scalarizations of these surrogates are optimized, each producing a
candidate design point. If the design of experiments is thorough and the surrogates are accurate,
then evaluating these candidate designs will produce numerous points near the Pareto front. Thus,
many approximate Pareto points can be found for little more than the cost of evaluating a single
experimental design.

In modern settings, evolutionary MOAs [1] are perhaps the most widely used class of MOAs.
These heuristic algorithms extend evolutionary algorithms to the multiobjective case by using a fit-
ness sorting criterion based on the partial ordering ≤. An elitist evolutionary MOA also maintains
previously observed nondominated solutions, using them to ensure that the region of the objective
space that is dominated by the kth generation is a superset of the dominated region after the (k −
1)th generation. Perhaps the most well-known example of an evolutionary MOA is the nondomi-

nated sorting genetic algorithm (NSGA-II) [29], an elitist evolutionary MOA with low iteration
complexity. NSGA-II tends to have poor performance when the number of objectives is large, so it
has an extension NSGA-III [16] that takes a more a priori approach by attempting to minimize along
user-given reference directions. Evolutionary MOAs have an advantage over most scalarization
schemes in that they are capable of producing solution points over the Pareto front in each genera-
tion. However, the function evaluation budget requirement for evolutionary MOAs tends to be too
large for them to be used for computationally expensive problems. For the test problems presented
in [30], the recommended budget for an evolutionary algorithm to solve problems with 5–20 design
variables and 3 objectives is between 20,000 and 50,000 function evaluations. For a computation-
ally expensive problem where each function evaluation could require minutes, hours, or days and
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occupy massive parallel resources, requiring 20,000 function evaluations would be prohibitive. For
computationally expensive problems, evolutionary MOAs are often combined with the RSM to
reduce computational expense, as described in [34] and [52].

Another class of algorithms is direct search MOAs that extend scalar direct search methods.
One example of direct search MOAs consists of multiobjective extensions of the scalar global op-
timization algorithm DIviding RECTangles (DIRECT) [40]. DIRECT is globally convergent for
nonconvex functions if the objective function is Lipschitz continuous with a Lipschitz constant
that is bounded in the feasible design space X. Multiobjective DIRECT (MODIR) [19] extends
DIRECT to the multiobjective case by defining and subdividing potentially Pareto optimal hyper-
intervals. Multiobjective DIRECT algorithms of this form offer similar convergence guarantees as
Jones’ DIRECT when every component function of the objective is Lipschitz continuous [50]. How-
ever, in practice, many function evaluations are needed to achieve high-quality solution sets, so
[19] recommend combining MODIR with a faster locally convergent MOA, such as the derivative-
free multiobjective line search algorithm of [49]. Another example of direct search MOAs are the
extensions of mesh adaptive direct search (MADS) [7] to MOPs. These techniques combine a
global search step with a local polling strategy, which drives convergence to locally Pareto opti-
mal points. In general, these algorithms converge to points that are locally Pareto optimal even for
nonsmooth component functions, and they may even converge to a true Pareto point in the limit,
depending on the choice of search step. Notable examples of multiobjective MADS algorithms
include the biobjective algorithm BiMADS [8] and the algorithm MultiMADS [9], both of which
formulate scalarizations of the problem to attempt to produce evenly spaced points on the Pareto
front. More recent MADS extensions, such as DMulti-MADS [14] have avoided explicit scalariza-
tion by iterating on subsets of the nondominated poll points. Finally, Direct MultiSearch (DMS)

[28] and MultiGLODS [27] are other notable direct search techniques, which also use polling to
drive local convergence, but do not specifically extend the MADS polling strategy.

VTMOP implements the MOA of [32], which combines an adaptive weighting scheme for
weighted sum scalarization, RSM, and trust-region methods, the latter of which are widely used
in scalar optimization [56]. In the context of the RSM, each local trust region (LTR) defines a
region of the design space in which the current response surface approximation can be used as a
surrogate. In the context of MOPs, these LTRs can be used to control the spacing of points on the
Pareto front and force solutions in nonconvex portions of the Pareto front when combined with a
weighted sum scalarization approach [59]. [64] show that the technique of finding Pareto minima
of surrogates within a sequence of LTRs converges to a locally Pareto optimal point, given that the
surrogates’ accuracies are improving. [32] rely on a global search via DIRECT followed by RSM
inside LTRs to produce subsequences of converging solutions. Therefore, this MOA’s convergence
is largely driven by the convergence of the global search strategy and the accuracy of the surro-
gates. As discussed in Section 3, VTMOP is designed to allow for various search strategies, LTR
optimizers, and surrogate procedures. However, for the techniques suggested by [32], Lipschitz
continuity of all fi will guarantee convergence.

2.2 Multiobjective Optimization Software

Relatively few of these techniques and algorithms are available in widely distributed software pack-
ages for solving computationally expensive MOPs. For such problems, many simulation packages
support multiobjective design optimization by solving a single scalarized subproblem, producing
a single Pareto optimal design. For example, NASA’s FUN3D package performs fluid dynamics-
based design simulations and provides support for multiobjective analyses by using the design dri-
vers KSOPT, PORT, or SNOPT to solve a single scalarized subproblem, as described in Section 9.9
of [13]. This approach falls under the a priori techniques mentioned in Section 2.1. While this
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approach is reasonable for the extremely limited evaluation budget of most computational fluid
dynamics-based analyses—[13] recommend a budget of just 20 simulations—it results in no under-
standing of the complex design tradeoffs and is less general than the a posteriori approaches favored
here.

With a posteriori methods, the following options are available: An implementation of BiMADS
is available in the widely used package NOMAD v. 3 [45]. This implementation can be used for
constrained, unconstrained, mixed integer, and continuous problems with p = 2 objectives, but,
since BiMADS only targets biobjective problems, this does not extend top > 2 objectives. Forp > 2
objectives, MATLAB implementations of DMS and MultiGLODS are available in the BoostDFO
MATLAB toolbox [61], including a parallel implementation of both. A Fortran 90 implementation
is available for MODIR, which is designed to use a user-specified portion of its function evaluation
budget to improve MODIR’s solutions via a multiobjective line search. Finally, although there are
many widely used implementations of both, the official implementations of NSGA-II and NSGA-III
are available within the Python package PyMOO [15].

Several other software packages are worth mentioning, although they are not immediately rele-
vant to this article. The Python package PyMOSO [26] solves multiobjective simulation optimization
problems on an integer lattice and provides a Python framework for implementing new multiobjec-
tive simulation optimization algorithms. Additionally, [3] provide a MATLAB toolbox for applying
surrogate modeling to MOPs.

Fitting into the above-mentioned landscape of available multiobjective software, VTMOP pro-
vides a robust framework and solver for bound-constrained blackbox optimization problems, with
an emphasis on producing evenly distributed Pareto front approximations for p > 2 objectives.
Some of the techniques used to achieve efficiency and scalability for computationally expensive
problems incur a nontrivial iteration cost. Therefore, VTMOP is best suited for MOPs that are
computationally expensive to evaluate.

Problems with p > 2 objectives (the so-called “many-objective” cases) are generally considered
to be significantly more difficult to solve than problems where p = 2 because of the relative spar-
sity of any reasonably sized set of solution points on a high-dimensional Pareto front. In general,
other software packages and algorithms for solving these problems either place an additional fo-
cus on finding uniformly spaced solution sets or recommend reducing the number of objectives
[48]. VTMOP falls into the former of these two categories. NSGA-III [16] is one of the most com-
monly used examples of the first approach, although it is not a purely a posteriori solution, since
it depends upon user input of precomputed uniformly spaced reference directions.

Another challenge in many-objective optimization is that of effectively presenting visualizations
of the Pareto front approximation to a decision-maker. Addressing this challenge is beyond the
scope of this work, but several techniques are described by [65].

3 A FRAMEWORK FOR MULTIOBJECTIVE OPTIMIZATION

The MOA of [32] that is implemented in this article applies the RSM to a sequence of LTRs, each
centered at a design point corresponding to an “isolated” objective value from the current set of
nondominated points. The algorithm begins from the zeroth iteration, and the kth iteration of the
algorithm can be summarized by the following four-step process:

(1) If k > 0, then update the current set of nondominated points, and then identify an isolated

point F (x̃ (k ) ) in the current set of nondominated points. Update the kth LTR Δ(k ) , centering

about x̃ (k ) , and assign the kth setW (k ) of adaptive weights based on objective values near

F (x̃ (k ) ). If k = 0, then there is no current nondominated set; Δ(0) = [L,U ], and W (0) is
assigned predetermined values.
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Fig. 1. Algorithm flowchart for VTMOP. For further details on each of these steps, see Sections 3.1, 3.2, 3.3,

and 3.4.

(2) Perform the kth exploration by sampling F within Δ(k ) ; if k = 0, then a large exploration
budget may be necessary.

(3) Fit p surrogates, f̂ (k )
i ≈ fi for i = 1, . . . ,p, using the data gathered from Step 2 (plus any

data available from previous iterations if k > 0). Apply each weight vector in W (k ) to

f̂ (k )
1 , . . . , f̂

(k )
p , and minimize the resulting scalarized surrogate problems by using a local

optimization strategy. This produces the kth batch C (k ) of candidate design points.

(4) Evaluate F (z) for all z ∈ C (k ) . Increment k . Update the current database of function val-
ues; check for termination conditions; and if no termination conditions have been triggered,
proceed to the next iteration.

A flowchart for this process is illustrated in Figure 1. Detailed descriptions of Steps 1–4 are
presented in Sections 3.1, 3.2, 3.3, and 3.4, respectively. Note that evaluations of F are required
only during Steps 2 and 4.

3.1 Computing the Local Trust Region and Choosing the Adaptive Weights

To construct the kth LTR and select the adaptive weights when k > 0, VTMOP must identify an
“isolated point” in the current nondominated point set. VTMOP centers the kth LTR at a design
point, in the current approximation to the efficient set, whose image is “far away” from any neigh-
bors in the objective space. This enables VTMOP to spend function evaluations where they are
needed most and fill in gaps on the current approximation to the Pareto front. When p = 2, the
Pareto front is a one-dimensional curve, which admits a natural (left-to-right) ordering of points
in objective space. [59] identify an isolated point by considering the Euclidean distance from each
point in the nondominated set to its left and right neighbors. However, this approach does not
generalize to p > 2.

[32] generalize this approach to arbitrary dimension using the Delaunay graph. Let D (k ) =

{x (k,1), . . . ,x (k,n (k ) ) } denote the set of n(k ) design points that have been evaluated at the start of
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iteration k , and let F (k ) = {F (x (k,1) ), . . . , F (x (k,n (k ) ) )}. Then the kth approximation to the Pareto
front is

P (k ) =
{
Y ∈ F (k ) : X � Y for all X ∈ F (k )

}
, (3)

and the kth approximation to the efficient set is

E (k ) =
{
x (k,i ) : F

(
x (k,i )

)
∈ P (k ) and

F
(
x (k,i )

)
= F

(
x (k, j )

)
⇒ i <

= j for j = 1, . . . ,n(k )
}
.

(4)

Remark 3.1. One practicality of many real-world MOPs, especially those withp > 2 objectives, is
that certain regions of the Pareto front may be fundamentally uninteresting. In particular, decision-
makers may be interested in studying tradeoffs only after certain bounds on the objective values
have been met. In these situations, the default version of VTMOP may waste precious function
evaluations filling in gaps in uninteresting regions of the objective space. VTMOP can account
for this by allowing users to provide lower/upper bounds on the range of “interesting” objective
values, via optional inputs Ol and Ob . When Ol and Ob are given, Equation (3) is replaced by

P (k ) =
{
Y ∈ F (k ) : X � Y for all X ∈ F (k ) such that Ol

<
= X <

= Ou

}
.

Note that the inclusion of this option does not affect the computation of the final Pareto front
approximation, which always includes all observations that are not dominated. Also note that this
option must be used with care, since providing overly strict bounds may prevent VTMOP from
identifying any points that satisfy them, resulting in early termination. One strategy to circumvent
this issue is to run early iterations with relaxed bounds, then tighten the bounds in later iterations
after several points have already been found that meet the stricter criteria.

Because the Pareto front is (generically) a (p − 1)-dimensional manifold, the first step is to

project P (k ) into its natural dimension. Let P (k ) = {Y (k,1), . . . ,Y (k,m (k ) ) }, where m(k ) is the num-

ber of unique points in the kth approximately nondominated set; let Y (k,i )
1 , . . . ,Y (k,i )

p denote the

components of Y (k,i ) ; and let s (k ) be a constant such that s (k ) < Y (k,i )
p for i = 1, . . . ,m(k ) . Then the

(p − 1)-dimensional projected set is given by

Π(k ) =
{
Z (k,1), . . . ,Z (k,m (k ) )

}
, Z (k,i ) =

(
Y (k,i )

1

Y (k,i )
p − s (k )

, . . . ,
Y (k,i )

p−1

Y (k,i )
p − s (k )

)
. (5)

Remark 3.2. To avoid division by zero or a small number when computing Equation (5), the

denominators Y (k,i )
p − s (k ) must be strictly greater than 0 for all i = 1, . . . ,m(k ) . In VTMOP, this is

done by choosing s (k ) = minY ∈P (k ) Yp − 1.

Remark 3.3. Duplicate values are determined by using distance in the projected space to prevent

Π(k ) from containing duplicate values, which would present problems in the coming computations.

Specifically, VTMOP computes Equations (3), (4), and (5) at the same time, and for any Z (k,i ) that

satisfies ‖Z (k,i ) − Z (k, j ) ‖2 < ϵ , the corresponding values Y (k,i ) and Y (k, j ) are treated as duplicates.

In particular, if j < i , then Z (k,i ) is omitted from Π(k ) , Y (k,i ) is omitted from P (k ) , and F−1 (Y (k,i ) )
is omitted from E (k ) . Here, ϵ is the objective space tolerance, a small-scale and machine- and user-
preference-dependent constant.

After computing the projected set Π(k ) , its Delaunay graph DG (Π(k ) ) is used to infer a neigh-
borhood structure. Further details on the Delaunay graph and its computation are provided in
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Section 3.1.1. From DG (Π(k ) ), an isolation score is computed for each Y (k,i ) ∈ P (k ) . Let N (k,i ) =

{Y (k, j ) : Z (k, j ) be a neighbor of Z (k,i ) in DG (Π(k ) )}. Then the isolation score for Y (k,i ) is

δ (Y (k,i ) ) =
∑

Y ∈N (k,i )

‖Y (k,i ) − Y ‖2
|N (k,i ) |

. (6)

In general, the kth LTR is centered at a design point x̃ (k ) that is chosen so F (x̃ (k ) ) ∈
arg maxY ∈P (k )δ (Y ), whose neighborhood Ñ (k ) is the corresponding N (k,i ) . If the Y from the arg

max is not unique, then one chooses the Y (k,i ) with smallest i .

Remark 3.4. In rare cases, it is possible thatm(k ) = 1. Then x̃ (k ) is given by the only element of

E (k ) , and Ñ (k ) = ∅.

Let r̃ (k ) ∈ (0, 1) denote the kth LTR radius fraction. Then the kth LTR is given by

Δ(k ) =
[
x̃ (k ) − r̃ (k ) (U − L), x̃ (k ) + r̃ (k ) (U − L)

]
∩
[
L,U

]
. (7)

Note that Δ(k ) is a simply bounded set.

Remark 3.5. Ideally, performing the kth iteration within Δ(k ) will generate design data in the

neighborhood of x̃ (k ) and fill in the Pareto front in the neighborhood of F (x̃ (k ) ). When the Pareto
front is nonsmooth or discontinuous, however, VTMOP may fail to produce any approximately

Pareto optimal points that are near F (x̃ (k ) ) in the objective space. In these cases, x̃ (k ) could be a

re-occurrence of a previous LTR center. Every time ‖x̃ (k )−x̃ (k ′) ‖2 < μ for some k ′ < k , the fraction

r̃ (k ) is decayed using r̃ (k ) = τ r̃ (k∗ ) , where 0 < τ < 1, and k∗ is the largest such k ′. Here, μ is the

design space tolerance, a small-scale and machine-dependent constant. If r̃ (k ) drops below some

predetermined tolerance, then x̃ (k ) is skipped, and the next most isolated point is used instead. For

every new value of x̃ (k ) , r̃ (k ) is initialized to a default value, regardless of whether the LTR radius

has been decayed in previous iterations. The starting trust region radius fraction ρ (0) , the decay

factor τ , the trust region tolerance ρ (1) , and the design space tolerance μ are all optional inputs to
VTMOP.

The zeroth iteration is a special case. VTMOP allows users to (optionally) supply a database of
previously evaluated designs. However, VTMOP assumes that there is insufficient data available

at the start of the zeroth iteration; there can be no E (0) or P (0) . Instead, Δ(0) = [L,U ], resulting in
an exploration of the entire design space. When F is nonconvex, the convergence of VTMOP to
the Pareto front is entirely dependent on a thorough design space exploration during the zeroth
iteration.

After computing Δ(k ) , the kth set of adaptive weights is selected. When k = 0 or if |Ñ (k ) | < 1,

then the adaptive weights are given by W (k ) = {e (1), . . . , e (p ) ,
∑p

i=1 e
(i )/p}, where e (i ) is the ith

standard basis vector in Rp . Otherwise, |W (k ) | = p + |Ñ (k ) |, and the values of each weight vector
are determined as described in Section 3.1.2. The entire process of identifying an isolated point,
constructing the kth LTR, and choosing the adaptive weights is summarized in Algorithm 1.

The dominant costs for Algorithm 1 are computing P (k ) using Equation (3) and computing the

Delaunay graph DG (Π(k ) ) as described in Section 3.1.1. The O time complexity for computing

Equation (3) is O (n(k )m(k ) ); and as described in Section 3.1.1, the O time complexity of computing

DG (Π(k ) ) is a cubic function of m(k ) in practice. In practice, the time required by Algorithm 1 is
significantly less than the time required to solve the surrogate optimization problems, as described
in Section 3.3 and Algorithm 2. A parallel implementation of Algorithm 1 is also briefly described
in the beginning of Section 4.3, which further reduces the wallclock time. In the package VTMOP,
the subroutine VTMOP_LTR implements Algorithm 1.
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ALGORITHM 1: Identify an isolated point, construct an LTR, and set adaptive weights.

input
k is the current iteration of VTMOP;
[L, U ] is the feasible design space;

D (k ) is the k th design database, containing n (k ) design points that were evaluated in previous iterations of VTMOP (if

k = 0, then D (0) could contain designs that were evaluated during previous analyses or D (0) = ∅);
F (k ) =

{
F (x ) : x ∈ D (k )

}
;

ρ (0) is the starting trust region radius (given as a scalar fraction of U − L);

ρ (1) is the trust region tolerance (given as a scalar fraction of U − L);
τ is the decay factor for the trust region radius;
μ is the design space tolerance;

If k > 1, then r̃ (1), . . . , r̃ (k−1) are the previous trust region radii fractions;

If k > 1, then x̃ (1), . . . , x̃ (k−1) are the previous trust region centers;

begin
if k = 0 then

Δ(k ) ← [L, U ];

W (k ) ←
{
e (1), . . . , e (p ),

∑p
i=1 e (i )/p

}
;

else
P (k ) ←

{
Y ∈ F (k ) : X � Y for all X ∈ F (k )

}
=
{
Y (k,i ) = F

(
y (k,i )

) ��� 1 ≤ i ≤ m (k )
}

as in (3);

E (k ) ← subset of D (k ) as in (4);

Compute Π(k ) using (5);

m (k ) ← |Π(k ) |; comment The cardinality |P (k ) | = |E (k ) | = |Π(k ) | may have changed.

Compute DG (Π(k ) ) (Section 3.1.1);

for i = 1, . . . , m (k ) do
Compute N (k,i ) based on DG (Π(k ) );

Compute δ (Y (k,i ) ) using (6);
enddo
initialize J (k ) ←

{
1, . . . , m (k )

}
; x̃ (k ) ← null ;

while x̃ (k ) = null and J (k ) � ∅ do

i∗ = min{arg max
i∈J (k )

δ
(
Y (k,i )

)
};

if ‖x̃ (k ′) − y (k,i∗ ) ‖2 < μ for any k ′ < k then

k∗ ← max
{
k ′ ��� k ′ < k and

���x̃ (k ′) − y (k,i∗ )���2
< μ

}
;

if τ r̃ (k∗ ) > ρ (1) then

r̃ (k ) ← τ r̃ (k∗ ) ;
x̃ (k ) ← y (k,i∗ ) ;

Ñ (k ) ← N (k,i∗ ) ;
else

J (k ) ← J (k ) \ {i∗ };
endif

else
r̃ (k ) ← ρ (0) ;

x̃ (k ) ← y (k,i∗ ) ;

Ñ (k ) ← N (k,i∗ ) ;
endif

enddo
if x̃ (k ) = null then

All candidate LTR centers have been maximally refined, which is a termination condition for VTMOP;
return an appropriate termination message;

endif
Δ(k ) ←

[
x̃ (k ) − r̃ (k ) (U − L), x̃ (k ) + r̃ (k ) (U − L)

]
∩ [L, U ] as in (7);

if | Ñ (k ) | < 1 then

W (k ) ←
{
e (1), . . . , e (p ),

∑p
i=1 e (i )/p

}
;

else
Compute W (k ) using (8), as described in Section 3.1.2;

endif
endif
return Δ(k ),W (k ) ;
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3.1.1 Computing the Delaunay Graph. DG (Π(k ) ) is defined in terms of the Voronoi tessellation

of Π(k ) . The Voronoi tessellation of Π(k ) is a covering of Rp−1 by closed convex polytopes (with

disjoint interiors), such that (1) each polytope contains exactly one point in Π(k ) (this point is

called the Voronoi site of that polytope) and each point in Π(k ) is in some polytope interior, and
(2) every point in each polytope is as close or closer to its Voronoi site than to any other Voronoi

site. The node set for DG (Π(k ) ) is given by the set of all Voronoi sites, and the edge list is given by
connecting all sites that share a boundary in the Voronoi tessellation.

In the literature, the Delaunay graph is computed as a byproduct of the Delaunay triangulation
[18]. However, because of the exponential size of Delaunay triangulations in high-dimensional
spaces [41], this approach becomes prohibitively expensive when the number of objectives is of
moderate size, for example, when p > 6. Another strategy for computing the Delaunay graph is
to compute each Voronoi polytope individually [24], allowing for each node’s neighborhood to
be constructed separately and in parallel. However, this approach ultimately requires more total
computations than when constructing the complete Delaunay triangulation, and it is not robust
when the input data exhibits geometrical degeneracies.

Instead, VTMOP implements a novel strategy for constructing the connectivity matrix for the
Delaunay graph; this strategy is capable of scaling to values of p that are far larger than the num-
ber of objectives in any reasonably sized MOP. The proposed Delaunay graph algorithm utilizes
the software package DELAUNAYSPARSE [22] to generate a quadratic number of Delaunay sim-

plices, and the expected complexity of this approach is cubic inm(k ) and sub-quartic in p [24]. This
approach is also highly parallelizable, and across numerous real-world and test problems from the

literature, the values of m(k ) and p do not grow large enough to constitute a significant expense
in VTMOP. Since the details of this Delaunay graph algorithm are novel but not critical to under-
standing VTMOP, interested readers are directed to the Appendix A.

3.1.2 Choosing the Adaptive Weights. [32] assign a setW (k ) of p+ |Ñ (k ) | weight vectors in the

kth iteration, given that k > 0 and |Ñ (k ) | > 0. The first p of these weight vectors are always the

standard basis vectors e (1), . . . , e (p ) . By searching for an individual minimum of each component
function in every iteration, VTMOP expands the coverage of its approximation to the Pareto front.

The remaining |Ñ (k ) | weight vectors are assigned based on the objective scaling to fill in gaps

in the current approximation to the Pareto front. For each Ỹ ∈ Ñ (k ) , the corresponding adaptive

weight vector W̃ is given by

W̃i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if
���fi

(
x̃ (k )

)
− Ỹi

��� < ϵ,
c̃���fi

(
x̃ (k )

)
− Ỹi

���
, otherwise, (8)

where c̃ is a normalizing constant such that W̃1 + · · · + W̃p = 1.

If k = 0 or |Ñ (k ) | = 0, then there are no “gaps” to fill in. Therefore, VTMOP focuses on expan-

sion, optimizing each individual component function by applying pure weight vectors e (1), . . . , e (p ) .

Additionally, an equal weighting of all objectives
∑p

i=1 e
(i )/p is applied.

Remark 3.6. Certain components of W̃ in Equation (8) and the basis vectors e (1), . . . , e (p ) con-
tain zero values. Recall, however, that minimizing Equation (2) is guaranteed to produce a Pareto
optimal point only when w > 0. It is impossible to guarantee an exact global solution to Equation
(2) in finite time, but it is still desirable that the true solution to each surrogate problem be Pareto
optimal. Therefore, after computing the weights in this section, all zero valued components are
replaced by a small machine-dependent “fudge factor” and the resulting weights are renormalized.
The magnitude of this fudge factor is an optional input to VTMOP.
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3.2 Searching the Design Space and Trust Regions

After Algorithm 1, VTMOP performs an exploration of Δ(k ) , which is the first step in the multi-

objective RSM framework. Depending on whether k = 0, Δ(k ) could be either the entire feasible
design space [L,U ] or the kth LTR, as computed in Equation (7).

Remark 3.7. The number of cost function evaluations used during this exploration should be
much larger when k = 0 than when k > 0. There are two reasons for this. First, the feasible
design space could be very large, so a large number of function evaluations may be required for
a thorough exploration. Second, when F is nonconvex, the convergence of VTMOP to the Pareto
front (under suitable assumptions, such as Lipschitz continuity of each fi ) is entirely dependent
on an effective initial search. In future iterations, every function evaluation takes place within an
LTR that is centered at a design point whose image is part of the current approximation to the
Pareto front.

VTMOP provides two options for the search phase. The first option is an adaptive search tech-
nique based on the algorithm DIRECT [40]. This technique is attractive because of the global
convergence guarantees of DIRECT, and it often achieves the best performance with a fixed func-
tion evaluation budget. The second option is a static search technique that uses a Latin hypercube
design to generate a batch of well-distributed design points within the simply bounded search
region. This technique does not use function values when generating the design points, thus al-
lowing them to be evaluated concurrently. This can be advantageous in settings where (1) it is
convenient to decouple the evaluation of F from VTMOP or (2) enough computing resources are
available to support many concurrent evaluations of F [21].

3.2.1 Adaptive Search Using DIRECT. [32] propose using DIRECT to perform an adaptive global

search. DIRECT is applied in Δ(k ) at least p times per iteration, once to each component function

fi (x ) = (e (i ) )�F (x ), with one additional DIRECT search when k = 0 using an equal weighting of
all the fi s. Specifically,

• if k = 0, then use DIRECT to minimize p + 1 functions f1, . . ., fp and
∑p

i=1
1
p
fi ; and

• if k > 0, then use DIRECT to minimize the p component functions f1, . . ., fp .

This strategy drives global convergence for Lipschitz continuous fi (by the original argument of
[40]), produces additional data in the neighborhood of the efficient set, and encourages VTMOP to
continue expanding its coverage of the Pareto front in iterations with k > 0. The implementation
of DIRECT in VTDIRECT95 is used for the adaptive search [37].

Remark 3.8. As in Remark 3.6, a fudge factor is applied to each zero valued component of e (1) ,

. . ., e (p ) , and the weights are renormalized. This approach ensures that each instance of the driver
subroutine VTdirect from VTDIRECT95 will converge to a Pareto optimal point in the limit.

One important detail of DIRECT is that it samples on an implicit mesh. Since p or p+1 instances
of the driver VTdirect are run in each iteration, this will surely result in redundant design point
evaluations. To avoid wasting precious function evaluations, before evaluating F , VTMOP queries
its internal database. If the requested design has already been or is currently being evaluated (up
to the design tolerance μ), then that design is not re-evaluated, and the corresponding objective
value from the database is returned.

Remark 3.9. The number of function evaluations when using DIRECT for a small number of
iterations N grows like [

(1 − ω) + ω (2d + 1)
]N−1

(2d + 1),
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where 0 < ω < 1 is problem-dependent and typically ω � 1. Because DIRECT samples on an
implicit mesh, many of these evaluations will be reused between repeated runs in the same search
space, so this cost grows sublinearly with the number of objectives.

3.2.2 Static Search Using Latin Hypercube Design. As a static experimental design, the Latin
hypercube design is extremely common and is one of the recommendations of [53]. VTMOP uses
the subroutine LATINDESIGN from the package QNSTOP [4]. Note that, since LATINDESIGN is an
independent auxiliary subroutine from QNSTOP, this subroutine is extracted from the larger QN-
STOP package and included. Latin hypercube designs are stochastic by nature, whereas the search
via DIRECT from Section 3.2.1 is deterministic. Redundant design points are an unlikely occur-
rence when using the Latin hypercube design. To ensure that no function evaluations are wasted,
however, VTMOP still checks all design points against its internal database before evaluating.

3.3 Solving the Surrogate Optimization Problem

The kth batch of surrogate optimization problems takes place within Δ(k ) . Let D (k,∗) contain all

x ∈ D (k ) plus all the points that were evaluated during the kth search phase from Section 3.2, and

let F (k,∗) = {F (x ) : x ∈ D (k,∗) }. First, p surrogates f̂1 ≈ f1, . . . , f̂p ≈ fp are fit using the data in

D (k,∗) and F (k,∗) . VTMOP supports the usage of a user-defined surrogate, matching the provided
interface. When no user surrogate is supplied, however, VTMOP uses the subroutine LSHEP from
SHEPPACK [63], which implements a linear modified Shepard method. LSHEP was chosen as the
default surrogate in VTMOP based on LSHEP’s demonstrated performance as a surrogate in [31]
and the recommendation of [32].

Remark 3.10. A user-defined surrogate is desirable when F is not a true blackbox function and
the user is able to exploit domain knowledge to design a better surrogate. For example, if the gradi-
ent is available for any fi , then this information could be used to design a higher-order surrogate.
One could integrate such information into the linear modified Shepard approximation by replacing
the local linear fit at each data point with the true tangent. For another example, if any compo-
nent fi is computationally cheap to evaluate, then surrogate modeling of fi can be “turned off” by

setting f̂i = fi .

Remark 3.11. It is not uncommon for real-world blackbox MOPs to contain “missing values,” of-
ten referred to as hidden constraints in the literature [46]. These are discrete points in the feasible
design space at which F is not defined or produces nonsensical outputs. When such designs are
encountered, a missing value is signaled by an IEEE NAN value in the output of F . When VTMOP
fits the surrogates using the default model LSHEP, a wrapper function for the SHEPPACK subrou-
tine is used to place previously evaluated missing values in a separate “LSHEP taboo list.” Points in
the taboo list are not used to fit the surrogates; but if a point in the taboo list is requested while
solving the surrogate optimization problem, the output of the surrogates is overwritten by a very
large number. This strategy allows VTMOP to converge in the neighborhood of missing values,
while explicitly forbidding convergence to a missing value.

After fitting the surrogates, the kth batch of surrogate optimization problems is solved to obtain
the kth batch of candidate design points

C (k ) =
{

arg min
z∈Δ(k )

[
f̂1 (z), . . . , f̂p (z)

]
W̃ : W̃ ∈ W (k )

}
. (9)

To solve Equation (9), VTMOP allows the usage of a user-defined “local optimization” subroutine.
By default, VTMOP uses the polling strategy Generalized Pattern Search (GPS) [7]. It should be
noted that Equation (9) involves analytic surrogates whose derivative information is available, but
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GPS is a polling strategy for blackbox optimization. The rationale for using GPS to solve Equation
(9) is as follows:

• GPS polling iterations are locally convergent even for nonsmooth functions, thus improving
the robustness of VTMOP.
• When applied to analytic functions, the practical difference between first-order algorithms

and blackbox (zeroth order) algorithms is that first-order algorithms typically converge at a
faster rate. Solving Equation (9) does not require any evaluations of F , however, so it is an
inconsequential expense in the context of computationally expensive blackbox optimization.

The implementation of GPS in VTMOP is designed to be lightweight. In each iteration, GPS polls
in every direction along an axis aligned mesh; it steps in the direction of steepest descent, and if
no descent direction is found, then it decays the mesh size by a factor of two down to a minimum
of μ. The process of fitting the surrogates and solving Equation (9) is summarized in Algorithm 2.

Remark 3.12. VTMOP checks the current database for each new design point before evaluating.
In the return-to-caller interface described in Section 4.1, however, the user is required to evaluate

F (z) for z ∈ C (k ) . Therefore, VTMOP does not return any redundant or previously evaluated

candidate design points (i.e., values in C (k ) that are redundant or equal to values in D (k,∗) up to

the design space tolerance μ), which are eliminated from C (k ) in a postprocessing step. In practice,

this could mean that |C (k ) | < |W (k ) |. This is especially common when F is nonconvex, since

different weights inW (k ) could lead to the same solutions in C (k ) .

The time complexity of Algorithm 2 is dependent on the cost for fitting the surrogates, the
cost for evaluating the surrogates, and the number of surrogate evaluations. By default, VTMOP
performs 2,500 iterations of GPS polling (each requiring 2d evaluations of the surrogate) per

W̃ ∈ W (k ) . In practice, this could require less than a second to several minutes on modern hard-

ware, depending on the size ofW (k ) , the value of d , and the complexity of the surrogate (LSHEP’s

evaluation complexity grows sublinearly with n(k )). The surrogate problems can also be solved
in parallel to reduce the wallclock time of Algorithm 2. In the package VTMOP, the subroutine
VTMOP_OPT implements Algorithm 2.

3.4 Evaluating Candidate Designs and Iterating

The final step in the kth iteration is to evaluate all z ∈ C (k ) with F . After all evaluations have

finished, the (k + 1)st databases D (k+1) and F (k+1) have been completed. In the next iteration,

VTMOP_LTR will compute P (k+1) and E (k+1) , so there is no need to do so in this stage unless a
termination condition has been met. The iteration counter k is incremented at this point.

VTMOP has three potential termination conditions. The first condition is that the budget for
evaluations of F has been spent. If this limit is reached mid-iteration, then the rest of the iteration
aborts. The second condition is that the iteration limit has been exceeded. This condition is checked
before the beginning of each iteration. The third condition is that the lowest index point in the
inverse image of every point in the current approximation to the nondominated set has been used
as the center of a previous LTR, whose trust region radius fraction has been decayed below the
tolerance. This condition is checked by VTMOP_LTR, as described in Algorithm 1.

When any termination condition occurs at iteration k , the current database of evaluated design
points and corresponding function values is used to compute the final nondominated and approx-
imately efficient point sets, which are returned with the termination indicator.

Remark 3.13. Unlike in Section 3.1, upon termination VTMOP returns every observed objec-
tive vector that is nondominated and its corresponding efficient design. In particular, these may
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ALGORITHM 2: Solve surrogate problems to generate candidate designs.

input

D (k,∗) is a database of evaluated designs, including both D (k ) and additional designs that were
evaluated during the kth search (Section 3.2);

F (k,∗) =
{
F (x ) : x ∈ D (k,∗)

}
;

Δ(k ) is the kth LTR;
W (k ) is the kth set of adaptive weights;

f̂1, . . . , f̂p are user supplied surrogates;
μ is the design space tolerance;

begin

initialize C (k ) = ∅;
for i = 1, . . ., p do

Fit f̂i ≈ fi using D (k,∗) and F (k,∗) ;
enddo

for W̃ ∈ W (k ) do

z̃ ← arg min
z∈Δ(k )

[
f̂1 (z), . . . , f̂p (z)

]
W̃ ;

if ‖z̃ − x ‖2 > μ for all x ∈ D (k,∗) and ‖z̃ − z‖2 > μ for all z ∈ C (k ) then

C (k ) ← C (k ) ∪ {z̃};
endif

enddo

return C (k )

include duplicate nondominated points. In the literature, these are referred to as the (approxi-
mately) weakly nondominated and efficient sets.

4 IMPLEMENTATION AND INTERFACES

VTMOP offers two interfaces for solving blackbox MOPs based on the framework laid out in
Section 3. The first is a return-to-caller interface, and the second is the driver subroutine
VTMOP_SOLVE. In many situations, F can easily be wrapped in a Fortran subroutine, and the driver
subroutine is preferred because of its ease of use. However, the return-to-caller interface offers a
flexible alternative for situations where the computing environment makes wrapping F in a For-
tran subroutine difficult or inefficient. Both interfaces are implemented in ISO Fortran 2008 and
support some forms of OpenMP parallelism.

4.1 Return-to-caller Interface

In many real-world blackbox optimization problems, special purpose computing environments
[58] and libraries for coordinating the use of parallel resource [21] require the evaluation of F
to be decoupled from the optimization algorithm. In these situations, it is convenient to offer a
return-to-caller interface, where F is evaluated only from outside of any Fortran subroutine’s call
stack.

Here, it is necessary to preserve the entire state of the algorithm VTMOP during Steps 2 and
4 (Section 3), where F is evaluated in batches (presumably in parallel). The state is recorded
in a Fortran-derived data type VTMOP_TYPE, created by the subroutine VTMOP_INIT, and stored
between invocations of components of VTMOP. A user would call VTMOP_INIT to create a
VTMOP_TYPE, then iterate through steps 1–4 from the beginning of Section 3, calling VTMOP_LTR
for Step 1, VTMOP_OPT for Step 3, and performing the evaluations of F in Steps 2 and 4 using their
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preferred methods/technologies. Further details on this process are outlined in the USERS doc-
ument, which is included with the source code. An example implementation of this process is
described in [21].

4.2 The Driver Subroutine

The driver subroutine VTMOP_SOLVE implements the same process as in Section 4.1 but without
reading and writing the state and using a Fortran implementation of F . The search phase is per-
formed either via DIRECT as in Section 3.2.1 or via Latin hypercube design as in Section 3.2.2,
with the choice being specified as an optional input. For a search via DIRECT, the “search budget”
inputs are used to specify the iteration limit for VTDIRECT95. For a search via Latin hypercube
design, the search budgets are used to specify the number of points in the design.

In addition, VTMOP_SOLVE offers a checkpointing system and a parallel option described in
Section 4.3. For further details, see the USERS document, included with the source code.

4.3 Parallel Implementation

Two opportunities for parallelism are offered in VTMOP. First, the iteration tasks in the worker

subroutines VTMOP_LTR and VTMOP_OPT can be parallelized. This includes computing DG (Π(k ) ) in
parallel using the parallel DELAUNAYSPARSEP driver from [22], fitting the p surrogates in parallel,

and solving the |W (k ) | surrogate problems (9) in parallel. This iteration level parallelism is pro-
vided via OpenMP 4.5 [17] and is available through either the return-to-caller interface or the
driver subroutine.

The second source of parallelism is concurrently evaluating F at points requested by VTMOP.
In the context of blackbox optimization, this is the more impactful source of parallelism. Since the
return-to-caller interface does not evaluate F , this form of parallelism is available only through
the driver subroutine (which offers a choice between iteration task parallelism, concurrent func-
tion evaluations, or both). Recall that VTMOP requires function evaluations only while searching

Δ(k ) as described in Section 3.2 and when evaluating candidate designs from C (k ) as described in
Section 3.4. In both cases, concurrent evaluations are achieved by spawning a new OpenMP task
for each evaluation of F . Note that because the actual function evaluations are handled by the user,
the user is also responsible for capping the number of actual function evaluations to prevent the
oversubscription of resources.

Remark 4.1. Within a single evaluation of F , there may be ample opportunities for parallelism,
which is problem-dependent and left to the user. In particular, in many real-world applications,
each evaluation of F could depend on output from a multinode, distributed simulation. VTMOP
does not distribute calls to F , but it does provide the ability for concurrent evaluations of F via
OpenMP task-based parallelism. This places the burden of distributing calls to F on the user, but
it allows for greater flexibility.

When evaluating C (k ) as in Section 3.4 and when using the Latin hypercube design during the
search phase, all candidates/design points can be evaluated in parallel if enough computing re-
sources are available. For a search via DIRECT, the situation is more complicated, since each batch
of potentially optimal boxes in a DIRECT iteration can be divided in parallel and each instance
of VTdirect can be run asynchronously. VTDIRECT95 offers a parallel driver pVTdirect for dis-
tributing the division of boxes, but the distributed memory paradigm is not appropriate for this
use case. Instead, a slightly modified implementation of VTdirect, called bVTdirect, is provided,
which uses OpenMP tasks to perform concurrent evaluations of box centers. During the kth search,
VTMOP makes either p + 1 (if k = 0) or p (if k > 0) asynchronous calls to bVTdirect, resulting in
nested parallelism.
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Fig. 2. Dependency graph for VTMOP. Files are outlined in solid lines, and modules are outlined in dashed

lines. An arrow from File 1 to File 2 indicates that File 2 has a direct dependency on a subroutine or module

from File 1.

Further details on the parallel implementation, such as choosing the number of threads and set-
ting up OpenMP environment variables, are included in the USERS document. A detailed analysis
of VTMOP’s parallel performance for computationally expensive functions is given in [21].

5 SUMMARY OF USAGE AND PARAMETERS

The package VTMOP is organized as follows: The file vtmop.f90 contains implementations for
the majority of algorithms described in this file, including VTMOP_LTR (Algorithm 1), VTMOP_OPT
(Algorithm 2), DELAUNAYGRAPH (Algorithm 3), and VTMOP_SOLVE (the driver). Additional files in-
clude vtmop_func.f90 (implementations of test problems from Section 6); samples.f90 and
samplep.f90 (examples of serial and parallel usage); sVTdirect.f90 and bVTdirect.f90 (serial
and modified parallel VTDIRECT95 drivers); shared_modules.f90 (important shared types and
modules); qnstop.f90, linear_shepard.f90, and delsparse.f90 (minimal copies of dependen-
cies); and blas.f, lapack.f, and slatec.f (minimal copies of common Fortran libraries). The
dependency graph for these files is depicted in Figure 2, and additional usage and organization
information is provided in the USAGE document.

Remark 5.1. The return-to-caller interface has numerous inputs, outputs, and parameters (many
optional) when initializing the data type VTMOP_TYPE using VTMOP_INIT. Most of these have been
discussed in previous sections and remarks, but it is important to understand all of these settings,
so they are summarized here. The required inputs are the problem dimensions (d and p) and the
bound constraints (L andU ). It is impossible to use VTMOP (any interface) without declaring these
values. The optional inputs have been carefully assigned default values based on usability and/or
trial-and-error experimentation on a wide variety of real-world problems and test problems from
the literature. These optional inputs (and their default values) are design space tolerance μ and
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objective space tolerance ϵ (by default, the square root of the working precision, defined below);

the initial trust region radius ρ (0) as a fraction of U − L, the decay rate τ , and the minimum trust

region radius ρ (1) as a fraction of U − L (by default, 20% of each dimension of the feasible design
space, 0.5, and 10% of the initial trust region radius fraction); the working precision of the machine
(by default, the square root of the unit round-off); the fudge factor for zero weights (by default, the
fourth root of the unit round-off); the procedures for performing local optimization and the local
optimizer iteration budget (by default, GPS with a budget of 2,500 iterations); the procedures for
fitting and evaluating the surrogates (by default, wrappers for the corresponding linear Shepard’s
method routines from SHEPPACK); lower and upper bounds on the interesting objective ranges
(by default, there are no bounds); a Boolean value specifying whether to perform parallel iteration
tasks (by default, false); and the checkpointing mode (i.e., no checkpointing, use checkpointing,
or recover from checkpoint, with no checkpointing by default). Every VTMOP subroutine also
returns an integer-valued error flag, further detailed in VTMOP’s documentation.

Remark 5.2. The driver VTMOP_SOLVE accepts some variation of all of the parameters, inputs,
and outputs described in Remark 5.1. Additional inputs and outputs include a Fortran implementa-
tion of the objective function F , several arrays for returning both the solution sets (approximately
Pareto pairs) and full objective function databases, an optional list of precomputed function val-
ues, and the budget for the maximum number of blackbox function evaluations. The most notable
additional parameter, which will be used in Section 6, is used to specify whether the search via
DIRECT should be used (referred to as an adaptive search in the documentation), as opposed to
the Latin hypercube search (by default, the search via DIRECT is used). Another optional param-
eter specifies the search budgets that are used when k = 0 and k > 0. When using the search
via DIRECT, the default values are 10 iterations of DIRECT sampling and 5 iterations of DIRECT
sampling, respectively. Otherwise, for a Latin hypercube search, the default values are 16d2 and
8d , respectively.

Remark 5.3. The cost of each search phase can get out of hand if one is not mindful of the
interplay between the search budgets and d when using the search via DIRECT. Based on the costs
described in Remark 3.9, for large d the Latin hypercube or some incomplete orthogonal design is
the better choice.

6 PERFORMANCE ON TEST PROBLEMS

The original algorithm of [32] used a search based on DIRECT. Their approach was previously com-
pared against BiMADS from NOMAD, using a budget of only 200 function evaluations [32]. It was
also compared against a private implementation of MultiMADS [9] with a budget of 30,000 evalua-
tions of F (as recommended by [30]) for problems with up to six objectives and 36 design variables.
In this section, two variations of VTMOP (one using DIRECT for the search and one using a Latin
hypercube search) are compared against two widely used open source multiobjective solvers. In
particular, the two VTMOP variations are compared against the NSGA-II [29] implementation in
PyMOO [15] and an implementation of the direct search technique MultiGLODS [27] from the
BoostDFO MATLAB toolbox [61]. Recall that NSGA-II/PyMOO is representative of evolutionary
MOA performance, and MultiGLODS is a global multiobjective direct search technique.

Unless otherwise specified, in the remainder of this section, VTMOP is run serially with its de-
fault parameter values (specified in Remarks 5.1 and 5.2), using DIRECT (hereafter, referred to as
the “DIR variant”) and Latin hypercube search (hereafter, referred to as the “LH variant”). NSGA-
II is run with PyMOO’s default settings: a population size of 100, random sampling for the initial
population, a binary tournament selection scheme, simulated binary crossover with probability 0.9,
polynomial mutation, and eliminating duplicate values from each population. MultiGLODS is run
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with mostly default parameters, most notably, using a global search based on the low-discrepancy
Sobol sequence where the number of samples depends on the problem dimension, and evaluat-
ing all poll directions in every iteration. One change that was made to the default settings of
MultiGLODS was to enable caching of previous function evaluations with a tolerance of 10−8. Note
that the DIR variant of VTMOP and the settings for MultiGLODS that use a Sobol sequence search
are both deterministic, while the LH variant of VTMOP and NSGA-II are both nondeterministic.
Therefore, in all future subsections, the performances of the LH variant and NSGA-II are averaged
over five repeated runs.

Evaluation of how well points evaluated by a MOA approximate the true Pareto front is an open
problem [6]. In Sections 6.1 and 6.2, three criteria to measure the quality of an approximate Pareto
surface are considered:

• the number of nondominated solution points identified,
• the distance between points on the approximate and true Pareto front, and
• the degree to which those points are spread evenly across the entire Pareto front.

The first of these criteria is measured by returning the cardinality of the solution set. The sec-
ond criterion is measured using the root mean squared error (RMSE) between the points in the
solution set and their nearest corresponding points on the true Pareto front. This metric can be
easily computed only for “nice” test functions, such as those in this section, where the Pareto front
can be expressed algebraically. The third criterion is measured using the discrepancy, which is a
statistical technique for measuring the uniformity of a sequence of points within some underlying
convex space [42, 44]. In this section, the discrepancy of the solution set on the Pareto front is ap-
proximated by using the Delaunay triangulation of its projection, as in Equation (5). This measure
for spread is fully described in [32] and hereafter referred to as the Delaunay discrepancy. As a dis-
crepancy approximation, the Delaunay discrepancy approaches zero for asymptotically uniformly
distributed sequences. Computing the Delaunay discrepancy requires the complete Delaunay trian-
gulation of the projected set, which is obtained using the Quickhull [10] implementation in SciPy.

6.1 A Convex Problem

First consider the construction of F (c ) , a componentwise convex multiobjective function that is
meant to capture the performance of MOAs on “nicely behaved” problems. Convex functions are
expected to produce easier problems for adaptive weighting schemes, since every point on the
Pareto front can be achieved by minimizing a weighted sum of objectives as in Equation (2). Let

d > p, let e (i ) denote the ith standard basis vector in Rd , and let e = [1, . . . , 1]�. Then

F (c ) (x ) =
(
‖x − 0.5e (1) − 0.1e ‖22 , . . . , ‖x − 0.5e (p ) − 0.1e ‖22

)
, x ∈ [0, 1]d .

The Pareto front for F (c ) is a portion of a rotated parabola in Rp .

The two VTMOP variations are compared against NSGA-II and MultiGLODS on F (c ) with prob-
lem sizes p = 3,d = 8 and p = 4,d = 14. Performance results for all three metrics are shown in
Figures 3 and 4. Note that the number of solution points is shown on a log scale so the results for
the smaller budgets can be more easily observed.

As seen in Figures 3 and 4, for the problem F (c ) , all MOAs considered are able to find tens or even
hundreds of approximate solutions with their RMSE less than 0.1 and Delaunay discrepancies of
around 0.2 or less within the first 5,000 function evaluations at both problem sizes. Note that it is
dangerous to interpret any of the performance measures independently, as none of them improve
monotonically. Rather, one might consider whether a large number of solutions with low RMSE
and low discrepancy have been observed thus far in each MOA’s history, which would indicate that
a reasonably dense, well-distributed set of low-error solutions is contained in every subsequent
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Fig. 3. Performance of MOAs on F (c ) for p = 3, d = 8.

Fig. 4. Performance of MOAs on F (c ) for p = 4, d = 14.

solution set. However, it is interesting to note that both the DIR variant and MultiGLODS tend to
produce several low RMSE solutions particularly early on, while NSGA-II and the LH variant tend
to produce more solutions in the long term. Also note that the performance statistics are somewhat
smoothed for the two stochastic MOAs (LH variant and NSGA-II) due to the averaging effect.

6.2 The DTLZ Problems

The DTLZ test suite [30] is a library of scalable multiobjective test problems that is widely used
in the multiobjective optimization literature. Each of the DTLZ problems has a specific property,
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which makes it uniquely challenging for MOAs. Additionally, each of the DTLZ problems can be
solved with any number of objectives and design variables satisfying d > p. In this section, the
variations of VTMOP are compared against NSGA-II and MultiGLODS on slight variations of four
problems from the DTLZ suite, specifically, DTLZ1, DTLZ2, DTLZ5, and DTLZ7.

One issue with applying the DIR variant directly to the DTLZ problems is that all of the DTLZ
problems have their efficient set either located in best- or worst-case locations for DIRECT’s de-
terministic sampling scheme. In particular, for the DTLZ problems, the feasible design space is
always the d-dimensional unit hypercube, and for DTLZ1, DTLZ2, and DTLZ5, every efficient x
satisfies xp = 0.5, . . . ,xd = 0.5 (best case for DIRECT), while every efficient x for DTLZ7 satisfies
xp = 0, . . . ,xd = 0 (worst case for DIRECT). Because of the way DIRECT samples, numerous de-
sign points x satisfying xp = 0.5, . . . ,xd = 0.5 will be sampled early, while design points satisfying
xp = 0, . . . ,xd = 0 will be sampled very late. Therefore, to maintain a fair comparison, this section
uses variations of the DTLZ problems that have been modified so the efficient set lies in the hyper-
plane xp = 0.6, . . . ,xd = 0.6. In most cases, the modification required to achieve this is somewhat

obvious. The modified DTLZ problems, along with F (c ) , are implemented in vtmop_func.f90.
The recommended number of design variables for the DTLZ problems range from 5 to 10 more

design variables than objectives. The problem sizes ofp = 3,d = 8 andp = 4,d = 14 that were used
in Section 6.1 are used again in this section, as they capture the extremes of these recommendations.

Since the DTLZ problems are significantly more difficult than F (c ) , it is not uncommon for MOAs
to return solutions that are hugely suboptimal. When the “optimality gap” in a solution point
(here quantified by the distance from the solution point to the true Pareto front) is large enough,
it can skew performance metrics in a way that is undesirable. Therefore, in this section, only
solutions with a distance from the Pareto front of less than 0.1 are considered when computing
the performance metrics.

6.2.1 DTLZ1. DTLZ1 has a planar Pareto front, given by all X ∈ Rp that satisfy
∑p

i=1 Xi = 0.5.

What makes DTLZ1 extremely challenging is that it features 11d−p+1 − 1 “local Pareto fronts,” i.e.,
surfaces of points that are only locally Pareto optimal.

Because of the difficulty of this problem, none of the techniques tested were able to consistently
achieve any solutions with a distance from the Pareto front of less than 0.1 for the larger problem
size (p = 4,d = 14), and only the DIR variant was able to achieve such solutions for the smaller
problem size (p = 3,d = 8). However, even at the smaller problem size, the DIR variant wasted
many iterations due to the fact that Algorithm 1 regularly identifies solutions with an optimality
gap greater than 0.1 as the “most isolated point,” causing VTMOP to waste many iterations refin-
ing in the neighborhood of suboptimal solutions. Therefore, a second run of DIR was performed,
specifying “interesting points” (see Remark 3.1) as only those X ∈ Rp that satisfy X <

= 0.6e .
Figure 5 shows the results for both runs of the DIR variant on the smaller problem size p = 3,

d = 8 (with and without constraints on the region of interest).
The results in Figure 5 appear inconclusive, since VTMOP achieves a lower RMSE and discrep-

ancy without the objective bounds, but provides more solutions with the objective bounds. Looking
at the raw data, it is apparent that VTMOP actually performs significantly better with the objective
bounds, however, many of the additional solutions found are clustered and have slightly higher
errors, artificially driving up these metrics. One notable observation is that both runs of VTMOP
achieved over 100 solutions with RMSE less than 0.07 within the first 2,000 function evaluations.

6.2.2 DTLZ2. DTLZ2 has a spherical Pareto front, given by the portion of the unit sphere that
is in the positive orthant. DTLZ2 does not have any points that are locally Pareto optimal that
are not globally Pareto optimal; this makes it an easier problem than DTLZ1. However, since the
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Fig. 5. Performance of VTMOP DIR variant (with and without constraints) on DTLZ1 for p = 3, d = 8.

Pareto front for DTLZ2 is entirely concave, it is a particularly challenging problem for adaptive
weighting schemes, since only the “pure solutions” (corresponding to basis vectors in Rp ) can be
obtained as solutions to a weighted sum scalarization, as in Equation (2). The results for solving
DTLZ2 with problem sizes p = 3,d = 8 and p = 4,d = 14 are shown in Figures 6 and 7, respectively.

Similarly as with F (c ) , all of the MOAs perform well on DTLZ2 at the problem size p = 3,

d = 8. However, in comparison to the results for F (c ) in Figure 3, Figure 6 shows fewer solution
points found, but those points are generally better distributed on the Pareto front. The fact that
fewer solution points are found by VTMOP is somewhat unsurprising, due to the fact that DTLZ2
has a nonconvex Pareto front, which causes different scalarizations to produce the same solution
points. However, it may be surprising that VTMOP is not any more affected than the other MOAs,
which do not use scalarization schemes. This may be seen as evidence that VTMOP’s trust region
approach is successfully forcing solutions in these nonconvex regions. The DIR variant again suc-
ceeds in producing several low RMSE solutions within the first 5,000 iterations, and in the larger
problem, the DIR variant finds several such solutions significantly sooner than all other MOAs ex-
cept MultiGLODS. However, after quickly discovering these initial solutions, MultiGLODS appears
to particularly struggle on the larger problem size (p = 4,d = 14) with diversity of solutions, fail-
ing to produce just 10 solutions with error less than 0.1 until after 20,000 function evaluations. Due
to the lack of repeated trials for MultiGLODS, this could be attributed to a pathological sampling
pattern for this problem.

6.2.3 DTLZ5. DTLZ5 has a (p − 2)-dimensional Pareto front that traces an arc of the Pareto
front for DTLZ2. This is considered a degenerate case for MOPs, since many methods expect the
Pareto front to be a manifold with dimension p − 1. For this problem, the Delaunay discrepancy
metric cannot be accurately computed, since the Pareto front is not (p−1)-dimensional. Therefore,
only the number of solutions and RMSE are shown in Figures 8 and 9.

As with DTLZ2, all of the MOAs perform well on the DTLZ5 problems, producing numerous
low RMSE solutions with fewer than 5,000 function evaluations. Again, MultiGLODS struggles
with the diversity of solutions for the larger problem size (p = 4,d = 14), but this may be expected
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Fig. 6. Performance of MOAs on DTLZ2 for p = 3, d = 8.

Fig. 7. Performance of MOAs on DTLZ2 for p = 4, d = 14.

given that DTLZ5 is very similar to DTLZ2 in its nonconvexity. For VTMOP, these problems are a
test of robustness, since the (p − 2)-dimensional Pareto front can cause a degeneracy for DELAU-
NAYSPARSE when computing the Delaunay graph.

6.2.4 DTLZ7. DTLZ7 has a Pareto front that is discontinuous, consisting of 2p−1 disconnected
regions. This presents a challenge for techniques such as VTMOP that attempt to fill in gaps in the
Pareto front, since it is not possible to achieve a uniform spread of solutions.
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Fig. 8. Performance of MOAs on DTLZ5 for p = 3, d = 8.

Fig. 9. Performance of MOAs on DTLZ5 for p = 4, d = 14.

Similarly to DTLZ1, this problem is particularly challenging for the MOAs considered. None of
the algorithms could consistently produce suitable solutions to the larger problem size (p = 4,d =
14). However, for the problem size p = 3,d = 8, both VTMOP variations and NSGA-II were able
to find several solutions. Also, similarly to DTLZ5, the discrepancy metric is not meaningful here,
since the Pareto front contains numerous gaps. The results for the smaller problem size are shown
in Figure 10.

As seen in Figure 10, NSGA-II appears to perform slightly better than VTMOP on this problem.
However, the VTMOP DIR variant is able to discover several low-error solutions within the first
10,000 function evaluations. The VTMOP LH variant is significantly less performant here, requir-
ing many more evaluations to produce just a few solutions. It is worth noting that DTLZ7 is a
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Fig. 10. Performance of MOAs on DTLZ7 for p = 3, d = 8.

pathological problem for VTMOP, since it is not possible to “fill in” the gaps in DTLZ7’s Pareto
front, which is the main goal of VTMOP.

6.3 Iteration Time

As noted in Sections 6.1 and 6.2, VTMOP achieves strong performance per number of function
evaluations on a variety of test problems. However, this performance comes at an expense. NSGA-
II and MultiGLODS spent negligible amounts of time on iteration tasks for all problems, problem
sizes, and budgets discussed. However, both variations of VTMOP required significant amounts of
CPU time for iteration tasks, especially for larger budgets. This time was largely dominated by the
time required to solve the surrogate optimization problems, as described in Section 3.3.

To collect timing results, VTMOP has been run serially on the HPC Bebop at Argonne National
Laboratory. For all of the test problems and problem sizes from Sections 6.1 and 6.2, the Linux
tool perf showed that both the DIR and LH variations spent between 80% and 90% of wallclock
time inside the VTMOP_OPT subroutine, either fitting the LSHEP models or solving the surrogate
optimization problems. The majority of remaining time was spent in VTMOP_LTR (see Section 3.2),
either extracting the Pareto front, calculating the Delaunay graph, or identifying the most isolated
point. Note that the majority of these tasks could be parallelized, as described in Section 4.3.

Since the iteration costs are dependent upon the size of VTMOP’s internal database, this it-
eration complexity grows with the total number of function evaluations that have already been
performed. In Figure 11, these iteration times are plotted against the total number of function
evaluations at the time of the iteration. Note that the y-axis is at a log-scale.

As seen in Figure 11, the iteration times are similar for both and grow very quickly with the
size of the database. It appears that the LH variant may require slightly more wallclock time per
iteration, but overall, the time requirements are very similar. However, as shown in Figure 12, for
the default parameter values (see Section 5), the LH variant will typically complete many more iter-
ations per a fixed function evaluation budget. Therefore, given equal function evaluation budgets,
the LH variant will typically require more wallclock time for iterations tasks, overall.
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Fig. 11. Iteration time in seconds vs. total number of function evaluations for VTMOP DIR variant and

VTMOP LH variant.

Fig. 12. Number of iterations vs. total number of function evaluations for VTMOP DIR variant and VTMOP

LH variant.

6.4 Review of Performance Results

To summarize the performance of VTMOP in Sections 6.1 and 6.2, both variations of VTMOP
perform competitively with other state-of-the-art algorithms for large budgets. However, for the
larger problem sizes (p = 4,d = 14) and harder problems (such as DTLZ1 and DTLZ7), the DIR
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variant offers the most consistent results with small function evaluation budgets. In particular, for
every problem except DTLZ7 that was solvable by the standards put forth in Section 6.2 (achieving
solutions with errors less than 0.1), the DIR variant was able to find numerous solutions with low
RMSE within the first 5,000 function evaluations or less. In the case of DTLZ7, the DIR variant was
still able to find numerous solutions within the first 10,000 function evaluations.

The consistent performance of the DIR variant with low function evaluation budgets is impor-
tant, since VTMOP targets computationally expensive problems (such as the problem introduced
in Section 7), where larger budgets are infeasible. While the LH variant was not able to match
this performance with small budgets, there may be benefit to the LH variant in certain scenar-
ios, since it offers better opportunity for parallelization [21]. However, there is a cost to this
improved performance with small budgets. Section 6.3 shows that VTMOP has significant iter-
ation complexity, in some cases requiring many hours of total iteration time to perform 25,000
function evaluations. However, this iteration complexity is backloaded, because the cost of solv-
ing each surrogate problem grows with the complexity of the surrogate, which (in the case of
LSHEP) depends on the size of VTMOP’s database. For budgets smaller than 5,000, VTMOP’s total
iteration time typically ranges from several seconds up to several minutes. In conclusion, VTMOP
is best suited for computationally expensive problems with restrictive budgets, where its increased
iteration complexity becomes insignificant, and its ability to consistently produce numerous high-
quality approximate solutions with small budgets is extremely valuable.

7 PARTICLE ACCELERATOR DESIGN OPTIMIZATION WITH VTMOP

In this section, VTMOP’s performance is demonstrated on a real-world problem in the field of
accelerator physics. For another example of VTMOP’s performance on a real-world biobjective
problem in the area of autotuning LINPACK, see [20].

Given the large scale of particle accelerators, MOA’s have gained popularity in optimizing their
design and operation due to MOA’s ability to handle high-dimensional problems with many ob-
jectives (p > 2). While scalarization may be possible, it requires a priori knowledge of the output
space to produce a well-distributed Pareto front that encapsulates all desired information. During
design optimization of new accelerators, little may be known of their output space.

This has been the case for a recent project at SLAC National Accelerator Laboratory, where
the Linac Coherent Light Source (LCLS) is being upgraded to LCLS-II. Design optimizations
were performed using an evolutionary MOA [57] and genetic algorithms, especially those of [29].
Genetic algorithms are the most widely methods in the field of particle accelerator design [11, 12,
35, 36, 38, 43, 62, 66] and are commonly used at SLAC. In targeting commissioning goals for LCLS-
II, ongoing optimizations have been performed in a piecewise fashion to reduce the number of free
parameters. The same approach is taken in this section, and the optimization problem is limited to
the first 15 meters of the accelerator. For greater detail on this accelerator problem, see [55], [54],
and [47].

For the following results, d = 7 and p = 3. The upper and lower bounds for the design variables
are given in Table 1, alongside the factors by which certain design variables were rescaled to
maintain reasonable step sizes during optimization. The objectives of interest are the emittance
(ϵx ), bunch length (σz ), and energy spread (dE), all of which are to be minimized.

An electron bunch in an accelerator is commonly described with six dimensions: three spatial
and three momenta. Emittance is defined as the combined spatial and momentum distribution
of the particles in the six-dimensional phase space. Due to symmetries in the problem, the four
transverse dimensions are monitored with ϵx , the combined spatial and momenta distribution
in x . Free electron laser facilities are always in search of improved emittance values, as it directly
translates to better X-ray performance downstream. Given this information, VTMOP is directed to
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Table 1. Design Variables and Bounds for the LCLS-II Superconducting Injector

Variable Minimum Maximum Unit Scale Factor

Buncher phase −100.0 −10.0 Degrees 1
Solenoid strength(s) 0.02 0.07 T/m 1,000

Cavity gradient 0.0 32.0 MV/m 1
Cavity phase −40.0 40.0 Degrees 1

Two solenoid magnets are included, resulting in a total of seven design dimensions. Note

that solenoid strengths were rescaled by the “Scale Factor” before being passed to the

optimizer.

focus on the portion of the Pareto front with emittance less than 2 μm (using the optional objective
bounds input), as LCLS-II would never be operated with ϵx > 2 μm during normal operations.

The second objective, bunch length, is a metric used to gauge the longitudinal beam size (i.e.,
the spatial dimension in z). Emittance and bunch length are adversarial objectives that are nor-
mally considered when optimizing photoinjectors. The third objective, energy spread, is related to
the spread in kinetic energy of the particle distribution. The energy spread is included as a third
objective, because previous p = 2 optimizations of LCLS-II have been inadequate. While solutions
from initial optimization runs produced emittance and bunch length values that met performance
metrics, the energy spread was too large and rendered the beam distributions unusable without
modification of cavity phases. This is a result of the energy spread’s impact on beam behavior in
downstream hardware (namely, bunch compressors). This third objective must be accounted for,
or the need to manually modify the results after the optimization will remain. In the past, adding
a constraint on the energy spread did not provide sufficient improvement in the final optimized
beamline, so the choice was made to include it as an additional objective.

It is also necessary to include a penalty term, υ, in the objectives to account for infeasible solu-
tions. When a set of parameters results in beam loss, particles are removed from the simulation. If
a significant amount of particles are removed, then the emittance, bunch length, and energy spread
all can appear artificially small. Given the initial and final number of particles in the simulation
(N0 and Nf ), the penalty is calculated as

υ =
N0 − Nf

c
,

where c is a constant used to scale the penalty to the same order as the scaled objective values.
In the case shown in this article, the value of c = 20.0 is used. Once the penalty is calculated,
it is added to all objective values for that evaluation. The addition of a strictly positive penalty
term to all objectives is a natural extension of the augmented Lagrangian approach for nonlinear
programming to the multiobjective case [25].

The parallel particle-in-cell code OPAL-T [2] is used to simulate the portion of the LCLS-II
accelerator. One OPAL-T simulation of this beamline requires on average 4.3 minutes (with sig-
nificant variability) on four cores of the HPC Bebop at Argonne National Laboratory. These four-
core evaluations are considered low-fidelity simulations. When candidate beamline configurations
are identified, higher-fidelity simulations are run to confirm the results and refine working points.
Higher-fidelity simulations are too computationally intensive to use within the widespread genetic
MOA’s that require thousands of function evaluations. Still, even for this lower-fidelity version of
the problem, 5,000 evaluations of OPAL-T require well over 1,000 CPU hours on Bebop or over 350
hours of wallclock time when run serially.

VTMOP was applied to this problem with various budgets of OPAL-T evaluations. VTMOP was
configured to search using DIRECT and run using its default settings except for the trust region
radius fractions, which were reduced to 10% and 2% of the design bounds, respectively, because a
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Fig. 13. Biobjective projections of the solutions found by VTMOP for the LCLS-II optimization problem using

OPAL-T, after budgets of 1K, 2K, 3K, and 4K function evaluations.

large portion of the bound-constrained design space is actually infeasible for the original problem
(resulting in a nonzero penalty υ). Additionally, as previously stated, VTMOP was directed to fo-
cus on the portion of the Pareto front with emittance less than 2 μm using the optional objective
bounds input. During initial tests, VTMOP was not able to identify any designs that met this strict
objective bound after the zeroth iteration (as discussed in Remark 3.1). Therefore, VTMOP was
run for five iterations (1,534 function evaluations) without any bounds on the interesting range of
objectives, after which numerous points meeting these bounds were identified. Then the objective
bounds were set for ϵx

<
= 2 μm for the remaining 3,466 function evaluations. Finally, to ensure

equal treatment of all objectives, in the version of OPAL-T that was run by VTMOP, the raw out-
put values of ϵx and σz were rescaled so their expected range would match the expected range of
dE. Note that this rescaling was only for VTMOP’s internal use, and the unscaled values of ϵx and
σz are reported in the following results:

The raw objective values for the solutions found by VTMOP after certain numbers of simulation
evaluations are shown in Figure 13. After 4,000 evaluations, no significant further improvements
were made. Therefore, to save space, only results up to a budget of 4,000 are shown in Figure 13.

Compared to a typical commissioning optimization of LCLS-II, VTMOP’s convergence within
4,000 evaluations is a marked improvement. Previous optimizations of LCLS-II were typically run
to 30,000 evaluations with constraints on the objective bounds [54] or 10,000 evaluations with
no constraints [47]. In both cases, only the emittance (ϵx ) and bunch length (σz ) were considered
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(p = 2), producing solutions with unfit energy spreads (dE). As a result, a significant amount of
time was required after the optimization to partially reconfigure the solutions to improve their
energy spreads. Note that adding the energy spread as a constraint to NSGA-II has been attempted
in the past with poor results. The results shown in Figure 13 indicate reasonable energy spread
values for a range of emittance and bunch lengths. This shows an opportunity to simultaneously
reduce the number of function evaluations and avoid the need to postprocess solutions after future
LCLS-II optimizations, saving a significant amount of time and resources.

APPENDIX

A COMPUTING THE DELAUNAY GRAPH

The pseudocode for the Delaunay graph calculation described in Section 3.1.1 is given in
Algorithm 3.

ALGORITHM 3: Compute the Delaunay graph.

input

Π(k ) =
{
Z (k,1), . . . ,Z (k,m (k ) )

}
with each Z (k,i ) defined as in (5);

begin

M (k ) is a Boolean-valued matrix of dimensionsm(k ) ×m(k ) ;
initialize

M (k ) ←
⎡⎢⎢⎢⎢⎢⎢⎣

FALSE . . . FALSE
...

...
FALSE . . . FALSE

⎤⎥⎥⎥⎥⎥⎥⎦
;

for i = 1, . . . ,m(k ) do

for j = i + 1, . . . ,m(k ) do

Z̄ (k,i, j ) ← the midpoint between Z (k,i ) and Z (k, j ) ;

S (k,i, j ) ← the vertex set for a Delaunay simplex containing Z̄ (k,i, j ) ;

if Z (k,i ) ∈ S (k,i, j ) and Z (k, j ) ∈ S (k,i, j ) then

M (k )
i, j ← TRUE;

M (k )
j,i ← TRUE;

endif

enddo

enddo

returnM (k )

The key cost for Algorithm 3 is computing S (k,i, j ) . VTMOP uses the DELAUNAYSPARSE
software package [22] to compute each of these simplices. The computational complex-

ity of DELAUNAYSPARSE is O (m(k )p2cf ) per simplex constructed, where cf is the num-
ber of “flips” required to converge. Empirically, it has been shown that cf is typically a

polynomial function of p and independent of m(k ) [23]. Therefore, the execution time for

Algorithm 3 is a cubic function ofm(k ) , regardless of the number of objectives p.

Algorithm 3 correctly computes the Delaunay graph when Π(k ) is in general position, meaning

that the Delaunay triangulation of Π(k ) exists and is unique. This is established in Theorem A.1.

Existence is guaranteed when Π(k ) does not lie in a (p−2)-dimensional linear manifold, and unique-

ness is guaranteed when there is no set of p + 1 points in Π(k ) that lie on the same (p − 2)-sphere.

Theorem A.1. If Π(k ) is in general position, then Algorithm 3 computes the connectivity matrix

for DG (Π(k ) ).
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Proof. Suppose that Π(k ) is in general position; and let S (k,i, j ) , Z (k,i ) , Z (k, j ) , and Z̄ (k,i, j ) be as

defined in Algorithm 3. If S (k,i, j ) contains both Z (k,i ) and Z (k, j ) , then clearly Z (k,i ) and Z (k, j ) are

connected in the Delaunay graph. Otherwise, since the simplex whose vertices areS (k,i, j ) contains

the midpoint Z̄ (k,i, j ) , at least one facet of this simplex must separate Z (k,i ) and Z (k, j ) . Therefore,

Z (k,i ) and Z (k, j ) cannot be connected in the Delaunay graph. �

Remark A.1. If DG (Π(k ) ) is not unique, then Algorithm 3 may fail to produce a connectivity
structure that is consistent with any Delaunay triangulation. However, the Gabriel graph is a sub-
graph of every Delaunay triangulation, and therefore the Gabriel graph will always be embedded
in the connectivity structure computed by Algorithm 3, regardless of uniqueness.

Remark A.2. If the Delaunay triangulation does not exist, then Π(k ) is contained in a (p − 2)-
dimensional linear manifold. Typically, this occurs only whenm(k ) < p. Then all points in Π(k ) are
considered neighbors, and the most isolated point corresponds to the projected point that is, on

average, farthest away from all other points in Π(k ) . One extremely rare case is that m(k ) ≥ p but

Π(k ) is contained in a (p−2)-dimensional linear manifold due to the Pareto front being a (p−2)- or
lower-dimensional manifold embedded in the objective space. In this case, a principal component
analysis is performed by using the DGESVD subroutine from LAPACK [5] to compute the singular

value decomposition of the matrix whose columns are points in Π(k ) after they have been shifted

so their barycenter is the origin. After computing the decomposition, Π(k ) is projected onto the
span of the left singular vectors whose corresponding singular values are greater than the objective

space tolerance ϵ (from Remark 3.3). Then DG (Π(k ) ) is given by computing the Delaunay graph
in this reduced dimensional space.
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