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The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E)

systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus

through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and

present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial

Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown

Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages.

The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxil-

iary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution

(OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown At-

tack class. Performance evaluation demonstrates that our method achieves both high classification accu-

racy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle

environment.
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1 INTRODUCTION

Modern Connected and Automated Vehicles (CAVs) are prototypical Cyber-physical Systems
[10], where the in-vehicle Electrical/Electronic (E/E) system interacts closely with its physi-
cal surroundings to form a sense-compute-actuate feedback loop, including the vehicle itself and
the external driving environment. With increasing deployment of CAVs, the issue of automotive
cyber-security is gaining increasing attention from both industry and academia. A CAV has a large
attack surface, and attackers may gain access to its internal networks either physically through
the On-Board Diagnostics (OBD-II) connector or wirelessly through the interface of the On-

Board Unit (OBU) (e.g., cellular, WiFi, Bluetooth). Attackers may target non-essential functions,
e.g., window lifters, indicator lights, the signal horn, or the display panel, to cause minor annoy-
ances, or safety-critical functions, e.g., acceleration, brake, steering control inputs, to cause severe
consequences.

The automotive E/E system is a distributed system consisting of multiple Electronic Control

Units (ECUs) interconnected with different in-vehicle networking protocols, including Ethernet,
FlexRay, Media Oriented Systems Transport (MOST), CAN, and Local Interconnect Net-

work (LIN). The CAN bus is used for low or medium-bandwidth in-vehicle networking to connect
the E/E components, including ECUs, sensors, and actuators. We focus on the CAN bus in this ar-
ticle, which is ubiquitously deployed in almost all vehicles, regardless of the price range or the
manufacturer. The CAN bus is vulnerable to attacks due to several factors: broadcast transmis-
sion, where all nodes can hear all message transmissions on the bus; ID-based priority arbitration;
and lack of authentication/encryption mechanisms. One possible defense mechanism is Message
Authentication for defending against message spoofing attacks, where the sender adds a Message

Authentication Code (MAC) to each message, and the receiver recomputes and verifies the MAC.
This approach is constrained by the limited computing power of ECUs and the small payload size
of CAN messages (8 Bytes). Proposed solutions include: adding hardware coprocessors to offload
computation-intensive cryptographic algorithms from the ECU [31]; selectively adding coproces-
sors to a partial set of ECUs to meet timing constraints while minimizing cost [21]; truncating
the MAC to reduce its length and performing successful authentication of several consecutively
received messages [21, 47]; dynamically adjusting the MAC size to maximize it while meeting
timing constraints [54]; security-aware obfuscated priority assignment for CAN with Flexible

Data-rate (CAN-FD) [16, 53], and others. Despite these research advances, MA on the CAN bus
is not yet widely adopted in the automotive industry due to its high cost or high complexity. In
addition, MA can only defend against message spoofing attacks, not other types of attacks such as
DoS or Fuzzing.

A more practical alternative approach is to adopt an onboard Intrusion Detection System (IDS)

to monitor the CAN bus traffic to detect possible attacks. Since CAN is a multi-master broadcast
bus protocol, the IDS may be deployed as a separate dedicated node on the CAN bus, implemented
as either hardware (FPGA or ASIC) or integrated into one of the ECUs as a software application.
Upon detecting intrusions/attacks, the Intrusion Prevention System (IPS) may take immediate
countermeasures, e.g., sending error frames to stop the current transmission [18]. In addition, a
detailed log of the onboard security events may be sent to the Security Operations Center in the
cloud, which performs in-depth post-attack analysis of the collected data both for single vehicles
and the whole fleet, e.g., root cause analysis, impact analysis, for developing threat response strate-
gies. The automotive software standard AUTOSAR (AUTomotive Open System ARchitecture)

is in the process of introducing a new standard for onboard IDS [15].
There has been significant related work on CAN bus IDS (as discussed in Section 4). When

formulated as a machine learning problem, existing methods either perform coarse-grained bi-
nary classification of Normal vs. Attack (Figure 1(a)); or perform multi-class classification with
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Fig. 1. Machine Learning-based approaches to CAN bus IDS.

Table 1. Abbreviations Used in This Article

IDS Intrusion Detection System
KA Known Attack
UA Unknown Attack

FFNN Feed-Forward Neural Network
CNN Convolutional Neural Network
GAN Generative Adversarial Network
D GAN Discriminator
G GAN Generator

OOD Out-of-Distribution
MSP Maximum SoftMax Probability

n + 1 classes, including Normal and n Known Attacks (KAs), i.e., to detect KAs and assign fine-
grained labels to them, but cannot detect any Unknown Attack (UA) (Figure 1(b)). In this ar-
ticle, we consider the novel problem formulation of multi-class classification with n + 2 classes,
including Normal, n KA classes and one UA class (Figure 1(c)), i.e., to detect both KAs and any
UA, and also assign fine-grained labels to detected KAs. To justify our problem formulation: On
the one hand, it is important to be able to assign fine-grained labels to KAs, since knowing the
specific attack type can be quite useful for selecting appropriate counter-measures and perform-
ing post-attack analysis; on the other hand, it is important to be able to detect any UA, since
attackers may come up with novel zero-day attacks that may not fit the patterns of existing
attacks.

We propose and evaluate four different methods1 and demonstrate that the best-performing
method is the one based on Auxiliary Classifier Generative Adversarial Network (ACGAN)

[38] in combination with Out-of-Distribution (OOD) detection [24], where the Auxiliary Clas-

sifier (AC) in ACGAN is used for assigning fine-grained labels to KAs, OOD detection is used for
preliminary detection of the UA class, and the Real-Fake Classifier (RFC) in ACGAN is used for
final determination of the UA class.

Table 1 contains frequently used abbreviations used in this article.
The rest of the article is structured as follows: We present the problem formulation and our

approach in Section 2, including the input encoding method, ACGAN, OOD detection, and our four
proposed methods; performance evaluation in Section 3; discussions of related work in Section 4;
and conclusions and future work in Section 6.

1Our code is open-source, available at https://github.com/leyiweb/CAN_GAN_Anomaly.
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Fig. 2. Format of a standard CAN message.

Fig. 3. Three common types of attacks on the CAN bus.

2 PROBLEM FORMULATION AND OUR APPROACH

2.1 Introduction to the CAN Bus Protocol

Figure 2 shows the format of a CAN message, which consists of a header (CAN ID) with the stan-
dard format of 11 bits and a payload of up to 8 Bytes. (We assume the standard CAN ID length of 11
bits in this article, but the extended CAN ID length of 29 bits can be easily handled by adjusting the
input encoding.) Each bit in the CAN ID is either dominant (0) or recessive (1), and the dominant
bit wins in case of a collision on the bus. This implies that the CAN ID determines message priority,
and a message with a smaller CAN ID has higher priority. The broadcast nature of the CAN bus
creates opportunities for attackers to inject malicious messages from a compromised ECU, and
the simple priority arbitration protocol means that malicious messages with smaller CAN IDs can
cause undue delays to legitimate messages.

Figure 3 illustrates the three common types of attacks on the CAN bus addressed in this article:

• DoS (Denial-of-Service): The attacker injects high-frequency messages with high-priority
(e.g., with CAN ID 0 × 000 or some other ID that is known to be smaller than all legitimate
message IDs) to flood the bus and occupy the bus bandwidth to prevent the legitimate mes-
sages from transmitting successfully, e.g., in Figure 3(a), the messages with CAN IDs 0 × 387
and 0 × 590 are both delayed by the attack messages with CAN ID 0 × 000.
• Fuzzing: The attacker injects CAN messages with random CAN ID, to cause delays to certain

legitimate messages with lower priority (larger CAN IDs), e.g., in Figure 3(b), the message
with CAN ID 0 × 387 sent by the legitimate node ECU1 is not delayed by the two attack
messages due to its smaller ID value; the message with CAN ID 0× 590 sent by the legitimate
node ECU2 is delayed by the attack message with CAN ID 0 × 419, but not by the attack
message with CAN ID 0 × 897. This type of attack is more stealthy than DoS attack, thanks
to the randomness of the CAN IDs of the injected messages.
• Spoofing: The attacker injects messages with specific CAN IDs that belong to legitimate

nodes, which may be captured by observing the traffic on the CAN bus before the attack
and with modified payloads, e.g., the two attack messages have the same CAN IDs 0 × 387
and 0 × 590 as the legitimate nodes. The attacker’s goal is not to cause delays to normal
messages, but to inject false signals to be read by other nodes. (In the public car-hacking
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Fig. 4. Two different ways of encoding a sequence of CAN IDs into a 2D image.

Fig. 5. Example 48 × 48 CAN images for normal data and different types of KAs.

dataset [50], two types of spoofing attacks are included, including GEAR for Gear-Shift and
RPM for the engine’s rotation speed measured with Revolutions-Per-Minute.)

2.2 Input Encoding

To apply Deep Learning to CAN bus intrusion detection, we need to encode a sequence of CAN IDs
into a format suitable for input to a Feed-Forward Neural Network (FFNN) (including Multi-

Layer Perceptron (MLP) and Convolutional Neural Network (CNN)), which takes an image
as input data, which may be a 1D time series or a 2D image of pixels. We perform a preprocessing
step to encode a consecutive sequence of CAN IDs into a 2D Image. Figure 4(a) shows one method
of constructing an N × 11 2D square image by stacking a set of N (here, N = 11) CAN IDs, each 11
bits long [45]. We adopt another method of constructing a N × 48 2D square image with one-hot
encoding [42], shown Figure 4(b). Each 11-bit CAN ID is converted into a 48-bit vector, which
consists of three 16-bit vectors, each one-hot encoding one hex digit, e.g., the ID of 0 × 316 in
hexadecimal format is converted into three 16-bit vectors, each encoding a hex number 3, 1, 6,
respectively. We then stack a set of N (here, N = 48) CAN IDs, each with length 48 bits, to form
a 48 × 48 2D square image. The terms “input sample” or “sample” are used to refer to each CAN
image. This approach to CAN image construction is inspired by GIDS (GAN-based Intrusion

Detection) [42].

• We choose the one-hot encoding method, which was shown [42] to result in larger differ-
ences and easier separation between normal images and attack images than the direct en-
coding method.
• The input size N , i.e., the number of CAN messages grouped into a single CAN image, is an

important hyper-parameter that can be selected to trade off between detection accuracy and
computation overhead. Experimental results in Reference [42] indicate that the input size of
64 achieves the best accuracy. (In our experiments, we set N = 48 to form a square image,
which is the most common image shape in computer vision.)

Figure 5 shows some example CAN images obtained with one-hot encoding (refer to Section 3.1
for details on the different attack types). The differences among them may not be apparent by visual
inspection, as the number of attack messages may be a small percentage of the total 48 messages.
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Fig. 6. Regular GAN vs. ACGAN.

However, these differences enable the application of powerful Machine Learning (ML), especially
Deep Learning (DL) methods, to distinguish between them.

2.3 GAN and ACGAN

Figure 6(a) shows Generative Adversarial Network (GAN) [19], a framework for joint train-
ing of two models simultaneously, generator G and discriminator D. G aims to capture the data
distribution. It takes as input a random noise vector z from an arbitrary latent distribution (noise
prior) and generates a synthetic (fake) sample Xf ake = G (z). D aims to distinguish between real
samples and fake samples generated by G. It receives as input sample, either a real sample Xr eal

or a fake sample Xf ake from G, and outputs a probability distribution P (S | X ) over two possible
sample sources S = {real, fake}. D is a CNN backbone for feature extraction, with a binary classifier
head, called the Real-Fake Classifier (RFC) in this article. The RFC is typically implemented as
a Sigmoid function with optional fully connected layers preceding it. (A minor technical detail is
whether the RFC is viewed as part of D or separate from D, which consists of the CNN backbone
only. We take the latter view in this article.) The GAN loss function is defined as the loglikelihood
of the correct source:

L = E[log P (S = real | Xr eal )] + E[log P (S = f ake | Xf ake )]. (1)

D is trained to maximize L, i.e., to use the RFC to distinguish between real vs. fake samples, and
G is trained to minimize the second term in L, i.e., to generate realistic fake samples that fool the
RFC of D into classifying it as real.

Figure 6(b) shows ACGAN [38], an extension of GAN with an additional multiclass Auxiliary

Classifier (AC) head, a SoftMax layer with optional fully connected layers preceding it, which
shares the same CNN backbone D with the RFC for feature extraction. Every generated sample
has a corresponding class label c ∼ pc in addition to the noise z. G uses both to generate class-
conditional fake samples Xf ake = G (c, z). For each input sample, D performs two tasks with its
two classifier heads: The binary RFC classifies it into either real or fake by outputting a probability
distribution P (S | X ), regardless of its class label c; the multiclass AC assigns it a class label by
outputting a probability distribution P (C | X ) over all possible class labels, regardless of its source
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Fig. 7. Two different SoftMax distributions for illustration of OOD detection based on MSP.

S being real or fake. The loss function for ACGAN has two parts:

LS = E[log P (S = real | Xr eal )] + E[log P (S = f ake | Xf ake )],

LC = E[log P (C = c | Xr eal )] + E[log P (C = c | Xf ake )]. (2)

D is trained to maximize LC + LS , and G is trained to maximize LC − LS . In addition to LS , the
same loss function of GAN (Equation (1)), the additional term LC in ACGAN’s loss function forces
G to generate realistic fake samples with some given class label c , and the AC of D to perform
accurate classification of both real and fake samples with label c . It has been shown that this small
extension to the standard GAN helps stabilize training and learn better representations [38].

The original design intention of ACGAN is to use the AC to help improve the GAN training
process and train a betterG that can generate diverse and high-resolution class-conditional photo-
realistic image samples; D serves in an auxiliary role to help the training of G, and is not useful
after training. In contrast, we apply ACGAN in an unconventional way: Our goal is not to generate
photo-realistic image samples, but to train a better D, with its two classifier heads RFC and AC; G
serves in an auxiliary role to help the training of D and is not useful after training.

2.4 Out-of-Distribution (OOD) Detection

OOD samples refer to samples that fall outside of the distribution of the training dataset, i.e., out-
liers/anomalies. The opposite of OOD is In-Distribution (InD), or inliers/normal data. An OOD
detector [24] is a binary classifier that predicts an InD or OOD label to an input sample. OOD
detection is an active research area with a wide range of algorithms and techniques [9], including
our previous work [35] on using Isolation Forest (IF) or Local Outlier Factor (LOF) for outlier
detection in one or more hidden layers of a CNN.

Hendrycks and Gimpel [24] presented a simple baseline method of using the predicted Maxi-

mum SoftMax Probability (MSP) to separate OOD samples (with low MSP) from InD samples
(with high MSP) based on a threshold th, called the OOD threshold in this article. An input sample
is determined to be OOD if its MSP does not exceed the OOD threshold. As an example, Figure 7
shows two possible probability distributions as output from the SoftMax layer for two different
input samples. In both cases, the classifier predicts the MSP class Normal, but the classifier has
different levels of confidence in its prediction. Suppose we set the OOD threshold th = 0.8, then
the input sampleX1 corresponding to the distribution P (C | X1) in Figure 7(a) has MSP = 0.9 ≥ th
and is determined to be Normal; the input sample X2 corresponding to the distribution P (C | X2)
in Figure 7(b) has MSP = 0.5 < th and is determined to be OOD. The MSP method is not the most
accurate OOD detection algorithm, since Neural Networks often give incorrect yet over-confident
predictions, but it is widely used in practice, since its accuracy is often good enough, and it is very
efficient, incurring no additional overhead beyond the forward inference time. Most of the more
sophisticated OOD detection algorithms [9], including our own work based on Isolation Forest
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Table 2. Important Statements as Design Rationales

S1 A UA sample is more likely to be OOD (with MSP < th) than a Normal or a KA sample.
S2 A Normal sample is more likely to be OOD (with MSP < th) than a KA sample.
S3 A UA sample is more likely to be misclassified as Normal than as one of the KAs.
S4 A UA sample is more likely to be misclassified as Normal than a KA sample being misclassified as Normal.

(IF) and Local Outlier Factor (LOF) [35] have too high runtime overhead to be used for CAN
bus IDS.

2.5 Four Methods for CAN Bus IDS

2.5.1 General Observations and Statements. The CAN bus IDS may be developed by a supplier
as a general-purpose product sold to OEMs (Original Equipment Manufacturers), hence, it
must be able to handle a wide range of diverse applications across different OEMs and vehicle
models. Hence, the Normal class is likely to contain CAN messages from different applications
with diverse features, i.e., an irregular, multimodal distribution in the feature space. In contrast,
each KA is likely to have its own distinct features, with a concentrated, sharp distribution in the
feature space. The UA class by definition will have diverse features, since it is novel and unseen
during training time. If there is no UA, i.e., all attacks are KAs with available training data, then
it is straightforward to train a classifier with Supervised Learning for either binary classification
of Normal vs. Attack, or multiclass classification of Normal and n KAs. However, the problem
becomes more difficult if we want to detect both KAs and any UA, and also assign fine-grained
labels to detected KAs.

We make a set of important statements in Table 2. The reason for S1 is that UA samples are not
in the training dataset. Hence, they are likely to result in lower MSP values. The reason for S2 is
that Normal samples may have more diverse features than any of the KAs, hence, they are more
difficult to classify and result in lower MSP than any of the KA classes. The reasons for S3 and S4
are that Normal samples and UA samples are more easily confused with each other, whereas each
KA’s samples are more easily classified and distinguished from Normal samples and UA samples.
These statements will be confirmed by experimental results later.

We propose four CAN bus IDS methods as shown in Figure 8. Assuming n KAs, the fine-
grained known/unknown IDS performs multiclass classification among n + 2 classes C =

{Normal,KA1, . . . ,KAn ,UA}, including n + 1 classes (Normal and n KAs) with labeled samples
in the training dataset, plus one additional UA class not in the training dataset. The four meth-
ods share the common first step of performing multiclass classification among n + 1 classes
C = {Normal,KA1, . . . ,KAn }, including Normal and n KAs, This (n + 1)-class classifier may be
trained with Supervised Learning, as in CNN-Th, or may be trained as the AC in ACGAN. They
differ in the next step of identifying/classifying UA samples, based on the statements in Table 2.
The RFC in ACGAN is used by two of the four methods, which is a binary classifier with label real
corresponding to one of the n + 1 classes (Normal and n KAs) and the label fake corresponding to
the UA class. (Note that we assign the class label UA to all possible UAs, since we do not distinguish
among different types of UAs.)

2.5.2 CNN-Th. Figure 8(a) shows the CNN-Th method. The CNN is used for assigning fine-
grained labels to KAs, and OOD detection is used for detection of the UA class (with MSP < th).
Its design rationale is Statement S1 in Table 2: “A UA sample is more likely to be OOD than a
Normal or a KA sample.” CNN-Th adopts the simplistic assumption that all OOD samples should
be labeled as UA. As shown in Equation (3), we use the MSP method [24] for OOD detection:
(1) For a given input sample X , compute the MSP P (c∗ | X ) over the known n + 1 classes ci ∈ C =
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Fig. 8. Four proposed methods for CAN bus IDS.

{Normal,KA1, . . . ,KAn }; (2) if the MSP exceeds the OOD threshold (MSP ≥ th), then we trust this
prediction and return the MSP class c∗; otherwise, the input sample is determined to be OOD and
labeled as UA.

c∗ =
⎧⎪⎨
⎪
⎩

argmaxci ∈C P (ci | X ) if P (c∗ | X ) ≥ th

UA Otherwise
(3)

2.5.3 ACGAN-AC-Th. Figure 8(b) shows the ACGAN-AC-Th method. It is similar to CNN-Th
except that the CNN is replaced by the AC in ACGAN, which is used for assigning fine-grained
labels to KAs; OOD detection is used for detection of the UA class (with MSP < th). The RFC in
ACGAN is not used here. Our experimental results indicate that the AC trained with ACGAN gen-
erally has better performance than a CNN with similar architecture but trained with Supervised
Learning, since the training dataset for the AC consists of both the labeled training dataset (the
real samples) and the synthetic (fake) samples generated byG. IfG is well-trained and generates re-
alistic fake samples, then this is an effective form of data augmentation, hence, the training dataset

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 4, Article 45. Publication date: September 2022.
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Table 3. With ACGAN-AC-RFC-Normal, Samples with

MSP Class Normal Are Passed to the RFC

InD/OOD
Predicted

Normal KAi

InD (MSP ≥ th)
Pass to RFC

return KAi

OOD (MSP < th) return KAi

for the AC is enlarged significantly compared to the CNN, which only uses the real samples. We
expect the ACGAN-based approach to be especially beneficial in the case of unbalanced datasets
with limited attack data samples, which is a common situation in practice.

2.5.4 ACGAN-AC-RFC-Normal. Figure 8(c) shows the ACGAN-AC-RFC-Normal method, a cas-
caded two-stage classification architecture. The AC in ACGAN is used for assigning fine-grained
labels to KAs; assuming the KAs are classified correctly but UA samples may be misclassified as
the Normal class, the RFC in ACGAN is used for determination of the UA class. Its design rationale
includes statements S3 and S4 in Table 2: “A UA sample is more likely to be misclassified as Normal
than as one of the KAs” and “A UA sample is more likely to be misclassified as Normal than a KA
sample being misclassified as Normal.” The logits (feature vector from the last hidden layer of the
CNN backbone D) are passed to both the first-stage multiclass AC and the second-stage binary
RFC. If the AC predicts one of the KAs as the MSP class among the n + 1 classes, then we trust
its prediction and return that class label. Otherwise, the AC predicts Normal as the MSP class. We
do not trust its prediction and refer to the second-stage RFC. If the RFC predicts real, then return
Normal; if it predicts fake, then return UA.

2.5.5 ACGAN-AC-RFC-Th. Figure 8(d) shows the ACGAN-AC-RFC-Th method, another cas-
caded two-stage classification architecture. The AC in ACGAN is used for assigning fine-grained
labels to KAs, OOD detection is used for preliminary detection of the UA class (with MSP < th),
and the RFC in ACGAN is used for final determination of the UA class. Its design rationale includes
statements S1 and S2 in Table 2: “A UA sample is more likely to be OOD than a Normal or a KA
sample” and “A Normal sample is more likely to be OOD than a KA sample.” Since not all OOD
samples are UA samples, i.e., some OOD samples may be Normal or KA samples, we add the RFC
to classify the UA samples more precisely. After the first-stage AC has computed the probability
distribution P (C | X ) over the n + 1 classes C for input sample X , if MSP ≥ th, then we trust its
prediction and return that class label. Otherwise, the input sample X is determined to be OOD,
so we do not trust the AC’s prediction of the MSP class and look at the second stage RFC. If the
RFC predicts real, then return the MSP class label from the AC, which may be Normal or one of
the n KAs; if RFC predicts fake, then return UA. (Note that the RFC has the same decision logic
in ACGAN-AC-RFC-Normal: If the RFC predicts real, then return Normal, which is also the MSP
class label from the AC.)

For further clarification, Tables 3 and 4 compare the decision logics of ACGAN-AC-RFC-Normal
in Figure 8(c) and ACGAN-AC-RFC-Th in Figure 8(d) in tabular form.

3 PERFORMANCE EVALUATION

In this section, we present the details of constructing the training and test datasets in Section 3.1;
the ACGAN model details in Section 3.2; performance comparisons among our four proposed
methods in Section 3.3; performance comparisons with related work in Section 3.4; and timing
performance in Section 3.5.
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Table 4. With ACGAN-AC-RFC-Th, OOD Samples

(with MSP < th) are Passed to the RFC

InD/OOD
Predicted

Normal KAi

InD (MSP ≥ th) return Normal return KAi

OOD (MSP < th) Pass to RFC

3.1 Dataset Construction

We use the public car-hacking dataset [50] in our experiments, which was constructed by the
authors of Reference [42] by logging CAN traffic via the OBD-II port from a real vehicle while
message injection attacks were carried out. It consists of CAN message sequences for the Normal
class and four attack classes: DoS, Fuzzing, Spoofing of GEAR or RPM messages (denoted as GEAR
and RPM in short), as shown in Figure 3.

We group a consecutive sequence of N = 48 CAN IDs into a CAN image with size 48 × 48, as
shown in Figure 4(b). Each normal CAN image contains 48 normal CAN messages, and each KA or
UA CAN image contains 48 CAN messages with at least one attack message of the specific attack
type (this corresponds to attack threshold of 1 in GIDS [42]). Inspired by the common method of
emulating OOD samples in research works on OOD detection [9, 35], we emulate UA samples by
samples of one KA that are excluded from the training dataset. Suppose we have 3 KAs (Fuzzing,
RPM, GEAR) and 1 UA (DoS). The training dataset consists of samples ofn+1 = 4 classes, including
Normal and n = 3 KAs (Fuzzing, RPM, GEAR). We exclude samples of the DoS attack class from
the training dataset to use them as UA samples during testing. The test dataset contains samples
of n + 2 = 5 classes, including Normal, 3 KAs (Fuzzing, RPM, GEAR), and 1 UA (DoS). In our
experiments, the training dataset consists of 40,000 samples (1.92M messages), 10,000 for each
of the 4 classes (Normal and 3 KAs); the test dataset consists of a total of 25,000 samples (1.2M
messages), 5,000 for each of the 5 classes (Normal, 3 KAs, and 1 UA). (In addition to using DoS as
the UA, we also tried other KA/UA splits and obtained similar results).

3.2 The ACGAN Model and Training Procedure

Table 5 shows the ACGAN model architecture based on the open-source repository [32], adapted
to fit our problem setting, i.e., the set of classes for the AC. The CNN architecture used in the
CNN-th method is identical to the Discriminator D, hence, not included in the table. (Note that
more sophisticated CNN architectures may be adopted to achieve even better performance, e.g.,
the Inception-ResNet [23] as used by Song et al. [45], but we view this as an orthogonal issue to our
main contribution, which is the high-level architecture design of the two-stage classifier shown in
Figure 8.)

Our hardware platform for model training is a Linux workstation with CPU: Intel(R) Xeon(R) E5-
2650 v4 @ 2.20 GHz; RAM: 16 GB; GPU: NVIDIA GeForce GTX 2080Ti. We use the deep learning
framework PyTorch. We adopted the hyperparameter settings for GAN training primarily from
Reference [32], but adjusted the learning rates based on Reference [29] to mitigate instability dur-
ing training. For GAN training, we use the Adam optimizer for G with a constant learning rate of
0.0002; the SGD optimizer for D with an initial high learning rate of 0.001, gradually reduced to
0.0002 during the training process. It is well-known that model selection for GAN is challenging
due to possible instability during training, and a longer training time does not necessarily lead to
better performance [29]. Typically, the goal of GAN training is to train the G to generate realis-
tic images, so one may select theG by visual inspection of generated images from different model
checkpoints during the training process. However, our goal is different from the conventional GAN
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Table 5. Architecture and Hyperparameter Settings of the ACGAN

Operation Filter (K × K/S, P) Output Feature Map BN Dropout Activation

Generator
Linear Embedding 6 × 6 × 128

Upsample 12 × 12 × 128
Convolution 3 × 3/1, 1 12 × 12 × 64 � Leaky ReLU

Upsample 24 × 24 × 64
Convolution 3 × 3/1, 1 24 × 24 × 32 � Leaky ReLU

Upsample 48 × 48 × 32
Convolution 3 × 3/1, 1 48 × 48 × 16 � Leaky ReLU
Convolution 3 × 3/1, 1 48 × 48 × 1 Tanh

Latent Dimension (z) 256
Leaky ReLU slope 0.2

BN momentum 0.8
Optimizer Adam(lr = 0.0002, betas = (0.5,0.999))

Discriminator
Convolution 3 × 3/2, 1 24 × 24 × 16 � Leaky ReLU
Convolution 3 × 3/2, 1 12 × 12 × 32 � � Leaky ReLU
Convolution 3 × 3/2, 1 6 × 6 × 64 � � Leaky ReLU
Convolution 3 × 3/2, 1 3 × 3 × 128 � � Leaky ReLU
Linear (RFC) 2 sigmoid
Linear (AC) 4 logSoftmax

Leaky ReLU slope 0.2
BN momentum 0.8

Dropout 0.5
Optimizer SGD(lr = 0.001 down to 0.0002, momentum = 0.9)

Each convolutional filter has size K × K, with stepsize S and padding P. BN denotes Batch Normalization.

training, as we want to train the D, including both AC and RFC, to have good performance. There-
fore, we adopt the approach from Reference [29]: Set aside 10% of the entire training dataset as the
validation dataset, and use the remaining 90% as the actual training dataset. (Note that the typi-
cal k-fold cross-validation in Supervised Learning is not suitable for GAN training.) The training
process consists of 1,000 epochs, with Batch Size 64. After each epoch, we checkpoint the model
parameters and measure the overall classification performance on the validation dataset in terms
of the macro F1-score (computed with Equation (6)). At the end of the training process, we select
the D (the AC and the RFC) that achieves the highest macro F1-score. This implies that we may
select different D for different methods in Figure 8, or even different OOD thresholds with the
same method. To have fair performance comparisons, the hyperparameters for training the CNN
are set to be the same as those for training D, in terms of the SGD optimizer and learning rate
schedule. The entire training process lasts on average 11.5 hours for ACGAN and 9 hours for CNN,
including both training time on the GPU and testing time on the validation dataset on the CPU.

3.3 Performance Comparisons among Proposed Methods

For a binary classifier, the metrics of accuracy A, recall R, precision P , and F1 score F1 are defined
as follows:

A =
TP +TN

TP +TN + FP + FN
, R =

TP

TP + FN
, P =

TP

TP + FP
, F1 =

2P · R
P + R

, (4)
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Fig. 9. Tuning the OOD threshold to maximize the macro F1 score.

where TP, FP, FN stand for True Positive, False Positive, False Negative, respectively. For anomaly
detection, typically the Normal class is viewed as the negative class, and the Attack class is viewed
as the positive class.

For a multiclass classifier withm classes, the metrics of accuracy Ai , recall Ri , precision Pi , and
F1 score F1i are defined for each class 1 ≤ i ≤ m:

Ai =
TPi +TNi

TPi +TNi + FPi + FNi
, Ri =

TPi

TPi + FNi
, Pi =

TPi

TPi + FPi
, F1i =

2Pi · Ri

Pi + Ri
, (5)

where class i is the positive class, and all other classes in aggregate form the negative class in a
One-vs.-Rest approach. For example, if class i is a KA, then the Normal class and all the other KAs
are viewed as the negative class; If class i is Normal, then all the KAs are viewed as the negative
class (which is counter-intuitive).

For a multiclass classifier, the macro versions of recall, precision, and F1 score are defined to
measure the average performance of the classifier across each of the m classes [20] (note that
there is no macro version of the accuracy metric):

Rmacro =
1

m

m∑

i

Ri , Pmacro =
1

m

m∑

i

Pi , F1macro =
2 ∗ Pmacro · Rmacro

Pmacro + Rmacro
. (6)

Among all the metrics above, F1macro is the most comprehensive and important performance
metric, since it takes into account both recall and precision of all classes.

All our four proposed methods are multiclass classifiers with n + 2 = 5 classes. For cascaded
two-stage classification architectures, we treat the two classifiers as a single aggregate classifier.
In subsequent tables showing performance results, we include the metrics for each of the 4 attack
classes (3 KAs and 1 UA), computed with Equation (5), but not those for the Normal class (which
can be derived from the metrics for the 4 attack classes if needed), as well as the macro metrics,
computed with Equation (6), by averaging across all 5 classes.

The OOD threshold is an important hyper-parameter with a large impact on the IDS perfor-
mance. (The decision threshold for the sigmoid function in the RFC is another hyper-parameter,
which is set to be the default threshold of 0.5 after experimentation.) Figure 9 shows how the
macro F1 scores of the four methods are affected by the OOD threshold. We observe that: (1) the
optimal OOD threshold setting is different for each of the three methods that are based on OOD
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Table 6. Performance Results with Optimal OOD Thresholds for Each Method

Class Method Recall(%) Precision(%) F1-Score(%)

Macro

CNN-Th(th=0.96) 88.70 89.31 88.54
ACGAN-AC-Th (th=0.94) 96.71 96.78 96.73
ACGAN-AC-RFC-Normal 96.62 96.76 96.57

ACGAN-AC-RFC-Th (th=0.995) 99.23 99.24 99.23

UA (DoS)

CNN-Th(th=0.96) 67.08 74.62 70.65
ACGAN-AC-Th (th=0.94) 94.24 90.58 92.37
ACGAN-AC-RFC-Normal 86.66 99.88 92.80

ACGAN-AC-RFC-Th (th=0.995) 98.92 99.64 99.28

Fuzzing

CNN-Th(th=0.96) 97.12 77.72 86.34
ACGAN-AC-Th (th=0.94) 95.82 99.32 97.54
ACGAN-AC-RFC-Normal 97.50 92.29 94.83

ACGAN-AC-RFC-Th (th=0.995) 98.40 99.92 99.15

GEAR

CNN-Th(th=0.96) 99.60 99.72 99.66

ACGAN-AC-Th (th=0.94) 99.40 99.62 99.51
ACGAN-AC-RFC-Normal 99.58 95.90 97.70

ACGAN-AC-RFC-Th (th=0.995) 99.70 99.36 99.53

RPM

CNN-Th(th=0.96) 99.70 95.44 97.53
ACGAN-AC-Th (th=0.94) 99.50 100.00 99.75
ACGAN-AC-RFC-Normal 99.56 99.84 99.70

ACGAN-AC-RFC-Th (th=0.995) 99.70 99.90 99.80

Red font denotes entries with the highest F1-Scores.

detection; (2) different methods have different levels of sensitivity to the OOD threshold, with
ACGAN-AC-RFC-Th being the least sensitive among the three. It is beneficial to be insensitive
to the OOD threshold, as this reduces the burden of searching for the optimal OOD threshold
at deployment time; (3) ACGAN-AC-RFC-Th has the best performance among all four methods,
regardless of the OOD threshold value; (4) Since ACGAN-AC-RFC-Normal is not based on OOD
detection, its F1 score is a horizontal line in Figure 9 and the same across Tables 6 to 14.

Table 6 shows performance results for 4 attack classes (3 KAs: Fuzzing, GEAR, RPM and 1 UA:
DoS), with optimal OOD thresholds for each of the three methods, i.e., 0.96 for CNN-Th, 0.94 for
ACGAN-AC-Th; 0.995 for ACGAN-AC-RFC-Th, based on Figure 9. (We include additional perfor-
mance evaluation results in the Appendix, with the same OOD threshold for all methods.) We
make the following observations:

• ACGAN-AC-RFC-Th has the best overall performance in terms of the macro metrics. It has a
slightly lower F1 score (99.53%) than CNN-Th for the KA GEAR (99.66%), but the difference
is small and within the range of statistical noise, and both have very good performance. This
is likely because the class GEAR is inherently easy to classify.
• CNN-th has the worst overall performance in terms of the macro metrics and especially for

the UA class (emulated by DoS), with F1 score of 70.65%. This highlights the importance
of having both the AC for distinguishing between Normal and KAs and the RFC for
distinguishing between real (Normal and KAs) and fake data (UA). Comparing CNN-Th
with ACGAN-AC-Th, we can see that AC trained with ACGAN by itself (without the RFC)
already outperforms CNN trained with Supervised Learning, thanks to the massive amounts
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Table 7. Confusion Matrix Definition for RFC

GT
Predicted

Pos (fake) Neg (real)

Pos (UA) TP FN
Neg (Normal or KAi) FP TN

Table 8. Composition of Samples Passed to the RFC

Method # Samples
GT Pos GT Neg

UA Normal KAi

ACGAN-AC-RFC-Normal 9,540 4,393 4,992 155
ACGAN-AC-RFC-Th (th=0.94) 5,806 4,818 845 143
ACGAN-AC-RFC-Th (th=0.96) 5,995 4,892 915 188
ACGAN-AC-RFC-Th (th=0.995) 9,427 4,994 4,068 365

Table 9. Confusion Matrices and Classification Metrics for RFC

Method TP TN FP FN Recall (%) Precision(%) F1 Score(%)

ACGAN-AC-RFC-Normal 4,333 5,142 5 60 98.63 99.88 99.26
ACGAN-AC-RFC-Th (th=0.94) 4,767 977 11 51 98.94 99.77 99.35
ACGAN-AC-RFC-Th (th=0.96) 4,867 1,097 6 25 99.49 99.88 99.68
ACGAN-AC-RFC-Th (th=0.995) 4,946 4,415 18 48 99.04 99.64 99.34

of synthetic (fake) data generated by G. Our training dataset is artificially balanced, with
an equal number of samples (5,000) for each class. In practice, the training dataset is likely
to be very unbalanced with limited attack data samples, and we expect the ACGAN-based
approach to be even more beneficial and outperform CNN-th, as mentioned in Section 2.5.3.

3.3.1 Performance Evaluation of RFC. Having evaluated the performance of the overall cas-
caded classifier, we now focus on the second-stage binary RFC used in the two methods ACGAN-
AC-RFC-Normal and ACGAN-AC-RFC-Th. Recall that the RFC’s goal is to classify UA samples as
fake, and all other samples (Normal and KAs) as real. Table 7 shows the Confusion Matrix defini-
tion for the RFC, where the Ground Truth (GT) positive is the UA class, and the GT negative is
defined as either Normal or one of the KAs (denoted KAi) aggregated together. Note the difference
from a traditional binary classifier for anomaly detection, where the GT positive is the Attack class
(anomaly), and the GT negative is the Normal class. For example, an input sample with GT class
KAi is a GT negative sample. It is an FP if it is classified as fake by RFC, hence, predicted to be the
UA class; it is a TN if it is classified as real by RFC, hence, predicted to be either Normal in case of
ACGAN-AC-RFC-Normal or the MSP class among the n + 1 classes (Normal and n KAs) in case of
ACGAN-AC-RFC-Th. In the latter case, it may be given the wrong label, hence, should be an FP or
FN from the overall cascaded classifier’s perspective, yet it is still a TN from the RFC’s perspective.

Table 8 shows the composition of the samples passed to the RFC, and Table 9 shows the con-
fusion matrices and metrics for the RFC, with three different OOD threshold settings. (We do not
show the multiclass confusion matrix for the overall classifier due to space limitations.) Table 8
can be used to confirm the statements in Table 2 in Section 2.4:

• For S1 “A UA sample is more likely to be OOD than a Normal or a KA sample” and S2 “a
Normal sample is more likely to be OOD than a KA sample,” consider the three rows for
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ACGAN-AC-RFC-Th with different OOD thresholds: They all have the numeral ranking #
UA samples > # Normal samples >> # KA samples, e.g., the row for ACGAN-AC-RFC-Th
(th = 0.94) shows that among 5,806 OOD samples, 4,818 are UA samples, 845 are Normal
samples, and 143 are KA samples. (Keep in mind that the test dataset is balanced with 5,000
samples for each class.)
• For S3 “A UA sample is more likely to be misclassified as Normal than as one of the KAs,”

consider the row for ACGAN-AC-RFC-Normal: Among 5,000 UA samples, 4,393 are misclas-
sified as Normal, and 607 are misclassified as one of the KAs.
• For S4 “A UA sample is more likely to be misclassified as Normal than a KA sample being

misclassified as Normal,” consider the row for ACGAN-AC-RFC-Normal: Among the 9,540
samples classified as Normal, 4,393 are UA samples (misclassified); only 155 are KA samples
(misclassified); the remaining 4,992 are Normal samples (correctly classified).

3.3.2 Summary and Discussions. We draw the following conclusions from the experimental
results:

• OOD detection alone is insufficient in identifying the UA samples, hence, we cannot blindly
label all OOD samples to be UA and must rely on the second-stage RFC to classify UA samples.
The OOD samples are likely to contain a mixture of Normal, KA, and UA samples (though UA
samples make up the highest percentage), and a higher OOD threshold causes more input
samples to be determined to be OOD across all the classes. Fortunately, the RFC has very
good performance, proving the effectiveness of ACGAN training.
• Among the two-stage multiclass classification architectures, ACGAN-AC-RFC-Th is supe-

rior to ACGAN-AC-RFC-Normal, i.e., it is better to pass OOD samples (with MSP < th) than
to pass samples labeled Normal to the RFC. Among the total 5,000 UA samples in the test
dataset, with ACGAN-AC-RFC-Normal, 4,393 UA samples are misclassified as Normal and
passed to RFC; The remaining 607 UA samples are misclassified as one of the KAs, hence, not
passed to the RFC. With ACGAN-AC-RFC-Th, much more UA samples (4,818–4,994 for three
different OOD thresholds) are passed to the RFC, regardless of how the UA samples are mis-
classified. This explains the lower recall (86.66%) of ACGAN-AC-RFC-Normal in comparison
to ACGAN-AC-RFC-Th in Table 6.
• The optimal OOD threshold for ACGAN-AC-RFC-Th is dependent on the relative perfor-

mance of the AC and the RFC. If the RFC has good performance relative to the AC, then we
should set a higher OOD threshold and pass more OOD samples to it and vice versa. In other
words, give more responsibility to someone you trust more. In the extreme case when the
RFC has perfect performance (recall=precision=1), then the OOD threshold should be set to
th = 1.0, causing all samples to be determined OOD and passed to the RFC. This extreme
case is equivalent to reversing the order of the AC and the RFC: The RFC is applied first
to filter out the UA samples labeled fake, and the samples labeled real are passed further
to the second-stage AC for fine-grained classification of Normal and KAs. In practice, with
th = 1.0, the RFC is likely to have significantly degraded precision due to the massive num-
ber of negative samples (with GT Normal or KAi) it receives. (We tried setting th = 1.0 and
obtained a macro F1 score of 98.48%, slightly worse than 99.23% with th = 0.995, since the
RFC is good, but not perfect).

3.4 Performance Comparisons with Related Work

Among the related works listed in Table 12, a handful of papers also use the same car-hacking
dataset [50] in their experiments. Table 10 shows performance comparisons of such papers that
use the same dataset on the accuracy, recall, precision, and F1 score, averaged across four attacks
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Table 10. Performance Comparisons with Related Work That Use the Same Car-hacking Dataset [50]

Work Method Accuracy (%) Recall (%) Precision (%) F1 (%)

Alshammari et al. (2018) KNN [4] 97.4 96.3 94.7 93.4
Alshammari et al. (2018) SVM [4] 96.5 95.7 95.2 93.3

Barletta et al. (2020) XYF-K [6] 99.1 98.39 100 98.79
Olufowobi et al. (2019) SAIDuCANT [39] 87.21 86.66 98.24 92.0
Lokman et al. (2018) SSAE [33] - 98.5 98.0 98.0

Song et al. (2020) DCNN [45] 99.93 99.84 99.84 99.91
Song et al. (2021) DCNN+Self-Sup. [43] 95.37 93.42 96.71 94.51

Ashraf et al. (2020) LSTM-AE [5] 99.0 99.0 100 99.0
Yang et al. (2021) MTH-IDS [57] 99.999 99.999 99.9994 99.999

Our work (macro metrics) ACGAN N/A 99.23 99.24 99.23

Refer to Table 12 for more details on each method. (Note that our work (last row) performs multiclass classification

and uses macro metrics defined in Equation (6)).

(DoS, Fuzzing, GEAR spoofing, and RPM spoofing). However, the metrics of our approach may
not be directly comparable with the related works, due to the differences between the dataset
construction method and the dataset features used.

Dataset construction method: In all the related works in Table 10, the training and the test
datasets each consist of four datasets, each containing a mixture of Normal messages and one
type of attack, i.e., (Normal + DoS), (Normal + Fuzzing), (Normal + GEAR), (Normal + RPM). The
metrics accuracy, recall, precision, and F1 score are computed by averaging the corresponding
metrics for binary classification of Normal vs. Attack on each dataset, as shown in Figure 1(a).
i.e., no fine-grained label is provided for each attack type. The implicit assumption is that there is
at most one attack type at any given time. In contrast, our training dataset consists of a mixture
of (Normal + Fuzzing + GEAR + RPM) messages, and our test dataset consists of a mixture of
(Normal + Fuzzing + GEAR + RPM + DoS) messages (assuming DoS is the UA). The multiclass
classifier returns one class among the five classes (Normal, Fuzzing, GEAR, RPM, UA), as shown
in Figure 1(c). (Refer to Section 3.1 for more details.) Hence, our problem setup is more general
and can handle simultaneous occurrence of multiple KAs, gives fine-grained labels for each KA,
and also detects the UA. This results in a more challenging multiclass classification problem than
related works, which perform binary classification for each dataset with one attack type only. Due
to this difference in problem setup, the performance metrics are also necessarily different: Our
multiclass classifier uses the macro versions of recall, precision, and F1 score metrics defined in
Equation (6)) for a single test dataset, while related works use the binary classification metrics
defined in Equation (4), averaged over multiple test datasets.

Dataset features used: As discussed in Section 5, it is not fair to use payload as the part of the
input for the public car-hacking dataset; only the CAN ID should be used instead. Most related
works in Table 10 use CAN ID + payload, except for Song et al. [45] and Song et al. [43], who
are the authors that collected the original dataset; and SAIDuCANT [39], which relies on message
timing instead of message content (ID or payload) for intrusion detection.

3.5 Timing Performance

In this section, we perform quantitative evaluation of the timing performance, i.e., detection la-
tency, of our best-performing method ACGAN-AC-RFC-Th. For CAN IDS with input of a sequence
of messages, the detection latency consists of two factors: the amount of time for assembling a
given number of consecutive messages as input to the RNN or CNN and the execution time of the
detector/classifier itself.
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Fig. 10. Different step sizes assuming sliding window of size 4. Each box represents a CAN message.

Table 11. Time Window Sizes for Each

CAN Image of 48 Messages

Dataset Mean (ms) Variance

Normal 24.07 3.38

DoS 36.03 927.27

Fuzzing 36.09 1,330.85

GEAR 25.72 89.41

RPM 24.76 51.04

3.5.1 Time Window Sizes of Each CAN Image. During runtime operation, we can adopt a sliding-
window approach and move the input time window (in terms of the number of consecutive mes-
sages) forward with step size 1, i.e., by one message at a time whenever a new message appears
on the bus; or a non-overlapping window approach, and move the window forward each time the
step size equal to the window size; or an intermediate approach of moving the window forward
with step size between 1 and the window size. Figure 10 illustrates different step sizes (assuming
hypothetically a sliding window of size 4). Different step sizes lead to different tradeoffs between
detection latency and runtime overhead, e.g., step size 1 results in the lowest detection latency
but highest runtime overhead. Therefore, a larger time window size does not necessarily imply a
longer detection latency, since we can adopt a sliding-window approach with small step size. (As
the choice of different sliding-window approaches is orthogonal to the detection algorithm, related
works typically do not specify this aspect explicitly).

We gathered the statistics of mean and variance for each non-overlapping window of 48 mes-
sages forming a CAN image for each type of dataset in the original public car-hacking dataset,
shown in Table 11. (We also gathered the same statistics for each sliding window with step size
1, and the numbers are almost the same). We observe that the Normal dataset has very small
variance, consisting of periodic messages with period 0.5 ms. Other datasets, especially DoS and
fuzzing datasets, have large variances, and GEAR/RPM spoofing datasets have medium variances.
This is consistent with our intuition of these attack types. For datasets with large time windows
or large variances, it is reasonable to adopt smaller step sizes to reduce the detection latency.

3.5.2 Classifier Latency and Memory Overhead. Our embedded hardware platform is Raspberry
Pi 4 Model B with 8 GB memory and quad-core ARM Cortex-A72 CPU at 1.5 GHz clock speed.
The Cortex-A72 ARM CPU is representative of a medium-to-high-end automotive ECU from a
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Fig. 11. Execution time distributions for single or multicore execution of the ACGAN-AC-RFC-Th model.

hardware resource and performance perspective. We adopt the TVM compiler for Deep Learning
[12] to generate C code to run on the target device, which was shown to outperform hand-
optimized TensorFlow Lite for well-known neural network architectures such as ResNet and
MobileNet [12]. We consider both single-core execution, where the neural network inference is
constrained to execute on a single core; and multi-core execution, where the neural network infer-
ence executes in parallel on all four cores. The weights are single-precision 32-bit floating point.
Figure 11 shows the execution time distributions for single or multicore execution of the ACGAN-
AC-RFC-Th model. For single-core execution, the average execution time and standard deviation
are 0.538 ms and 0.030 ms, respectively. For multicore execution, the average execution time and
standard deviation are 0.203 ms and 0.032 ms, respectively. This is comparable to the average execu-
tion time of 0.574 ms on a Raspberry Pi 3 device with quad-core ARM Cortex-A53 CPU at 1.2 GHz
clock speed for the classic ML approach in MTH-IDS [57] (it is not specified whether single-core
or multicore execution is used) and well within the 10 ms latency requirement for in-vehicle IDS.2

We also observe that multicore execution achieves significant speedup compared to single-core
execution, but the speedup is much less than 4-fold on the quad-core Cortex-A72 processor.

In addition, we used the tool PyTorch-OpCounter3 to obtain the total number of parameters of
the ACGAN-AC-RFC-Th model to be 104,518, which amounts to 418.1 KB for 32-bit weights and
104.5 KB for 8-bit weights. This is a quite small model compared to well-known models such as
ResNet and MobileNet with millions of parameters and can fit into the L2 cache of the Cortex-A72
ARM CPU, which has cache size ranging from 512 KB to 4 MB.4

4 RELATED WORK

CAN bus IDS is an active research area due to its critical importance in automotive cyber-security
[52]. The detection approaches can be broadly categorized into either rule-based, where humans
design detection rules manually, or ML-based, where an ML model is trained from data. Rule-based

2From Reference [57]: According to the U.S. Department of Transportation, the highest priority vehicle safety services,

such as collision and attack warnings, should have a latency of at most 10 to 100 ms [1]. However, for autonomous or

cooperative driving, the V2X traffic safety applications require a stringent latency requirement of 10–20 ms [36]. Thus, for

a vehicle-level IDS, the time needed to process each network packet is required to be less than 10 ms to meet the real-time

or latency requirements.
3https://github.com/Lyken17/pytorch-OpCounter.
4https://en.wikipedia.org/wiki/AR_Cortex-A72.
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approaches include: methods based on physical fingerprints, e.g., clock [59] or voltage measure-
ments [14]; methods based on message timing [39, 44] or frequency [48]; methods based on mes-
sage ID entropy [51] or Hamming distance [46], and many others. Due to the increasing complexity
and diversity of in-vehicle network workloads, rule-based methods are generally viewed as not as
accurate or flexible/adaptable as ML-based methods [56]. There is a wide variety of ML algorithms,
including classic ML algorithms such as Support Vector Machines (SVM), K-Nearest Neighbor

(KNN), Naive Bayes, Decision Trees, and so on, and the more recent Deep Learning (DL) algo-
rithms. Next, we present a summary and comparative analysis of ML-based approaches to CAN
bus IDS. They can be broadly categorized into [11]:

• Supervised Learning for classification requires a labeled training dataset with samples of
both Normal and the KAs and learns a discriminative decision boundary that separates them,
with either binary classification of Normal vs. Attack or multiclass classification of Normal
and fine-grained labels of KAs. It returns the probability P (c | X ) that the input sample X
has label c , with either a Sigmoid function for binary classification or a SoftMax function for
multiclass classification. The drawback of Supervised Learning is that it cannot detect the
UA class well. (We can combine Supervised learning with OOD detection to detect the UA
class, e.g., CNN-Th in Figure 8(a), but its performance is generally unsatisfactory).
• Semi-Supervised Learning for anomaly detection requires only Normal samples during train-

ing, not labeled KA samples. Anomalies are detected as outliers that deviate significantly
from Normal samples. The drawback of this approach is that it cannot assign fine-grained
labels to KAs.
• Hybrid approaches that combine Supervised and Unsupervised/Semi-Supervised Learning,

e.g., GAN, ACGAN (as in this article).

Deep Learning architectures based on multi-layer Neural Networks can be broadly categorized
into FFNN and RNN. An FFNN by definition has no feedback or recurrent connections and consists
of multiple layers that progressively extract more abstract and higher-level representations (fea-
tures), which are used by downstream classification or regression tasks. CNNs are the most popular
FFNN, but there are also other types, including Multi-Layer Perceptrons (MLPs), Deep Belief

Network (DBN), Capsule Networks, and Transformers. An RNN contains recurrent connections
to capture the temporal dimension of the input data. Vanilla RNNs suffer from short-term mem-
ory and the vanishing gradient problem, hence, Long Short-Term Memory (LSTM) and Gated

Recurrent Units (GRU) have been proposed to remedy their shortcomings.
CAN bus IDS is inherently a problem of detecting anomalous patterns in a time-series sequence

of messages, and just observing one message may not be sufficient for anomaly detection in most
cases. RNNs, including its variants LSTM and GRU, can be naturally applied to capture the temporal
dimension of multiple messages in a time window. It is also possible to take into account the
temporal dimension with a Feed-Forward Neural Network (FFNN) (including MLP and CNN)
by stacking multiple messages in a time window into a 1D or 2D image as its input, as shown in
Figure 4.

Next, we discuss representative related works, summarized in Table 12. (This selection is in-
tended to be representative, not exhaustive, and we refer the interested reader to several survey
papers for more comprehensive coverage [26, 52, 56]).

4.1 Specification-based IDS

Olufowobi et al. [39] present Specification-based (i.e., rule-based) Automotive Intrusion De-

tection using CAN Timing (SAIDuCANT), which uses the real-time model of the CAN bus to
specify intended behavior and detect timing violations as signs of intrusions.
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Table 12. Summary of Representative Approaches in Related Works

Model Type Work Method Input ML Type Classifier Type

Rule-based Olufowobi et al. [39] SAIDuCANT Msg Timing Rule-based Bin-Class

Classic ML
Alshammari et al. [4] KNN ∨ SVM ID & payload Sup. Bin-Class

Barletta et al. [6] XYF-K ID & payload Semi-Sup. Bin-Class
Yang et al. [57] Hybrid ID & payload hybrid Multiclass w. UA

FFNN
Kang et al. [28] MLP payload Sup. Bin-Class
Song et al. [45] CNN ID Sup. Bin-Class
Song et al. [43] CNN ID Self-Sup. Bin-Class w. UA

RNN
(GRU, LSTM)

Rehman et al. [40] CNN+AGRU ID & payload Sup. Bin-class
Hossain et al. [25] LSTM Classifier ID & payload Sup. Bin ∨Multiclass
Taylor et al. [49] LSTM Prediction payload Semi-Sup. Bin-class

Autoencoder

Lokman et al. [33] MLP SSAE ID & payload Semi-Sup. Bin-Class
Ashraf et al. [5] LSTM AE ID & payload Semi-Sup. Bin-class

Hanselmann et al. [22] LSTM AE ID & payload Semi-Sup. Bin-class
Longari et al. [34] LSTM AE ID & payload Semi-Sup. Bin-class

GAN

Seo et al. [42] GAN Classifier ID Hybrid Bin-Class
Yang et al. [58] GAN Classifier ID & payload Hybrid Multiclass
Xie et al. [55] GAN Classifier ID & payload Hybrid Bin-Class

Our work GAN Classifier ID hybrid Multiclass w. UA

Sup. denotes Supervised Learning; Semi-Sup. denotes Semi-Supervised Learning; Self-Sup. denotes Self-Supervised

Learning; KNN denotes K-Nearest Neighbors; SVM denotes Support Vector Machine; XYF-K denotes X–Y fused

Kohonen network with K-means clustering (XYF–K); SAIDuCANT denotes Specification-based Automotive Intrusion

Detection Using CAN Timing; SSAE denotes Stacked Sparse AutoEncoder ; DCNN denotes Deep Convolutional

Neural Network; MTH-IDS denotes Multitiered Hybrid IDS.

4.2 Classic ML-based IDS

Alshammari et al. [4] apply two classic machine learning techniques, KNN and SVM, for binary
classification of Normal vs. Attack. Barletta et al. [6] present X–Y fused Kohonen network with

K-means clustering (XYF–K) for binary classification. Yang et al. [57] present a multitiered hy-
brid IDS that incorporates a signature-based IDS and an anomaly-based IDS to detect KAs and UA
with rather complex workflow consisting of four stages and 12 algorithms, which may present a
steep learning curve to engineers who need to apply this framework in practice to address a new
problem with different datasets and/or attack types.

4.3 FFNN-based IDS

Kang et al. [27] present an MLP-based binary classifier with two hidden layers using 64 bits of the
CAN payload as 64-dimensional input. Song et al. [45] present an IDS for detecting KAs based on an
advanced CNN architecture Inception-ResNet [23] for image classification. Song et al. [43] present
a self-supervised method for detecting any UA using noised pseudo normal data, which consists
of two deep-learning models of the generator and the detector (the same Inception-ResNet used in
Reference [45]), which generates noised pseudo normal data and detects anomalies, respectively.

4.4 RNN-based IDS

Rehman et al. [40] present a hybrid CNN and attention-based GRU model, where the CNN extracts
features as input to the downstream GRU model for classification. Hossain et al. [25] used an LSTM
trained on both normal and attack messages to perform either multiclass classification with four
labels: Normal and three KAs, or binary classification with two labels: Normal vs. Attack.
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Fig. 12. RNN-based prediction.

Fig. 13. Autoencoder-based reconstruction.

Taylor et al. [49] employ an LSTM trained on normal messages only to predict the next message’s
payload from a past window of messages, as shown in Figure 12. A message is considered malicious
if its payload deviates from the predicted value significantly.

4.5 Autoencoder-based Reconstruction

An autoencoder (AE) is trained on normal data only and consists of an encoder that maps the
input sample into the latent space representation in the bottleneck hidden layer and a decoder
(generator) that maps the representation to a reconstruction of the input sample, as shown in
Figure 13. The autoencoder is then used to compress an input sample with the encode then
reconstruct it with the decoder. The reconstruction error, computed as the difference between
the input sample and its reconstruction, can be used as the anomaly score. A large reconstruction
error indicates a likely anomaly. The encoder and decoder in LSTM may be either FFNNs or RNNs.

Lokman et al. [33] present an MLP-based Stacked Sparse Autoencoder (SSAE) that computes
the anomaly score based on the difference between an input message sequence and the recon-
structed sequence. Longari et al. [34] present an LSTM-based autoencoder and an anomaly detector
that works by computing the statistical characteristics of reconstruction errors over a separate val-
idation dataset; then, it assigns a distance score that indicates how far a given reconstruction error
is from the expected normal distribution. Hanselmann et al. [22] use one independent input LSTM
model for each CAN, and the outputs of all input LSTM models are aggregated and fed into a fully
connected subnetwork with an autoencoder structure to take into account inter-dependencies be-
tween messages of different IDs. Ashraf et al. [5] present an LSTM-based autoencoder and use a
statistical feature extraction technique to capture contextual features as input instead of using the
raw message bits as input.

4.6 GAN-based IDS

We can further divide GAN-based IDS into two types:

• GAN-based classification: use D as a binary RFC and label the real input samples as Normal
and the fake samples as Attack.
• GAN-based reconstruction: similar to autoencoders, detect attacks as anomalies based on

reconstruction errors.

4.6.1 GAN-based Classification. Seo et al. [42] present GIDS, GAN-based CAN bus IDS with
cascaded binary classifier architecture, as shown in Figure 14. The first-stage binary classifier is
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Fig. 14. GAN-based CAN bus IDS (GIDS) [42].

the GAN discriminator D trained with Supervised learning (without the GAN generator G) to
distinguish between Normal and one specific KA. It has good performance for the specific KA
class in the training dataset, but not for other types of KAs or any UA. The second-stage binary
classifier is the D, trained with GAN jointly withG, to distinguish between real (Normal) and fake
(Attack) data, using only Normal samples in the training dataset. GIDS has a binary classifier in
the first stage, which is only effective for the one KAi class in its training dataset. For samples of
another KA that is not KAi, the burden falls on the second-stage RFC to classify them accurately.
There is thus a dilemma of which binary classifier to use among the n binary classifiers trained
with each of then KAs, with the most logical choice being the one trained with the most frequently
occurring KAi class. We avoid this dilemma by using the multiclass AC as the first-stage classifier
in ACGAN-AC-RFC-Normal and ACGAN-AC-RFC-Th.

Yang et al. [58] present a GAN-based IDS for multiclass classification of KAs. Xie et al. [55]
considered the CAN communication matrix, and grouped all messages from the same sender into
a data block as input to the IDS, and achieved improved performance compared to Reference [58].

4.6.2 GAN-based Reconstruction. Donahue et al. present BiGAN (Bidirectional GAN) [17],
a type of GAN where generatorG not only generates data samples from the latent representation,
but also includes an encoder for inverse mapping from data samples to the latent representation.
This encoder enables an additional term of reconstruction loss in the GAN loss function, which
can be used for anomaly detection based on the reconstruction error. Schlegl et al. present
AnoGAN [41] with the loss function defined as a weighted sum of the discriminator loss and the
reconstruction loss. Akcay et al. present GANomaly [2], which combines autoencoder and GAN,
including the following subnetworks: an autoencoder as the generator, a real/fake classifier as the
discriminator, and another encoder that compresses the generated image to its latent represen-
tation. The GAN-based reconstruction approaches have shown good performance for anomaly
detection in high-resolution images, but they also have much higher runtime overhead due to the
complex network architecture, hence, may not be suitable for deployment in resource-constrained
in-vehicle embedded systems, and we are not aware of any work on CAN bus IDS using the
reconstruction-based approach.

4.7 Summary and Comparative Analysis

Figure 15 compares different approaches to building a single one-stage classifier for CAN bus IDS,
with the simplistic assumption of 1D Gaussian distribution for each class, showing a flatter distribu-
tion for the Normal class and sharper distributions for KA classes. Another simplistic assumption
is that all UA samples are OOD, which has been shown to be not true in Section 3.3.1. The dis-
tribution of the UA class are not shown explicitly, which should have significant overlaps with
that of the Normal class, based on our previous observation that “Normal samples and UA samples
are more easily confused with each other, whereas each KA’s samples are more easily classified
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Fig. 15. Intuitive illustration of different approaches to building classifiers for CAN bus IDS. The decision

boundaries are visualized as vertical dotted lines.

and distinguished from Normal samples and UA samples.” (Note that Figure 15 does not cover the
GAN-based methods in Table 12.)

• Figure 15(a): Binary classifier trained with Semi-Supervised Learning for anomaly detection
using Normal samples only. It can perform coarse-grained classification of Normal vs. At-
tack, i.e., any input sample that deviates from distribution of the Normal class is classified
as Attack, but not fine-grained classification of KAs. Since labeled samples of KAs are not
included in the training dataset, it cannot detect KAs effectively by exploiting their unique
features.
• Figure 15(b): Binary classifier trained with Supervised Learning (the two Normal distribu-

tions on the sides represent two KAs that are given the same coarse-grained label Attack).
It can perform coarse-grained classification of Normal vs. Attack, but is ineffective in fine-
grained classification of KAs.
• Figure 15(c): Multiclass classifier trained with Supervised Learning. It can perform fine-

grained classification of Normal and KAs, but is ineffective in classifying UA samples.
• Figure 15(d): Multiclass classifier trained with Supervised Learning, combined with OOD

detection. It can perform fine-grained classification of Normal and KAs and also classify
UA samples. This corresponds to CNN-Th (Figure 8(a)) and ACGAN-AC-Th (Figure 8(b))
architectures in this article.

To summarize: In the presence of the UA class, a binary classifier trained with Semi-Supervised
Learning (Figure 15(a)) can be effective, but it can only perform coarse-grained classification. A
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binary classifier (Figure 15(b)) or multiclass classifier (Figure 15(c)) trained with Supervised Learn-
ing is ineffective and should not be used. Adding OOD detection (Figure 15(d)) mitigates the prob-
lem, but is still insufficient. We assert that a two-stage cascaded architecture must be adopted for
achieving both fine-grained classification of KAs and effective detection of the UA class, and the
second-stage RFC for classifying the UA samples plays a crucial role in the overall classifier per-
formance. In certain Operational Design Domains, where the attack classes encountered during
operation are likely to be all KAs with no or very low chance of UA, straightforward Supervised
Learning methods may be sufficient.

5 DISCUSSIONS ON FEATURE SELECTION: CAN ID OR PAYLOAD

The CAN bus IDS may use CAN ID only, payload only, or both CAN ID and payload as the input
features to a classifier. The appropriate choice of input features depends on the attack scenario.
Since normal CAN messages are typically periodic, this regular timing pattern of messages makes
it amenable to anomaly detection based on CAN-ID only. Consider the three common types of
attacks in Figure 3: They all rely on setting fake CAN IDs for the attack messages, hence, they
are all detectable with CAN ID only. For example, to detect RPM spoofing attacks, we can use
the CAN ID and detect anomalies in the sequence of CAN IDs based on the periodicity of normal
messages, e.g., if the normal RPM message has a period of 10 ms and we see much more frequent
RPM messages within a small time window, since the spoofing attack messages are typically sent
with much higher frequency than normal messages to increase the success of attack [39]. Or, we
can use the payload and detect anomalies in the time series of RPM values encoded as signals in
the message payload, e.g., abrupt increase or decrease of the RPM value in a sequence of smoothly
varying values.

Certain types of attacks are payload-based attacks, and the payload contains relevant informa-
tion and should be used to detect them, e.g., anomalous variations in the signal values contained
in the payload. But certain types of attacks are CAN ID-based attacks, e.g., for DoS, fuzzing, and
spoofing attacks shown in Figure 3 and included in the car-hacking dataset [50]; the CAN ID is the
critical feature that distinguishes the attack messages from the normal messages. However, some
related works use the payload as part of the input features for IDS, which may be problematic,
since the payloads in the public car-hacking dataset are generated randomly and form very distin-

guishing/discriminative features that are an artifact of the dataset generation process and may not be

present in real attacks. Seo et al. [42] describe the dataset generation procedure. The payloads of
the attack messages are generated randomly, hence, they are very different from the payloads of
normal messages, so of course it is very effective to use the message payload as features for Normal
vs. Attack classification. But this is an artifact of the dataset generation method, and real-world
attacks may be very different, as a smart attacker may not use random payloads for attack mes-
sages, but instead assign similar signal values to make them look like normal message payloads,
or in case of spoofing attacks, capture and replay the signal values of normal messages and use
them as attack message payloads. Therefore, at least for this dataset, the message payload does
not contain relevant information and should not be used as input features. Methods that use the
payload (e.g., References [4–6, 33, 39, 57] in Table 10) have an unfair advantage over those that use
CAN ID only for classification. For example, MTH-IDS by Yang et al. [57] has four features (“CAN
ID,” “DATA[5],” “DATA[3],” and “DATA[1]”) after feature selection as the input. It is interesting
to note that the authors who collected the public dataset have published three papers themselves
using this dataset [42, 43, 45], and all of them used CAN ID only, which is the correct approach.

Even for cases where both CAN ID and payload contain relevant information, using the CAN
ID only for detection has the following benefits:
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• It incurs lower runtime overhead, since the payload does not need to be decoded, which is
important for resource-constrained in-vehicle systems;
• It is independent of the message format/payload length, hence, is applicable to both the

classic CAN and the more recent higher-bandwidth CAN bus stands without change, e.g.,
CAN-FD with payload size of 64 Bytes [16] and CAN-XL with up to 2,048 Bytes [37]. The
larger payload size, especially for CAN-XL, may render many current payload-based meth-
ods ineffective, since the large payload field may overwhelm the CAN ID field in the input
feature space, so it may be necessary to reduce the feature dimension by feature engineering.
• Payload-based detection is likely to be application-specific. Consider RPM spoofing attacks:

The normal range and pattern of RPM values may be specific to each user/driver, and the
classifier may need to be retrained/fine-tuned for different user behavior profiles, i.e., a clas-
sifier for detecting RPM spoofing attacks that is trained on a dataset of message payloads
from a defensive driver may not work well on a test dataset from a race car driver, since the
RPM signal may have very different patterns of variation for them. However, CAN ID-based
detection is more application-neutral and more robust to user behavior variations.

6 CONCLUSIONS AND FUTURE WORK

In this article, we address the problem of CAN bus intrusion detection, with the objective of de-
tecting both KAs and any UA, and also assign fine-grained labels to detected KAs. Performance
evaluation demonstrates the effectiveness of our proposed methods, especially ACGAN-AC-RFC-
Th, a cascaded two-stage classification architecture, with the multi-class AC in the first stage for
classification of Normal and KAs, passing OOD samples to the binary RFC in the second stage for
detection of the UA class. Performance evaluation demonstrates that our method achieves both
high classification accuracy and low runtime overhead. It is also conceptually simple and user-
friendly, thanks to modern Deep Learning frameworks such as PyTorch and DNN compilers such
as TVM.

Recently, researchers have proposed an emerging class of stealthy attacks that present signifi-
cant challenges to current IDSes. Cho and Shin [13] present the bus-off attack, which exploits the
error-handling mechanism of the CAN bus to shut down victim ECUs. Bloom [7] present Weeping-
CAN, a refinement of the bus-off attack that is more stealthy and can evade detection. Kulandaivel
et al. [30] present CANnon, which leverages the peripheral clock gating feature to insert arbitrary
bits at any time instance. A future research topic is the detection and mitigation of this type of
stealthy attack, which may require secure network architectures [8], physical-layer IDS, and secure
transceivers.

APPENDIX

A ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results with different settings of the OOD threshold th, with
th = 0.96 (the optimal OOD threshold for CNN-Th) in Table 13 and th = 0.94 (the optimal OOD
threshold for ACGAN-AC-Th) in Table 14. (We use references to Figure 8 to replace the method
names to save space.) Even though they are not the optimal OOD threshold setting for ACGAN-
AC-RFC-Th, it still achieves the highest macro F1 score for both threshold values. This is consistent
with the results shown in Figure 9.
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Table 13. Performance Results with th = 0.96, the Optimal OOD

Threshold for CNN-Th

Class Method Recall(%) Precision(%) F1-Score(%)

Macro

Figure 8(a) 88.70 89.31 88.54
Figure 8(b) 96.50 96.70 96.54
Figure 8(c) 96.62 96.76 96.57
Figure 8(d) 98.95 98.98 98.95

UA (DoS)

Figure 8(a) 67.08 74.62 70.65
Figure 8(b) 96.18 88.30 92.07
Figure 8(c) 86.66 99.88 92.80
Figure 8(d) 97.34 99.88 98.59

Fuzzing

Figure 8(a) 97.12 77.72 86.34
Figure 8(b) 93.54 99.81 96.57
Figure 8(c) 97.50 92.29 94.83
Figure 8(d) 98.46 99.70 99.07

GEAR

Figure 8(a) 99.60 99.72 99.66
Figure 8(b) 99.36 99.90 99.63
Figure 8(c) 99.58 95.90 97.70
Figure 8(d) 99.66 99.34 99.50

RPM

Figure 8(a) 99.70 95.44 97.53
Figure 8(b) 99.46 100.00 99.73
Figure 8(c) 99.56 99.84 99.70
Figure 8(d) 99.66 99.94 99.80

Table 14. Performance Results with th = 0.94, the Optimal OOD

Threshold for ACGAN-AC-Th

Class Method Recall(%) Precision(%) F1-Score(%)

Macro

Figure 8(a) 88.63 89.25 88.26
Figure 8(b) 96.71 96.78 96.73
Figure 8(c) 96.62 96.76 96.57
Figure 8(d) 98.57 98.60 98.57

UA (DoS)

Figure 8(a) 59.94 79.03 68.18
Figure 8(b) 94.24 90.58 92.37
Figure 8(c) 86.66 99.88 92.80
Figure 8(d) 95.34 99.77 97.50

Fuzzing

Figure 8(a) 97.44 74.40 84.38
Figure 8(b) 95.82 99.32 97.54
Figure 8(c) 97.50 92.29 94.83
Figure 8(d) 98.80 97.98 98.39

GEAR

Figure 8(a) 99.60 99.68 99.64
Figure 8(b) 99.40 99.62 99.51
Figure 8(c) 99.58 95.90 97.70
Figure 8(d) 99.68 99.11 99.39

RPM

Figure 8(a) 99.70 94.07 96.81
Figure 8(b) 99.50 100.00 99.75
Figure 8(c) 99.56 99.84 99.70
Figure 8(d) 99.64 99.94 99.79
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