
GraphZoo: A Development Toolkit for Graph Neural Networks
with Hyperbolic Geometries

Anoushka Vyas, Nurendra Choudhary, Mehrdad Khatir, Chandan K. Reddy
Department of Computer Science, Virginia Tech, Arlington, VA, USA

{anoushkav,nurendra,khatir}@vt.edu,reddy@cs.vt.edu

ABSTRACT
Hyperbolic spaces have recently gained prominence for represen-
tation learning in graph processing tasks such as link prediction
and node classification. Several Euclidean graph models have been
adapted to work in the hyperbolic space and the variants have
shown a significant increase in performance. However, research and
development in graph modeling currently involve several tedious
tasks with a scope of standardization including data processing,
parameter configuration, optimization tricks, and unavailability
of public codebases. With the proliferation of new tasks such as
knowledge graph reasoning and generation, there is a need in the
community for a unified framework that eases the development
and analysis of both Euclidean and hyperbolic graph networks,
especially for new researchers in the field. To this end, we present
a novel framework, GraphZoo, that makes learning, designing and
applying graph processing pipelines/models systematic through ab-
straction over the redundant components. The framework contains
a versatile library that supports several hyperbolic manifolds and
an easy-to-use modular framework to perform graph processing
tasks which aids researchers in different components, namely, (i)
reproduce evaluation pipelines of state-of-the-art approaches, (ii)
design new hyperbolic or Euclidean graph networks and compare
them against the state-of-the-art approaches on standard bench-
marks, (iii) add custom datasets for evaluation, (iv) add new tasks
and evaluation criteria.

CCS CONCEPTS
• Computing methodologies → Machine learning algo-
rithms; Learning latent representations; • Information systems
→ Open source software.

KEYWORDS
graph learning, graph neural network, hyperbolic models, software

ACM Reference Format:
Anoushka Vyas, Nurendra Choudhary, Mehrdad Khatir, Chandan K. Reddy.
2022. GraphZoo: A Development Toolkit for Graph Neural Networks with
Hyperbolic Geometries. In Companion Proceedings of the Web Conference
2022 (WWW ’22 Companion), April 25–29, 2022, Virtual Event, Lyon, France.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3487553.3524241

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9130-6/22/04.
https://doi.org/10.1145/3487553.3524241

1 INTRODUCTION
Graphs have been an integral part of research in the web domain.
From inter-connected webpages that form the internet to the re-
lational databases that support the software infrastructure, devel-
opment of graph processing techniques and tools has been critical
for several web applications [9]. Recently, the advancements in this
topic has been primarily driven by the advent of neural networks,
specifically, graph neural networks (GNNs). Similar to other fields
such as Natural Language Processing and Computer Vision, re-
search in the graph domain is now suffering an overload of models,
i.e., too many new models are being developed at a rapid pace. Such
a rapid growth in model development increases the complexity of
tracking research in this area, specifically in terms of reproducibility
or reusability of the models. Furthermore, without standardization,
new researchers in this area will need to spend a significantly higher
time exploring and understanding the entire literature, and further
reproducing the models for their applications. The situation is fur-
ther aggravated by the lack of public codebases or the availability
of stand-alone codebases that work on specific datasets/tasks. In
such cases, one needs to perform several tedious tasks such as data
processing, parameter configuration, and optimization tricks to ap-
ply the models to their problem setting. The other related domains
overcame these issues by standardization with systematic frame-
works such as MatchZoo [6] and ModelZoo1. Inspired by this, we
introduce a systematic framework for research in graph processing
called GraphZoo to overcome the challenges in the graph research
community. GraphZoo contains two interfaces: (i) the GraphZoo
library that contains standard graph datasets and preprocessors,
extensible modules of Riemannian manifolds, hyperbolic layers,
and evaluation methods, and (ii) the GraphZoo investigator that
allows researchers to integrate their datasets, models, or evaluation
pipelines to compare the baselines in their experimental setups.

Using our GraphZoo framework2, researchers can:
(1) Systematically train models by using the training/testing

pipelines that include graph data pre-processors, off-the-shelf
state-of-the-art layers, models, optimization methods, objective
functions, and standard evaluation pipelines for both Euclidean
and hyperbolic spaces.

(2) Quickly develop newmodelswith the help of APIs to various
graph-based hyperbolic/Euclidean layers and manifolds.

(3) Compare new models against state-of-the-art baselines on
standard datasets with the help of pre-defined evaluation
pipelines.

(4) Perform hyper-parameter tuning by parallelly running a
rapid grid search over a set of configuration files.

1https://modelzoo.co/
2Implementation: https://github.com/AnoushkaVyas/GraphZoo

184

https://doi.org/10.1145/3487553.3524241
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3487553.3524241
https://modelzoo.co/
https://github.com/AnoushkaVyas/GraphZoo

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Vyas et al.

The GraphZoo system is built upon open-source framework [1]
with updated libraries and new interfaces. There are other libraries
in this domain such as DGL [8] and torch-geometric [4]. However,
their focus is on building layers and data processing modules for
Euclidean networks. GraphZoo is uniquely focused on improving
the accessibility to hyperbolic networks [2, 3, 5] and providing
complete evaluation pipelines for further development.

Figure 1: An overview of the GraphZoo framework.

2 GRAPHZOO LIBRARY
The overall architecture of the framework is given in Figure 1. The
framework aids the three stages of model development, namely,
data preparation, model construction, and evaluation. The library
provides a number of pre-processed datasets, popular neural net-
works (such as graph neural networks and hyperbolic neural net-
work models) as well as task-specific evaluation metrics and loss
functions. Moreover, it is convenient to change various parameters
related to data preparation, hyper-parameter tuning, and model se-
lection in the library during experimentation. The framework also
eases the process of training and testing models on new datasets
and creating novel graph processing frameworks.

The GraphZoo library primarily provides experimentation
pipelines for node classification and link prediction on graph data.
To perform these tasks, the library has three main modules, namely
data preparation, model construction, and evaluation. In our library,
as shown in Figure 2, these three modules are independent of each
other to enable user flexibility to perform all the tasks together or
separately with their own custom parameters, datasets, and models.

Figure 2: An overview of the GraphZoo library.

2.1 Data Preprocessors
The data preprocessor aims to convert the raw graph data into
the input format for the model. This module, by default, handles
benchmark graph datasets like Cora, Pubmed, Disease, and Air-
port [1]. In addition, it provides a number of processing units to
convert raw graph data to the format required depending on the
downstream task. All the processing units, take as input the fun-
damental adjacency matrix and node features and can be trivially
combined together to achieve the format requirements of different
tasks. After converting the raw dataset to the desired format, this
module provides functions to split the dataset into train, test, and
validation data depending on the default splits or user provided
splits.

2.2 Model Construction
In the model construction module, we extend the PyTorch library
with hyperbolic manifolds and layers to help users conveniently
build new architectures. The GraphZoo library provides a set of
common layers widely used in graph neural network models, such
as graph convolution (GCN), graph attention (GAT), and hyperbolic
layers (H-MLP, H-GCN, and H-GAT). The library also contains pre-
implemented modules and common graph network baselines for
easy reference and reproducibility:
• Manifolds: Euclidean, Hyperboloid, and Poincaré Ball (includes
hyperbolic objective functions).

• Optimizers: Riemannian Stochastic Gradient Descent (RSGD),
and Riemannian Adam (RADAM).

• Activations: Hyperbolic activation.
• Layers: Hyperbolic linear regressor, hyperbolic non-linear re-
gressor, Graph Convolution, Graph Attention, Hyperbolic Graph
Convolution, and Hyperbolic Graph Attention.

• Models: Encoder-decoder models for all the layers.

2.3 Evaluation
For experimentation, the library provides a variety of objective
functions for node classification and link prediction, e.g., binary
cross entropy and L2-norm for Euclidean and hyperbolic node clas-
sification, respectively. Furthermore, the library provides several
widely adopted evaluation metrics, such as Precision, ROC, and

185

GraphZoo: A Development Toolkit for Graph Neural Networks with Hyperbolic Geometries WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

F1 score. The framework provides a choice of manifolds, layers,
optimizers, activations, models, and evaluation metrics that can be
seamlessly integrated to create novel model architectures for sys-
tematic development and evaluation of graph processing pipelines.

3 GRAPHZOO INVESTIGATOR

Figure 3: A GraphZoo code snippet to run H-GCNmodel for
node classification task on CORA dataset.

Figure 4: Pseudocode for creating a newmodel in GraphZoo.

The GraphZoo investigator provides an interactive notebook in-
terface for new users to easily configure and run models which are
already implemented to learn and explore state-of-the art graph neu-
ral network models. A comprehensive tutorial including theoretical
descriptions and implementation details of various model compo-
nents is provided for speedy initiation of new researchers into the
development framework. The model is also well documented for a

better understanding to advanced users. Figure 3 provides an exam-
ple code snippet from the library to train H-GCN on Cora dataset
for the node classification task. Various other graph processing
pipelines can be similarly run with a trivial change of parame-
ters. Advanced users can create their own models and adopt new
datasets by inheriting the various layer APIs and data preprocessors
provided in the toolkit. A tutorial for the same is also included in
the framework. Figure 4 provides a pseudo-code that shows the
creation of custom encoder model to perform experiments.

4 REPRODUCIBILITY EXPERIMENTS
In this section, we discuss the datasets, and reproduce the results
of various baselines for the downstream tasks of node classification
and link prediction in networks. We also perform time and memory
analysis of the models to show the efficiency of our library3.
Datasets: The library is tested on various benchmark graph
datasets which are described below:
• CitationNetworks:Cora and Pubmed are standard benchmarks
describing citation networks where nodes are scientific papers
and edges are the citations between them. The node labels in
these datasets are academic (sub)areas. Cora contains 2,708 scien-
tific publications divided into 7 classes, and Pubmed has 19,717
publications in the area of medicine grouped into 3 classes.

• Disease PropagationTree:This dataset is taken from [1] where
they simulate the SIR disease spreading model [7]. The label of
a node is whether the node was infected or not. Based on the
model, they build tree networks, where node features indicate
the susceptibility to the disease.

• Flight Networks: Airport is a transductive dataset where nodes
represent airports and edges represent the airline routes as from
OpenFlights.org. This dataset has the size of 2,236 nodes. This
dataset is taken from [1], where the authors also augment the
graph with geographic information (longitude, latitude, and alti-
tude), and GDP of the country where the airport belongs to. They
use the population of the country where the airport belongs to
as the label for node classification.

Algorithms: We aim to reproduce the results of our algorithms,
as provided in this paper [1]. The algorithms considered in our
experiments are: Euclidean Linear (E-Linear), Multilayer Perceptron
(MLP), Graph Convolution (GCN) and their hyperbolic variants (H-
Linear, H-MLP, and H-GCN). Additionally, we also test the Graph
Attention model (GAT) and the hyperbolic variant H-GAT.
Training Setting: For the given methods, we perform a hyper-
parameter grid search on a validation set over initial learning rate,
weight decay, dropout, number of layers, and activation functions.
We measure the models’ performance on the final test set over 10
random parameter initializations. The number of dimensions is
the same for all methods, which is 128. We optimize all models
using Adam, except Poincaré embeddings which are optimized
using RiemannianAdam. The train, validation, and test splits are
the same as the ones used in [1]. We evaluate link prediction by
measuring area under the ROC curve on the test set and evaluate
node classification by measuring F1 score except for Cora and
Pubmed where we report accuracy as is standard in the literature.
3Our experiments are conducted on a RTX8000 GPU within a limit of 48 GB VRAM.

186

https://openflights.org/

WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Vyas et al.

Table 1: AUCvalues for Link Prediction (LP) and F1 scores forNodeClassification (NC) taskswith their corresponding standard
deviations over 10 random parameter initializations. Best results are given in bold.

Dataset CORA PUBMED DISEASE AIRPORT
Algorithms LP NC LP NC LP NC LP NC
E-Linear 83.62 ± 0.34 23.30 ± 0.13 85.98 ± 0.44 34.30 ± 0.57 57.74 ± 0.21 33.25 ± 0.19 92.79 ± 0.13 62.79 ± 0.54
H-Linear 84.50 ± 0.13 25.50 ± 0.37 88.21 ± 0.32 51.60 ± 0.54 61.81 ± 0.14 46.55 ± 0.36 93.49 ± 0.64 69.74 ± 0.24
MLP 84.52 ± 0.26 53.00 ± 0.74 82.60 ± 0.36 67.60 ± 0.77 72.13 ± 0.57 41.00 ± 0.35 67.86 ± 0.64 89.79 ± 0.75
H-MLP 91.28 ± 0.14 54.60 ± 0.47 94.11 ± 0.65 67.20 ± 0.43 75.02. ± 0.76 65.57 ± 0.53 92.21 ± 0.18 79.05 ± 0.24
GCN 91.32 ± 0.66 81.50 ± 0.94 85.98 ± 0.15 78.85 ± 0.49 64.72 ± 0.37 66.67 ± 0.54 90.58 ± 0.12 78.95 ± 0.17
H-GCN 94.01 ± 0.38 78.70 ± 0.54 96.55± 0.16 79.40± 0.18 90.54± 0.20 73.24± 0.30 96.30± 0.74 90.43± 0.76
GAT 93.32 ± 0.77 81.90 ± 0.34 94.54 ± 0.66 77.30 ± 0.56 70.12 ± 0.55 68.34 ± 0.48 90.65 ± 0.31 80.54 ± 0.38
H-GAT 90.01 ± 0.18 79.50 ± 0.51 93.55± 0.12 79.20± 0.34 91.52± 0.25 70.21± 0.32 94.13± 0.73 87.13± 0.46

Table 2: Time (T) given in seconds and Memory (M) given in Mebibytes (MiB) required for Link Prediction (LP) and Node
Classification (NC) tasks for various algorithms.

Dataset CORA PUBMED DISEASE AIRPORT
Task LP NC LP NC LP NC LP NC
Algorithms T M T M T M T M T M T M T M T M
E-Linear 109 911 2 935 23 5499 1 2471 3 909 31 747 40 855 1 759
H-Linear 162 875 52 955 149 5643 25 2553 5 893 51 771 88 935 4 781
MLP 28 1007 1 929 238 4035 2 913 16 839 30 767 21 743 40 893
H-MLP 27 1149 4 1053 221 5101 5 1579 7 923 3 815 255 1095 3 823
GCN 20 1063 2 985 22 4253 6 1065 11 1041 46 825 8 969 19 803
H-GCN 34 1241 7 1125 162 5363 9 1759 71 1003 119 825 428 1059 21 903
GAT 35 1209 14 1103 1051 4303 44 4203 16 1231 29 839 16 1263 21 823
H-GAT 54 1441 24 1254 92 10313 34 5247 51 1713 200 1335 568 2101 187 1615

Results and Analysis: From the results, provided in Table 1, we
note that we are able to reproduce the baseline results [1] (within
a margin of error). Table 2, which presents the time and memory
required by the algorithms, clearly shows that the requirements
are in line with the original implementation, as well as, within
the limits of a standard training/evaluation setup for the graph
processing models.

5 DEMO PLAN
We will present our toolkit in the following way: (i) use a poster to
describe the overall flow of a graph processing pipeline and explain
the role of our system’s modules in the different components, (ii)
guide the audience through the entire process of building and eval-
uating a new model, including the dataset preprocessing, model
construction, hyper-parameter tuning, and evaluation, (iii) describe
the mathematical fundamentals of hyperbolic models as needed in
the design of hyperbolic networks with their benefits and limita-
tions, and (iv) provide future avenues of applicability in the area of
graph processing and hyperbolic networks.

6 CONCLUSION
We presented GraphZoo, a versatile library which helps in system-
atically learning, using and designing graph processing pipelines.
While there has been considerable amount of work done for each
of the independent modules/models, this methodical way of com-
bining them enables the framework to quickly deliver what can be
of significant value to the researchers working with graphs.

ACKNOWLEDGMENTS
This work was supported in part by the US National Science Foun-
dation grants IIS-1838730 and Amazon AWS credits.

REFERENCES
[1] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic

graph convolutional neural networks. In Advances in neural information processing
systems, Vol. 32. Curran Associates, Inc., Vancouver, Canada.

[2] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-
dan K. Reddy. 2021. Self-Supervised Hyperboloid Representations from Logical
Queries over Knowledge Graphs. In Proceedings of the Web Conference 2021 (Ljubl-
jana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY,
USA, 1373–1384. https://doi.org/10.1145/3442381.3449974

[3] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-
dan K. Reddy. 2022. ANTHEM: Attentive Hyperbolic Entity Model for Product
Search. In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining (Virtual Event, AZ, USA) (WSDM ’22). Association for Computing
Machinery, New York, NY, USA, 161–171. https://doi.org/10.1145/3488560.3498456

[4] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[5] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic neural
networks. In Advances in neural information processing systems. 5345–5355.

[6] Jiafeng Guo, Yixing Fan, Xiang Ji, and Xueqi Cheng. 2019. MatchZoo: A Learning,
Practicing, and Developing System for Neural Text Matching. In Proceedings of
the 42Nd International ACM SIGIR Conference on Research and Development in
Information Retrieval (Paris, France). ACM, New York, NY, USA, 1297–1300.

[7] Raymond S. Koff. 1992. Infectious diseases of humans: Dynamics and control.
By R.M. Anderson and R.M. May, 757 pp. Oxford: Oxford University Press, 1991.
$95.00. Hepatology 15, 1 (1992), 169–169.

[8] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li,

187

https://doi.org/10.1145/3442381.3449974
https://doi.org/10.1145/3488560.3498456

GraphZoo: A Development Toolkit for Graph Neural Networks with Hyperbolic Geometries WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France

and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-Performant
Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315 (2019).

[9] Ping Wang, Khushbu Agarwal, Colby Ham, Sutanay Choudhury, and Chandan K
Reddy. 2021. Self-supervised learning of contextual embeddings for link prediction
in heterogeneous networks. In Proceedings of the Web Conference 2021. 2946–2957.

188

	Abstract
	1 Introduction
	2 GraphZoo Library
	2.1 Data Preprocessors
	2.2 Model Construction
	2.3 Evaluation

	3 GraphZoo Investigator
	4 Reproducibility Experiments
	5 Demo Plan
	6 Conclusion
	Acknowledgments
	References

