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ABSTRACT
Product search is a fundamentally challenging problem due to the
large-size of product catalogues and the complexity of extracting
semantic information from products. In addition to this, the black-
box nature of most search systems also hamper a smooth customer
experience. Current approaches in this area utilize lexical and se-
mantic product information to match user queries against products.
However, these models lack (i) a hierarchical query representation,
(ii) a mechanism to detect and capture inter-entity relationships
within a query, and (iii) a query composition method specific to
e-commerce domain. To address these challenges, in this paper, we
propose an AtteNTive Hyperbolic EntityModel (ANTHEM), a novel
attention-based product search framework that models query enti-
ties as two-vector hyperboloids, learns inter-entity intersections
and utilizes attention to unionize individual entities and inter-entity
intersections to predict product matches from the search space.
ANTHEM utilizes the first and second vector of hyperboloids to de-
termine the query’s semantic position and to tune its surrounding
search volume, respectively. The attention networks capture the
significance of intra-entity and inter-entity intersections to the final
query space. Additionally, we provide a mechanism to comprehend
ANTHEM and understand the significance of query entities towards
the final resultant products. We evaluate the performance of our
model on real data collected from popular e-commerce sites. Our
experimental study on the offline data demonstrates compelling
evidence of ANTHEM’s superior performance over state-of-the-art
product search methods with an improvement of more than 10%
on various metrics. We also demonstrate the quality of ANTHEM’s
query encoder using a query matching task.
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1 INTRODUCTION
In e-commerce, a majority of customers begin their journey on
websites via a product search functionality. When a user searches
for an item, they would potentially see a ranked (or tiled) list of
products that best match the intent of the query. User queries are
often vague, broad, short, and do not follow any specific natural
language structure. Additionally, the catalogue for e-commerce
websites is ever growing, and rapidly changing. The above reasons
compelled with the need to show an array of related, yet comple-
mentary and substitute items makes it hard to match and show
appropriate results to these queries.

Product search heavily influences both user behavior and expe-
rience. Not only do unsuitable results upset user experience, but
the black-box nature of current search systems does not allow re-
searchers to gain insight into the problems of querying process.
Thus, the only source of feedback is the final set of search results.
Being able to interpret these search results will allow researchers to
gain insight into the system and subsequently improve both their
query comprehension and query processing methods [10, 24, 33].

Figure 1: Product search framework. This paper focuses on
improving the Product Matching module, optimized for re-
call in semantic matching and precision in ranking.

Current search frameworks, as shown in Figure 1, include two
major modules for retrieving the product matches for a given in-
put query [28]; (i) a matching phase that generates a set of items
deemed appropriate to the query, and (ii) a ranking phase that ranks
these items in a certain order of suitability. Traditional approaches
for matching [21, 41] lexically match queries to an inverted in-
dex to retrieve all products that contain the query’s words. Such
methods do not understand the query’s semantic intent of hyper-
nyms (sneakers vs running shoes), synonyms (blue vs sapphire) and
antonyms (sugar-free vs sugary). Additionally, these methods, gen-
erally include lemmatization as a preprocessing step, which loses
morphological information (running vs run) and cannot capture
out-of-vocabulary (OOV) words. Recent approaches [18, 28] learn a
joint query-product matching model with character-trigram tokens
(instead of lemmatized words) as inputs to deep learning encoders.
The character trigrams allow morphological complexity and han-
dle the OOV words [4] while the deep learning encoders capture
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semantic information from both the query and products. However,
these approaches are limited due to the following challenges:
(1) Hierarchical structure: Existing methods do not leverage the

inherent hierarchy present in the product catalogues. This moti-
vates the need for using hyperbolic spaces that better conform
to the latent anatomy of product data compared to their Eu-
clidean counterparts [11].

(2) Dynamic query space: Current product matching approaches
utilize a fixed threshold (top-K retrieval) to return items in
the match set. However, general queries like men shoes should
match onto a larger portion of the catalogue than narrower
queries like nike men’s red running shoes. This necessitates
the query representation to be spatially-aware, i.e., covering a
broader space of items for general queries.

(3) User query composition: Inspired by text processing, current
methods compose queries as a sequence of semantic tokens, e.g.,
𝑃 (nike adidas) = 𝑃 (adidas|nike)𝑃 (𝑛𝑖𝑘𝑒). However, the product
queries are, generally, composed of independent tokens with
hierarchical connections. Thus, query composition depends
upon capturing the complex hierarchical intersection/union
between item tokens and their individual semantic information,
e.g., 𝑃 (nike adidas) = 𝑃 (nike ∪ adidas)𝑃 (𝑛𝑖𝑘𝑒)𝑃 (𝑎𝑑𝑖𝑑𝑎𝑠).

Figure 2: Overview of the proposed ANTHEM model. The
query entities are encoded in the hyperbolic space as hyper-
boloids. Attention over the individual entities and their in-
tersections results in thefinal search spacewhich ismatched
against the product embeddings.

Figure 3: Hierarchy of products in the catalogue.

To alleviate the above challenges, we propose AtteNTiveHyperbolic
Entity Model (ANTHEM), illustrated in Figure 2, a novel attentive
joint-learning framework that learns spatially-aware query repre-
sentations. The representations capture the query’s hierarchical
relations, and learns geometric operations (union and intersection)
to match them with products. In addition to this, we provide an
explainability mechanism that allows researchers to understand
the ANTHEM’s internals and provide explainable search results.

In most of the industrial e-commerce settings, one would observe
that products invariably lie in a hierarchy (see Figure 3) and rela-
tions between them are either hierarchical (nike shoes ⊂ shoes) or
independent (nike ∩ adidas = ∅). Thus, unlike current approaches,
we aim to preserve the hierarchical relations in addition to the
semantic features. Hyperbolic spaces have proven to be more effec-
tive than Euclidean spaces at modeling such hierarchical relations
[7, 11, 34]. Thus, we learn representations of our products as vec-
tors in a hyperbolic space. Consequentially, we also need to learn
our query representations in the hyperbolic space. However, the
query’s search space varies based on its broadness and relies on
hierarchical relationships between its entities. To handle the query
broadness, ANTHEM models the queries as hyperboloids with two
hyperbolic vectors; the center and limit. The center defines the lo-
cation of a query hyperboloid in the hyperbolic semantic space and
its limit determines the search space (or volume) around the center.
Thus, ANTHEM is capable of learning variable search volumes de-
pending on the scope of a query. ANTHEM applies attention over
individual tokens and their intersections to capture the significance
of hierarchical relations, respectively, to the final search results in a
hyperbolic Poincaré ball of unit radius. The activation units of the
attention layers help analyze and explain our model’s search results
for a query, thus making ANTHEM more interpretable compared
to other methods. To the best of our knowledge, there is no existing
work that models spatially-aware queries or utilizes attention in
hyperbolic spaces to capture hierarchical relations.

Through a variety of experiments, we show that ANTHEM out-
performs state-of-the-art baselines in product search, while being in-
terpretable. To understand the semantic capabilities of ANTHEM’s
query encoder in isolation, we test it on query-matching classi-
fication. In addition, we analyze the contribution of ANTHEM’s
individual components to the overall performance through an abla-
tion study. To summarize, the contributions of this paper include:

(1) A novel product search framework, AtteNTive Hyperbolic En-
tity Model (ANTHEM) that utilizes token intersection/union
and attention networks to compose queries as spatially-aware
hyperboloids in a Poincaré ball, i.e., the query broadness is
captured by the volume of hyperboloids.

(2) A mechanism that utilizes attention units’ activation to under-
stand the internal working of ANTHEM and explain its product
search mechanism on sample queries.

(3) Analysis of ANTHEM’s isolated query encoder and its ability to
capture significant semantic features through the task of query
matching on a popular e-commerce website.

(4) An extensive set of empirical evaluation to study the perfor-
mance of ANTHEM as a product search engine on a real-world
consumer behavior dataset retrieved from a popular e-commerce
website against state-of-the-art baselines.

The rest of this paper is organized as follows: Section 2 dis-
cusses the relevant background. Section 3 formulates the product
search problem and explains the proposed ANTHEM framework.
In Section 4, we describe the real-world e-commerce datasets, state-
of-the-art baselines and evaluation metrics used to evaluate the
proposed model. Section 5 concludes the paper.
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2 RELATEDWORK
In this section, we review various product search and semantic
matching methods studied in the literature. We will also discuss
several existing techniques that are developed for hyperbolic spaces.

2.1 Product Search
Product search algorithms are primarily motivated by existing
works on search engines in the fields of Information Retrieval (IR)
and Natural Language Processing (NLP), where the goal is to learn
semantic information from queries and documents. However, prod-
uct search mainly differs from traditional search in two key aspects;
(i) product titles tend to be shorter than documents and (ii) signals
(i.e., purchase information) are sparser than click-through data. Tra-
ditional approaches [2, 41] rely on lexical information to construct
inverted indices and match queries with product titles. However,
thesemethods do not consider semantic informationwhich is imper-
ative to handle synonymy and hypernymy [32]. DESM model [26]
successfully leverages Word2Vec [22] vectors to rank documents
for web search. Furthermore, Diaz et al. [9] expand the queries with
neighboring semantic words (synonyms). These methods are able to
capture semantic information, but cannot handle out-of-vocabulary
(OOV) words or typographical errors. Additionally, these bag-of-
words model does not capture the sequential information of sen-
tences. DSSM model [18] employs Siamese networks with shared
weights to match query and documents with a contrastive loss
function based on click-through data. Another significant addition
to DSSM is the use of character-trigrams instead of complete words,
which can effectively handle OOV words and typographical er-
rors. C-DSSM [17] and R-DSSM [29] replace the dense layers in the
DSSM model with convolutional and recurrent layers, respectively,
in order to handle sequential information. Another line of work
is DRMM [14] which utilizes a vocabulary interaction matrix in
order to capture local semantic information. MatchPyramid [30]
extends this approach further by using a convolution operation
over the interaction matrix. DUET [23] combines the semantic and
lexical matching benefits of DSSM and DRMM to obtain better re-
sults. However, these approaches show limited results on ad-hoc
retrieval tasks. Nigam et al. [28] focus on product search on a prac-
tical e-commerce setting with a large number of query-product
pairs and demonstrate the benefits of factorized models (DSSM)
over interaction models (DRMM). Furthermore, Guo et al. [16] and
Wang et al. [37] use grid-based search and meta-learning to im-
prove the search experience. [27] use an adversarial model to learn
hard-to-classify query-product pairs and [1, 20] improve product
search by aggregating information from multiple languages.

2.2 Hyperbolic Spaces
One recent significant advancement in modeling hierarchical struc-
tures (such as the ones present in product catalogues) is the use of
hyperbolic spaces. Ganea et al. [11] show that hyperbolic spaces
better capture the inherent anatomy of hierarchical datasets com-
pared to their Euclidean counterparts. The authors propose a Graph
Neural Network and provide mathematical formulations for various
gyrovector operations that are necessary for modeling network ar-
chitectures. Gyrovector operations for Poincaré ball of radius 𝑐 are
Riemannian metric (𝑔H𝑥 ), Möbius addition (⊕𝑐 ), Möbius subtraction

(⊖𝑐 ), exponential map (exp𝑐𝑥 ),and Möbius scalar product (⊙𝑐 ).

𝑔H𝑥 B 𝜆2𝑥 𝑔E where 𝜆𝑥 B
2
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𝑛
𝑐 (5)

Here, B denotes assignment of Möbius operations. 𝑔E = I𝑛 is the
Euclidean identity metric tensor and ∥𝑥 ∥ is the Euclidean norm of
𝑥 . 𝜆𝑥 is the conformal factor between the Euclidean and hyperbolic
metric tensor. It is set to a conventional curvature of -1 [11].

Recently, hyperbolic spaces have been successfully leveraged
to learn representations of graph networks [13] and knowledge
graphs [5, 38]. Given the hierarchical nature of product catalogue,
we extend hyperbolic functions to 2-dimensional geometries in
ANTHEM to improve its performance for product search.

3 THE PROPOSED ANTHEMMODEL
In this section, we will first discuss the problem setup for product
search and query-matching, and then describe the different layers
and overall architecture of ANTHEM (illustrated in Figure 4).

3.1 Problem Setup and Notations
3.1.1 Product Search. Given the query set Q, for query 𝑞 ∈ 𝑄 ,
let {𝑠+1 , 𝑠

+
2 , .., 𝑠

+
|𝑆+ |} ∈ 𝑆+ and {𝑠−1 , 𝑠

−
2 , .., 𝑠

−
|𝑆− |} ∈ 𝑆− be the set of

products with positive and negative purchase signal, respectively,
i.e., for a given query, positive samples were the items purchased
and negative samples were not purchased by the user from the given
search results. The primary goal of product search is to recommend
𝑆+ for a query 𝑞. To achieve this, we train ANTHEM to optimize a
model 𝑃𝜃 parameterized by 𝜃 such that:
𝑦+𝑖 = 𝑃𝜃

(
𝑠𝑖 ∈ 𝑆+ |𝑞𝑖 , 𝜃

)
, 𝑦−𝑖 = 𝑃𝜃 (𝑠𝑖 ∈ 𝑆− |𝑞𝑖 , 𝜃 ) , 𝑦+𝑖 + 𝑦

−
𝑖 = 1

𝜃 = argmin
𝜃

©«−
|𝑆+ |∑
𝑖=1

𝑦𝑖 log
(
𝑦+𝑖

)
−
|𝑆− |∑
𝑖=1
(1 − 𝑦𝑖 ) log

(
𝑦−𝑖

)ª®¬
where for a given query 𝑞𝑖 , the probability of 𝑠𝑖 being purchased and
not purchased is provided by ANTHEM as 𝑦+

𝑖
and 𝑦−

𝑖
, respectively.

𝑦𝑖 denotes the Boolean ground truth purchase signal which is equal
to 1, if product 𝑠𝑖 is purchased for query 𝑞𝑖 and 0, otherwise.

3.1.2 Query Matching. Due to the computational intensity of prod-
uct search, most systems maintain pre-processed results for fre-
quent queries [2]. Hence, it is more efficient to match a new query to
an existing query result. In this problem, we aim to formulate query-
matching as a multi-class classification task where the class labels
define the similarity between query-pairs. Let 𝐷 = {(𝑞𝑖 , 𝑞 𝑗 , 𝑦𝑖 𝑗 )}
be the training dataset, where 𝑞𝑖 and 𝑞 𝑗 are queries and 𝑦𝑖 𝑗 ∈ 𝑌
is a multi-class categorical label denoting the relation between
the queries; for example, query-pairs (𝑞𝑎, 𝑞𝑏 ), (𝑞𝑎, 𝑞𝑐 ) and (𝑞𝑎, 𝑞𝑑 )
have labels 𝑦𝑎𝑏 = 𝑐𝑙𝑎𝑠𝑠1, 𝑦𝑎𝑐 = 𝑐𝑙𝑎𝑠𝑠2 and 𝑦𝑎𝑑 = 𝑐𝑙𝑎𝑠𝑠3.

The primary goal of query-matching is to predict class 𝑦𝑖 𝑗 for a
query-pair (𝑞𝑖 , 𝑞 𝑗 ). To this end, ANTHEM applies the query encoder
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Figure 4: The overall architecture of our proposed ANTHEM model. The model encodes the queries’ search space as a set of
hyperboloids using attention over its entities and inter-entity intersections. The products are encoded as hyperbolic vectors
with a self-attention on their char-trigrams. Finally, ANTHEM calculates the distance between product vectors and query
hyperboloids and utilizes softmax to output a probability distribution over the products.

to optimize a model 𝑋𝜙 with parameters 𝜙 such that:

𝑤𝑦𝑐 =
| (𝑞𝑖 , 𝑞 𝑗 , 𝑦𝑖 𝑗 ) ∈ 𝐷 : 𝑦𝑖 𝑗 = 𝑦𝑐 |

|𝐷 |

𝜙 = argmin
𝜙

©«−
|𝐷 |∑
𝑖=1

|𝑌 |∑
𝑗=1

𝑤𝑦𝑖 𝑗𝑦𝑖 𝑗 log
(
𝑃𝜙

(
𝑦𝑖 𝑗 |𝑞𝑖 , 𝑞 𝑗 , 𝜙

) )ª®¬
where 𝑤𝑦𝑐 is the sampling weight of class 𝑦𝑐 and |.| denotes the
number of elements in the set.

The queries 𝑞 ∈ 𝑄 and products 𝑠 ∈ 𝑆 are natural language
text encoded as m-hot sparse character trigrams (𝑞, 𝑠 ∈ R |𝑉 |, |𝑉 | =
48, 8071). Applying them directly significantly increases the number
of parameters, hence, we utilize an embedding layer (𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 :
R |𝑉 | → R𝑑 , 𝑑 is empirically set to 128) to compress the raw em-
beddings and represent the semantic position of character-trigram
𝑞𝑖 ∈ 𝑞 as center (𝑐𝑒𝑛(𝑞𝑖 ) ∈ R𝑑 ). Additionally, we add a limit pa-
rameter (𝑙𝑖𝑚(𝑞𝑖 ) ∈ R𝑑 ) initialized at zero to capture the trigram’s
spatial awareness. Hence, the final Euclidean box embedding 𝐵𝑞𝑖 is
characterized by (𝑐𝑒𝑛(𝑞𝑖 ), 𝑙𝑖𝑚(𝑞𝑖 )) ∈ R2𝑑 :

𝐵𝑞𝑖
==

{
𝑣 ∈ R𝑑 : 𝑐𝑒𝑛(𝑞𝑖 ) − 𝑙𝑖𝑚(𝑞𝑖 ) ≤ 𝑣 ≤ 𝑐𝑒𝑛(𝑞𝑖 ) + 𝑙𝑖𝑚(𝑞𝑖 )

}
3.2 Layers of the ANTHEM
3.2.1 Hyperbolic Transformation Layer. The embedding layers learn
representations in the Euclidean spaces. In order to model the hier-
archical relationships between products more effectively, we trans-
form the embeddings to a hyperbolic space. The transformation
from Euclidean (E𝑛, 𝑔E) to hyperbolic Poincaré ball (H𝑛, 𝑔H) is an
O(1) operation defined by the Riemannian manifold H𝑛 = {𝑥 ∈
R𝑛 : ∥𝑥 ∥ < 1} and metric, 𝑔H as given in Eq. (1). The Euclidean

148,807 is the total number of character trigrams with English characters and numbers.

box 𝐵𝑞𝑖 is transformed to a hyperboloid 𝐻𝑞𝑖 ∈ H2𝑑 with function
𝑓ℎ𝑦𝑝 (𝐵𝑞𝑖 ) = 𝐻𝑞𝑖 as:

𝐻𝑞𝑖
==

{
𝑣 ∈ H𝑑 : 𝑔H

𝑐𝑒𝑛 (𝑞𝑖 ) ⊖𝑐 𝑔
H
𝑙𝑖𝑚 (𝑞𝑖 ) ≤ 𝑣 ≤ 𝑔H

𝑐𝑒𝑛 (𝑞𝑖 ) ⊕𝑐 𝑔
H
𝑙𝑖𝑚 (𝑞𝑖 )

}
where the final hyperboloid 𝐻𝑞𝑖 , defined by a 2-vector enclosure, is
a hyperbolic counterpart of a Euclidean rectangle.

(a) Intersection Layer (b) Intersection of Hyperboloids

Figure 5: Intersection Layer in ANTHEM and its interpreta-
tion in the hyperbolic space. (a) Intersection Layer in AN-
THEM. Centers are aggregated using Attention and limits
are aggregated with a Minimum layer. (b) Hyperboloid IJCD
is the intersection of Hyperboloids ABCD and EFGH.

3.2.2 Intersection Layer. The customer intent in a query may not
always be the union of its entities and could also mean an inter-
section between some parts of it, e.g., the query nike shoes is an
intersection of brand entity nike and object entity shoes. To solve
this, we learn the relation between different entities through inter-
section operation on 2d-spaces, previously defined for Euclidean
space in Query2Box [31]. We extend the given Euclidean intersec-
tion function to the hyperbolic space and define the intersection of
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queries 𝑞𝑖 𝑗 = {𝑞𝑖 , 𝑞 𝑗 } as 𝐻𝑞𝑖 𝑗 :

𝐻𝑞𝑖 𝑗 =

(
𝑐𝑒𝑛

(
𝐻𝑞𝑖 𝑗

)
, 𝑙𝑖𝑚

(
𝐻𝑞𝑖 𝑗

))
(6)

𝑐𝑒𝑛

(
𝐻𝑞𝑖 𝑗

)
=

∑
𝑛=𝑖, 𝑗

𝑎𝑛 ⊙𝑐 𝑐𝑒𝑛
(
𝐻𝑞𝑛

)
; 𝑎𝑛 =

𝑒𝑥𝑝𝑐 (𝑓 (𝐻𝑞𝑛 ))∑
𝑛 𝑒𝑥𝑝

𝑐 (𝑓 (𝐻𝑞𝑛 ))
(7)

𝑙𝑖𝑚

(
𝐻𝑞𝑖 𝑗

)
= 𝑀𝑖𝑛

(
𝑙𝑖𝑚

(
𝐻𝑞𝑖

)
, 𝑙𝑖𝑚

(
𝐻𝑞 𝑗

))
(8)

where ⊙𝑐 is the Möbius scalar product, 𝑓 (.) : H2𝑑 → H𝑑 is the
multilayer perceptron (MLP), 𝜎 (.) is the sigmoid function, 𝑀𝑖𝑛(.)
and 𝑒𝑥𝑝𝑐0 (.) are the element-wise minimum and Möbius exponenti-
ation functions, respectively. The new intersection center and limit
(shown in Figure 5) are aggregated by an attention layer [35] over
the centers and shrinking the limits with a minimum over queries.
The main intuition here is that the semantic position (or) center
(cen) of a set’s intersection is the weighted sum of its entities and
the space boundary (or) limit (lim) is the least of all the entities’
boundaries.

3.3 Query Search Model
For a query containing 𝑛 character trigrams, the individual query
entity embeddings 𝐻𝑞 = {𝐻1, 𝐻2, ..., 𝐻𝑛} ∈ H2𝑑 and intersection
embeddings 𝐻𝑞∩ = {𝐻11, 𝐻12, ..., 𝐻𝑛𝑛} ∈ H2𝑑 do not contribute
equally to the final search hyperboloid. We capture this varying
significance to scale the embeddings using self-attention networks
[35]. The hyperboloid entity 𝐻𝑖 ∈ 𝐻𝑞 ∪ 𝐻𝑞∩ is scaled to 𝑒𝑖 ∈ H2𝑑
with function 𝑓𝑎𝑡𝑡 :

𝑓𝑎𝑡𝑡 (𝐻𝑖 ) = 𝑒𝑖 =
∑
𝑗

𝑒𝑥𝑝𝑐 (𝛼𝑖 𝑗 )∑
𝑖 𝑒𝑥𝑝

𝑐 (𝛼𝑖 𝑗 )
𝐻𝑖 ; 𝛼𝑖 𝑗 =

𝐻𝑇
𝑖
𝐻 𝑗
√
4𝑑

(9)

Given a query 𝑞 containing𝑚 character-trigram entities, the query
encoder returns a search space 𝑄𝑆 (𝑞) which is a set of𝑚 and𝑚2

attention-scaled single and intersection hyperboloids, i.e., 𝑄𝑆 (𝑞) =
𝑒1, .., 𝑒𝑖 , .., 𝑒𝑚 (𝑚+1) . Product 𝑠 is encoded with a traditional attention
network in the hyperbolic space [13] (shown in Figure 4). For a
product 𝑠 , the product encoder returns a hyperbolic vector 𝑠 ∈ H𝑑 .
Thus, unlike traditional approaches [18, 28], our query encoding
is a set of hyperboloids and the product encoding is a hyperbolic
vector. Thus, we need a specialized loss function that checks if the
product vector is inside the query hyperboloids. The loss function 𝐿
needs to capture the distance between 𝑠 and𝑄𝑆 (𝑞), which is simply
the distance between 𝑠 and the nearest hyperboloid in 𝑄𝑆 . Hence,
we design our distance function as:

𝑑𝑖𝑠𝑡 (𝑠,𝑄𝑆 (𝑞)) = 𝑀𝑖𝑛

({
𝑑ℎ𝑦𝑝 (𝐻𝑖 , 𝑠)

}
∀𝐻𝑖 ∈ 𝑄𝑆 (𝑞)

)
(10)

𝑑ℎ𝑦𝑝 (𝑠, 𝐻𝑖 ) = 𝑑𝑜𝑢𝑡 (𝑠, 𝐻𝑖 ) ⊕𝑐 𝛾𝑑𝑖𝑛 (𝑠, 𝐻𝑖 ) (11)
𝑑𝑜𝑢𝑡 (𝑠, 𝐻𝑖 ) = ∥𝑀𝑎𝑥 (𝑑H (𝑠, 𝐻𝑖𝑚𝑎𝑥

), 0) +𝑀𝑎𝑥 (𝑑H (𝐻𝑖𝑚𝑖𝑛
, 𝑠), 0)∥1

𝑑𝑖𝑛 ((𝑠, 𝐻𝑖 ) = ∥𝑐𝑒𝑛(𝐻𝑖 ) ⊖𝑐 𝑀𝑖𝑛(𝐻𝑖𝑚𝑎𝑥
, 𝑀𝑎𝑥 (𝐻𝑖𝑚𝑖𝑛

, 𝑠))∥1
𝐻𝑖𝑚𝑖𝑛

= 𝑐𝑒𝑛(𝐻𝑖 ) ⊖𝑐 𝑙𝑖𝑚(𝐻𝑖 ), 𝐻𝑖𝑚𝑎𝑥
= 𝑐𝑒𝑛(𝐻𝑖 ) ⊕𝑐 𝑙𝑖𝑚(𝐻𝑖 )

𝑑H (𝑥,𝑦) = cosh−1
(
1 + 2 ∥𝑥 − 𝑦∥2(

1 − ∥𝑥 ∥2
) (
1 − ∥𝑦∥2

) )
where 𝑑H (𝑥,𝑦) is the hyperbolic distance between hyperbolic vec-
tors 𝑥 and 𝑦. 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 is the distance of vector from the center

and limits of the hyperboloid, respectively. 𝛾 is a scalar weight
given to 𝑑𝑖𝑛 . 𝛾 = 0 implies a hard hyperboloid limit border and
all vectors are either considered inside or outside, whereas, 𝛾 = 1
implies no hyperboloid limit, thus, 𝑑ℎ𝑦𝑝 is the distance between
hyperboloid’s center and a product vector. For our experiments, we
set 𝛾 to 0.5. Choudhary et al. [7] show that the super-linear nature
of 𝑑ℎ𝑦𝑝 increases density of entity clusters as we move down the
hierarchy of a dataset, thus, increasing distance between different
entities at the same level and decreasing distance between entities
with the same parent. To convert the distance function’s output to a
probabilistic distribution, we use a softmax layer [12]. Additionally,
the loss function needs to minimize the distance between 𝑄𝑆 and
𝑠 ∈ 𝑆+ and maximize it between 𝑄𝑆 and 𝑠 ∈ 𝑆−. Thus, the final loss
for products (𝑆 = 𝑆+ ∪ 𝑆−) is a cross-entropy function calculated
as follows:

𝑦𝑖 = 𝑃 (𝑠𝑖 |𝑞) =
𝑒𝑥𝑝𝑐 (𝑑𝑖𝑠𝑡 (𝑠𝑖 , 𝑄𝑆))∑

𝑠𝑖 ∈𝑆 𝑒𝑥𝑝
𝑐 (𝑑𝑖𝑠𝑡 (𝑠𝑖 , 𝑄𝑆))

(12)

𝐿(𝑦,𝑦) = ©«−
|𝑆 |∑
𝑖=1

𝑦𝑖 log (𝑦𝑖 ) − (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )
ª®¬ (13)

Algorithm 1: ANTHEM training for Product Search
Data: Training data 𝐷 = (𝑞 ∈ 𝑄, 𝑠 ∈ 𝑆,𝑦 ∈ {0, 1});
Output: Predictor 𝑃𝜃 ;

1 Initialize model parameters 𝜃 ;
2 while not converged do
3 𝑙 = 0; # Initialize loss
4 for {(𝑞, 𝑠,𝑦) ∈ 𝐷} do
5 𝑞 ← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝜃 (𝑞), 𝑠 ← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝜃 (𝑠);
6 # Encode query 𝑞
7 𝐻𝑞 = 𝑓ℎ𝑦𝑝 (𝑞);
8 𝐻𝑞∩ = {𝐻𝑖 ∩ 𝐻 𝑗 }∀𝑖, 𝑗 : 1→ 𝑛; using Eq. (6)
9 𝑄𝑆 = 𝑓𝑎𝑡𝑡 (𝐻𝑞 ∪ 𝐻𝑞∩ ) using Eq. (9)

10 # Encode product 𝑠
11 𝐻𝑠 = 𝑓ℎ𝑦𝑝 (𝑠);
12 𝑒𝑠 = 𝑓𝑎𝑡𝑡 (𝑠);
13 # Calculate distance and update Loss 𝑙
14 𝑦 =

𝑒𝑥𝑝𝑐 (𝑑𝑖𝑠𝑡 (𝑠,𝑄𝑆))∑
𝑠∈𝑆 𝑒𝑥𝑝𝑐 (𝑑𝑖𝑠𝑡 (𝑠,𝑄𝑆)) ; using Eqs. (10),(12)

15 𝑙 = 𝑙 + 𝐿(𝑦,𝑦); using Eq. (13)
16 # Update 𝜃 with back-propagation
17 𝜃 ← 𝜃 − ∇𝜃 𝑙 ;
18 end
19 end
20 return 𝑃𝜃

3.4 Implementation Details
We implemented ANTHEM using Keras [6] on eight Nvidia V100
GPUs. For gradient descent in hyperbolic space, we adopt Riemann-
ian Adam [3] with an initial learning rate of 0.0001 and standard
𝛽 values of 0.9 and 0.999 and apply ReLU activation function [25].
The sensitivity of ANTHEM to hyper-parameters is presented in
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Appendix D. For our empirical studies, we learn hyperboloid em-
beddings of (2 × 128) dimensions (d=128). The maximum sequence
length of character trigram entities from queries and products is set
to 28 and 128, respectively. This is set to fit the model’s parameters
in our GPUs. The sequence limit of 28 completely covers ≈ 94% of
the queries in our datasets. Algorithm 1 provides the pseudo-code
for training ANTHEM2 on the task of product search3.

4 EXPERIMENTAL SETUP
This section will provide various experimental studies that analyze
ANTHEM’s performance and compare with existing state-of-the-
art baseline methods. We aim to answer the following research
questions (RQs) in this paper.
• RQ1:Are the embeddings from proposed ANTHEMmodel better
compared to those from state-of-the-art baseline methods?
• RQ2: Does ANTHEM’s query encoder capture semantic and
hierarchical features for query-matching task?
• RQ3:What is the contribution of individual components to the
overall performance of ANTHEM?
• RQ4: Can we explain the search results produced by ANTHEM?
Table 1: Basic statistics of the datasets used in experiments.

Dataset Class Train Valid Test
E-commerce # Positive 742,500 106,071 212,144
Product Search # Negative 3,861,002 551,571 1,103,145
E-commerce # Exact 456,652 65,236 130,473
Query Matching # Substitute 41,372 5,962 12,284

# Complement 4,483 651 1,271
# Irrevelant 22,865 3,266 6,714

Public E-commerce # Positive 4,786 684 1,367
Search Relevance # Negative 9,582 1,369 2,738

4.1 Datasets
We conducted experiments on various product search and query-
matching datasets. Table 1 presents additional details about the
data distribution for these datasets.
• E-commerce Product Search4: This dataset consists of 6.6M query-
product pairs (retrieved from a popular e-commerce website)
with a purchase signal which is a Boolean indicator that denotes
whether a product was purchased5 or never purchased for a given
query. The dataset is completely anonymized, and subsampled
to enable efficient model training.
• Public E-commerce Search Relevance6: This publicly available
dataset consists of 20K labeled query-product pairs (columns
query, product_title) with a purchase signal collected from the
following five e-commerce websites: eBay, OverStock, Shop.com,
Target, and Walmart. The purchase signal is a Boolean indicator
based on the column relevance that denotes if a product is relevant
if 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 > 0.5, else the product is considered irrelevant.
• E-commerce QueryMatching4: This dataset consists of 750K query-
query pairs (𝑞𝑖 , 𝑞 𝑗 ) with a matching class, retrieved from a pop-
ular e-commerce website. The matching class will be one of the
following four classes: (i) Exact: 𝑞𝑖 and 𝑞 𝑗 are exact matches and
produce the same results, e.g., ps4 games and playstation 4 games.

2Our code: https://github.com/amazon-research/hyperbolic-embeddings
3Algorithm for query matching task is provided in Appendix C.
4Proprietary dataset
5To avoid anomalies, we only consider products purchased more than a predefined
number of times.

6https://data.world/crowdflower/ecommerce-search-relevance

(ii) Substitute: Parts of 𝑞𝑖 and 𝑞 𝑗 can be substituted with one an-
other, e.g., nike shoes and adidas shoes. (iii) Complement: 𝑞𝑖 and
𝑞 𝑗 are complementary in meaning, e.g., phones and phone screen
protectors. (iv) Unrelated: 𝑞𝑖 and 𝑞 𝑗 are completely unrelated to
each other, e.g., phones and shoes.

4.2 Baselines
To compare ANTHEM against the state-of-the-art frameworks, we
select the following baselines based on previous research.

• ARC-II [17] utilizes a joint learning Siamese convolutional net-
work to semantically match natural language sentences.
• KNRM [39] is another neural ranking model that uses a kernel
pooling over cosine similarity between the query and document,
followed by a dense layer to compute probabilistic scores.
• DRMM [14] is a neural ranking model that uses a histogram-like
interaction vector to bin cosine similarity between the query and
document into predefined intervals, followed by a dense layer to
compute probabilistic scores.
• aNMM [40], similar to DRMM, computes a fixed-dimensional
interaction vector by binning the cosine similarity between each
of the query and document words. However, this model uses
the total sum of the similarity between those word pairs as the
features instead of using the counts of word-pairs.
• MatchPyramid [30] computes an interaction matrix between
queries and document, and then passes it through CNN layers
with dynamic pooling to compute sentence similarity.
• C-DSSM [32] is a twin-tower architecture that utilizes convolu-
tion networks to capture sequential information from character
trigrams as inputs. This is currently the most scalable framework
and applied in most of the product matching systems [28].
• DUET [23] combines the semantic and lexicalmatching strengths
of C-DSSM and DRMM, in a deep convolutional architecture, to
compute sentence similarity.
• MV-LSTM [36] employs multiple positional sentence represen-
tations to match sentences. The architecture aggregates an in-
teraction matrix between different Bi-LSTM encoded positional
sentence representations through multi-layer perceptrons.
• BERT [8] utilizes transformers to capture the co-dependence of
different sentence units as attentionweights. For this, BERT trains
a language model by masking certain inputs. We adopt the large
pre-trained BERT model and fine-tune it for our experiments.

The baselines are implemented in the Matchzoo framework [15]
and the hyper-parameters are tuned using grid-search.

4.3 RQ1: Performance on Product Search
To analyze the efficacy of the query representations obtained from
ANTHEM’s query encoder, we compare it against the state-of-the-
art baselines on different product search datasets. ANTHEM takes
a query-product pair as input and outputs the probability that the
product belongs to the query’s search space (𝑃 (𝑠 |𝑞)). The probabil-
ity is calculated ∀𝑠 ∈ 𝑆 and the results are ranked to get the final
search results. We evaluate our model using 5-fold cross validation
on the following standard ranking metrics: Normalized Discounted
Cummulative Gain (NDCG@K), Mean Average Precision (MAP),
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Table 2: Performance comparison of the proposed ANTHEM architecture with several state-of-the-art baselines across propri-
etary and public product search datasets and evaluationmetrics. E-ANTHEM is the Euclidean variant of ANTHEMwithout the
Hyperbolic transformation layer. The results presented for the proprietary datasets are relative (in %) to the baseline ARC-II
model. Exact evaluation results are presented for the public datasets. The best and second best results are highlighted in bold
and underline, respectively. The symbol * indicates statistically significant improvement over BERT with a p-value ≤ 0.05.

Datasets E-commerce Product Search (in %) Public E-commerce Search Relevance (in %)
Models NDCG@3 NDCG@5 NDCG@10 MAP MRR NDCG@3 NDCG@5 NDCG@10 MAP MRR
ARC-II 0 0 0 0 0 59.2 58.1 54.4 58.2 48.5
KNRM 12.5 12.8 15.0 12.8 16.7 66.6 65.5 62.6 65.6 56.6
DUET 13.1 13.3 15.4 13.4 14.7 66.9 65.8 62.8 66.0 55.6
DRMM 20.5 22.8 24.4 20.3 21.7 71.3 71.3 67.7 70.0 59.0
aNMM 21.0 23.9 26.8 20.3 22.9 71.6 72.0 69.0 70.0 59.6
MatchPyramid 25.6 25.6 26.8 25.0 34.7 74.3 72.9 69.0 72.8 65.3
C-DSSM 31.3 29.4 44.7 32.6 27.8 77.7 75.2 78.7 77.1 61.9
MV-LSTM 34.7 33.3 55.7 34.3 37.7 79.7 77.5 84.7 78.2 66.8
BERT 38.6 37.2 65.9 40.1 51.0 82.1 79.7 90.2 81.5 73.2
E-ANTHEM 49.4 46.7 66.7 51.2 62.9 88.5 85.2 90.7 88.0 79.0
ANTHEM 51.1∗ 48.9∗ 80.9∗ 53.5∗ 65.4∗ 89.5∗ 86.5∗ 98.4∗ 89.3∗ 80.2∗

Figure 6: Example results for sample queries shown by our model and the best performing baseline. The results given are the
third result for the query. The first two results are not shown here because they were equally appropriate for the query and
the figure aims to show the differences between BERT and our model.

and Mean Reciprocal Rank (MRR). The datasets are split into train-
ing, valid and test sets of ratio 7:1:2, as given in Table 1. The results
on the test set are presented in Table 2.

From the results, we observe that ANTHEM outperforms the
state-of-the-art baselines across datasets by 10%−15% in all the eval-
uation metrics. Additionally, we can notice that utilizing Euclidean
spaces also improves the performance by ≈ 9%. This is empirical
evidence that ANTHEM’s spatially-aware query hyperboloids form
better search space for E-commerce queries. Another point of note
is that BERT (the best-performing baseline) has over 100M parame-
ters, whereas, ANTHEM is able to achieve better results with only
6.37M parameters. In addition, we qualitatively analyze the results
of our model and the state-of-the-art baselines. From the sample,
shown in Figure 6, we observe that BERT is not able to capture the
correct significance of brand intent (“aveno” in query and “aveeno”
in products) from the query and emphasizes on the actual product
type. ANTHEM, on the other hand, is able to provide more appro-
priate results due to the use of character-trigrams and inter-entity
relations that are able to infer the importance of brand information
and relation between “aveeno” and “moisturizer”, respectively. In
the second case, for the query pokemon movie, BERT focuses on the
brand information and cannot differentiate the product type from
the given title, thus, recommending an unsuitable product, whereas,
the inter-entity relation in ANTHEM define the query as an inter-
section between “pokemon” and “movie” entities, consequentially,
providing more appropriate results. In the last case, “playstation 4”
is a short query with an ambiguous user intent. However, we notice

that our model leverages hierarchical brand information to select
the more pertinent product, whereas, BERT returns an improper
result due to the ambiguity. This demonstrates the importance of
hierarchical information in product search.

4.4 RQ2: Performance on Query Matching
To analyze the efficiency of our model’s query encoder in isolation,
we compare it against the state-of-the-art baselines on the query
matching dataset. In this experiment, we pair the query encoder
part of ANTHEM with a matching function (cosine similarity) in a
siamese learning framework. The architecture takes a query pair as
input and outputs the similarity between the queries. We evaluate
our model with 5-fold cross validation on the standard classifica-
tion metrics;Accuracy, F-score, and Area under ROC (AUC). The
datasets are split into training, valid and test sets of ratio 7:1:2, as
given in Table 1. The results are presented in Table 4.

From the results, we observe that ANTHEM is able to outper-
form the state-of-the-art baselines across datasets by 4%− 8% in the
evaluation metrics. E-ANTHEM, utilizing Euclidean spaces also im-
proves the performance by 3% − 6%. This is empirical evidence that
ANTHEM’s query encoder is able to capture the most significant
semantic features.

4.5 RQ3: Ablation Study
In this experiment, we study the importance of different compo-
nents that contribute to the overall performance of our proposed
model. The components studied in our ablation experiments are:
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(a) Mapping brands to products (b) Translating semantically similar phrases (c) Semantic/lexical matching

Figure 7: Explainability Study. Significance of query entities (y-axis) to the product entities (x-axis) analyzed through the final
attention layer of the ANTHEM product search model. (a) ANTHEM is able to learn a matching from brand tony perroti to
item tokens leather and briefcase, which enables better query-product matching. (b) ANTHEM is able to semantically map
query term daily moisturizer to a lexically different term in the product lotion. (c) ANTHEM is able to leverage hierarchical
brand from products wilson sgx and match to queries with no direct semantic/lexical similarity golf clubs.
Table 3: Ablation study. Performance comparison of the contributions from different components: Hyperbolic layer (H), In-
tersection layer (I), and Limit parameter (L). The results presented for the proprietary dataset are relative to the performance
of first row (w/o L w/o I w/o H). ‘w/o’ stands for without. For public datasets, exact evaluation metrics are presented.
Datasets E-commerce Product Search (in %) Public E-commerce Search Relevance (in %) E-commerce Query Matching (in %)
Models NDCG@3 NDCG@5 NDCG@10 MAP MRR NDCG@3 NDCG@5 NDCG@10 MAP MRR Accuracy F-score AUC
w/o L w/o I w/o H 0.0 0.0 0.0 0.0 0.0 41.0 40.9 28.5 39.2 31.2 0.0 0.0 0.0
w/o L w/o I 6.4 6.2 7.5 6.0 7.7 58.0 57.1 47.7 56.3 47.6 4.0 3.7 3.0
w/o I 23.4 22.9 36.8 24.5 30.2 77.2 75.0 74.2 76.2 67.4 54.8 54.8 55.2
ANTHEM 41.5 39.6 67.3 43.5 52.6 89.5 86.5 98.4 89.3 80.2 104.8 99.3 99.6

Table 4: Performance comparison of the proposed AN-
THEM model with several state-of-the-art baselines on the
E-commerce querymatching dataset and evaluationmetrics.
The results presented are relative to the baseline ARC-II.

Models Accuracy (in %) F-score (in %) AUC (in %)
ARC-II 0.0 0.0 0.0
KNRM -4.1 -24.9 -19.1
DRMM 25.1 15.4 33.1
aNMM -1.3 -8.6 4.0
MatchPyramid -14.5 -17.8 -9.7
C-DSSM 21.2 21.7 30.1
DUET -2.3 -4.7 0.9
MV-LSTM 71.1 21.2 48.9
BERT 40.1 33.5 54.7
E-ANTHEM 43.2 40.3 61.4
ANTHEM 43.9 40.8 62.6

(i) Hyperbolic layer (hierarchical features), (ii) Intersection layer
(capturing inter-entity relations) and (iii) Limit parameter (spatial-
awareness). The results of our experiments are presented in Table 3.

The results show that the Intersection layer and Limit parameter
contribute ≈ 25% to the overall performance of ANTHEM. Thus, we
conclude that capturing inter-entity relationships in spatially-aware
representations aid the performance of product search. Furthermore,
removing the Hyperbolic layer decreases the performance by an
additional 3% − 8% which shows the contribution of hierarchical
information to the overall performance.

4.6 RQ4: Explainability Study
In this section, we analyze the internal working and significance
of the query to the final results by utilizing the activation units
of ANTHEM’s attention layers. The attention units of a few sam-
ple queries are depicted in Figure 7 which provide a mechanism

for researchers to understand the internal functions of our model.
ANTHEM is able to match brands to products (Fig. 7a), translate
semantically similar phrases (Fig. 7b) and leverage hierarchical in-
formation for semantic/lexical query-product matching (Fig. 7c).
Thus, we conclude that concurrently utilizing product’s hierarchi-
cal information (as Hyperboloids) and inter-product relation (as
intersection) leads to better product representations. Also, such in-
sights allow other researchers to independently analyze our model’s
suitability in their own applications and facilitate its integration.

5 CONCLUSION
In this paper, we presented ANTHEM, a novel product search
framework that utilizes inter-token intersection/union and atten-
tion networks to encode query search spaces as spatially-aware
hyperboloids in a Poincaré ball. We emphasized the utility of lever-
aging hierarchical information in product search and the need for
spatially-aware query representations in the e-commerce domain.
We performed an extensive set of empirical evaluation to study
the performance and interpretability of our model as a product
search engine on real-world query data collected from a popular
e-commerce website. Finally, we validated the capability of our
isolated query encoder in a query-matching task and analyzed the
contribution of its components through an ablation study. Addition-
ally, given the multitude of industrial applications, we also provide
an explainability mechanism for researchers to analyze and inte-
grate ANTHEM in their own architectures. We hope to provide a
new perspective towards composing e-commerce queries as inter-
section and union of their individual tokens, instead of processing
them as a sequence of tokens.
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A BROADER IMPACT
ANTHEM has the potential to have a large impact on product
search and discovery. A vast majority of customers across countries
start their shopping journey on e-commerce websites via a search
functionality. Given the several millions of customers who interact
with these systems, any improvements in performance of these
systems (however small they are) has a large impact on the user
base. Our work is aimed at practitioners and researchers in the
broader data mining and machine learning communities who work
in the domain of representation learning, particularly learning in
the presence of hierarchical information.

Current systems model customer behaviors to provide more
contextual information to improve search results. However, this
customer information is both sensitive in nature and also a substan-
tial source of bias [19]. In ANTHEM, we aim to provide a possible
alternative which considers possible intents and statistically infers
the right intent through historical purchases. Additionally, we de-
sign our model in a joint learning framework so that it conforms
to existing architectures for easier deployment and is applicable to
additional problems such as web search and semantic matching.

B COMPUTATIONAL COMPLEXITY
To analyze ANTHEM’s potential of deployment in an industrial
setting, we need to study the computational both in terms of its
training and inference times. The model’s parameter study, training
time and inference run-time are provided in Table 5. To main-
tain a fair comparison, we do not include the overheads involved
in the inference process such as loading the model and the re-
quest processing time of servers. We observe that the run-time of
our models ANTHEM and E-ANTHEM are slightly higher than
previous methods. The reason for this is the use of intersection
and union which are quadratic operations. However, we note that
𝑙𝑒𝑛𝑔𝑡ℎ(𝑞𝑢𝑒𝑟𝑦) << 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑛𝑠𝑤𝑒𝑟𝑠) in product search engines,
thus, the added complexity does not affect the runtime significantly.
The difference in runtime is ∼ 10 seconds for 657K validation sam-
ples. Additionally, we also report a much lower number of model
parameters in our models compared to the best performing baseline,
i.e., BERT. This implies a lower training period (an advantage of
∼ 10, 000 seconds) which is beneficial to product search due to the
dynamic nature and large-scale of product catalogues. Thus, we
conclude that the slight increase in computational complexity is a
fair trade-off for product search production systems given the lower
number of model parameters (implying a lower training period)
and additional interpretability of our models.

C QUERY-MATCHING ALGORITHM
Algorithm 2 provides the pseudo-code for training ANTHEM for
the task of query matching. The algorithm utilizes cosine similarity
to match the queries and return a probabilistic similarity measure
for optimization (gradient back-propagation) using cross-entropy
loss. The cosine similarity between query representations (set of
hyperboloids) 𝑄𝑆𝑞 and 𝑄𝑆𝑟 is calculated as:

𝑦 = 𝜇

( ∥𝑄𝑆𝑞𝑖 .𝑄𝑆𝑟 𝑗 ∥
∥𝑄𝑆𝑞𝑖 ∥∥𝑄𝑆𝑟 𝑗 ∥

)
∀𝑄𝑆𝑞𝑖 ∈ 𝑄𝑆𝑞, 𝑄𝑆𝑟 𝑗 ∈ 𝑄𝑆𝑟 (14)

where 𝜇 (.) and ∥.∥ represent the mean and Euclidean norm func-
tions, respectively.

Table 5: Comparative analysis of computational complex-
ity. 𝑞 and 𝑎 are the number of character trigrams in query
and product sequences. The four final columns present the
Training time taken per epoch (T) and Inference time per
sample (I) of our model on different search datasets. The
number of training and testing samples are given in Table 1.
‘msec’ stands for milliseconds.

No. of E-commerce Public E-commerce
Model Model Product Search Search Relevance

Parameters T(sec) I(msec) T(sec) I(msec)
ARC-II 1,742,793 564 104 2.4 0.4
KNRM 1,667,522 540 100 2.3 0.4
DRMM 5,002,823 1,620 280 6.9 1.2
aNMM 9,037,903 2,927 338 12.5 1.4
Match Pyramid 1,660,361 538 100 2.3 0.4
C-DSSM 3,720,066 1,205 310 5.1 1.3
DUET 5,379,580 1,742 300 7.4 1.3
MV-LSTM 5,283,381 1,711 296 7.3 1.3
BERT 109,483,778 12,042 334 51.5 1.4
E-ANTHEM 6,374,554 2,064 332 8.8 1.4
ANTHEM 6,374,960 2,064 332 8.8 1.4

Algorithm 2: ANTHEM training for Query Matching
Data: Training data 𝐷 = (𝑞, 𝑟 ∈ 𝑄,𝑦 ∈ {1, ..., 𝑦𝑐 });
Output: Predictor 𝑋𝜙 ;

1 Initialize model parameters 𝜙 ;
2 while not converged do
3 𝑙 = 0; # Initialize loss
4 for {(𝑞, 𝑟,𝑦) ∈ 𝐷} do
5 𝑞 ← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝜙 (𝑞);
6 𝑟 ← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝜙 (𝑟 );
7 # Encode query 𝑞
8 𝐻𝑞 = 𝑓ℎ𝑦𝑝 (𝑞); using Eq. (1)
9 𝐻∩ = {𝐻𝑖 ∩𝐻 𝑗 }∀𝑖, 𝑗 : 1→ 𝑛;𝐻𝑖 , 𝐻 𝑗 ∈ 𝐻𝑞 ; via Eq. (6)

10 𝑄𝑆𝑞 = 𝑓𝑎𝑡𝑡 (𝐻𝑞 ∪ 𝐻∩) via Eq. (9)
11 # Encode query 𝑟
12 𝐻𝑟 = 𝑓ℎ𝑦𝑝 (𝑟 );
13 𝐻∩ = {𝐻𝑖 ∩ 𝐻 𝑗∀𝑖, 𝑗 : 1→ 𝑛;𝐻𝑖 , 𝐻 𝑗 ∈ 𝐻𝑟 };
14 𝑄𝑆𝑟 = 𝑓𝑎𝑡𝑡 (𝐻𝑟 ∪ 𝐻∩)
15 # Calculate distance and update Loss 𝑙

16 𝑦 = 𝜇

(
∥𝑄𝑆𝑞𝑖 .𝑄𝑆𝑟 𝑗 ∥
∥𝑄𝑆𝑞𝑖 ∥ ∥𝑄𝑆𝑟 𝑗 ∥

)
∀𝑄𝑆𝑞𝑖 ∈ 𝑄𝑆𝑞, 𝑄𝑆𝑟 𝑗 ∈ 𝑄𝑆𝑟

17 𝑙 = 𝑙 + 𝐿(𝑦,𝑦); via Eq. (13)
18 # Update 𝜙 with back-propagation
19 𝜙 ← 𝜙 − ∇𝜙𝑙 ;
20 end
21 end
22 return 𝑋𝜙

D SENSITIVITY TO HYPER-PARAMETERS
In this section, we study the sensitivity of our model with respect
to the hyper-parameters. First, we analyze the convergence of our
model across epochs and then we proceed to analyze the loss with
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(a) Training and Validation loss across epochs (lower is better). (b) Sensitivity of loss to dropout rate (lower is better).

(c) Sensitivity of loss to query and product length (lower is better). (d) Sensitivity of loss to embedding dimensions (lower is better).

Figure 8: Illustration of parameter sensitivity of the proposed ANTHEMmodel.

varying dropout rates and lengths of query/product titles. Here,
the length refers to number of character trigrams in the query or
product. The results are presented in Figure 8.

In Figure 8a, we observe that ANTHEM is able to converge in
under 50 epochs with Riemannian Adam optimizer (details provided
in Section 3.4). Figure 8b illustrates the advantages of using dropout
for efficient convergence and avoid overfitting. We observe that a
dropout rate of 0.5 results in the most optimal solution and, hence,
we adopt that in ANTHEM. In addition to this, we also need to find
the most optimal query and product length. The model’s complexity
directly depends on these lengths. Hence, an optimal solution will
significantly affect the training time. From Figure 8c, we observe
that a query length of 32 with a product length of 128, provides the
most optimal result. However, due to computational constraints,
i.e., GPU VRAM < 8GB, we utilize a maximum query length of
28 and product length of 128. Finally, in the case of embedding
units, we observe from Figure 8d that 128 is the optimal number of
dimensions for least loss, and hence we utilize that for our model.

The final hyper-parameters adopted for E-ANTHEM and AN-
THEM are query length of 28, product length of 512 and dropout
rate of 0.5. For the baselines, the query length is 128 and product
length is 512. The dropout rate for ARC-II, KNRM, DUET, DRMM,
and aNMM is 0.2 and for MatchPyramid, C-DSSM, MV-LSTM, and
BERT it is 0.5. The above hyper-parameters for the baselines are de-
termined after extensive experimentation for the best performance.

E NUMBER OF GPUS
Figure 9 shows the dependence of training time on the number of
GPUs, which depicts the feasibility of ANTHEM’s parallelization.
We notice that ANTHEM has a lower training time than the best
performing comparison baseline, BERT.

Figure 9: Total training time taken by ANTHEM and the
best baseline (BERT)model using different number of GPUs
(lower is better).
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