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Abstract: In this paper, we present a procedure for implementing field-based high-throughput plant
phenotyping (HTPP) that can be used in resource-constrained research programs. The procedure
relies on opensource tools with the only expensive item being one-off purchase of a drone. It includes
acquiring images of the field of interest, stitching the images to get the entire field in one image,
calculating and extracting the vegetation indices of the individual plots, and analyzing the extracted
indices according to the experimental design. Two populations of groundnut genotypes with different
maturities were evaluated for their reaction to early and late leaf spot (ELS, LLS) diseases under field
conditions in 2020 and 2021. Each population was made up of 12 genotypes in 2020 and 18 genotypes
in 2021. Evaluation of the genotypes was done in four locations in each year. We observed a strong
correlation between the vegetation indices and the area under the disease progress curve (AUDPC)
for ELS and LLS. However, the strength and direction of the correlation depended upon the time
of disease onset, level of tolerance among the genotypes and the physiological traits the vegetation
indices were associated with. In 2020, when the disease was observed to have set in late in medium
duration population, at the beginning of the seed stage (R5), normalized green-red difference index
(NGRDI) and variable atmospheric resistance index (VARI) derived at the beginning pod stage (R3)
had a positive relationship with the AUDPC for ELS, and LLS. On the other hand, NGRDI and VARI
derived from images taken at R5, and physiological maturity (R7) had negative relationships with
AUDPC for ELS, and LLS. In 2021, when the disease was observed to have set in early (at R3) also in
medium duration population, a negative relationship was observed between NGRDI and VARI and
AUDPC for ELS and LLS, respectively. We found consistently negative relationships of NGRDI and
VARI with AUDPC for ELS and LLS, respectively, within the short duration population in both years.
Canopy cover (CaC), green area (GA), and greener area (GGA) only showed negative relationships
with AUDPC for ELS and LLS when the disease caused yellowing and defoliation. The rankings of
some genotypes changed for NGRDI, VARI, CaC, GA, GGA, and crop senescence index (CSI) when
lesions caused by the infections of ELS and LLS became severe, although that did not affect groupings
of genotypes when analyzed with principal component analysis. Notwithstanding, genotypes that
consistently performed well across various reproductive stages with respect to the vegetation indices
constituted the top performers when ELS, LLS, haulm, and pod yields were jointly considered.

Keywords: field-based high-throughput plant phenotyping; resource-constrained; groundnut; early
leaf spot; late leaf spot; canopy cover; green area (GA); greener area (GGA); normalized green-red
difference index (NGRDI); crop senescence index (CSI)
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1. Introduction
1.1. Background

Research and development (R&D) in developing countries is characterized by low
funding. In most of the 15 countries that form the Economic Community of West African
States (ECOWAS) sub-region, the 1% gross domestic product (GDP) allocation target set
for research funding [1] has not been achieved [2]. As a result, most of the funding for
R&D as well as higher education training come from foreign governments and other donor
agencies [2]. These developing countries, ironically, have the highest population of resource-
poor farmers with limited capability to guard against unfavorable environmental conditions
such as drought, pest and diseases. Indeed, the developing countries are predicted to be
the most affected by the adverse effects of climate change [3].

To help the resource-poor farmers of Sub-Saharan Africa, plant breeders need to
develop cultivars for this region with novel traits that withstand increased drought, pests
and disease outbreaks and with yield advantage over the existing cultivars. However, crop
breeding in African countries for tolerance to stresses such as drought is largely a ‘numbers
game’ that relies on field-based evaluation of thousands of progenies [4]. Currently, there
is a pressing need to accurately measure an increasingly large number of plants and plant
traits with the goal of providing realistic qualitative and quantitative analyses of plants and
plant traits that can help crops better adapt to low-input agriculture and resource-limited
environments [5]. Plant breeders of the Sub-Saharan sub-region, therefore, need to adopt
innovative strategies to accurately screen large number of progenies, amid low funding
and random environmental conditions.

1.2. The Importance of Groundnut and Its Yield Reduction Factors in Ghana

As in many other tropical and semi-arid tropical countries, in Ghana, groundnut is one
of the most important leguminous crops, cultivated by smallholder farmers for its edible
oil and protein [6,7]. In addition, groundnut can enhance soil fertility by fixing up to 108 kg
nitrogen ha−1 [8]. Despite its importance, the yield gap between potential and realized pod
yield on farmers’ fields is high. This has been attributed mainly to various abiotic and biotic
stresses including drought and temperature extremes [7,9] and leaf spot diseases [10]. These
yield-reducing factors have resulted in the ongoing development of improved cultivars by
integrating breeding with physiological trait modeling [11], selection of leaf spot tolerance-
related traits [10] and aggressive multi-location testing [8,12]. However, progress has been
slow due to the length of time required to develop a new groundnut cultivar. For instance,
at the Council for Scientific and Industrial Research Institute-Savanna Agricultural Research
Institute (CSIR-SARI) in northern Ghana, it takes up to eight years to reach F8 generation
lines because of the unimodal rainfall weather pattern. However, off-season generation
advancements can be achieved to allow two cycles per year and reduce the breeding
period by half. In this way, two new peanut cultivars were released in 2018 (SARINUT
1 and 2) [13].

1.3. The Scenario of Field Crop Research in Ghana

Traditionally, plant breeders who conduct designed experiments on field crops to
measure phenological parameters measure only a small number of plants to represent the
entire plot. For instance, a typical groundnut experiment with an objective to evaluate
advanced breeding lines uses a plot size of 6.4–8 m2. This gives about 160 plants per
plot [10,12] out of which about five plants (3% of the expected plant population) are
randomly selected each time agronomic data are to be collected. The selection of just five
plants out of the lot in a plot has been due to the laborious nature of manual measurement
of plant traits which necessitates the careful selection of a predetermined number of plants
that must be representative enough in each plot.

Aside from the reduced number of plants, the current measurement protocols are
subjective and prone to human error. For instance, the scoring of early and late leaf
spot (ELS and LLS) disease severity uses a nine-point scale [10,12,14–16], where one is
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complete resistance and nine is complete defoliation/death [17]. The scale assumes that the
groundnut leaf spot diseases develop from the base of the plant and progresses towards
the terminal bud, with defoliation of basal leaves of infected plants visible at a severity
score of four when the topmost leaves are still without lesions. However, groundnut
genotypes with lesions from ELS and/or LLS on lower and topmost leaves and yet having
all leaves intact have been observed on the field. This usually causes subjectivity in the
scoring process making the severity rating of these genotypes dependent upon whom
does the assessment rather than the true susceptibility of the genotype. Although this
approach has been successfully employed for the development of new groundnut cultivars,
it is important that more efficient phenotyping approaches are deployed to improve the
precision of data collection in the future.

1.4. Why Practise High-Throughput Plant Phenotyping in Ghana?

High-throughput crop genotyping and other molecular techniques were meant to
ensure the accuracy required in the assessment of traits on large numbers of plants within a
short time frame. It is facilitated by advances in next-generation sequencing and genotyping
technologies enabling the generation of large-scale genomic data and subsequent resources
such as molecular markers [18]. As a result, the last two decades have witnessed the
deployment of molecular breeding approaches to complement field phenotyping programs.
The potential advantages of molecular breeding techniques include the possibility to target
multiple traits for improvement, and the ability to tap new alleles from wild related species.
After mapping a number of economically important traits, several success stories of high-
throughput crop genotyping, including translational genomics, have become available
in many crops including groundnut [19–21]. Among the success stories of molecular
techniques is the development of high oleate groundnut to enhance health benefits and shelf-
life using marker-assisted selection and backcrossing [19], and development of varieties
possessing resistance to root-knot nematode [22,23].

However, since results from high-throughput crop genotyping usually require valida-
tion through field evaluation, effective and objective phenotyping protocols are needed to
ensure that true and promising genotypes are identified during field validation. Hence,
for field phenotyping to better augment molecular techniques, high-throughput plant
phenotyping (HTPP) has become a promising alternative to the manual procedures during
field evaluation. HTPP is the simultaneous production of many data points per observation
for a particular trait of interest [24,25] and for multiple plots at the same time. It offers
a non-invasive approach to data collection on several genotypes within a short period,
and permits repeated measures on the same sample, giving breeders the opportunity to
classically track processes (such as disease development) over time [24]. The extreme ends
of HTPP are robotic phenotyping platforms (where single plants grow exclusively under
artificial conditions) and satellite imagery [26]. Between these two extremes are various
gadgets including handheld tools (e.g., SPAD meter, Green Seeker), mobile phenotyp-
ing platforms and unmanned aerial vehicles (e.g., light drones) [27–31]. The use of such
technologies can improve the precision associated with data collection, leading to high
heritability estimates and eventually increased genetic gains or response to selection.

The CSIR-SARI Groundnut Improvement Program currently uses handheld sensors
to provide speed and efficiency in data collection. Although their use has led to the
discovery of key physiological traits associated with ELS and LLS tolerance [10,32,33]
when working with smaller population sizes, the errors associated with their use in larger
populations can be remarkable. For instance, an attempt to use a handheld RGB camera
during the field phenotyping of the African core collection of 300 genotypes in the 2020
and 2021 growing seasons required nine hours (7 a.m. to 4 p.m.) on one replicate [33].
This, therefore, calls for alternative methods that could augment existing technologies
for enhanced field phenotyping. In this paper, we (i) present a procedure for applying
drone-based photogrammetry that largely relies on open-source resources as an HTPP
method to determine the stage at which the vegetation indices strongly associate with ELS
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and LLS diseases’ severity in groundnut, and (ii) characterize the reaction of advanced
groundnut breeding genotypes to ELS and LLS diseases as well as pod yield as affected by
the environment.

2. Materials and Methods
2.1. Study Area, Characteristics of Genotypes and Field Design

The study was conducted at four experimental sites, Nyankpala, Silbele, Wa, and
Manga of CSIR-SARI in 2020 and 2021 under rainfed conditions. Three of the sites
(Nyankpala, Silbele, and Wa) fall within the Guinea Savanna zone whereas Manga falls
within the Sudan Savanna agro-ecological zone. Both agro-ecologies have a unimodal
rainfall with annual rains ranging between 900 and 1200 mm. These sites, which are all
located in the northern part of Ghana, were recently reported to constitute a complex
mega-environment for groundnut [12]. Due to the complex nature of the environment,
results from a single site’s study in one year may not be representative enough for the entire
environment. As a result, testing advanced genotypes ready to undergo on-farm trials in
all the locations across several years as part of a multilocation evaluation is necessary to
identify good candidates.

Two sets of populations that are distinct with respect to days to maturity totaling
24 genotypes were used in 2020 (Table 1). The populations were part of two breeding
populations’ evaluation performed at CSIR-SARI. One of the populations has genotypes
that mature in 105–120 days after planting (DAP) (medium duration) whereas the other
population has genotypes that mature in 90–105 DAP (short duration) in northern Ghana.
The medium and short duration populations require at least 1767 and 1521 ◦C cumulative
degree days [11] in northern Ghana to reach physiological maturity, respectively. In 2021,
six additional genotypes with similar maturity classification were added to each population
tested in 2020, raising the total number of genotypes tested under each set to 18.

Table 1. List of genotypes used and the years they appeared in the experiments.

Medium Duration (MD) Short Duration (SD)

No. Genotype Years No. Genotype Years

1 ICGV 176044 2020; 2021 1 ICGV 176217 2020; 2021
2 ICGV 176107 2020; 2021 2 ICGV 176166 2020; 2021
3 ICGV 176084 2020; 2021 3 ICGV 176222 2020; 2021
4 ICGV 176067 2020; 2021 4 ICGV 176160 2020; 2021
5 ICGV 176129 2020; 2021 5 ICGV 176214 2020; 2021
6 ICGV 176073 2020; 2021 6 ICGV 176151 2020; 2021
7 ICGV 176033 2020; 2021 7 ICGV 176023 2020; 2021
8 ICGV 176225 2020; 2021 8 ICGV 176156 2020; 2021
9 ICGV 176124 2020; 2021 9 ICGV 176019 2020; 2021
10 ICGV 176203 2020; 2021 10 ICGV 176049 2020; 2021
11 NKATIESARI 2020; 2021 11 CHINESE 2020; 2021
12 GAF 1723 2020; 2021 12 ICGV-IS 08837 2020; 2021
13 GAF 1665 2021 13 ICGV 15403 2021
14 ICGV 176051 2021 14 ICGV 176004 2021
15 ICGV 176112 2021 15 ICGV 176010 2021
16 ICGV 176124b 2021 16 ICGV 176053 2021
17 ICGV 176192 2021 17 ICGV 176154 2021
18 ICGV-SM 10523 2021 18 YENYAWOSO 2021

At each of the study sites in each year, experiments involving the individual popula-
tions were laid side-by-side. In 2020 the experiments were laid out in a lattice design with
four sub-blocks per replicate. In 2021, a row-column design was used. Three replications
per experiment were used in both years. Each plot consisted of eight rows of 2 m length.
The intra- and inter-row planting distances were 0.1 and 0.4 m, respectively. Planting
was done on relatively flat land after ploughing and harrowing. Fertilizer in the form of
NPK with sulfur, zinc and boron (11:22:21 + 5 S + 0.7 Zn + 0.5 B) was applied 14 days after
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planting at the rate of 20 N, 40 P, 40 K, 10 S, 1.4 Zn and 1 B all in kilogram per hectare. Weeds
were controlled by uprooting at the ground level using a hand hoe. The study sites are
known hotspots for ELS and LLS, hence leaf spot infection was allowed to occur naturally.

2.2. Conventional (Manual) Data Collection

In northern Ghana, ELS and LLS diseases occur jointly on the field. Scoring of ELS and
LLS disease severity among the genotypes was done using the nine-point scale as described
earlier [10,17]. The ELS lesions were distinguished from the LLS lesions using the yellow
hallow around the ELS. The scoring was therefore done at R5 and R7 which represent the
beginning of kernel development and maturity, respectively [34]. During scoring at each
stage, each of the individual plots were assessed and given a single score. Quantitative
variables were derived from the severity scores using the area under disease progress curve
(AUDPC) as reported in [10] to overcome the limitation posed by the nominal disease
scores. Plant productivity in the form of haulm yield (HYLD, kg ha−1) and pod yield
(PYLD kg ha−1) were also determined at maturity. The conventional data were recorded
electronically using Field Book [35].

2.3. HTPP (Drone-Based) Data Capture
2.3.1. Tools Used

The hardware and software tools used in this study are listed in Table 2. Technically,
the highest investment required was the acquisition of a drone. All software tools used
were open source. Unlike the conventional data, the HTPP data were recorded only
in Nyankpala.

Table 2. Hardware and software tools used in this study.

No. Tool Purpose Commercial/Open Source

Hardware tools

1 UAV quadcopter with an RGB camera (DJI,
California, USA) Take images Commercial

2 Smart phone (Apple Inc., Accra, Ghana) Augment drone Commercial/personal
3 Laptop (Dell, Accra, Ghana) Process and analyze images/data Commercial/personal

Software tools

1 UAV Forecast (version 2.6.3) Monitor weather Open source
2 Pix4Dcapture (version 4.10.0) Mission planning Open source
3 WebODM (version 1.9.11) Generate orthomosaics Open source
4 QGIS (version 3.16.14) Georeference orthomosaics Open source
5 R statistical software (version 4.2.0) Platform for image analysis packages Open source
6 UASTools (version 0.4.0) Generate shapefile for microplots Open source
7 FieldImageR (version 0.3.3) Analyze images Open source

2.3.2. Flight Planning and Image Acquisition

Drone flights were carried out at R1, R3, R5 and R7 in 2020, and at R3, R5 and R7
in 2021. On the day of each flight, the UAV Forecast tool (https://www.uavforecast.com
(accessed on 3 May 2020)) was used to determine the appropriate time within the day
when the drone could be safely flown. It gives recommendation for a particular location
based on time of sun rise and set, temperature, wind speed, gust speed, wind direction,
precipitation probability, cloud cover and visibility. The iOS version of Pix4Dcapture tool
(https://www.pix4d.com/product/pix4dcapture (accessed on 3 May 2020)) was used to
set flight parameters using an iPhone. On the app, the selected mission was GRID for 2D
images, camera angle set at 90◦, image overlap for both front and side set at 80% and a
flight altitude of 20 m. The in-built GPS of the drone was used to assist in defining the
target area of the field which should be captured. In each year, after the first flight, the
flight plan and parameters were saved to be used for all subsequent flights. After the flight
parameters were set (or loaded in subsequent flights), the smart phone was connected to the

https://www.uavforecast.com
https://www.pix4d.com/product/pix4dcapture


Agronomy 2022, 12, 2733 6 of 17

wireless drone controller via a cable and a command was sent to the drone to operate in an
autopilot mode. A DJI Mavic Pro was used in 2020 whereas a DJI Phantom 4 Pro was used
in 2021. The difference in drone model between years was due to availability. However,
we did not expect this to influence the results as they all carry the same camera type. The
inbuilt GPS of the drone was used for flight navigation and recording of coordinates of the
individual images.

2.3.3. Image Alignment and Orthomosaic Generation

After each flight, images were downloaded from the drone and stitched together to
obtain the entire field as one big image, known as an orthomosaic using WebODM [36].
WebODM (https://github.com/OpenDroneMap/WebODM (accessed on 8 June 2020)) is a
photogrammetry software with advanced features for both UAV- and ground-based image
processing based on the structure of motion algorithm. It has about 66 edit task options
that can be tweaked to meet different demands. In this study, the default settings were
used with slight modifications. The resolution of the orthomosaic image, digital surface
and terrain models was changed from 5 cm pixel−1 to 0.55 cm pixel−1 to match the ground
sampling distance of the images. Ground sampling distance (GSD) is equivalent distance
on the ground of the distance between the centers of two consecutive pixels in an image.
The higher the GSD, the lower the spatial resolution of the image. The 0.55 cm pixel−1

was achieved in WebODM by relaxing the capping of maximum output image resolution
through GSD. After image stitching, a ‘bird’s eye view’ of the health of plants in the
individual plots was obtained using the plant health function. An orthomosaic image was
the reconstructed RGB image of the entire field from the individual drone images as shown
in Figure 1.
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2.3.4. Data Extraction

Since we did not use ground control points (GCPs) and the drones used did not have
real-time kinematic (RTK), the orthomosaics of the same experiment did not exactly align
when overlayed. Technically, this was not a problem. However, it meant that separate
shapefiles had to be created for each flight’s image. To avoid this so that a single pipeline
worked for all images, orthomosaics from later flights were georeferenced to the first flight
using Raster Georeferencer tool in QGIS (https://www.qgis.org/en/site/ (accessed on
8 June 2020)). It is, however, strongly recommended to use either RTK or GCPs or perhaps
both, if the researcher is interested in estimating plant height from drone photogrammetry.

https://github.com/OpenDroneMap/WebODM
https://www.qgis.org/en/site/
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Downstream data extraction from the orthomosaic images were performed after
WebODM processing using UAStools, QGIS and FIELDimageR [37,38]. UAStools was used
to create a shapefile for each experiment comprising of individual plots. Each plot in the
shapefile had an area of 4 m2. Out of the ground area of 6.4 m2, all plants in an area of 4 m2

excluding the plot border rows was sampled for HTPP data capture. The alignment of plots
in the shapefile with that of the orthomosaics was checked in QGIS and corrected where
necessary to ensure that only inner portions of the plots were sampled. Shapefile alignment
for each flight mission within a year was performed from georeferenced orthomosaics.

Plot data were extracted from the orthomosaic images in conjunction with the shapefile
using FIELDimageR. Since estimation of vegetation indices is on a pixel basis with which
background soil could interfere, soil in the background was removed using the overall
hue index (HUE) [39]. The original HUE has been modified in FIELDimageR to better
capture soil color. After soil removal, the proportion of ground covered by plant canopy
(canopy cover) was estimated from the true plant canopy remaining. Then the individual
pixels of red, green and blue color channels were divided by 255 to convert them into a
0–1 scale. After scaling, the pixelated values were used to estimate the normalized green
red difference index (NGRDI, Equation (1)) and visible atmospherically resistant index
(VARI, Equation (2)). NGRDI has been found to be highly associated with leaf chlorophyll
content, biomass and water content of the plants [40], whereas VARI was associated with
canopy, biomass and chlorophyll content [41]. Green area (GA, proportion of pixels with
hue value of between 60 and 180◦), greener area (GGA, proportion of pixels with hue value
of between 80 and 180◦) and crop senescence index (CSI, Equation (3)) were estimated
using BreedPix [42,43]. BreedPix is a JRE-based plugin that analyses individual plot images.
As a result, the reconstructed image, as shown in Figure 1E, cannot be directly analyzed to
obtain individual plot data. Hence, a custom function was written in R statistical software
(which can be obtained from the corresponding author) to crop out the individual plots
from the preprocessed orthomosaics using the shapefile.

NGRDI =
G − R
G + R

(1)

VARI =
G − R

G + R − B
(2)

CSI =
GA − GGA

GA
∗ 100 (3)

where R, G and B are the red, green and blue reflectance of the individual pixels.

2.4. Statistical Analysis

Location, growth stage and trait (conventional or drone-based) specific analysis was
done using a linear model with R statistical software Version 4.1.2 [44] taking into account
the design features of the experiment. Unbiased estimates of genotypic means were
estimated using the emmeans package [45]. Correlation analysis was done between the
drone- and ground-based means using agricolae package [46] to understand if the stages
at which HTPP data were taken had influenced the relationship between the vegetation
indices and AUDPC for ELS and LLS severity and the other traits.

Beyond the quantitative relationship analysis, the temporal changes in the genotypic
vegetation indices were modeled to understand how the genotype’s reaction to leaf spot
diseases affected the temporal dynamics of the indices over time. Since the modeling
process was to describe the temporal dynamics and not for prediction, equations were only
assumed to accurately describe the process when modeling had an adjusted R2 of at least
0.70 when they met all the statistical assumptions. Visualization of the modeling results
was done using ggplot2, cowplot and ggpubr packages [47–49].

Since the populations used were composed of advanced breeding lines ready to be
sent for on-farm testing, the stability of the genotypes across locations was assessed based
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on the additive main effects and multiplicative interaction (AMMI) model. The number of
principal components (PCs) to retain was determined using FR-test [50,51].

3. Results
3.1. Early and Late Leaf Spot Disease Tracking Using Conventional and HTPP

Based on the median scores, the medium duration population had lower AUDPC
scores for ELS and LLS than the short duration population except for the ELS in 2021
(Table 3). Similar observation was for the maximum AUDPC scores for ELS and LLS.
This suggests that the medium duration population was more tolerant to ELS and LLS
diseases than the short duration. However, since the maximum AUDPC scores for ELS and
LLS of the medium duration population were always higher than the minimum AUDPC
scores of the short duration population, there were some genotypes from both populations
with similar tolerance levels to the two leaf spot diseases. Nevertheless, the most tolerant
genotype(s) among the two populations as depicted by the minimum AUDPC scores was
from the medium duration (Table 3).

Table 3. Summary of AUDPC scores among the studied groundnut genotype.

ELS LLS

Median Min Max Median Min Max

2020

Medium duration 35.88 12.83 56.19 46.13 15.39 56.12
Short duration 61.48 41.39 72.60 62.09 41.84 70.53

2021

Medium duration 67.78 34.68 90.86 67.05 30.85 88.29
Short duration 61.66 41.50 78.75 69.20 42.94 85.60

ELS = early leaf spot; LLS = late leaf spot; Min = minimum; Max = maximum.

Among the medium duration population, the strongest (in terms of magnitude) and
stable (with respect to direction) relationships between the vegetation indices and AUDPC
for ELS and LLS were found at beginning maturity in each of the two years (R7, Table 4). At
R7, NGRDI, VARI, canopy cover, GA and GGA all had negative correlations with AUDPC
for ELS in 2020 and 2021, and LLS in 2021. On the other hand, the relationship between CSI
and AUDPC for ELS and LLS at R7 was positive (0.05 > p < 0.05). The correlation coefficient
between GGA and AUDPC for ELS at R7 was above 0.5 every year and was consistently
negative. Canopy cover and GA had weaker relationships with AUDPC for ELS in both
years with values ranging between 0.30 and 0.40 (p > 0.05). The relationship between the
vegetation indices and AUDPC for LLS were generally weak in 2020. However, in 2021,
strong relationships were observed as early R5 (beginning of kernel development) between
the conventional and vegetation indices, with NGRDI and VARI consistently having a
negative correlation with AUDPC for both diseases starting at R3.

With respect to the short duration population, NGRDI and VARI consistently had
negative relationships with AUDPC for ELS and LLS from R3 through to R7 in both years,
2020 and 2021 (Table 4). However, such consistent relationship between the AUDPC for
the leaf spot diseases and canopy cover, GA and GGA was only observed in the year 2021.
Correlation coefficients were generally higher in 2021 than in 2020 for the short duration
population although the reverse was true for ELS at R7 (Table 4).
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Table 4. Correlation between vegetation indices and AUDPC.

MD SD

Reproductive Stage ELS AUDPC LLS AUDPC ELS AUDPC LLS AUDPC

2020 2021 2020 2021 2020 2021 2020 2021

R3

NGRDI 0.67 * −0.22 ns 0.78 ** −0.50 * −0.18 ns −0.43 ns −0.32 ns −0.81 ***
VARI 0.56 ns −0.28 ns 0.64 * −0.54 * −0.25 ns −0.42 ns −0.33 ns −0.82 ***

Canopy cover 0.73 ** 0.28 ns 0.91 *** 0.51 * 0.20 ns −0.54 * 0.01 ns −0.74 ***
GA 0.73 ** 0.27 ns 0.90 *** 0.53 * 0.25 ns −0.49 * −0.02 ns −0.70 **

GGA 0.72 ** 0.22 ns 0.90 *** 0.50 * 0.20 ns −0.38 ns −0.02 ns −0.70 **
CSI −0.64 * −0.06 ns −0.83 *** −0.29 ns −0.03 ns 0.37 ns 0.00 ns 0.69 **

R5

NGRDI 0.03 ns −0.60 ** 0.32 ns −0.80 *** −0.65 * −0.62 ** −0.80 ** −0.87 ***
VARI 0.10 ns −0.61 ** 0.36 ns −0.79 *** −0.58 ns −0.63 ** −0.62 * −0.88 ***

Canopy cover 0.46 ns 0.10 ns 0.75 ** 0.27 ns 0.05 ns −0.43 ns 0.15 ns −0.70 **
GA 0.40 ns 0.08 ns 0.77 ** 0.30 ns −0.42 ns −0.46 ns −0.43 ns −0.71 ***

GGA 0.40 ns −0.41 ns 0.77 ** −0.42 ns −0.44 ns −0.55 * −0.45 ns −0.83 ***
CSI −0.37 ns 0.56 * −0.71 ** 0.72 *** 0.35 ns 0.55 * 0.34 ns 0.84 ***

R7

NGRDI −0.74 ** −0.63 ** −0.38 ns −0.86 *** −0.88 *** −0.62 ** −0.64 * −0.86 ***
VARI −0.66 * −0.64 ** −0.28 ns −0.86 *** −0.88 *** −0.62 ** −0.63 * −0.86 ***

Canopy cover −0.33 ns −0.37 ns 0.12 ns −0.37 ns −0.69 * −0.54 * −0.69 * −0.86 ***
GA −0.35 ns −0.33 ns 0.15 ns −0.28 ns −0.77 ** −0.55 * −0.71 * −0.86 ***

GGA −0.51 ns −0.54 * 0.00 ns −0.68 ** −0.83 *** −0.61 ** −0.56 ns −0.88 ***
CSI 0.67 * 0.58 * 0.21 ns 0.81 *** 0.77 ** 0.63 ** 0.38 ns 0.86 ***

MD = mediun duration; SD = short duration; ELS = early leaf spot; LLS = late leaf spot; AUDPC = area under
disease progress curve; R3 = beginning pod; R5 = beginning seed; R7 = beginning maturity; NGRDI = normalized
green-red difference index; VARI = variable atmospheric resistance index; GA = green area; GGA = greener
area; CSI = crop senescence index; * = significant at 0.05; ** = significant at 0.01; *** = significant at 0.001; ns:
not significant.

3.2. Temporal Dynamics of the Vegetation Indices among the Genotypes

The changes in the genotypic scores with respect to the vegetation indices over time
followed a unimodal distribution which were well fitted by a quadratic function (adjusted
R2 = 0.77 ≤ x ≤ 1, SS1. Table S1). In 2021, there were not enough data points to estimate
the various coefficients of the curve. As a result, the curves were not fitted. The rankings of
the genotypes changed over time as the genotypes grew and developed towards maturity,
although some of the genotypes maintained their ranking position. For instance, among
the medium duration, genotype ICGV 176225 showed high NGRDI and VARI at R1 and
R3, but dropped steadily in the rank and magnitude after R3 (SS2. Figure S1). On the
other hand, ICGV 176073 consistently had the highest scores for NGRDI whereas ICGV
176073 and ICGV 176044 both had high scores for VARI at all reproductive growth stages
(Figures 2 and S1). There was a complete crossover in genotypic rankings for canopy cover,
GA and GGA after R3 (SS2. Figure S2). In the short duration population, crossovers in
genotypic rankings for NGRDI and VARI largely occurred after R5 whereas that for CSI
occurred after R3 (Figures 2 and S3). However, genotype ICGV 176214 was consistently the
highest followed by ICGV 176023 for NGRDI and VARI after R1 (Figures 2 and S3). There
was equally a complete crossover in genotypic rankings for canopy cover, GA and GGA
after R1 (Figures 2, 3 and S4).
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Despite the crossovers in genotypic rankings for the vegetation indices across the
reproductive growth stages, the pattern of genotypic clustering appeared to follow growth
stage. This observation was consistent across populations and years (Figure 4). Although
the scores at R1 and R7 were completely different, there was some similarities in perfor-
mance at R3 and R5, as shown by the proximity of the clusters. In 2021, a few genotypes (in
black circles) did not cluster according to the growth stages. These included NKATIESARI,
GAF 1723, ICGV-IS 08837 and CHINESE which are known as tolerant, moderately tolerant,
moderately susceptible and susceptible, respectively, and used here as [10,12]. The geno-
types whose clustering defied growth stage in the PCA and those that consistently had
high score for vegetation indices were selected for detailed data study. It was observed that
genotypes that combine leaf spot diseases tolerance with high yield had the highest scores
with regards to the vegetation indices (Figures 2 and 3).
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3.3. The Effect of Genotype-By-Environment Interaction

There was a significant interaction between the genotypes and the environment
(p < 0.05) for all the manually measured traits in both years, except for haulm yield of
the medium duration population in 2020 (Table 5). The signal in the genotype by envi-
ronment sum of squares [12,50] was high (up to 93% in some of the traits) although that
for haulm yield was quite low in 2020. The high G × E interaction suggests that geno-
type and location were the main drivers of the observed interaction relative to random
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error. Location and genotype main effects were also significant. Generally, locations with
below-average scores for leaf spot diseases had higher scores for yield traits.

Table 5. AMMI model summary showing contribution of the various sources of variation.

Variation Source df Sum of Squares

ELS AUDPC LLS AUDPC Haulm Yield (kgha−1) Pod Yield (kgha−1)

MD in 2020

Environment Ghana 3 9905.4 *** 14,938.8 *** 441,412,003 *** 32,875,500 ***
Genotype (G) 11 3923.1 *** 11,262.3 *** 16,931,646 ** 23,250,254 ***

Genotype x Environment 33 4699.6 *** 5372.9 * 23,674,776 ns 12,776,519 ***
G × E signal 0.7581 0.4496 0.2733 0.7691

SD in 2020

EnvironmeGhana(E) 3 35,052 *** 14,005.6 *** 171,352,883 *** 16,265,746 ***
Genotype (G) 11 2799 *** 7702.7 *** 33,553,632 *** 19,915,906 ***

Genotype x Environment 33 1911 ** 3095.6 *** 10,956,981 * 15,445,714 ***
G × E signal 0.5238 0.7165 0.3965 0.7738

MD in 2021

EnviroGhanant (E) 3 178,981 *** 154,147 *** 156,608,615 *** 264,852,830 ***
Genotype (G) 17 21,916 *** 17,784 *** 49,675,436 *** 77,008,509 ***

Genotype x Environment 51 33,535 *** 32,443 *** 115,776,686 *** 38,860,002 ***
G × E signal 0.9302 0.8380 0.8175 0.8258

SD in 2021

EnvGhananment (E) 3 146,356 *** 195,735 *** 664,657,480 *** 284,254,679 ***
Genotype (G) 17 11,577 *** 15,269 *** 69,544,867 ** 47,883,935 ***

Genotype x Environment 51 14,675 *** 11,339 *** 116,259,584 ** 26,920,315 ***
G × E signal 0.8592 0.6924 0.5232 0.8008

ELS = early leaf spot; LLS = late leaf spot; AUDPC = area under disease progress curve; * = significant at 0.05;
** = significant at 0.01; *** = significant at 0.001.

In 2020, among the medium-duration population, genotypes with ELS AUDPC scores
above and below average score were more stable (close to the plot origin) than those in
between (SS3. Figure S5). This scenario was not too obvious with regards to the AUDPC
for LLS. Genotypes ICGV 176073 combined high pod yield with high yield stability. With
regards to the short duration population, each of the traits had a different genotype that
was best (SS3. Figure S6).

In 2021 and among the medium duration population, genotype GAF 1665, which was
not part of the tested genotypes in 2020, was more stable and tolerant to leaf spot diseases
(SS3. Figure S7). Its haulm and pod yields were, however, below the average score despite
the high stability for these two traits, respectively. Among the short duration, genotype
CHINESE had the highest ELS AUDPC score, which was consistent across the locations,
leading to high stability for ELS AUDPC (SS3. Figure S8). This was, however, not the case
for LLS AUDPC.

4. Discussion

The HTPP based on image analysis using open-source tools can offer researchers in
low income countries the ability to use indices that are related to target trait(s) to assess
superior individuals within breeding populations. It allows data extraction from every
visible component of the plant in the image. It also enables the extraction of data from each
pixel in the image, which give information on several independent subunits of the plot.
For instance, an image taken on a 5 × 5 m plot from the height allowing 1 cm GSD can
provide 250,000 datapoints when the data are extracted on pixel basis. The mean from the
250,000 datapoints may therefore better approximate the plot than the point data obtained
by manual measurements. As a result, the ability to apply this technique in low-income
countries is therefore expected to enhance the quality of research in four ways; (i) objectively
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collect data as opposed to the subjective way, e.g., of scoring leaf spot disease severity in
groundnut, (ii) every visible plant part in a plot can be separately and collectively analyzed,
(iii) automate data recording thereby eliminating human error, and (iv) relatively cheap
cost for the investment. It is, however, important to determine which vegetation indices
are best associated with the primary trait of interest and at what stage of growth is such
association strongest and most meaningful.

The vegetation indices used in this study were associated with traits previously related
to the ELS and LLS diseases. For example, [40] found that NGRDI was associated with
chlorophyll content, biomass and water content. Similarly, [41] found that VARI was a
good estimator for plant canopy, biomass and chlorophyll content. Leaf spot diseases
cause brown lesions and defoliation in groundnut [10]. As a result, the area covered by the
plant canopy and plant discoloration in the presence of disease are expected to provide an
indication of genotypic tolerance. Therefore, genotypes with high vigor and tolerant to leaf
spot diseases are expected to have higher values for canopy cover, NGRDI, VARI, GA and
GGA and lower values for CSI. At the same time, genotypes with lower AUDPC values
appear to be tolerant. As a result, a negative relationship between the vegetation indices
except CSI and ELS and LLS AUDPC values are expected.

Although it has been shown that leaf spot diseases tolerance in groundnut is associated
with longer maturity duration [52,53], that scenario did not clearly stand out in this study
when the medium and short duration populations were compared (Table 3; Figures 2 and 3).
One reason could be that genotypes that constituted the populations were not only selected
based on their reaction to leaf spot diseases but also on their performance for other traits.
For instance, single seed descent based on index selection is usually used at CSIR-SARI’s
Groundnut Improvement Program. The genotypes that are superior in other traits but with
low tolerance to ELS and LLS can get selected. Nevertheless, the minimum AUDPC score
among the short duration is always higher than that of the medium duration. This suggests
the most tolerant genotype(s) among the two populations used in this study were part of
the medium-duration population.

The vegetation indices that describe the area of soil covered by plants, namely canopy
cover, GA and GGA, exhibited two kinds of relationship with the AUDPC for ELS and LLS
under the medium-duration population. That is, it was positive at the initial stages, and
negative towards the end of the growing cycle (Table 4). This means that the susceptible
genotypes within this population ranked higher for canopy cover, GA and GGA at the
beginning (R3 and R5) and lower at the end. However, at R3, lesions from ELS and LLS
had not formed although some were visible at R5. As a result, values of canopy cover,
GA and GGA for the medium duration population at R1 and R3 estimated plant vigor
rather than leaf spot diseases tolerance. This observation confirms the basis of an earlier
study [10] where genotypes with high seedling vigor were more susceptible to ELS and
LLS at later stages of growth. It was therefore not surprising that at the latter stages, when
leaf spot was causing defoliation, the direction of the relationship changed from positive to
negative (Table 4). The delay in change of direction from positive to negative with regards
to the medium-duration population could be due to the ability of genotypes to maintain
their leaves with appreciable quantity of lesions caused by the ELS and LLS. With the short
duration population, however, leaf defoliation started almost at the same time as when
lesions begin to show. This therefore explains why the canopy cover, GA and GGA had
negative relationships with ELS and LLS as early as R3 in that population (Table 4).

NGRDI and VARI had negative relationships with the leaf spot diseases even at R3
(p > 0.05; p < 0.001) when lesions were not visible to enable human scoring for the diseases,
respectively. However, ELS and LLS diseases appear as microscopic lesions which later
enlarge into bigger and more visible lesions. This means that the physiological damage
to the plant takes place before the lesions become visible. As a result, vegetation indices
that are associated with the plants’ physiological traits are expected to give early signal of
the presence of the disease. This might therefore be the reason why NGRDI and VARI had
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consistently negative associations with ELS and LLS under the two populations starting
from R3 (Table 4). The relationship, however, became stronger as the disease progressed.

Although there were complex crossovers in genotypic rankings across the various
reproductive growth stages in 2020 for the vegetation indices, genotypes that had consis-
tently high scores for NGRDI, VARI, GA, GGA and canopy cover had the best average
performance for ELS, LLS AUDPC, and haulm yield. For example, genotypes ICGV 176073,
ICGV 176044, ICGV 176214, and ICGV 176023 had the highest NGRDI and VARI at all
reproductive growth stages during the season (Figure 2). At the end of the season, they also
had the best performance for ELS, LLS AUDPC, and haulm yield not only in Nyankpala,
but across all locations (SS3. Figures S5–S8). This indicates that integrating HTPP tools
could provide effective acceleration of cultivar development, non-invasive assessment, and
objective field phenotyping.

The AMMI model waGhana effective in partitioning the overall variation into the
various sources and further decomposing the interaction term to reveal the signal (true
genotype-by-environment interaction) and random noise. Genotypes, locations and their
interaction were all important sources of variation for ELS, LLS, haulm and pod yield
(Table 5) highlighting the importance of optimizing production practices to complement
the genetic aspect of the phenotype [12].

5. Conclusions

Funding for R&D in developing countriesGhanasuch as Ghana is very low. Yet the
need to increase genetic gain requires the use of tools such as high-throughput phenotyping
which may require high initial investment for the hardware, but free software. This study
sought to determine the feasibility of implementing HTPP with open-source tools to set a
roadmap for its adoption by the research community. However, care should be taken in the
choice of drone as not all mapping software are open-source and the open-source mapping
software does not accept every drone.

A strong relationship existed between vegetation indices used in this study and leaf
spot diseases’ severity scores. Better results were obtained at R7 stage, although early
stages could also prove effective. However, if other traits such as yield are also of interest
in addition to tolerance to leaf spot diseases, then the whole reproductive growth curve
should be studied.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/agronomy12112733/s1, SS1. Table S1: Regression equations representing
the changes in the vegetation indices over time; SS2. Figure S1: Genotypic performance in CSI, NGRDI
and VARI over time among the medium duration population; SS2. Figure S2: Genotypic performance
in canopy cover, GA and GGA over time among the medium duration population; SS2. Figure S3:
Genotypic performance in CSI, NGRDI and VARI over time among the short duration population;
SS2. Figure S4: Genotypic performance in canopy cover, GA and GGA over time among the short
duration population; SS3. Figure S5: AMMI biplot for the medium-duration population in 2020; SS3.
Figure S6: AMMI biplot for the short-duration population in 2020; SS3. Figure S7: AMMI biplot
for the medium-duration population in 2021; SS3. Figure S8: AMMI biplot for the short-duration
population in 2021.
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