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Abstract

We propose a framework for integrating various modern

natural language processing (NLP) models to assist

researchers with developing valid psychological scales.

Transformer-based deep neural networks offer state-of-

the-art performance on various natural language tasks. This

project adapts the transformer model GPT-2 to learn the

structure of personality items, and generate the largest

openly available pool of personality items, consisting of one

million new items. We then use that artificial intelligence-

based item pool (AI-IP) to provide a subset of potential

scale items for measuring a desired construct. To better

recommend construct-related items, we train a paired

neural network-based classification BERT model to predict

the observed correlation between personality items using

only their text. We also demonstrate how zero-shot mod-

els can help balance desired content domains within the

scale. In combination with the AI-IP, these models narrow

the large item pool to items most correlated with a set of

initial items. We demonstrate the ability of this multimodel

framework to develop longer cohesive scales from a small

set of construct-relevant items. We found reliability, valid-

ity, and fit equivalent for AI-assisted scales compared to
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2 HERNANDEZ AND NIE

scales developed and optimized by traditional methods. By

leveraging neural networks’ ability to generate text relevant

to a given topic and infer semantic similarity, this project

demonstrates how to support creative and open-ended

elements of the scale development process to increase the

likelihood of one’s initial scale being valid, and minimize the

need tomodify and revalidate the scale.

KEYWORDS

artificial intelligence, big data, machine learning, personality, per-
sonality assessment, technology

1 INTRODUCTION

Scale development involves many creative, open-ended tasks, including creating concise item text, considering item

intercorrelations, and assessing content coverage (Johnson, 2001). Natural language processing (NLP) deep neural

networks models offer state-of-the-art performance on a variety of creative and inferential tasks including text gen-

eration (Brown et al., 2020), outcome prediction (Raffel et al., 2020), and topic inference (Larochelle et al., 2008). We

argue that these abilities, which can synthesize data frommillions of text examples into new and/or accurate insights,

address the limitations of traditional scale development. Specifically, our approach suggests leveraging the ability of

artificial intelligence1 to (a) learn the common semantic structure of personality items, (b) predict observed associ-

ations between psychological constructs, and (c) understand the semantic similarity between sentences. Combining

these abilities allows researchers to create comprehensive scales using only a small set of initial items. Specifically,

researchers can receive suggestions for additional items that are likely to correlate (both positively and negatively)

with all the provided examples in amore automated and reproducible way.

1.1 Traditional scale development and limitations

Researchers developing personality scales follow a standard series of steps (Hinkin, 1995). The first step requires (1)

defining the construct of interest to specify the necessary aspects that the construct should represent, (2) consult-

ing subject matter experts (SMEs) to create a pool of initial items based on that definition. From that initial pool, (3)

researchers winnow them to a selection of items that serve as the first draft of the scale. This narrowing requires

selecting a sufficient number of items (to obtain acceptable reliability) that cover all content domains of the construct

(to promote content validity), and that all inter-relate (to promote unidimensionality). Researchers (4) administer the

scale to a large population, and then (5) examine the psychometric properties of the scale. Although there is no sub-

stitute for having strong proper construct definitions of constructs, this paper addresses the limitations of the second

and third item generation steps. These steps require subjective assessments from SMEs to use their creativity, intu-

ition, and tacit knowledge to generate itemsmatching those definitions. These requirements are problematic because,

ideally, the scientific process should be consistent, data-driven, and equally accessible.

SMEs can greatly expand on an item pool from its initial set, but because they rely on their personal experience and

perspectives to self-generate items, there is subjectivity, inconsistency, and bias and error in the item creation process

(Rush et al., 2016). These items must intercorrelate enough to obtain an acceptable level of unidimensionality in the

confirmatory factor analysis and obtain an acceptable level of internal consistency. Therefore, SMEs have to either
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HERNANDEZ AND NIE 3

mentally approximate these correlations or leave the likelihood of validating unknown until the analysis. In addition

to suggesting items with high intercorrelations, researchers who desire sufficient content validity must make sure

that the items cover all theoretically meaningful facets (Nunnally & Bernstein, 1994). Depending on the nomological

network of the construct, researchers may need to include more items to obtain acceptable levels of reliability. For

example, imagine a three-item scale, with each itemmeasuring one of the three theoretically described content areas.

If the facets were all correlated at r = .4, then, even if the items were parallel, the internal consistency would be .66.

With twice as many items, the internal consistency reaches .80. Although shorter scales are more desirable, all else

equal, the constraints of examining certain constructs may require a researcher to create additional scales, which will

be limited by the creativity of the SME. Therefore, because of limitations in creativity, imprecise item estimations, and

the need to establish content coverage, humans have limitations that decrease the effectiveness of scale generation.

Because of their expertise, SMEs can be costly to acquire, if the researcher is not an SME or requires multiple. Some

researchersmaynothave the resourcesornetwork toobtain theseSMEs, lowering theequityof the scale construction

process. We suggest addressing this by replicating the insights of an SME with the ability to generate possible items

and accurately discern which items are relevant to a given construct.

1.2 Automated item generation

Automated item generation (AIG) addresses the limitations of human item generation by relying on computational

innovations to produce high-quality and large-quantity test items (Gierl & Lai, 2013). Historically, AIG relied either on

generating clones of narrowly defined item types such as those found in language-free intelligence tests (e.g., Raven’s

progressive matrices) or used an analysis of cognitive task components of certain items and derived schemata to

produce new item instances (e.g., Bejar et al., 2003; Embretson, 1999; Embretson & Yang, 2006; Gierl & Lai, 2013).

Unfortunately, most AIG approaches only apply to items that are procedural and lack complex semantic informa-

tion. For example, generating geometry items for a standardized examonly requires changing the values of the figures.

For AIG personality assessments, the variationmust occur on the item text, whose terms are not as easily substituted,

because the new termmay lack relevance in the original context. Although some approaches useword replacement by

finding approximate synonyms, this approach cannot generate novel grammatical structures, and the new statements

would highly overlap with the original construct, limiting the diversity of constructs examinable.

Another approach to AIG is developing a semantic schema for an item, similar to how a “Mad Libs” template

works. This approach, however, would have difficulty applying to personality items because of the variety of sen-

tence structures found in personality items. To address these limitations, we propose improving AIG for personality

item development using a pipeline of multiple modern deep neural networks to generate a massive, diverse pool of

candidate items and identify the candidates most likely to correspond with a set of example items provided by the

researcher.

1.3 Neural network approaches to natural language processing

Neural networks area typeofmachine learningmethod that apply a sequenceofmathematical transformations to take

input data and convert it into a desired output prediction. Neural networks are useful for solving various NLP prob-

lems including classifying text, dimension reduction, and text generations. By increasing the complexity of the neural

network’s layers and the functions of neurons within those layers (i.e., “Deep Learning”), researchers can solve more

complex problems. Neural networks’ applicability toward natural language problems and strong prediction ability can

potentially address the prior limitations of AIG.

The most related attempt at generating personality items used Recurrent Neural Networks (von Davier, 2018).

Recurrent Neural Networks, in contrast to simpler feed-forward networks, contain feedback loops allowing them
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4 HERNANDEZ AND NIE

to better process sequentially dependent data, such as generating text, where a prediction can be sent back to the

network as an input for the next prediction. Unfortunately, the recurrent neural approach is problematic and lim-

ited for many reasons. Recurrent neural networks require a large sample of items from the construct of interest.

They will produce both sensical and nonsensical statements, requiring a large degree of curation. Further, the prior

approach used a character level RNN, meaning it only predicts the next character in sequence compared to the next

word, lacking a high-level grasp of language, beyond orthographic patterns. In addition, there is no indication of what

construct the generated itemrepresents. RNNsare also less effective as the lengthof text increasesdue to the “vanish-

ing/explodinggradientproblem,”whereeach successive input’s gradient,which is used toupdate thenetwork’sweight,

becomes exponentially small/big as it travels to the prior timesteps. This limitation prevents RNNs from learning from

long dependencies, such as long sentences. While long short-term memory networks, an advanced type of RNN, can

solve the vanishing gradient problem, they contain very long gradient paths, making them extremely computationally

intensive. Because of these limitations, RNNs have largely fallen out of favor in NLP. While an RNNmodel to generate

personality items could not distinguish which generated items belonged to a given construct or their overall validity,

nor could it consistently provide grammatically correct items, it illustrates that neural networks have capabilities that

are relevant to scale development.

1.4 Transformer models as a solution to assistant scale development

In contrast to theprior used recurrentneural networks, transformermodels are the current stateof theart for learning

from natural language text sequences. Transformers offer several advantages over the prior dominant architecture:

recurrent neural networks. Specifically, transformers include a self-attention mechanism that allows the network to

remember previous word tokens in the sequence, which can be computed in parallel on the entire sequence. This

simultaneous processing of the words in a statement speeds up training and inference.

1.4.1 Proposed neural network approach to automated item generation

We propose a framework that leverages the improved abilities of transformer networks to solve the prior mentioned

issues. Specifically, the proposed framework accomplishes the following aims that prior approaches could not:

1. Aim 1: Generate text that is largely equivalent to the structure of human-generated items, with high levels of

linguistic acceptability

2. Aim 2: Recommend items to a user that are highly related to all other items, especially those the researcher

believes best reflect the domain of interest

3. Aim 3: Determine whether items cover the broad content areas

4. Aim4: Obtain similar psychometric properties as scales that have alreadypassed the traditional scale development

process

Accomplishing these aims can minimize the amount of specialized human labor required. The generation and item

assessment aspects play similar roles as SMEs. Thismethod ultimately provides data-driven, educated hints to supple-

ment the expertise of the primary researcher. As long as the researcher has a few focused examples of the construct

of interest, the system can quickly expand on those and provide additional items.

Currently, SMEs and researchers must guess whether their self-generated items will validate and form a cohe-

sive scale. Because the method provides items that are all inter-related with the initial items, the scale should be

more likely to validate upon the first administration. Alternatively, to avoid having to re-validate, researchers using

traditional scale development may have included a surplus of items. These additional items would be more taxing to

the respondents, providing potentially shorter administration times.
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HERNANDEZ AND NIE 5

The recommendation process provides specific quantitative metrics of quality (e.g., estimated inter-item cor-

relation, content domain probability) alongside each suggested item. Therefore, researchers can offer greater

transparency for how they selected their items and use a consistent process across various studies.

1.4.2 Aim 1: Generating realistic items through generative transformer models

The most performant generative transformer models are from the OpenAI group, called “Generative Pre-trained

Transformer” or simply “GPT.” GPT learns to predict the next word in a sentence/paragraph based on the previous

words. It can generate long strings of text by constantly predicting the subsequent word. The OpenAI group demon-

strated how to achievemore accurate text generation for a given domain by pretraining a languagemodel on a diverse

corpus of unlabeled text, and then fine-tuning the model on a specific task. This GPT framework, therefore, allows

text to be generated using a common underlying language model that has a general, task-agnostic understanding

of grammar and word sequences. This general, task-agnostic model outperforms state-of-the-art models that used

architectures specifically crafted for each task in 9 out of the 12 tasks studied.

GPTwas trainedwith a causal languagemodeling (CLM) objectivemaking it suited for predicting the next token in a

sequence. TheCLMobjective takes a large corpus of text (e.g.,Wikipedia) and breaks it down into smaller sentences of

size k. Researchers hold out the last word, and provide themodel the first k− 1words of the sentence. Themodel then

tries to predict what the held-out word was, given those initial starting words. Thus, the model learns how a series of

words “cause” another word to occur. This type of training allowsGPT to generate syntactically coherent text. Further

improving upon the original GPTmodel, Open AI developed the GPT-2 andGPT-3models, though the latter version is

not publicly available.

Wepropose fine-tuning adeepneural networkoriginally designed to createEnglishprose (GPT-2-XL;Radfordet al.,

2019) to learn the semantic patterns in self-report items.We expect:

H1:A generative neural network can create personality items that have similar semantic properties to human-

created items, including (a) orthographic structure, (b) linguistic acceptability, and (c) indistinguishability by

humans, with the benefit of (d) greater lexical diversity.

1.4.3 Aim 2: Recommending correlated items through classification models

Another popular task in NLP is “text classification,” where a model is provided with a sample of text and must deter-

mine its association with a ground-truth value of a construct. Sentiment analysis is an example of a classification task.

In sentiment analysis, amodelmust determine howpositive or negative the tone is in a sample of text (expressed using

a probability score from 0 to 1). The most performant type of text classification models is extensions of the Bidirec-

tional Encoding Representations from Transformers (BERT) introduced by Google (Vaswani et al., 2017). Similar to

GPT-2, BERT provided a large general-purpose neural network that modeled natural language by understanding co-

occurrences in text. Specifically, BERT used a “Masked Language Modeling” task to understand the general structure

of a language. In theMasked LanguageModeling task, a large corpus (e.g.,Wikipedia) is provided to themodel. Someof

thewords are “masked” and hidden from themodel. Themodelmust determinewhat themaskedword is based on the

surrounding unmasked words. This task teaches a model to learn what words are substitutable with each other, given

the surrounding context. In contrast toCLM,which lacks later context, this training process facilitates performance on

tasks that require encoding the entire meaning of a sentence.

 17446570, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12543, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 HERNANDEZ AND NIE

F IGURE 1 Zero-shot classification
models and content analysis. Note:
Illustration of how a zero-shot
classificationmodel can be provided with
a given text (describing the plague in
Mongolia), and be provided list of
potential themes (e.g., topics, emotions,
situations, tone), and then classify what
theme the text best matches.

1.4.4 Application of BERT models to item generation

We propose using the BERT architecture to infer how correlated two personality items are. Ideally, the BERT model

would produce an output embedding for an item, where highly correlated items will receive similar embeddings from

BERT. Oneway to accomplish this goal is using a “paired” framework, where two versions of the same BERTmodel are

each provided one of the statements, and they each produce a fixed length embedding containing the latent represen-

tation of sentence’s semantic content. The cosine similarity, which ranges from−1 to+1, between those embeddings

is computed and compared to the observed correlation between those statements. The mean squared error between

the embedding similarity and ground-truth correlation determines howmuch to adjust theweights in theBERTmodel.

By providing a large number of statement pairs with their observed correlation, themodel’s weights eventually adjust

so that the cosine distancebetween two statements’ embeddings can accurately approximate the correlation between

the statements.

H2: A paired-transformer neural network can estimate, above chance levels, the empirical correlation of per-

sonality items of item pairs the model has never encountered. This performance will be reflected in both its

(a) mean absolute error, and (b) correlation with the actual ratings, which will (c) supersede the predictions of

psychological researchers.

1.4.5 Aim 3: Assessing content coverage through zero-shot classifiers

A newer area of research in neural networks focuses on classification models that do not require any prior data to

classify text to specific content domains. Historically, if a researcher wanted to create a model to classify a news arti-

cle as “politics,” “economy,” or “lifestyle,” the researcher would need to amass a large collection of articles from each

domain and then use supervised learning to train the classification model to approximate those ground-truth out-

comes. Zero-shot classifiers allow a researcher to simply specify the possible content domains. They then score the

text’s relevancy to each (Figure 1). Zero-shotmethodswork by associating observed and nonobserved classes through

some form of auxiliary information, which encodes observable distinguishing properties of objects (e.g., a semantic

embedding of topic labels that can be compared to the semantic embedding of an input text). These models are use-

ful for problems involving predicting topics of text, especially when the content domains (topics) are not the same

across user purposes and when there is limited data for the domains. We believe these models can facilitate content

validation.

One challenge for applyingmachine learning to content validation is the lack of sample size coupledwith the diver-

sity of possible content labels for any project. Supervised learning would be difficult because a researcher cannot

obtain hundreds of items that belong to a single content domain. If they had access to hundreds of items belong-
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HERNANDEZ AND NIE 7

ing to that domain, they would already have enough items for a scale. In addition, each new project might invoke

different content domains, whichwould require retraining the content classificationmodel. Zero-shot classifiers solve

these limitations because they can assign text to a constrained list of topics, without requiring additional training data.

Although the zero-shot classification methods can potentially evaluate how well text aligns with potential content

domains, a researcher must still define those potential content domains, similar to the traditional process of provid-

ing SMEswith content domains to evaluate. Therefore, we believe that zero-shot classifiers can serve a similar role as

SMEs in providing insight into howwell a given item aligns with specific content domains.

H3: Zero-shot classifiers can assist with content validation by offering insight into which content domain a

personality item belongs to from a list of options. This performance will be reflected in its (a) overall accuracy,

(b) precision, and (c) recall of its predictions compared to known content labels.

1.4.6 Aim 4: Complete pipeline for AI-assisted item recommendation

We propose combining all methods into a single system that can suggest additional items. This system first requires

fine-tuning a generative text model to learn common semantic patterns within personality items and then generating

a large (1000,000) item pool of candidate items. It also requires developing a paired transformer model to accurately

predict the correlation between itempairs. After developing the itempool and training a correlation predictionmodel,

the system can receive a small sample (e.g., 3) of potential scale items that reflect a construct of interest from a

researcher. The system first compares the semantic similarity between those items and the AI-generated item pool

based on their Universal Sentence Encoder embeddings. The top candidates then have their correlation with each of

the seed items predicted. The candidateswith the highest and lowest correlations are then provided to the researcher

as a collection of suggested positively scored and negative-scores items. To assist with selecting the final items, the

researcher could consult a zero-shot model by specifying the content domains the scale needs to cover and infer the

proportion of content coveredby the items.We illustrate the frameworkbelow (Figure 2) and elaborate on the specific

steps in study 4.

The current research project seeks to evaluate the effectiveness of the subcomponents of the framework and

demonstrate the effectiveness of the complete proposed framework. We define effectiveness as creating scales for

a particular construct of comparable or superior quality to those created by traditional methods.We hypothesize,

H4: Personality scales developed by the proposed item generation systemwill demonstrate similar psychome-

tric properties as a human-generated scale that measures the same construct. This similarity will be reflected

in the scales’ (a) internal consistency, (b) composite scores, (c) and factor structure.

2 STUDY 1: ARTIFICIAL INTELLIGENCE ITEM POOL GENERATION

2.1 Method

The data that support the findings of this study are openly available in the paper’s Open Science Framework

Repository at https://osf.io/6wznm. All analyses, trainedmodels, and output files are also hosted at the repository.

We fine-tuned the largest freely available version of GPT-2(GPT-2-XL)2, to learn the semantic patterns in self-

report items. To adapt GPT-2 to understand personality scale items, we provided the model with all 3320 items from

the largest itemrepository, the international personality itempool (IPIP) (Goldberget al., 2006).After fine-tuningGPT-

2 for five iterations across the entire dataset, we had the model generate 1,000,000 new items. Because of the large

size of GPT-2-XL, we did not explore finding the optimal set of model settings (hyperparameter tuning), as a single
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8 HERNANDEZ AND NIE

F IGURE 2 Overview of proposed artificial intelligence-assisted scale construction system.Note: The figure
illustrates how to facilitate the scale construction process if a researcher has an initial set of items related to the
construct of interest. These positively correlated seed items are provided to the AI system, which provides additional
positive and negative coded construct-related items and their estimated correlation with the items. The researcher
selects from those recommendations and consults SMEs or a zero-shot classification system to balance content
domains. The selected items are combinedwith the seed items to form the final scale.

model can take days to train. One hyperparameter commonly varied in neural networks is the number of iterations to

pass the training data through the model (i.e., an epoch). Too few, and the model does not have a chance to get accus-

tomed to the target data, reverting tonondomain specific prose. Toomany, and themodel could overlearn, reproducing

only items it has previously seen. We chose to use five epochs as it is aligned with prior GPT-finetuning research and

other recommendations, which balances over- and under-learning (Zoph et al., 2016). To counteract the possibility of

under-learning, had we trained the model and found that the generated items did not resemble the personality item

structure, we would have resumed the model from its last trained state and increased the epochs incrementally until

the generated items were deemed acceptable. For our project, five epochs generated items that appeared to capture

the desired style.

The GPT-2 model does not inherently create new sentences. Rather, the model is trained with a classification ter-

minal node that predicts how likely each English word would follow an initial sequence. To generate long sentences,

generativemodels are typically combinedwith aword samplingmethod. These samplingmethods haveGPT-2 tomake

predictions on an input, append the next predicted word to the end of the prior input, and repeat that process until a

subsequent “end-of-sequence” token is reached. There are many approaches to creating sentences from generative

models. We used “sampling with top-k” approach. This method is useful for explicitly controlling the diversity in the

generated items. Itworks byhaving themodel receive a start input (“beginning of sentence” token), and it thenpredicts
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HERNANDEZ AND NIE 9

TABLE 1 Comparison of text between IPIP and AI-generated item pools

Structural metric IPIP AI-IP

Average number of words in an

item

6.74 (3.38) 5.19 (1.76)

Readability ease 74.88 (30.24) 68.72 (36.60)

Total percentage verbs 22.25% 24.63%

Total percentage nouns 19.47% 22.16%

Total percentage prepositions 10.87% 10.44%

Total percentage adjective 9.00% 10.85%

Total percentage adverbs 6.59% 6.05%

Linguistically acceptable items 99% 93%

Note: Standard deviations are in parentheses. Parts of speech do not have standard deviations because they are the total

frequency across all items in the item pool.

the probability of the subsequentword out of all possiblewords. It then sorts potential nextwords by probabilities and

chooses awordwithin the top-Jof thoseprobabilities for the first Iwords, and thenwithin the topK forwords, after the

initial Iwords. Because generation is not as computationally intensive as training a model is, we were able to explore

various values for the generation sampling. The values J and K control item diversity. When they are set to 1 (the low-

est value), themodel simply predicts themost likelyword to follow.When they are set to higher values, words that are

less likely are considered as well. Too low, and the items all look the same. Too high and the items could be nonsensical

because rare combinations of words are generated. We had different values of J and K because we wanted the early

part of an item to vary more, as this usually contains the central theme of the item (i.e., the construct), and we wanted

the later part of an item to bemore consistent as generativemodels often tend to ramble or lose coherency. The value,

I, serves as a threshold for when J and Kwill have their effect. It defines what is considered the early part of the item.

We varied the values of J, I, and K to try to create items that seemed sensible, but also diverse. Using simple visual

inspection, we eventually settled on having themodel generate an itemby predicting the nextword using one selected

from the top-200 (J) most likely probabilities for the first 5 (I) words, and thenwithin the top-20 (K) for words after the

first five.

2.2 Results

We examined the generated item quality by comparing their nonredundancy, diversity of words, and similarity in

structure with a human-generated item pool. To examine nonredundancy, we compared the number of identical items

between pools. The artificial intelligence-based item pool (AI-IP) contains one million unique items. We first lower-

cased and removedall punctuation fromboth itempools.We then compared the exactmatchbetweenpools and found

that 993,714 AI-IP items were unique statements not found in the IPIP. The AI-IP contains 35,426 unique words rel-

ative to the IPIP’s 3010. We lemmatized each statement (e.g., friends → friend, enjoyable → enjoy) to examine the

variety of core word stems in each item pool. The AI-IP contains 21,317 unique lemmas, whereas the IPIP contains

2335 unique lemmas. Therefore, the AI-IP provides novel statements and terms beyond those offered by the largest

currently available item pool.

We also compared the sentence structure of the AI-IP relative to the original IPIP. We quantified sentence struc-

ture in terms of average item length, readability score, percentage of various parts of speech (i.e., nouns, adjectives,

prepositions, verbs, and adverbs). For all metrics, we found highly similar structures (Table 1). Both the AI-IP and IPIP

had similar item lengths. The AI-IP on average had items that were approximately 1 word shorter (Mwords = 5.19; SD
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10 HERNANDEZ AND NIE

= 1.76) than the IPIP (Mwords = 6.74; SD = 3.38), d = 0.58. In common language effect size terms, there is a 65.79%

chance that a randomly selected AI-IP item will be shorter than a randomly selected item from the IPIP (Mastrich &

Hernandez, 2021). Therefore, although there is a practical difference in item length, it may be desirable to have more

concise items, if they demonstrate equivalent validity. The average word length in the AI-IP (MWordLength = 4.88, SD

= 2.53) is nearly identical (longer by less than a character on average) than the IPIP (MWordLength = 4.57, SD= 2.41), d

= .13. Toexamine the complexity of the statements themselves,weused theFleschReadingEasemetric (Flesch, 1948).

It ranges from negative infinity to 121.22. Higher scores indicate easier-to-read statements. It calculates the reading

ease of a statement using the formula: 206.835− 1.015 *(average words per sentence)− 84.6 * (average syllables per

word). Therefore, using fewer words per sentence and using fewer syllables per word both increase the readability

score.

While, on average, the items in the original IPIP are more readable (Mreadability = 74.88) than the AI-IP (Mreadability

= 68.72), this difference is alsominimal compared to the vast variation in readabilitywithin each scale (SDIPIP = 30.24;

SDAIIP =36.60), d=0.18. The effect size suggests a 5%difference in the probability that a randomly selectedAI-IP item

will be less readable than a randomly selected IPIP item, compared to another randomly selected IPIP item (Mastrich

&Hernandez, 2021). From an absolute perspective, the Flesch Reading Ease scoring guides indicate that a readability

score of 68.72 is on the margin between “standard” (60–69) and “fairly easy” (70–79), implying that the AI-IP items

are, on average, not difficult to read.

The parts of speech were also highly similar. The percentages never varied more than 3%. The rank order of the

parts of speechwas highly similar. Verbs and nouns were themost common parts of speech in both, occurring at twice

the rate of the other parts of speech. The only difference is that adjectiveswere slightly less common relative to prepo-

sitions in the AI-IP, though the difference between the two is less than .5%. Therefore, the grammatical components of

the item pools largely converged.

We evaluated how grammatically sensible the items were by applying a neural network classification model devel-

oped to assess linguistic acceptability. Linguistic acceptability is a determination of whether a statement follows

standard grammatical conventions in English. Features of text required to be acceptable include: correct spelling,

subject-verb agreement, complete punctuation, proper capitalization, among others. For evaluating linguistic accept-

ability, we used the RoBERTa-base-CoLA model (Morris et al., 2020), which obtains 85.04% accuracy on the COLA

benchmark, and therefore serves as a reasonable approximation toahumanevaluationof acceptability. Approximately

93% of the AI-IP items are linguistically acceptable, compared to 99% of the IPIP items. Therefore, the computed

generated items are more likely to suffer from grammatical issues, but the vast majority of items are grammatically

correct.

Becausehumansmaybeable to capture itempeculiarities not reflected in just grammar,we followed-up the compu-

tational analysis of linguistic acceptability with an empirical examination of how trained researchers could distinguish

the origin of human and computer-derived items, on a randomly selected subset of the item pools. We presented a

random selection of 100 items (50 from IPIP and 50 from AI-IP) to eight I–O doctoral students (62.5% holding mas-

ter’s degrees) with an interest in research methodology, and who all had prior professional experience in applied

Industrial–Organizational positions. Participants were shown 200 items from the IPIP prior to the task, to illustrate

what human-written items look like. Students were told they would be shown 100 items—some that were written by

a human and some written by a computer. They were asked to indicate the source of the item (human vs. computer)

All students were blind to the hypotheses andwere told that the student in the groupwith the highest accuracywould

earn a gift certificate to a local business. The average accuracy of the entire group was 57.07%, which is not statis-

tically distinguishable from the guessing base rate of 50%, Z(100) = 1.4, p = .16). This value is highly similar to the

human-detection rates of GPT (52%; Brown et al., 2020). The highest accuracy any rater obtained was 65%, suggest-

ing that therewas no overwhelming ability to detect the origin of a statement. These results highlight that themajority

of unedited statements are not easily identifiable as originating froma computer, evenwhen respondents are told that

some of the statements are written by a computer. The subtlety could also be improved by first applying a linguistic

acceptability model when compiling the onemillion item pool.
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HERNANDEZ AND NIE 11

2.3 Study 1 discussion

This first study demonstrated the ability of generative neural networks to write semantically novel personality items.

The generated items are slightly shorter, with a greater diversity in length, and comparable in terms of general read-

ing ease and phrasing. In addition, 93% of the items are considered linguistically acceptable. Researchers show no

strong ability in detecting the difference between human-generated and computer-generated items. Our next study

evaluates the ability of the framework to predict the correlation between item pairs. This subsequent aspect of

the framework is necessary to leverage the artificial intelligence-generated item pool by predicting the correlation

between a researcher’s initial seed items and themassive pool of candidate items.

3 STUDY 2: ITEM PAIR CORRELATION PREDICTION MODEL

The seconduniquecontributionof the framework is anNLPmodel that receives apair of personality itemsandpredicts

the observed correlation between those items. This model uses a paired architecture, which optimizes the weights of

a neural network, so they produce outputs to statement pairs that approximate the correlation between those state-

ments. In this section, we describe the model training process and report on the model’s performance at predicting

item–pair correlations extracted from theOpen Psychometrics data repository3.

3.1 Method

Training a functional NLPmodel that is based on a deep neural network is an arduous task, which often requires signif-

icant strong computational power and/or longwaiting time. To overcome these barriers, we employ a transfer learning

strategy (Raffel et al., 2020), which uses a model pretrained on a similar problem as the initial weights, serving as a

headstart for findingoptimalweights for the current problem. For this study,wewill implement transfer learningbased

on the Sentence-BERTmodel (Reimers &Gurevych, 2019).

We chose the DistilBERT architecture, which is a smaller, approximate version of the full BERT model. The “dis-

tillation” process in neural networks trains a smaller version of the model to predict the predictions of the larger

model. DistilBERT obtains nearly the same accuracy on natural language tasks as its larger predecessor. Using a

smaller model takes less time to train and also offers more compatibility across different user systems, which may

have limited resources.Our starting set of networkweights came from theDistilBERTmodel, “distilbert-base-nli-stsb-

mean-tokens,”whichwas trained todetect similar sentences on theSemantic Textual Similarity benchmark task,which

we chose because predicting correlations between items involves inferring semantic similarity (Sanh et al., 2019).

The paired DistilBERT model trains a model that accepts two text inputs and a ground truth similarity (Figure 3).

By providing a series of these examples to the model, with known similarities (i.e., correlations between statements),

it optimizes the model’s weights so that the model is able to predict the similarity of two texts provided to it later.

The specific steps of this paired text training first involve including two identical DistilBERT networks parallel to the

neural network, each with the same exact transferred weights. The DistilBERT network used creates an output of

768 dimensions for each 128 possible tokens (reduced from the original 512 for computational simplicity). To obtain a

single-dimensional embedding vector of 768 values, the network includes a pooling layer after the final DistilBERT

layer, which averages across the 128 input tokens to create a single 768-dimension embedding. A text is passed

through one network, and another is passed through that network’s “twin.” Third, the output of the two pooling layers

is given to a new layer, which calculates the cosine similarity. The range of the cosine similarity is naturally scaled from

−1 to 1, which matches the natural scaling of correlation coefficients. Because the cosine similarity (equivalent to the

normalized Euclidean distance between two vectors) of the two texts is used to calculate the prediction, the order of

sentences entered into the model does not change the prediction outcome. For this study, we define the loss function
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12 HERNANDEZ AND NIE

F IGURE 3 Visualization of the paired BERT
model to predict the correlation between two
items.Note: Themodel above shows the neural
network architecture of a paired BERTmodel
that accepts two input texts and adjusts the
weights within the Transformer network so that
their embeddings from that network have a
cosine similarity equal to their correlation.

of this neural network by taking the mean squared difference between the interitem correlation and the cosine simi-

larity of the two items. The error is used to update the BERTmodel’s weights in the same exact way, so both networks

always have the same exact weight values.

To train the NLPmodel for this study, we used all the publicly available personality datasets from theOpen-Source

Psychometrics Project3 and the IPIP dataset from the Eugene-Springfield Community Sample (Goldberg, 2018). We

chose these datasets because they are part of open-source projects that explicitly endorse re-use, offer large sample

sizes (all N > 1000), and come from international populations. All the inter-item correlations were identified with the

correlation matrices in these datasets. We identified a total of 4067 unique item statements with 3,452,812 inter-

item correlations across all datasets. The total number of inter-item correlations is smaller than themaximumpossible

(4067 choose 2 = 8,268,211) because not every pair of statements was part of the same study. We then fed both the

item text pairs and the inter-item correlations that related to these items into the neural network to fine-tune the

neural network.

The fine-tuningprocess consists of using apretrainedmodel in a relateddomain as the startingpoint for training the

model to newdata in the current domain. By fine-tuning,we used a sentence similaritymodel that had been pretrained

to identify how closely related two sentences are. The outputs of themodel were already scaled from−1 to+1, which

conveniently is the same range as a Pearson’s correlation coefficient. Therefore, we made no changes to the architec-

ture underlying the model. The fine-tuning process merely re-estimates the weights within the network to optimize

predictions in the current domain.We trained themodel for 10 epochs, which was an arbitrary choice. Typically, mod-

els are trained for fewer epochs, but we were concerned about potentially undertraining the model, so we opted to

have a higher number of epochs, and monitored the cross-validated loss to verify that we were ending too soon. The

cross-validated correlations showed stability (neither increased or decreasedmore than .01) at around the 5th epoch,

and therefore it is likely that our results would not change if we further increased the number of epochs, suggesting

that five epochswould have been sufficient. To evaluate the quality of themodel at predicting the correlation between

items, we held out a percentage (10%) of inter-item correlations from themodel.

3.2 Results

3.2.1 Prediction performance

We compared the predicted correlation between 345,282 itempairs (10%data) thatwere held out during the training

phase. The cross-validated correlation was r = .96, p < .0001). The cross-validated mean absolute error of predic-

tions was equal to .02 (SD= 0.018, 95% CI = [−.015, .055]). This error was significantly lower than the baseline error
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HERNANDEZ AND NIE 13

(0.081) expected by guessing the mean correlation (r= .018). To evaluate the amount of error that could be expected

in practice, we examined the list of all absolute errors and examined the percentiles at various cutoffs. At the 95th

percentile, the absolute error was 0.055. Thus 95% of the time, the predicted correlation was not off by more than

.055 from its true value. At the 99th percentile, the error was 0.08 and at the 99.9th percentile, the error was 0.14.

Therefore, it is extremely unlikely that the model will provide a predicted correlation more than .15 off its true value.

We also compared the predictions to estimates made by graduate researchers (see study 1 for sample description).

Themean absolute error of humanswas .10 (SD= 0.02, 95%CI= [.09, .12]), and the average correlation between their

predicted and actual values was .38 (SD= 0.09; 95 CI= [.31, .46]). Therefore, themodel at its 99th percentile or error,

substantially outperforms howwell even researchers can generally estimate the item correlations.

3.3 Study 2 discussion

Our second study demonstrated the ability of transformer neural networks to predict the correlation between pairs of

text. Becausewecalculated themodel’s error onahold-out sample,weexpress confidence in themodel’s ability topre-

dict the correlationofnewpairs of text.Validating this component justifies its inclusion in the framework, as itwinnows

the list of candidate items down to the ones expected to have the highest correlation with the user-submitted items.

Further, it offers researchers a predicted correlation between each recommendation and each submitted item. These

correlations can assist the choice of items to maximize validity. Our next study evaluates the ability of the framework

to generate scales that have comparable psychometric properties to existing validated scales that have successfully

completed the iterative development process.

4 STUDY 3: CONTENT VALIDATION MODEL

The third study examined the effectiveness of zero-shot classification models to facilitate the content validation pro-

cess by accurately inferring the content domain of an item when provided a selection of domains. For this study, we

selected amultitudeof pretrained zero-shot classificationmodels and applied them to adatasetwith personality items

labeled to specific constructs.We thenevaluatedhowaccurately eachmodel could select the correct construct, aswell

as the aggregation of themodels.

4.1 Zero-shot classification models

We selected a variety of zero-shot classification models available from the HuggingFace transformers repository.We

tried to obtain a variety of models, pretrained on different datasets, to have a diversity in the perspectives offered.

Becausewe had no a priori predictions of whichmodels would be sufficient, we chose to obtain a larger group ofmod-

els for exploringwhat are themost optimal for inferring a construct froman item.Wechose the following eightmodels,

which provide insight into how various architectures and pretraining tasks, perform at inferring the correct content

domain: (a) Bart-Large-MNLI, (b) Deberta-Large-MNLI-Zero-CLS, (c) GTP-T5-Large, (d) STSB-RoBERTa-Large, (e) All-

MiniLM-L12-v2, (f) Sentence-T5-Base, (g) All-MPNET-Base-v2(h)NLI-DeBERTA-v3. There aremanymodels to choose

from, so the subsequent conclusions should not be interpreted as how all zero-shot classifiers will perform, but rather

howwell existing models can perform, and their potential utility as evenmore accuratemodels are developed.

4.2 Item–construct assignment data

To evaluate the zero-shot models’ effectiveness at correctly classifying an item’s content domain, we used the item–

construct map provided by IPIP.org. This data contains all of the 3320 items in the IPIP and the specific domain(s)

associated with each item. In total, there are 3805 items–construct maps, as some items are associated with more
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14 HERNANDEZ AND NIE

than one domain (e.g., risk-taking, thrill-seeking), which is beneficial becausewewould not necessarilywant to assume

that an itemcanonly correspond to a single facet out of all possible facets. Similar to an SMEwhohas to evaluatewhich

of a limited number of domains an item belongs to, we presented the model with other constructs sampled from the

list of all constructs. Specifically, for every row in the dataset, we retained the true construct, and randomly sampled

four other constructs from the list that were not also listed with the item. We chose a total of five content domains

because many popular scales have similar numbers of facets (IPIP has 6 facets per factor, HEXACO has 4 facets per

factor; Emotional Intelligence contains four facets within the overarching factor; Self-Efficacy has four content facets,

etc.). When provided the original item to the model and then recorded the probabilities assigned to each of the five

potential labels. The label with the highest probability was considered themodel’s predicted domain.

4.3 Results

Weevaluated each zero-shot classifier’s predictions against the ground-truth construct labels for each item. The accu-

racies ranged from .57 to .70, and were 64.31% accurate (SD= 0.05), on average. The best performing model was the

Sentence-t5-base, which is especially suited for sentence similarity tasks (Ni et al., 2021), whereas theworst perform-

ing model was the all-MiniLM-L12-v2, which was trained on a variety of data inference tasks (Reimers & Gurevych,

2019). Content validation often aggregates the assessments of different SMEs to make a final determination of con-

tent relevance.We combined themodel’s predictions and evaluated if the inferences improved using the label inferred

by the plurality of the models. In this aggregation, each model’s most likely content label received one vote, and we

selected the candidate with the highest number of votes. Selecting the content domain that received themost predic-

tions led to the highest accuracy (73.96%), which is more than three times the 20% base rate expectation. If we use a

higher decision threshold, thenwe can obtain even higher accuracy, at the expense ofmissing some construct-relevant

items.We found that by setting the decision threshold at 60%ofmodelsmust agree, the accuracy increases to 84.29%,

butwill notmake adefinitive prediction for 25%of items. Requiring80%of themodels to agree, increases the accuracy

to 92%, but the model will not reach consensus for 58% of items it evaluates. Therefore, researchers with many items

to choose from may desire to set the consensus threshold to 80% to increase the probability that the items selected

actually match their classified domain.

4.4 Study 3 discussion

Our third study demonstrated that zero-shot models can perform above guessing levels when inferring the content

domain of an item. The models were not perfect, missing the correct construct 30% of the time. However, we believe

that these models, if used in tandem with an SME who is similarly accurate, can offer additional insights to minimize

the errors made by a human alone. That is, if a second SME cannot be acquired, and if the model’s and first SME’s

errors are independent from each other, then, when both agree, the accuracy should approach 91% (1 − .30 × .30).

The error should improve even further if using a higher decision threshold for the zero-shot model, at the expense of

falsely rejecting relevant items.

5 STUDY 4: EMPIRICAL VALIDATION OF SCALES CREATED WITH
AI-RECOMMENDATIONS

Based on the results of studies 1–3, we found evidence validating the individual elements of the item generation

framework. To validate the effectiveness of the proposed generation framework, we constructed scales using the

framework that had validated counterparts whose psychometric properties could be compared to the generated

 17446570, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12543, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HERNANDEZ AND NIE 15

scales. Specifically, for study 4, we provided three “seed” items for a given facet and generated an equivalent length

scale of completely generated items that correlatedwith those “seed” items.We then surveyed participantswho com-

pleted both the original and AI-generated scales. By examining the reliability, unidimensionality, and convergence of

the scales, we assess howwell the proposed framework can generate scales compared to traditional methods.

5.1 Method

5.1.1 Artificial intelligence-generated scales

We applied the proposed framework described in the introduction to generate inventories using a set of items from

the various validated scales. These scales were the Big Five Inventory 2 (Soto & John, 2017), The Self-Efficacy Scale

(Sherer et al., 1982), and the Curiosity Scale (Kashdan et al., 2018). We chose these scales as a representation of a

broad range of constructs, with some like the Five Factors, which are in the IPIP, and others like the Curiosity Scale

that are not mapped to the IPIP.

Using these scales, we then submitted the three highest loading items (“seeds”) for each facet from the scale to

a universal sentence encoding model that selects the top .5% most semantically similar AI-IP items from the list of

one million items. These 5000 items (“candidates”) are then submitted to the correlation prediction model, which

predicts the correlation between each seed and each of the 5000 candidates. We then calculate the average corre-

lation for each candidate across all three seed items. The model returns the top 25 most positively correlated items

and top 25 most negative correlated items. We then selected as many positively and negatively coded items from

the 50 recommended items as the original scale had. Because the highest correlated suggestions may overlap with

each, we also prioritized selecting items that were diverse in content, similar to relying on an SME to choose content.

Researchers could also use a zero-shot classifier to select items that were classified as belonging to specific content

domains, balancing the domains chosen. To counteract the potential inflation of item loadings that would be observed

byusing aprevalidated item fromanexisting scale,wenever included the initial seed items in the final scale. In practice,

researchers would want to include their seed items, which likely greatly maximize obtaining a coherent factor struc-

ture. For the initial seed items and a sample of suggested items chosen from those seed items see Appendices A–C.

The comprehensive set of guidelines we followed (and encourage others to follow) for obtaining recommendations

from the automated system can be found in the supplemental material (S1) and listed on the paper’s OSF repository:

https://osf.io/6wznm.

5.1.2 Procedure

Participants (N = 377) accessed the survey via an online Qualtrics link obtained after signing up for the study on the

Subject pool participant sign-up page. The online Qualtrics survey consists of an online consent form. After reading

and agreeing to the consent and meeting the screening requirement, participants will be directed to the next section

containing the actual survey questions. Participants saw each scale on its own page. The page never mentioned which

scaleswere being shown and no participantwas told that some of the scaleswere generated by a computer. Each scale

consisted of Likert-style questions asking about the cognitive and behavior tendency of the participants. The order of

the scales was randomized and all participants eventually saw the BFI, Self-Efficacy, and the Curiosity scale as well as

their AI-generated counterparts on six different pages. After completion of the personality scales, participants com-

pleted multiple types of attention and effort check questions, including psychological antonyms, asking participants

to select a specific answer, asking about highly improbable events, and self-reported inattention (Aust et al., 2013;

Johnson, 2005). Last, participants completed basic demographic questions. We removed any participant who failed

any of the different attention checks for a final sample size of 277 respondents.
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16 HERNANDEZ AND NIE

TABLE 2 Descriptive statistics of original and artificial intelligence-generated scales

Scale Facet Original AI-generated

Big Five Mean SD CI Mean SD CI

Agreeableness 3.86 0.55 (3.79, 3.92) 4.28 0.59 (4.21, 4.35)

Conscientiousness 3.72 0.68 (3.64, 3.80) 3.61 0.67 (3.53, 3.69)

Extraversion 3.39 0.69 (3.30, 4.47) 3.56 0.76 (3.46, 3.64)

Neuroticism 2.97 0.81 (2.87, 3.06) 3.09 0.79 (2.99, 3.18)

Openness 3.66 0.66 (3.58, 3.74) 3.45 0.71 (3.37, 3.54)

Self-Efficacy

General 3.52 0.50 (3.45, 3.59) 3.54 0.50 (3.49, 3.60)

Social 3.20 0.66 (3.12, 3.27) 3.75 0.64 (3.68, 3.82)

Curiosity

Joyous Exploration 5.13 1.12 (5.00, 5.25) 5.66 1.03 (5.54, 5.78)

Deprivation Sensitivity 4.54 1.33 (4.38, 4.68) 4.85 1.17 (4.72, 4.99)

Stress Tolerance 4.22 1.39 (4.06, 4.38) 4.14 1.26 (3.99, 4.29)

Social Curiosity 5.48 1.02 (4.34, 5.58) 5.90 0.97 (5.79, 6.02)

Thrill Seeking 3.95 1.36 (3.79, 4.10) 4.02 1.50 (3.84, 4.18)

Note: Values in parentheses are 95% confidence intervals.

5.1.3 Proposed analysis

We compared the original scales with the artificial intelligence-generated scales using a series of analyses standard

in developing equivalent scales. Specifically, we closely followed the procedure of Ehrhart et al. (2009), which pro-

vides a comprehensive collection of guidelines and standards for comparing validation metrics between original and

alternative scales.

5.2 Results

5.2.1 Descriptive statistics comparison

The means and standard deviations for most scales appear to be highly similar (Table 2) with most means within the

same scale anchor as the other mean. The average standardized difference between original and AI-generated scales

was d= 0.32, which is commonly qualitatively described as a “small” difference. Although the practical effect size may

be small, these differences do appear to be statistically robust. We found statistically significant differences in means

for “Agreeableness,” “Social self-efficacy,” “Joyous Exploration,” “Deprivation Sensitivity,” and “Social Curiosity”. Inter-

estingly, when the difference is statistically significant, the AI-generated items always had higher means, suggesting

that theymay bemore susceptible to acquiescence biases.

5.2.2 Reliability comparison

We evaluated the similarity of the reliability coefficients for each subscale. We used Cronbach’s alpha to measure

internal consistency. When comparing the Cronbach’s alpha of the generated scales to the original scales, the gener-

ated scales were comparable (Table 3). The majority of the time (91.67%), the generated scales produced Cronbach’s
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HERNANDEZ AND NIE 17

TABLE 3 Comparison of reliability between original and artificial intelligence-generated scales

Scale Facet Original α AI-generated α

Big Five

Agreeableness .77 (.72, .80) .88 (.85, .90)

Conscientiousness .87 (.85, .89) .85 (.82, .88)

Extraversion .85 (.82, .87) .89 (.87, .91)

Neuroticism .90 (.87, .91) .89 (.86, .90)

Openness .84 (.81, .87) .87 (.85, .89)

Self-Efficacy

General .89 (.87, .91) .84 (.81, .86)

Social .72 (.66, .76) .74 (.69, .78)

Curiosity

Joyous Exploration .87 (.84, .89) .91 (.89, .93)

Deprivation Sensitivity .84 (.81, .87) .85 (.81, .87)

Stress Tolerance .88 (.86, .90) .81 (.76, .84)

Social Curiosity .81 (.77, .85) .89 (.86, .91)

Thrill Seeking .85 (.82, .88) .90 (.88, .91)

Note: Values in parentheses are bootstrapped 95% confidence intervals for the alpha coefficient.

alpha coefficients thatwere statistically indistinguishable fromor better than the original scales’ alpha. In addition, the

generated scales never had alpha coefficients less than .04 of the original scale’s alpha coefficients. These comparisons

suggest that there is not a strong difference in reliability in artificial intelligence-generated scales and their optimized

counterparts.

5.2.3 Composite score comparison

We compared the composite scores for each of the distinct scales by using the equal-weighted scoring rules from the

original scale. We then examined the correlation between participants’ composite scores from the original scale and

the AI-Generated Scale (Table 4). All correlations were statistically significant at the .05 alpha level. On average, the

correlation between the composite scores from the generated scale and the actual scales was .72, which surpasses

traditional reliability thresholds. However, these correlations showed a fair amount of variability. For the Big Five,

whose underlying constructs were captured in the IPIP that were part of the training data, the correlations are higher.

However, for the Curiosity Scale, which did not have any equivalent constructs in the IPIP, the correlations for the

subfacets are lower, ranging from .39 (“Social Curiosity”) to .72 (“Thrill Seeking”). Therefore, themethoddid not always

produce correlations at reliability thresholds. Specifically, for the Curiosity Scale, the dimension of “Social Curiosity”

was especially difficult for themethod to generate equivalent items.

5.2.4 Confirmatory factor analysis

This analysis describes how well the scales conform to the theorized multidimensional factor structure. Because we

generated scales at the facet level, we submitted the scales to a confirmatory factor analysis, where the items loaded

onto the facet scales and the facet scales loaded onto a single higher-order factor. To evaluate the overall model fit,
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18 HERNANDEZ AND NIE

TABLE 4 Correlation of composite factor scores between original and artificial intelligence-generated scales

Scale Facet

Correlation

coefficient

Big Five

Agreeableness .76*

Conscientiousness .85*

Extraversion .91*

Neuroticism .84*

Openness .80*

Self-Efficacy

General .81*

Social .75*

Curiosity

Joyous Exploration .64*

Deprivation Sensitivity .51*

Stress Tolerance .55*

Social Curiosity .39*

Thrill Seeking .72*

*Statistically significant at p< .05.

TABLE 5 Correlation of composite factor scores between original and artificial intelligence-generated scales

Scale Original RMSEA AI RMSEA Original SRMR AI SRMR

Big Five .070 (.067, .073) .067 (.064, .070) .095 .088

Self-Efficacy .084 (.077, .091) .086 (.079, .093) .076 .078

Curiosity .090 (.084, .097) .092 (.086, .099) .081 .092

we used the (a) Root Mean Square Error of Approximation (RMSEA; Steiger, 1990), and (c) Standardized Root Mean

Square Residual (SRMR). The prior cited research emphasizes RMSEA and SRMR because they are not sensitive to

certain types of simple structure distortion (Beauducel & Wittmann, 2005) and are fairly robust to varying reliabil-

ity values of the indicator variables (Browne et al., 2002). Determining model fit is highly discussed and debated,

particularly with respect to threshold values implemented for descriptive fit indices (Lance et al., 2006).

The RMSEA values, which have an associated 90% confidence intervals, are statistically indistinguishable between

all three human- andAI-generated scales (Table 5). In addition, the SRMRvalues, which do not have a confidence inter-

val, are all within .01 of each other. These findings highlight the ability of the generated scale items to have statistically

indistinguishable psychometric properties as scales generated by traditional methods.

6 DISCUSSION

In summary, we present a framework that combines different modern NLP transformer models including, GPT, BERT,

zero-shot classifiers, to alleviate some of the challenges of scale development. This framework offers data-derived,

informed suggestions to help researchers create cohesive scales. Study 1 demonstrated that generative neural net-

work models can produce a greater variety of personality items than the largest existing item pool, while still having
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HERNANDEZ AND NIE 19

similar structural properties. Study 2 demonstrated that a paired transformer model can closely estimate the correla-

tion between item pairs using only the items’ text. Study 3 provided evidence that pretrained zero-shot classifiers can

determine an item’s content domain. Study 4 showed that the scales developed by this method perform similarity in

terms of reliability, composite score creation, and showing the anticipated factor structure. While SMEs are still nec-

essary at various stages, such as defining content domains, and selecting the final itemset, this approach can hopefully

increase the ease that those scales are constructed.

Because the framework is intended to facilitate the research pipeline, we provide access to the framework through

an interactivewebsite4. Themodularity of the proposed framework offers researchers the ability to improve upon the

various components and adjust the settings (e.g., # of filtered items, # of returned suggestions). To allow researchers

to easily make these adjustments, we also offer the combined suggestion pipeline as a Google Colab notebook.5

6.1 Additional benefits

6.1.1 Large preconstructed item pool

The AI-IP items that we developed in study 1 represent the largest general personality item pool available with one

million unique items, compared to the previous largest pool—IPIP—consisting of 3320 items. Therefore, the project

offers more candidate items for researchers by three orders of magnitude (103 vs. 106) who are solely seeking item

banks like the IPIP. Because the AI-IP was arbitrarily limited to 1,000,000 items, researchers who desire more item

variety could use the model to create even more items. We have created an online, interactive Google Colaboratory

notebook,6 which offers researchers access to the trainedGPTmodel from study 1 aswell as the generation functions,

to generate more items on demand. Making this code available should benefit researchers, who are studying more

niche content areas that may not be able to be captured by the original million.

6.1.2 Novel model to predict item correlation

While not the main goal of the project, the item prediction offers a model trained to predict how correlated items

are on scales. This model contains a representation of the correlation between semantic concepts, which could

potentially be useful for anticipating the results of new studies. That is, if researchers are interested in examin-

ing the relationships between concepts, but are unsure about how strongly they would be related to each other,

this model could suggest the future outcome of unconducted research projects. It could also help with inferring

the effect size to enter in an “a priori” statistical power analysis. Because the model’s error was still low on held-

out data, this possibility is reasonable, though it likely requires additional investigation to examine the limitations

of this type of prospective analysis. We have also created an interactive Google Colaboratory notebook to allow

researchers to load the trained item-prediction model and submit their own item pairs to facilitate this area of

research.7

6.2 Limitations

6.2.1 Limited range of constructs explored in validation study

The prior provides initial evidence of the framework’s efficacy. However, we do not intend for the evaluation to be

exhaustive, but rather limited by practical considerations of how many surveys could be completed by participants

before experiencing fatigue effects.We do feel that, like all proposed frameworks, further testing is helpful to explore
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20 HERNANDEZ AND NIE

its boundaries. The results of the validation suggest that themethodworks bestwhen construct scales capturedwithin

the constructs measured by the IPIP, and that novel construct may requiremore training data.

6.2.2 Generalizability to additional populations

The original correlation prediction model was trained using online survey data compiled from various countries. This

aggregation can lead to greater country-specific error for items moderated by culture. In addition, the items are all in

English, and therefore, the model can only provide suggestions for English language scales. This limitation is currently

being addressed in neural network research with the development of multilingual models that provide equivalent

predictions for semantically equivalent sentences, across a variety of languages (Reimers &Gurevych, 2019).

6.3 Future directions

6.3.1 Larger item pools

One future direction for the proposed method is generating more conceptually diverse item pools. The development

of the model used scales published on Open Psychometrics, which have been mapped to approximately 248 con-

structs. However,manyother scales existwithin the personality literature andmayprovide greater construct diversity

for the existing items. Training the generative model with these additional scales could facilitate a broader range of

themes.

6.3.2 Grammar correction models

Our research found that approximately 8% of the items in the pool were linguistically unacceptable. Rather than use

these grammar-checking models retrospectively, future versions of this system might want to apply them prospec-

tivelywhendeveloping the initial itempool. As grammar correctionmodels improve in computer science, thesemodels

can serve as amore effective filter for whether a GPT-generated item is included in the final item pool.

6.3.3 Exploring further zero-shot models

Anotherway to further improve the intelligence of the frameworkwould be to examine additional zero-shot classifiers

to determine their optimal combination and more accurately infer what content an item represents. In the current

framework, we used pretrained zero-shot classifiers that were not optimized toward psychological language. The cur-

rent results merely demonstrate that zero-shot models have promise in assisting content validation. As better models

are discovered, they becomemore substitutable for how SMEswould evaluate an item’s content.

6.3.4 Computer adaptive testing

The current framework has the potential to apply to domains that require large item pools, with diverse character-

istics. Computer adaptive tests are one potential domain where items become increasingly more difficult or easy

depending on the person’s prior performance. This format allows researchers to more efficiently estimate a person’s

underlying ability level on a construct, and also prevent item leakage by having respondents encounter different items
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HERNANDEZ AND NIE 21

than others. If the current system was combined with methods that could predict an item’s item response theory

parameters (e.g., difficulty, discrimination, guessability), then these parameters could be stored alongside precreated

items.When a respondent requires an itemwith a certain parameter values, the systemwould search for the itemwith

the closest matching properties. This approach could allow for the precalculation of millions of items, creating more

fine-grained options and also avoid question leakage. This approach could be used in tandemwith other classification

models designed to filter out grammatically incorrect or culturally biased items.

7 CONCLUSION

In this paper,wevalidated thedifferent elements of theproposed itemgenerationmethodanddemonstrated its ability

to create scales with similar psychometric properties as scales that had been developed and optimized with tradi-

tional scale development pipelines. This novel approach combines the latest advances inmachine learning to facilitate

a typically creative and subjective endeavor. By leveraging these advanced models, we further the scientific goals of

quantifying open-ended processes, minimizing uncertainty, reducing guesswork, and enhancing replicability.
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APPENDIX A: Comparison of original seed items from Big Five Inventory 2 Scale and

AI-generated items

Facet Original seed items AI-generated items (Sample)

Agreeableness • Is compassionate has a soft heart

• Is respectful, treat others with respect

• Has a forgiving nature

• Am kind-hearted

• Am awarm person

• Feel little compassion for other people

Conscientiousness • Is systematic likes to keep things in order

• Is persistent works until the task is finished

• Is reliable can always be counted on

• Do everything neat and organized

• Can always be depended on

• Will often leave amess

Extraversion • Is outgoing sociable

• Is dominant acts as a leader

• Is full of energy

• Am a very energetic and enthusiastic

person

• Have strong leadership

• A a shy, introverted person

Neuroticism • Worries a lot

• Often feels sad

• Is temperamental and gets emotional

easily

• Often findmyself upset

• Often have intensemood swings

• Rarely am bothered by things

Openness to experience • Is complex a deep thinker

• Is fascinated by art music or literature

• Is original comes upwith new ideas

• Have an eclectic imagination

• Think very creatively

• Have little interest in intellectual or

creative pursuits

Note: The sample AI-generated items include only a subset of the final items used.
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APPENDIX B: Comparison of original seed items from Self-Eff icacy Scale and AI-generated

items

Facet Original seed items AI-generated items (Sample)

General self-efficacy • If I can’t do a job the first time, I keep trying

until I can

• When I make plan, I am certain I canmake

themwork

• Failure just makesme try harder

• Keep at it until I succeed

• Am sure that my plans will succeed

• Have little confidence inmy ability to get

things done

Social self-efficacy • When I’m trying to become friends with

someonewho seems uninterested at first, I

don’t give up easily

• I have acquiredmy friends throughmy

personal abilities at making friends

• If I see someone I would like tomeet, I go

to that person instead of waiting for him or

her to come tome

• Am good at maintaining friendships

• Love to get to know someone

• Find it difficult to initiate new friendships

Note: The sample AI-generated items include only a subset of the final items used.

 17446570, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/peps.12543, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HERNANDEZ AND NIE 25

APPENDIX C: Comparison of original seed items from Curiosity Scale and AI-generated items

Facet Original seed items AI-generated items (Sample)

Joyous Exploration • I seek out situations where is likely that I

will have to think in depth about something

• I enjoy learning about subjects that are

unfamiliar tome

• I find it fascinating to learn new

information

• Consider myself an intellectually curious

person

• Love to discover things

• Have little curiosity aboutmany topics

Deprivation Sensitivity • I can spend hours on a single problem

because I just can’t rest without knowing

the answer

• I feel frustrated if I can’t figure out the

solution to a problem, so I work even

harder to solve it

• I work relentlessly at problems that I feel

must be solved

• I try very hard to do things that others find

difficult

• Am a “problem solver”

• Find it difficult to get myself to do things.

Stress Tolerance • The smallest doubt can stopme from

seeking out new experiences

• I cannot handle the stress that comes from

entering uncertain situations

• I find it hard to explore new places when I

lack confidence inm abilities

• Can find it difficult to relax

• Fear not being able to solve a difficult

problem

• Amusually able to think of a way to solve

my problems

Social Curiosity • I like to learn about the habits of others

• When other people are having a

conversation, I live to find out what it’s

about

• When around others, I like listening to

their conversations.

• Love to hear about others’ experiences

• Am fascinated by the psychology of others

• Dislike to talk about personal things

Thrill Seeking • Risk-taking is exciting tome

• When I have free time, I want to do things

that are a little scary

• Creating and adventure as I go is much

more appealing than a planned adventure

• Love the thrill of the unexpected

• Enjoy a “real-life adventure”

• Prefer a dull life

Note: The sample AI-generated items include only a subset of the final items used.
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