
Citation: Wu, X. SimuBP: A

Simulator of Population Dynamics

and Mutations Based on Branching

Processes. Axioms 2023, 12, 101.

https://doi.org/10.3390/

axioms12020101

Academic Editor: J. Alberto Conejero

Received: 28 December 2022

Revised: 14 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

SimuBP: A Simulator of Population Dynamics and Mutations
Based on Branching Processes
Xiaowei Wu

Department of Statistics, Virginia Tech, 250 Drillfield Dr, Blacksburg, VA 24061, USA; xwwu@vt.edu

Abstract: Originating from the Luria–Delbrück experiment in 1943, fluctuation analysis (FA) has been
well developed to demonstrate random mutagenesis in microbial cell populations and infer mutation
rates. Despite the remarkable progress in its theory and applications, FA often faces difficulties in the
computation perspective, due to the lack of appropriate simulators. Existing simulation algorithms are
usually designed specifically for particular scenarios, thus their applications may be largely restricted.
There is a pressing need for more flexible simulators that rely on minimum model assumptions and
are highly adaptable to produce data for a wide range of scenarios. In this study, we propose SimuBP,
a simulator of population dynamics and mutations based on branching processes. SimuBP generates
data based on a general two-type branching process, which is able to mimic the real cell proliferation
and mutation process. Through simulations under traditional FA assumptions, we demonstrate that
the data generated by SimuBP follow expected distributions, and exhibit high consistency with those
generated by two alternative simulators. The most impressive feature of SimuBP lies in its flexibility,
which enables the simulation of data analogous to real fluctuation experiments. We demonstrate the
application of SimuBP through examples of estimating mutation rates.

Keywords: fluctuation analysis; population dynamics; mutation; branching process

MSC: 92D15; 92D25; 60J80; 60J85

1. Introduction

Fluctuation analysis (FA) is a classical approach for inferring mutation rates in micro-
bial populations based on data collected from Luria–Delbrück (LD) experiments. A typical
LD experiment is usually conducted by growing cells in parallel cultures and then plating
the cultures on selective media to determine the number of mutants. Based on the data
collected in parallel cultures, including the mutant counts and the total number of viable
cells, estimation of the mutation rate can be performed based on appropriate mathematical
models. During the long history of FA, various models (e.g., the Luria–Delbrück model,
the Lea–Coulson model among many others) have been proposed and a great number of
mutation rate estimators (based on moments, maximum likelihood, generating function,
etc.) have been developed. The fundamental problem is to derive the distribution of the
number of mutants at a given time (or population size), often called the LD distribution.

In contrast to the progress in mathematical modeling and statistical inference for the
cell proliferation and mutation process, relatively less attention has been paid to computer
simulations. As an important component of FA, computer simulation plays its unique role
in the following aspects:

(1) It provides a ground truth for evaluating the properties of mutation rate estimators,
and for comparison between different methods;

(2) It improves model calibration and interpretation by investigating deviations of simu-
lated data from real experimental data;

(3) It can be used to generalize model assumptions or get theoretically intractable solu-
tions, which motivate new developments in theory;

Axioms 2023, 12, 101. https://doi.org/10.3390/axioms12020101 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12020101
https://doi.org/10.3390/axioms12020101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-9916-3624
https://doi.org/10.3390/axioms12020101
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12020101?type=check_update&version=1

Axioms 2023, 12, 101 2 of 18

(4) The increasing computational resources make it possible to develop simulation-based
estimators for mutation rate, which breaks the boundary of classical theory.

With the development of high-performance computing in recent years, intensive
Monte Carlo simulations have become a powerful and financially feasible tool. This tool
can be used to numerically elucidate the complex properties of evolutionary dynamics in mi-
crobial populations, which may be difficult to uncover by using mathematical approaches.

However, current simulation algorithms in the field of FA are still relatively under-
developed. Existing simulators often rely on theoretical results derived from specific LD
models, which, of course, require that a few assumptions be met. For example, one may
draw samples directly from the LD distribution by applying the inverse transform to the
cumulative distribution function (CDF), if it can be derived explicitly under certain condi-
tions (e.g., deterministic growth of wild-type cells, no cell deaths or backward mutations).
Another often used assumption in simulation is that the number of mutant cells can be
represented as a nonhomogeneous filtered Poisson process (see Equation (2.2) in [1]). The
heavy dependence on established results or model assumptions generates a dilemma for
simulators in that, they can only generate data for particular cultivated models, not for the
ones “outside the box”, whereas it is the latter, not the former, that actually needs more aid
from simulation to imitate real experimental conditions and inspire new theories. If there
was a simulator that requires a minimum set of assumptions and can be easily adapted to fit
different models, it would greatly benefit the theoretical research in FA. Moreover, as stated
in point (4) above, such a simulator also have potential implications in the methodology of
newly-developed, data-oriented estimators of mutation rate.

In this study, we propose a flexible simulator, SimuBP, based on branching processes.
SimuBP directly counts cell numbers at a given time in Monte Carlo simulations based
on cell lifetime and offspring distributions, in a way that is analogous to the in vitro cell
proliferation and mutation process. The main features of SimuBP include (i) it does not
require any known results from the model, (ii) it is adaptable to different branching pro-
cesses, and (iii) it can handle complex models such as cell deaths and backward mutations,
different probabilistic behavior (lifetime and offspring distributions) for wild-type and
mutant cells, time-varying mutations. For better dissemination, SimuBP is programmed
using the open-source R language.

The rest of this article is organized as follows. In Section 2, we first provide a brief
introduction to branching processes. We then present the SimuBP algorithm and introduce
three simulation studies for validation, comparison, and demonstration purposes. Section 3
describes the details of the simulation procedures and summarizes the results, followed by
discussion and conclusions in Section 4.

2. Methods
2.1. Discrete-Time, Continuous-Time Branching Processes, and Two-Type Branching Processes

Branching processes are commonly used to model an evolving population of microbial
cells [2]. In general, cell reproduction can be described by the following Markov chain.
Denote the population size of the nth cell generation (synchronized or not) by Xn, n ≥ 0
with X0 > 0, and the number of offspring of the ith cell of the (n− 1)th generation by Zi,
the Markov chain {Xn, n ≥ 0} satisfies such a branching (or cell proliferation) rule

Xn =
Xn−1

∑
i=1

Zi,

where Zi, i = 1, 2, · · · are non-negative, integer-valued, independent and identically dis-
tributed (i.i.d.) random variables following some discrete distribution (called the offspring
distribution). Depending on whether the cell lifespan is fixed or random, branching
processes can be categorized into discrete-time and continuous-time variants. For the
discrete-time branching process (known as the Galton–Watson process or GWP [3]), the
cell lifespan is assumed to be a constant, hence the cell birth events in each generation are

Axioms 2023, 12, 101 3 of 18

synchronized. Such an assumption is relaxed in the continuous-time branching process by
allowing the cell lifetime to vary as a continuous random variable. The branching process
with cell lifespan following an arbitrary continuous distribution is called the age-dependent
branching process or the Bellman-Harris process (BHP) [4,5]. In particular, when the cell
lifetime distribution is i.i.d. exponential, the resulting process is called the Markov branch-
ing process (MBP) [6], otherwise, the corresponding continuous-time branching process
is non-Markovian. It is obvious that, because of the branching rule, branching processes
serve as appropriate mathematical models for cell population dynamics.

Since the Luria–Delbrück experiment is about random mutagenesis in cell popula-
tions, distinguishable cells with different probabilistic behavior should be allowed in the
branching process model. For a typical fluctuation analysis involving two types of cells,
namely the wild-type (non-mutant) and mutant cells, the population sizes of these two
types of cells changing over time can be modeled by a two-type branching process [7]. The
specific interest is in the distribution of mutant cell numbers at a given time, based on which
the cell mutation probability (or mutation rate per cell division) can be inferred. Without
loss of generality, let us consider a “General Two-Type Branching Process”, hereinafter
abbreviated as GTBP, which satisfies the following two fundamental rules: (i) Each cell
lives a certain time (fixed or random) and then splits into a random number of offspring,
independent of other cells. In particular, we may allow the wild-type and mutant cells to
have different lifetime distributions and different offspring distributions. The parameters
of these two distributions determine the growth rates of the two types of cells; (ii) Upon cell
division, each cell mutates with a certain constant probability, independent of the division
times. In a general setting, we allow backward mutations and assume that wild-type and
mutant cells have mutation probabilities µ1 and µ2, respectively, where 0 ≤ µ1, µ2 ≤ 1.
Note that, this GTBP should not be confused with the general branching process (also
called the Crump-Mode-Jagers, or CMJ, process), which allows multiple birth events from
each cell according to a point process [8,9]. We assume that the cell population starts from
y0 wild-type and x0 mutant cells at t = 0, and denote the time of plating (i.e., the time for
cell counting) by tp and correspondingly the number of wild-type and mutant cells at tp by
yt and xt, respectively.

In contrast to the GTBP, we also define a “Simplified Two-Type Branching Process”
(STBP) which is a special two-type MBP initiated by wild-type cell(s), with i.i.d. exponential
lifetime for wild-type and mutant cells (i.e., non-differential growth) and binary-fission
(i.e., Yule process), and without cell deaths or backward mutations. This model will be
used throughout our simulation studies as described in Section 2.3. We note that the STBP
is similar to Kendall’s two-type branching process (KTBP) [10], which is often known
as the stochastic Luria–Delbrück model, with slight differences. The KTBP allows cell
deaths and assumes that, upon division, each wild-type cell will either die, give birth to
two wild-type offspring, or turn into one wild-type + one mutant cell, with certain rates;
each mutant cell, on the other hand, will either die or divide into two mutant offspring
with a certain rates [11]. However, in the STBP formulation, we assume all cells grow
according to binary-fission with i.i.d. exponentially distributed lifetime, mutant cells
always divide into two mutant offspring, and wild-type cells produce mutant offspring
according to either pre- or post-division mutation. That is, for pre-division mutation,
each wild-type cell will mutate with probability (µ1, say) right before its division, but for
post-division mutation, each wild-type cell will first divide into two wild-type offspring,
then these two offspring will mutate independently with probability (µ1) right after the
division. In other words, from the wild-type cell perspective, the offspring distribution
probability generating function (PGF) is f (s) = µ1 + (1− µ1)s2 for pre-division mutation,
and f (s) = µ2

1 + 2µ1(1− µ1)s + (1− µ1)
2s2 for post-division mutation. A schematic plot is

shown in Figure 1 to illustrate cell mutations in the KTBP and STBP models.

Axioms 2023, 12, 101 4 of 18

Figure 1. Cell mutations in the KTBP and STBP models.

2.2. Algorithm for Simulating Population Dynamics and Mutations Based on a GTBP

In the present study, we consider the GTBP defined above. Clearly, such a model is
flexible enough to cover various branching processes, e.g., the GWP, the MBP, and the BHP,
with mutations taken into account. Algorithm 1 shows the simulation procedure of SimuBP
based on such a GTBP. As described in the algorithm, there are four input arguments
passed to the R function SimuBP:

SimuBP(bran=list(span,para,offd), mupr=c(µ1, µ2), n0=c(y0, x0), tp),

among which the first one “bran” (structured as an R list object) determines the branching
rule of cell proliferation. In this list object, the “bran$span” component takes a character
string, e.g., “fixed”, “exp”, “unif”, or “gam”, to specify the cell lifetime distribution (allowed
to be different for wild-type and mutant cells). The “bran$para” component is a vector
or matrix which provides the lifetime distribution parameters in a pair, for example, if
“bran$span= ‘exp’ ”, then “bran$para= ‘c(1, 2)’ ” means the exponential rate parameter for
wild-type cells is 1 and for mutant cells is 2. The third and last component “bran$offd” is a
vector (p0, p1, . . .) specifying the offspring distribution, so “bran$offd= ‘c(0,0,2)’ ” means
binary-fission (if necessary, the wild-type and mutant cells can have different offspring
distributions by changing “bran$offd” to a matrix with two rows). The second input of
the SimuBP function, “mupr=c(µ1, µ2)”, is a vector specifying the forward and backward
mutation probabilities. The third input vector, “n0=c(y0, x0)”, specifies the initial number of
wild-type and mutant cells. The last input “tp” is a scalar for the time of plating. Actually,
both the time of plating and the population size at the time of plating can be used as input,
however, considering the stochastic growth assumption of the GTBP, the former should
be more appropriate for this simulator. For better illustration, these input arguments are
shown in a schematic plot in Figure 2. The output of SimuBP is simply a vector (zt, xt)
where xt is the number of mutant cells at tp and zt = xt + yt is the total number of viable
cells at tp.

Axioms 2023, 12, 101 5 of 18

Figure 2. Input of the SimuBP algorithm.

Algorithm 1 The SimuBP algorithm for simulating cell population with mutations based
on a GTBP

Input: branching rule parameters including cell lifetime and offspring distributions
(wild-type and mutant cells can have different parameters), mutation probability (µ1, µ2)
for forward and backward mutations, initial cell number (y0, x0), time of plating tp
Output: total number of viable cells zt and number of mutant cells xt at tp

Step 1. Initialize the number of wild-type and mutant cells at tp by setting yt = 0, xt = 0.
Step 2. Generate two vectors ~T1,~T2 from the specified lifetime distribution. ~T1 and ~T2 are
of length y0 and x0, denoting the lifetime of wild-type and mutant cell(s) in the first (or
current) generation. Generate two binary vectors ~δ1,~δ2 from Bern(µ1) and Bern(µ2). ~δ1

and ~δ2 are of length y0 and x0, indicating whether mutation occurs for the wild-type and
mutant cell(s) in the first (or current) generation. Based on ~T1,~T2 and ~δ1,~δ2, calculate the
accumulated lifetimes ~Tw,~Tm for wild-type and mutant cells.
Step 3. Count wild-type cells with Tw < tp and denote this number by nw, these wild-
type cells will continue to divide. Count wild-type cells with Tw ≥ tp and denote this
number by yw, update yt = yt + yw. Similarly, count mutant cells with Tm < tp and
denote this number by nm, count mutant cells with Tm ≥ tp and denote this number by
xw, update xt = xt + xw. Let zt = yt + xt.
while nw + nm > 0 do

(a) Based on the offspring distribution(s), generate the numbers of offspring for the
wild-type and mutant cells in current generation.

(b) Repeat Steps 2∼3 by updating y0 and x0 with the numbers of offspring in (a). As
cell division/mutation continues along generations, nw and nm decrease and the sum
eventually reaches 0 to quit the loop.
end while

Axioms 2023, 12, 101 6 of 18

2.3. Simulation Studies for Validation, Comparison, and Demonstration

We perform simulation studies based on an STBP to evaluate the performance of
SimuBP, including three components S1∼S3 with the following specific aims:

S1: To check goodness-of-fit (GoF) of the STBP model to the data generated by SimuBP.
S2: To compare the data generated by SimuBP with those by two alternative simulators.
S3: To demonstrate mutation rate estimation based on the data generated by SimuBP.

Simulation S1 focused on validating the simulated data by SimuBP based on the STBP
model. Suppose that, in the STBP the exponential rate of the cell lifetime distribution is a,
and the mutation probability of the wild-type cell is µ. Two different cases, S1a and S1b, are
considered depending on the initial number of wild-type cells: y0 = 1 and y0 > 1. Denote
the random variable of the total number of viable cells at the time of plating tp by Zt, and
the random variable of the number of wild-type cells at tp by Yt. For S1a: y0 = 1, the
distributions of Zt and Yt can be obtained explicitly by using the property of binary-fission
MBP [12] (for convenience, a brief derivation is provided in Appendix A.1):

Zt ∼ geo(e−atp), (1)

and

Yt ∼ geo
(

1− 2µ

(1− µ) exp(a(1− 2µ)tp)− µ

)
. (2)

When µ is small as in typical fluctuation experiments, Formula (2) can be approximated by

Yt ∼ geo(e−a(1−2µ)tp). (3)

Consequently, for S1b: y0 > 1,

Zt|y0 ∼ negbin(y0, e−atp), (4)

and

Yt|y0 ∼ negbin(y0, e−a(1−2µ)tp). (5)

We then use SimuBP with properly specified input arguments to generate data (zt, yt)
based on the STBP, and check the GoF of these data to the above theoretical distributions.
Note that, since forward simulation is generally not efficient, to avoid slow computation,
SimuBP does not simply apply superposition (via looping) of the yt and xt counts initiated
by a single cell, but rather generates yt and xt samples directly from non-unit y0 (and x0 as
well in a generalized setting).

It is worth noting that, this STBP is different from the traditional Luria–Delbrück or
Lea–Coulson model because it assumes stochastic growth for both wild-type and mutant
cells. To illustrate this point, we perform an additional simulation study S1c, where the
zt and yt counts are generated from SimuBP according to the STBP used above. The
distribution of the number of mutants xt = zt − yt is then calculated and compared with a
corresponding LD distribution to check the GoF.

Simulation S2 is conducted to compare SimuBP with two other simulation algorithms.
Both Algorithms 2 and 3 simulate counts of zt and xt based on the STBP model. Algorithm 2
comprises four steps: First, obtain the occurring time of each cell division event prior to
plating. This is done by using the distribution of the interarrival times of binary-fission
MBP (see Proposition 1 in [13]). Second, count the population size resulting from each
initial cell and sum up across the z0 initial cells to obtain zt. Third, determine among all
cell division events the ones corresponding to mutation events, and consequently calculate
for each mutation event its excess time until plating. Last, generate the resulting number of
mutant cells from each mutation and sum up across the mutation events to obtain xt. We
denote the simulation study comparing Algorithms 1 and 2 by S2a.

Axioms 2023, 12, 101 7 of 18

Algorithm 2 Alternative simulator based on an STBP

Input: exponential rates a1, a2 for wild-type and mutant cell life times, initial number of
cells (wild-type) z0, mutation probability µ, time of plating tp
Output: total number of viable cells zt and number of mutant cells xt at tp

Step 1. For each initial wild-type cell, calculate the occurring times of the successive
division events along its genealogy until tp by generating and summing up the exponen-
tially distributed interarrival times with rate ja1, j = 1, 2, · · · . Denote the occurring times
starting from the ith initial cell by {Si}.
Step 2. Count the number of elements in {Si} by ni. Because of the binary-fission property,
the population size at tp, initiated by the ith cell is (ni + 1), hence zt = ∑z0

i=1(ni + 1).
Step 3. Determine whether each cell division incurs mutation by generating (zt − z0)
random numbers from Bern(µ). Denote the number of mutations by m which is two
times (This number may vary depending on the assumption of pre- or post-division
mutations.) the sum of the (zt − z0) Bernoulli random numbers. Denote the occurring
time of the ith mutation event by ti, 1 ≤ i ≤ m, so its excess time until plating is tp − ti.
Step 4. For each mutation, generate its resulting mutant cell count at tp from shifted
geometric distribution geo(e−a2(tp−ti)) + 1, and finally sum up across all m mutant cell
counts to get the total number of mutant cells xt at tp.

In the second part of Simulation S2, denoted by S2b, we compare SimuBP with another
simulator (Algorithm 3) adapted from the software SALVADOR [14]. Algorithm 3 differs
from SALVADOR mainly in that it generates the number of wild-type cells zt at the time of
plating from geometric growth rather than treating zt as input, and replaces the Poisson
distributed number of mutations based on deterministic growth by the actual number
of mutations based on stochastic growth. These adaptions make it easier to compare
Algorithm 3 with Algorithms 1 or 2. It can be seen that Algorithms 2 and 3 are closely
related and both rely on the exponential lifetime assumption so that once the number
of mutations and the time from each mutation to plating are determined, the number
of mutant cells xt at the time of plating can be obtained by generating geometrically
distributed (with shift) random numbers.

Algorithm 3 Alternative simulator adapted from SALVADOR [14]

Input: exponential rates a1, a2 for wild-type and mutant cell life times, initial number of
cells (wild-type) z0, mutation probability µ, time of plating tp
Output: total number of viable cells zt and number of mutant cells xt at tp

Step 1. Generate the population size zt at tp by summing up z0 random numbers, each
drawn from geo(e−a1tp).
Step 2. Calculate the total number of mutations by m = µ · zt, and generate the occurring
time ti of the ith mutation event, 1 ≤ i ≤ m, from truncated, flipped exponential
distribution with range [0, tp], i.e., from CDF F(t) = ea1t−1

ea1tp−1
, 0 ≤ t ≤ tp. This is done by

simulating ti as [log(u(ea1tp − 1) + 1)]/a1 where the random number u ∼ unif(0, 1).
Step 3. For each mutation, generate its resulting mutant cell count at tp from shifted
geometric distribution geo(e−a2(tp−ti)) + 1, and finally sum up across all m mutant cell
counts to get the total number of mutant cells xt at tp.

It should be emphasized that, SimuBP is flexible to generate more general fluctuation
experimental data than most of the other simulators including Algorithms 2 and 3, for
instance, by allowing

(1) the cell lifetime to follow an arbitrary continuous distribution, or be a constant,
(2) the offspring distribution to be any discrete distribution, not just binary-fission,
(3) cell deaths and backward mutations,
(4) the initial cell population to contain both wild-type and mutant cells.

Axioms 2023, 12, 101 8 of 18

Moreover, SimuBP can be further extended to simulate other complex mutation pro-
cesses governed by non-constant (e.g., piece-wise constant or even time-varying) mutation
rate, as seen in the second example of the following demonstrations.

Lastly, we demonstrate the application of SimuBP through Simulation S3 of estimating
mutation rates in a two-type MBP via two examples, S3a and S3b. In Simulation S3a, we first
generate data from SimuBP based on the STBP model and then perform point estimation for
the mutation probability by using the MOM/MLE estimator proposed in [12]. Example S3b
considers the case of two-stage mutations, that is, during cell proliferation, mutations occur
at a constant rate in stage 1 and, when entering stage 2 switch to another constant rate. Such
data may be observed in fluctuation experiments comprising abrupt changes in external
conditions. A typical example can be found in the protocol of mutagenesis experiment on
E. coli under sub-inhibitory antibiotic stress [15], which introduces a cell recovery step prior
to plating. The mutation rate in this two-stage process is a piece-wise constant function,
which can be easily incorporated by SimuBP, but not by any other simulators. We then
estimate the three unknown parameters of the piece-wise constant mutation rate function
by using an estimator proposed in [16] based on approximate Bayesian computation. The
estimation results of the three parameters are shown by a heatmap of the joint posterior
samples of Markov chain Monte Carlo (MCMC).

3. Results
3.1. Validation of Simulated Data Based on a STBP

For Simulation S1a where y0 = 1, the input of SimuBP was configured such that
the cell lifetime follows an exponential distribution with rate 1 (for wild-type cells) and 1
(for mutant cells), the offspring distribution is binary-fission, i.e., with PGF f (s) = s2, the
mutation probabilities µ1 = 2× 10−4 (forward mutation) and µ2 = 0 (backward mutation),
the initial cell numbers y0 = 1, x0 = 0, and the time of plating tp = 11. Repeating the
simulation 100 times, we plotted the empirical cumulative distribution function (ECDF) of
the 100 samples of zt and yt in Figure 3, together with the theoretical CDF curves obtained
from Formulae (1) and (3). The GoF of the theoretical CDFs to the simulated data was
evaluated by a Kolmogorov–Smirnov (K-S) test and the p-value was shown beside the
curves. In addition, the above procedure was repeated 1000 times to check the average GoF.
Based on the 1000 K-S test p-values, we obtained the proportions of significant K-S tests:
0.046 and 0.045, for the distribution of zt and yt samples, respectively.

Simulation S1b (y0 > 1) was conducted using similar settings, except that the initial
cell numbers were set to y0 = 10, x0 = 0. The corresponding distribution plots based on
100 samples of zt and yt were shown in Figure 4, and the proportions of significant p-values
among 1000 K-S tests are 0.053 (for zt) and 0.053 (for yt). These results show that SimuBP
does generate data according to the STBP model as expected.

In Simulation S1c, we considered the non-differential growth case of the LD distribu-
tion and set its parameters as follows: the growth rate β1 = 1 for both wild-type and mutant
cells, the initial number of (wild-type) cells z0 = 1, the population size at the time of plating
zt = 6× 104, and the mutation rate per unit time µ̃ = 2× 10−4. The probability mass
function (PMF) of the number of mutants xt based on the LD(m, φ) distribution [17,18] is
provided by

p0 = e−m, pk =
m
k

k

∑
j=1

φj−1
(

1− jφ
j + 1

)
pk−j, k ≥ 1,

where

m =
µ̃

β1
(zt − z0) = µβ(zt − z0), φ = 1− e−β1tp = 1− z0

zt
.

Axioms 2023, 12, 101 9 of 18

0 100,000 200,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

il
it

y

pval (K�S) = 0.8378

geo(e
�atp)

A

0 100,000 200,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of wild�type cells yt by time of plating

yt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

ili
ty

pval (K�S) = 0.8506

geo(e
�a(1�2�)tp)

B

0 100,000 200,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

il
it

y
pval (K�S) = 0.8378

geo(e
�atp)

A

0 100,000 200,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of wild�type cells yt by time of plating

yt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

ili
ty

pval (K�S) = 0.8506

geo(e
�a(1�2�)tp)

B

Figure 3. Distribution of 100 data samples generated by SimuBP in Simulation S1a. (A): Empirical
cumulative distribution function (ECDF) of the total number of viable cells zt when the time of plating
tp = 11. (B): ECDF of the number of wild-type cells yt when tp = 11. The red curves represent
the cumulative distribution function of the theoretical geometric distributions in comparison. The
Kolmogorov–Smirnov (K-S) test p-values are shown under the ECDF curves.

Accordingly, we set for SimuBP the cell lifetime distribution to be exp(β1), the time
of plating tp ≈ 1

β1
log zt, and we approximated the mutation probability µ by µ̃

β1
log 2 [19].

Based on 100 simulations, we plotted the ECDF of the resulting xt samples together with
the LD distribution CDF in Figure A1 in Appendix A.2. From Figure A1, it is clear that there
exists a remarkable discrepancy between the ECDF of the xt samples and the LD distribution
CDF, due to the difference between the stochastic/deterministic growth assumption for the
wild-type cells in the two models.

Axioms 2023, 12, 101 10 of 18

200,000 600,000 1,000,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

il
it

y

pval (K�S) = 0.9426

negbin(y0,e
�atp)

A

200,000 600,000 1,000,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of wild�type cells yt by time of plating

yt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

ili
ty

pval (K�S) = 0.9595

negbin(y0,e
�a(1�2�)tp)

B

200,000 600,000 1,000,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

il
it

y

pval (K�S) = 0.9426

negbin(y0,e
�atp)

A

200,000 600,000 1,000,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of wild�type cells yt by time of plating

yt

C
u
m

u
la

ti
ve

 P
ro

b
a
b

ili
ty

pval (K�S) = 0.9595

negbin(y0,e
�a(1�2�)tp)

B

Figure 4. Distribution of 100 data samples generated by SimuBP in Simulation S1b. (A): Empirical
cumulative distribution function (ECDF) of the total number of viable cells zt when the time of plating
tp = 11. (B): ECDF of the number of wild-type cells yt when tp = 11. The red curves represent the
cumulative distribution function of the theoretical negative binomial distributions in comparison.
The Kolmogorov–Smirnov (K-S) test p-values are shown under the ECDF curves.

3.2. Comparison to Alternative Simulators

In Simulation S2a, we used the same settings for SimuBP as in Simulation S1a to
generate 100 samples of zt and xt. Similarly, by using Algorithm 2, another 100 samples of
zt and xt were generated. We then plotted in Figure 5A the two ECDFs of the zt samples
and plotted in Figure 5B the two ECDFs of the xt samples, for the data generated from
SimuBP (Algorithm 1) and from Algorithm 2. The K-S test p-values were shown beside the
curves. Repeating 1000 times, the proportions of significant K-S test p-values are 0.038 (for
zt) and 0.053 (for xt), showing that the data generated from these two algorithms are very
close in distribution.

Axioms 2023, 12, 101 11 of 18

0 50,000 150,000 250,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) = 0.9938

SimuBP (Algorithm 1)

Algorithm 2

A

0 500 1,000 1,500 2,000 2,500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of mutant cells xt by time of plating

xt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) = 0.9671

SimuBP (Algorithm 1)

Algorithm 2

B

0 50,000 150,000 250,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) = 0.9938

SimuBP (Algorithm 1)

Algorithm 2

A

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of mutant cells xt by time of plating

xt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) = 0.9671

SimuBP (Algorithm 1)

Algorithm 2

B

Figure 5. Distribution of 100 data samples generated by Algorithms 1 and 2 in Simulation S2a.
(A): Empirical cumulative distribution function (ECDF) of the total number of viable cells zt when
the time of plating tp = 11. (B): ECDF of the number of mutant cells xt when tp = 11. The
Kolmogorov–Smirnov (K-S) test p-values are shown under the ECDF curves.

Using the same settings, Simulation S2b compared the distribution of 100 simulated
zt and xt samples by using Algorithms 1 and 3. This result is shown in Figure 6. The
consistency between the data generated from these two algorithms was confirmed by the
proportions of significant K-S tests among 1000 repetitions: 0.039 (for zt) and 0.044 (for
xt). For completeness, we also included the comparison between the data generated by
Algorithms 2 and 3 in Figure A2 in Appendix A.3.

The comparison in computational efficiency of the three algorithms seems not abso-
lutely necessary as we can always improve the simulation speed by increasing the initial
number of cells or adjusting the exponential rate of the cell lifetime. Nevertheless, for
reference purposes, we provided the average computation time of the three algorithms in
Table 1 for simulating data samples with z0 = 1, a1 = a2 = 1 and under different settings
of µ1 and tp. It is understandable that as a “exact” simulator of the real cell proliferation
and mutation process, SimuBP is not computationally advantageous as compared to other
simulators (e.g., Algorithm 3). However, with the aid of high-performance computing
facilities, this should not be an issue for the practical use of SimuBP.

Axioms 2023, 12, 101 12 of 18

0 50,000 150,000 250,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u

m
u
la

ti
v
e
 P

ro
b

a
b
ili

ty

pval (K�S) = 0.6994

SimuBP (Algorithm 1)

Algorithm 3

A

0 500 1,000 1,500 2,000 2,500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of mutant cells xt by time of plating

xt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) = 0.2106

SimuBP (Algorithm 1)

Algorithm 3

B

0 50,000 150,000 250,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u

m
u
la

ti
v
e

 P
ro

b
a

b
ili

ty

pval (K�S) = 0.6994

SimuBP (Algorithm 1)

Algorithm 3

A

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of mutant cells xt by time of plating

xt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) = 0.2106

SimuBP (Algorithm 1)

Algorithm 3

B

Figure 6. Distribution of 100 data samples generated by Algorithms 1 and 3 in Simulation S2b.
(A): Empirical cumulative distribution function (ECDF) of the total number of viable cells zt when
the time of plating tp = 11. (B): ECDF of the number of mutant cells xt when tp = 11. The
Kolmogorov–Smirnov (K-S) test p-values are shown under the ECDF curves.

Table 1. Comparison of average computation time (in secs) per sample for simulating 100 data
samples *.

Parameters SimuBP
(Algorithm 1) Algorithm 2 Algorithm 3

µ1 = 10−7, tp = 16 2.7309 4.4873 2× 10−4

µ1 = 10−6, tp = 14 0.3497 0.5969 ≈ 0
µ1 = 10−5, tp = 12 0.0523 0.0812 ≈ 0
µ1 = 10−4, tp = 10 0.0081 0.0111 ≈ 0
µ1 = 10−3, tp = 8 0.0016 0.0016 ≈ 0
µ1 = 10−2, tp = 6 0.0005 0.0001 ≈ 0

* The simulation is based on a simplified two-type branching process (STBP) with initial number of wild-type cells
z0 = 1, exponential rate a1 = a2 = 1 for wild-type and mutant cell lifetimes, and with mutation probability µ1
and time of plating tp taking different values.

Axioms 2023, 12, 101 13 of 18

3.3. Demonstration of Mutation Rate Estimation Based on Data Generated by SimuBP

In Simulation S3a, we generated data for zt and xt in J = 100 parallel cultures using
SimuBP. The simulated data is based on an STBP with exponential rate 1 and unit initial
number of cells (i.e., y0 = 1, x0 = 0). In particular, six different settings on the mutation
probability µ1 and the time of plating tp (both assumed unknown in estimation) were
considered, including (µ1 = 10−7, tp = 16), (µ1 = 10−6, tp = 14), · · · , (µ1 = 10−2, tp = 6).
Based on the simulated data from parallel cultures (zti, xti), 1 ≤ i ≤ J, we estimated µ1 by
solving Equation (8) in [12] via the Newton–Raphson method. Repeating the procedure
100 times, we plotted the mean of the estimated µ1 together with its true value in log10 scale
in a barplot in Figure 7, for different values of µ1. The mean squared errors corresponding
to µ1 = 10−7, 10−6, · · · , 10−2 are: 1.69× 10−14, 2.02× 10−12, 9.34× 10−11, 2.26× 10−9,
2.58× 10−7, 6.58× 10−6, respectively.

µ1

µ̂1−
7

−
6

−
5

−
4

−
3

−
2

−
1

µ1=10
−7

µ1=10
−6

µ1=10
−5

µ1=10
−4

µ1=10
−3

µ1=10
−2

Figure 7. Estimation of constant mutation probability µ1 in Simulation S3a, based on data generated
by SimuBP. The blue and red bars represent the true value µ1 and the estimated value µ̂1, respectively.
The y-axis is shown in log10 scale.

Simulation S3b is based on the same STBP model as in S3a except that the mutation
rate parameter (for forward mutation only) is changed to a piece-wise constant function
µ1(t) = µ

(1)
1 10<t≤τ + µ

(2)
1 1τ<t≤tp , where µ

(1)
1 = 10−5, µ

(2)
1 = 10−3 represent the mutation

probabilities in the first and second stages, respectively, and τ = 4 represents the transition
time from stage 1 to stage 2. Denote the unknown parameters by Θ = (µ

(1)
1 , µ

(2)
1 , τ)T .

Clearly, estimating the three components of Θ simultaneously would be an impossible task
for existing mutation rate estimators. Here we adopted the GPS-ABS approach proposed
in [16], which is a likelihood-free, simulation-based estimator via approximate Bayesian
computation (ABC) equipped with a Gaussian process surrogate. Briefly speaking, the
basic idea of using ABC to estimate parameters without explicit likelihood is “trial and
error” through extensive simulations. By repeatedly simulating data and accepting those
that are close to the observed data, ABC is able to keep “good” posterior samples of
the parameters by using the Metropolis-Hastings algorithm. These posterior samples
are then used for inference purposes. In this simulation study, SimuBP was used not
only to generate the observed data (zt, xt) from the two-stage mutation model but also
to train the Gaussian process surrogate to improve the computational efficiency. A total
of 50,000 posterior samples of Θ were collected by applying the GPS-ABC algorithm.
Treating the first 35,000 as the burn-in samples of MCMC, we plotted in Figure 8 the
heatmap of the joint posterior distribution of each of the two parameters in Θ, with the
marginal posterior distributions shown along the axes. Despite the multimodal shape
of the posterior distributions (especially for the two parameters µ

(1)
1 and τ as seen in

Figure 8B) caused by lack of identifiability of the three model parameters, if we use the
highest posterior mode of the joint distribution for posterior inference, the point estimation
result is µ̂

(1)
1 = 9.32× 10−6, µ̂

(2)
1 = 9.59× 10−4 and τ̂ = 3.75, close to their true values.

Axioms 2023, 12, 101 14 of 18

Figure 8. Estimation of piece-wise constant mutation probability function in a two-stage mutation
model in Simulation S3b, based on data generated by SimuBP. Each panel shows the heatmap

of the posterior samples of a pair of the three parameters: first stage mutation probability µ
(1)
1 ,

second stage mutation probability µ
(2)
1 , and transition time τ, based on 2-d kernel density estimation.

(A): log10(µ
(1)
1) vs. log10(µ

(2)
1); (B): log10(µ

(1)
1) vs. τ; (C): τ vs. log10(µ

(2)
1). The horizontal and

vertical black lines mark the true parameter values. The histograms on the left and bottom of each
heatmap show the marginal distributions of each two parameters.

4. Discussion and Conclusions

In this paper, we developed a flexible simulator, called SimuBP, of population dy-
namics and mutations based on branching processes, and performed simulation studies
for validation, comparison, and demonstration purposes. SimuBP is not designed for a
particular branching process model, but for a wide range of branching processes, including

Axioms 2023, 12, 101 15 of 18

GWP, MBP, BHP, KTBP, STBP, GTBP, etc. Using the settings of STBP for traditional Luria–
Delbrück experiments, the simulation studies showed that SimuBP was able to generate
data that (1) follow expected distributions according to STBP, (2) exhibit good consistency
with those simulated by two alternative simulators, (3) are applicable for mutation rate
estimation. The example of estimating mutation rate in a two-stage mutation process also
showed that SimuBP could be incorporated with state-of-the-art ABC methods to enable
simulation-based estimation in complex mutation scenarios.

The current version of the SimuBP software is programmed for the GTBP model which
involves two distinguishable cells. With some modifications, SimuBP can be extended
to model other varieties of branching processes such as the multi-type branching pro-
cess [7] and the infinite-allele branching process [20–22]. These models play important
roles in many genetic applications such as metastasis evolution [23] and DNA sequence
evolution [24].

Because of its special property of simulating proliferation and mutation “on the basis
of each individual cell”, SimuBP can be used to simulate data for more complex models
than the traditional Luria–Delbrück or Lea–Coulson models. For better understanding,
one may treat the simulation procedure of SimuBP as an in silico fluctuation experiment
which is able to take into account realistic experimental conditions, such as non-unit initial
number of cells (e.g., unequal or random z0 counts in parallel cultures), multi-fission cell
divisions, mutation rate change induced by environmental stimuli, as well as random
effects in dilution and plating. Such a simulator will certainly benefit the field of fluctuation
analysis by providing real-imitated data or justifying newly-developed theoretical or
methodological results in mutation rate estimation.

However, as every coin has two sides, SimuBP also faces computational issues caused
by exhaustive simulation. In a typical fluctuation experiment of bacteria, the size of
each parallel cell culture may be 108 ∼ 1010 in a 5-day incubation period before plating.
Correspondingly, simulation of such a cell culture by SimuBP usually takes about five
seconds on a DELL T5500 computer with XEON quad core X5550, 2.66 GHZ CPU and
24 GB RAM, which is computationally expensive. Such a difficulty may be overcome
by borrowing strength from fast-evolving computational resources via parallelism of the
SimuBP algorithm on multicore CPUs, GPUs, and computer clusters.

Funding: This research received no external funding. The APC was funded by Virginia Tech’s Open
Access Subvention Fund.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FA Fluctuation analysis
LD Luria–Delbrück
CDF Cumulative distribution function
i.i.d. Independent and identically distributed
GWP Galton–Watson process
BHP Bellman-Harris process
MBP Markov branching process
GTBP General two-type branching process
STBP Simplified two-type branching process
KTBP Kendall’s two-type branching process
PGF Probability generating function
MCMC Markov chain Monte Carlo
GoF Goodness-of-fit
MOM Method of moments
MLE Maximum likelihood

Axioms 2023, 12, 101 16 of 18

ECDF Empirical cumulative distribution function
K-S Kolmogorov–Smirnov
PMF Probability mass function
ABC Approximate Bayesian computation

Appendix A

Appendix A.1. Distribution of the Total Number of Viable Cells Zt and the Number of Wild-Type
Cells Yt in an STBP Initiated by y0 = 1 Wild-Type Cells

It suffices to derive the distribution of Zt for a one dimensional MBP {Zt, t ≥ 0} with
Z0 = 1, exponential rate a, and with offspring distribution PGF f (s) = q + ps2 where
p + q = 1. By the backward Kolmogorov equation, the process PGF F(s, t) satisfies [25]

∂

∂t
F(s, t) = a[f (F(s, t))− F(s, t)].

Solving this ordinary differential equation with boundary condition F(s, 0) = s, we obtain

F(s, t) =
(q− p)(s− q/p)

q− pect − p(1− ect)s
,

where c = a(2p − 1) is the Malthusian parameter of Zt. This PDF corresponds to a
generalized geometric distribution [26–29] with

α =
q(ect − 1)
pect − q

, β =
p(ect − 1)
pect − q

.

Ignoring the point mass at 0, we obtain Zt ∼ geo(p̃) where p̃ = 1− β. That is,

Zt ∼ geo
(

p− q
pect − q

)
.

Formula (1) then follows by letting q = 0, p = 1, and Formula (2) follows by letting
q = µ, p = 1− µ.

Appendix A.2. Comparison between the Distribution of Data Samples Generated by SimuBP and
the Luria–Delbrück Distribution

0 200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of mutant cells xt by time of plating

xt

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

pval (K�S) < 2.2e�16

LD(m � 12,φ� 1)

Figure A1. Empirical cumulative distribution (ECDF) function of the number of mutant cells xt

in Simulation S1c, based on 100 data samples generated by SimuBP. The time of plating tp = 11.
The red curve represents the cumulative distribution function of the Luria–Delbrück distribution in
comparison. The Kolmogorov–Smirnov (K-S) test p-value is shown under the ECDF curve.

Axioms 2023, 12, 101 17 of 18

Appendix A.3. Comparison between the Distributions of Data Samples Generated by Algorithms 2
and 3

0 50,000 150,000 250,000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of total number of viable cells zt by time of plating

zt

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

pval (K�S) = 0.5806

Algorithm 2

Algorithm 3

A

0 500 1000 1500 2000 2500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Distribution of number of mutant cells xt by time of plating

xt

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

pval (K�S) = 0.8127

Algorithm 2

Algorithm 3

B

Figure A2. Distribution of 100 data samples generated by Algorithms 2 and 3 in Simulation S2.
(A): Empirical cumulative distribution function (ECDF) of the total number of viable cells zt when the
time of plating tp = 11. (B): ECDF of the number of mutant cells xt when tp = 11. The Kolmogorov–
Smirnov (K-S) test p-values are shown under the ECDF curves. The proportions of significant K-S
test p-values across 1000 simulations for zt and xt are 0.036 and 0.025, respectively.

References
1. Crump, K.S.; Hoel, D.G. Mathematical models for estimating mutation rates in cell populations. Biometrika 1974, 61, 237–252.

[CrossRef]
2. Harris, T.E. The Theory of Branching Processes; Prentice-Hall: Englewood Cliffs, NJ, USA, 1963.

http://doi.org/10.1093/biomet/61.2.237

Axioms 2023, 12, 101 18 of 18

3. Galton, F.; Watson, H.W. On the probability of the extinction of families. J. R. Anthropol. Inst. 1875, 4, 138–144.
4. Bellman, R.; Harris, T.E. On age-dependent binary branching processes. Ann. Math. 1952, 55, 280–295. [CrossRef]
5. Montgomery-Smith, S.; Oveys, H. Age-dependent branching processes and applications to the Luria–Delbrück experiment.

Electron. J. Differ. Equ. 2021, 56, 1–22.
6. Asmussen, S.; Hering, H. Continuous Time Markov Branching Processes. In Branching Processes. Progress in Probability and

Statistics; Birkhäuser: Boston, MA, USA, 1983; Volume 3.
7. Mode, C.J. Multitype Branching Processes—Theory and Applications; American Elsevier: New York, NY, USA, 1971.
8. Jagers, P. Branching Processes with Biological Applications; Wiley: Hoboken, NJ, USA, 1975.
9. Green, P. Modelling yeast cell growth using stochastic branching processes. J. Appl. Probab. 1981, 18, 799–808. [CrossRef]
10. Kendall, D.G. Birth-and-death processes, and the theory of carcinogenesis. Biometrika 1960, 47, 13–21. [CrossRef]
11. Cheek, D.; Antal, T. Mutation frequencies in a birth-death branching process. Ann. Appl. Probab. 2018, 28, 3922–3947. [CrossRef]
12. Wu, X.; Zhu, H. Fast maximum likelihood estimation of mutation rates using a birth–death process. J. Theor. Biol. 2015, 366, 1–7.

[CrossRef]
13. Wu, X.; Zhu, H. Association testing for binary trees—A Markov branching process approach. Stat. Med. 2022, 41, 2557–2573.

[CrossRef]
14. Zheng, Q. Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math. Biosci. 2002,

176, 237–252. [CrossRef]
15. Thi, T.D.; López, E.; Rodríguez-Rojas, A.; Rodríguez-Beltrán, J.; Couce, A.; Guelfo, J.R.; Castañeda-García, A.; Blázquez, J. Effect of

recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J. Antimicrob. Chemother.
2011, 66, 531–538. [CrossRef] [PubMed]

16. Lu, R.; Zhu, H.; Wu, X. Estimating mutation rates in a Markov branching process using approximate Bayesian computation. J.
Theor. Biol. 2023, submitted.

17. Sarkar, S.; Ma, W.T.; Sandri, G.V. On fluctuation analysis: A new, simple and efficient method for computing the expected number
of mutants. Genetica 1992, 85, 173–179. [CrossRef] [PubMed]

18. Ma, W.T.; Sandri, G.V.; Sarkar, S. Analysis of the Luria-Delbrück distribution using discrete convolution. J. Appl. Probab. 1992, 29,
255–267. [CrossRef]

19. Zheng, Q. Update on estimation of mutation rates using data from fluctuation experiments. Genetics 2005, 171, 861–864. [CrossRef]
[PubMed]

20. Griffiths, R.C.; Pakes, A.G. An infinite-alleles version of the simple branching process. Adv. Appl. Probab. 1988, 20, 489–524.
[CrossRef]

21. Pakes, A.G. An infinite alleles version of the Markov branching process. J. Aust. Math. Soc. (Ser. A) 1989, 46, 146–170. [CrossRef]
22. Wu, X.; Kimmel, M. Modeling neutral evolution using an infinite-allele Markov branching process. Int. J. Stoch. Anal. 2013,

2013, 963831. [CrossRef]
23. Slavtchova-Bojkova, M.; Vitanov, K. Multi-type age-dependent branching processes as models of metastasis evolution. Stoch.

Model. 2019, 35, 284–299. [CrossRef]
24. Kimmel, M.; Mathaes, M. Modeling neutral evolution of Alu elements using a branching process. BMC Genom. 2010, 11

(Suppl. 1), S11. [CrossRef]
25. Athreya, K.B.; Ney, P.E. Branching Processes; Springer: Berlin/Heidelberg, Germany, 1972.
26. Kopp-schneider, A. Birth-death processes with piecewise constant rates. Stat. Probab. Lett. 1992, 13, 121–127. [CrossRef]
27. Renshaw, E. Modeling Biological Populations in Space and Time; Cambridge University Press: Cambridge, UK, 1991.
28. Karlin, S.; Taylor, H.M. A First Course in Stochastic Processes; Academic Press: Boston, MA, USA, 1975.
29. Zheng, Q. On a birth-and-death process induced distribution. Biom. J. 1997, 39, 699–705. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/1969779
http://dx.doi.org/10.2307/3213055
http://dx.doi.org/10.1093/biomet/47.1-2.13
http://dx.doi.org/10.1214/18-AAP1413
http://dx.doi.org/10.1016/j.jtbi.2014.11.009
http://dx.doi.org/10.1002/sim.9370
http://dx.doi.org/10.1016/S0025-5564(02)00087-1
http://dx.doi.org/10.1093/jac/dkq496
http://www.ncbi.nlm.nih.gov/pubmed/21212055
http://dx.doi.org/10.1007/BF00120324
http://www.ncbi.nlm.nih.gov/pubmed/1624139
http://dx.doi.org/10.1017/S0021900200043023
http://dx.doi.org/10.1534/genetics.104.035774
http://www.ncbi.nlm.nih.gov/pubmed/16020795
http://dx.doi.org/10.2307/1427033
http://dx.doi.org/10.1017/S1446788700030445
http://dx.doi.org/10.1155/2013/963831
http://dx.doi.org/10.1080/15326349.2019.1600410
http://dx.doi.org/10.1186/1471-2164-11-S1-S11
http://dx.doi.org/10.1016/0167-7152(92)90086-K
http://dx.doi.org/10.1002/bimj.4710390608

	Introduction
	Methods
	Discrete-Time, Continuous-Time Branching Processes, and Two-Type Branching Processes
	Algorithm for Simulating Population Dynamics and Mutations Based on a GTBP
	Simulation Studies for Validation, Comparison, and Demonstration

	Results
	Validation of Simulated Data Based on a STBP
	Comparison to Alternative Simulators
	Demonstration of Mutation Rate Estimation Based on Data Generated by SimuBP

	Discussion and Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

