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Abstract 

Optimal shape control is important in fuselage assembly processes. To achieve high 
precision assembly, shape adjustment is necessary for fuselages with initial shape 
deviations. The state-of-the-art methods accomplish this goal by using actuators whose 
forces are derived from a model based on the designed fuselage mechanical property. 
This has a significant limitation: they do not consider the model mismatch due to 
mechanical property changes induced by the shape deviation of an individual incoming 
fuselage. The model mismatch will result in control performance deterioration. To 
improve the performance, the shape control model needs to be updated based on the 
online feedback information from the fuselage shape adjustment. However, due to the 
large size of the fuselage surface, highly accurate inline measurements are expensive or 
even infeasible to obtain in practice. To resolve those issues, this paper proposes a Sparse 
sensor Placement based Adaptive Control (SPAC) methodology. In this method, the 
model is updated based on the sparse sensor measurement of the response signal. The 
reconstruction performance under a minor model mismatch is quantified theoretically. Its 
performance has been evaluated based on real data of a half-to-half fuselage assembly 
process, and the proposed method improves the control performance with acceptable 
sensing effort. 

Keywords: adaptive control; composite fuselage assembly; sparse sensor placement; quality 

improvement. 

1. Introduction  
Composite materials are widely used in the aerospace industry due to their superior chemical and 

mechanical properties (Clyne and Hull 2019). In the assembly process, multiple composite fuselages 

need to be assembled with high precision. However, shape deviations during the fabrication and 

transportation lead to inevitable dimensional variability of composite fuselages (Yue et al. 2018). This 
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dimensional variability can cause large gaps between subassemblies. Without appropriate 

compensation, it will cause a significant increase in the flowtime, manpower cost and even halt the 

delivery of the airplane (Duncan 2021). For a detailed discussion on the assembly process, we refer 

interested readers to Manohar et al. (2018b). To overcome this issue, aircraft assemblers use actuators 

to adjust the edges of the fuselage to their target shape for reducing the gap. An illustrative figure of a 

half fuselage is shown in Figure 1. In practice, the force applied by each actuator is determined by a 

trial-and-error approach, which is inefficient, sub-optimal, and requires highly experienced engineers.  

 

Figure 1. Illustration of a half fuselage 

To achieve better dimensional control of the fuselage, an automatic optimal shape control 

(AOSC) of fuselages was proposed to determine the actuators’ forces and locations (Yue et al. 2018). 

Since then, multiple methods for modeling and optimal shape control of fuselages have been proposed 

(Wen et al. 2018, Yue et al. 2018, Du et al. 2019, Zhong et al. 2021). These control strategies can be 

separated into two categories in terms of different modeling approaches: (i) first-principle-based 

methods (Zhang and Shi 2016a, Zhang and Shi 2016b, Wen et al. 2018, Zhong et al. 2021), and (ii) 

data-driven methods (Yue et al. 2018, Yue and Shi 2018, Du et al. 2019, Lee et al. 2022). For first-

principle-based methods, Wen et al. (2018) built a finite element analysis (FEA) model to mimic the 

physical properties of a fuselage. Zhang and Shi (2016a,b) proposed a stream of variation model for 

compliant parts. Furthermore, Zhong et al. (2021) proposed an FEA model-based control strategy and 

incorporated the cautious control concept to consider part-to-part uncertainties. For data-driven 

methods, Yue et al. (2018) proposed a surrogate model-based control framework that considers 

uncertainties for the fuselage assembly. Du et al. (2019) proposed a sparse-learning framework to 
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select the actuator locations and forces automatically. Lee et al. (2022) developed the neural network 

Gaussian process considering input uncertainty, and achieved accurate predictions. Wang et al. 

investigated the theoretical performance of Gaussian processes with input uncertainties. The main 

drawbacks of those existing methods are twofold:  

(i) For the first-principle-based methods, it is time-consuming and challenging to build an 

accurate model for each incoming fuselage due to the inherent production variation. Usually, 

the model is built according to the designed shape and materials. Therefore, it does not 

represent an individual incoming fuselage accurately.  

(ii) Data-driven methods are built upon the experimental data of real fuselages or FEA 

simulations. This can be considered as a population model for fuselages. However, accurately 

measuring the thickness, material property, or fastening conditions for each incoming 

fuselage is complicated. Therefore, these models may fail to predict the outputs accurately 

when the response surface goes beyond the scope of experimental data.  

Furthermore, all the aforementioned methods are one-shot methods, i.e., no feedback 

information is used to update the model so that the unique characteristics of an incoming part can be 

considered. This will lead to a mismatch between the physical model of the incoming fuselage and the 

model used to derive the control strategy. Even though the model mismatch may be small, the derived 

control strategy will lead to suboptimal control performance, which is undesirable due to the ultra-

high precision requirement for the composite fuselage assembly.  

Adaptive control methods can update the model accurately with the help of online estimation 

using feedback information and derive a control strategy fitting the specific incoming fuselage 

(Landau et al. 2011). It is widely used in the control of dynamic systems with unknown or time-

varying parameters (Åström 1983, Landau et al. 2011, Åström and Wittenmark 2013). Adaptive 

control methods can be summarized into three categories: open-loop adaptive control, direct adaptive 

control, and indirect adaptive control methods (Landau et al. 2011). Among these methods, the 

indirect adaptive control is closely related to the fuselage assembly process, where the model of the 

fuselage can be estimated online from the input-output measurements, and the control action can be 
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determined accordingly. The indirect adaptive control method includes two stages: (i) online model 

parameter estimation and (ii) online computation of the controller parameters. Traditionally, existing 

parameter adaptation algorithms, such as Gradient Descent or Least-Squares Minimization, can 

achieve satisfactory parameter estimation based on the feedback information when the response signal 

has a low dimension. However, the fuselage has a large surface area (e.g., Section 41 fuselage of 

Boeing 787 is 6.2 meters in diameter and 12.8 meters long (Sloan 2018)). High precision 

measurement of the deformation of the fuselage usually generates high-dimensional signals (e.g., as 

shown in Figure 1, the 186 measurements correspond to the 62 grid points on two edges, each grid 

point requiring 3-dimensional measurement leading to a 186-dimensional signal in our case study). 

Acquiring such accurate high dimensional feedback information in a fuselage assembly requires many 

repetitive measurements, resulting in significant cost increase and production delay. Therefore, the 

trade-off between control performance and measurement cost needs to be considered.  

To reduce the sensing cost, sparse sensor placement has been widely used in the field of 

signal processing (Donoho 2006, Candès and Wakin 2008, Joshi and Boyd 2008) and control 

(Manohar et al. 2018a). The main idea of the sparse sensor placement is to reconstruct the response 

signal with a small subset of samples. Current approaches for sparse sensor placement commonly 

utilize a brute-force, combinatorial search, which is computationally intractable even for moderately 

large systems (Brunton et al. 2016). By exploiting structural properties such as low rank (Manohar et 

al. 2018a, Manohar et al. 2018b) or sparsity (Candès and Wakin 2008), the sparse sensor placement 

problem can be solved efficiently (Brunton et al. 2016). Sparse sensor placement has been applied in a 

large number of real-world applications involving signal compression (Candès and Wakin 2008), 

environmental monitoring of ocean temperatures (Yang et al. 2010), structural health monitoring 

(Meo and Zumpano 2005), and dynamical systems (Kramer et al. 2017). The sensing cost can be 

significantly reduced by adopting the sparse sensor placement strategy while maintaining comparable 

measurement accuracy requirements.  

There are generally two types of sparse sensor placement methods (Manohar et al. 2018a): (i) 

One is based on the sparse representation of the sensing signal, also called compressive sensing 
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(Candès and Wakin 2008). Compressive sensing aims to reconstruct the entire signal based on a small 

number of measurements. The sensors are usually randomly placed, and the reconstruction leads to an 

   norm minimization problem. (ii) The other is based on the low-rank representation of the sensing 

signal in a low-dimensional subspace. The basis spanning this subspace is also called tailored basis. 

To optimize the sensor location in this case, a regression problem has to be solved, and usually 

experimental design concepts are utilized. In terms of using sparsity to reduce the sensing cost, 

Bhattacharya and Başar (2011) proposed using compressive sensing techniques to provide feedback 

information in controlling the system. However, the second category is more suitable for fuselage 

assembly problems because 

(i) it is infeasible or time-consuming to place sensors randomly (Manohar et al. 2018a).  

(ii) under the small deformation assumption (Reddy 2019, Zhong et al. 2021), the deformation of 

the fuselage lives in a low dimensional space driven by a small number of actuators, which is 

low rank rather than sparse (more details refer to Section 2.2). 

Therefore, we need to estimate the low-rank space for sparse sensor placement and incorporate the 

impacts of the physical model of the incoming fuselage. 

In this paper, we propose a SPAC strategy that utilizes the feedback information for model 

updating to improve the control performance while keeping the measurement cost at a reasonable 

level by integrating a sparse sensor placement framework. The main challenge is the unknown 

physical model during the reconstruction of the response signal from sparse sensor measurement. We 

propose to use the system equations derived from the design information or learned from historical 

data as an alternative. The slight mismatch between the physical model of the incoming fuselage and 

the designed one is called the perturbation to the model. A theoretical quantification of the 

reconstruction error is derived in this scenario. The corresponding engineering interpretation is given, 

which may serve as a guideline for determining the number of sensors needed according to the 

perturbation level. Furthermore, we use a case study in the high precision fuselage assembly process 

to show that the SPAC framework can achieve comparable control performance as the adaptive 

control method with much less sensing cost.   
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The remainder of this paper is organized as follows. Section 2 presents the sparse sensor 

placement methodology and analyzes its reconstruction performance under small perturbations. In 

Section 3, the proposed SPAC framework is applied in a high precision fuselage assembly process. 

Finally, Section 4 concludes the paper. 

 

2. Sparse Sensor Placement based Adaptive Control Methodology 

This section proposes the SPAC methodology to address the research gap of integrating the 

sparse sensor placement in the presence of model perturbation into the adaptive control. Figure 2 

provides an overview of the proposed SPAC methodology. 

 

Figure 2. An overview of the proposed SPAC method 

The proposed SPAC method has three stages: 

(i) In the design stage, a low-dimensional intrinsic space, to which a high-dimensional response 

signal can be projected without loss of critical information, is derived either based on 

historical data or the system equation. The sparse sensor placement strategy determines the 

number of sensors and their corresponding locations by incorporating the perturbation level or 

sensor budget from engineering knowledge. 

(ii) In the adaptive control stage, the entire response signal (e.g., fuselage’s high-dimensional 

shape deviation) is first reconstructed from the sparse measurement signals. Afterward, 

appropriate algorithms can be applied for parameter estimation and control. 
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(iii) In the evaluation stage, the control performance will be predicted from the sparse 

measurement signal, and the performance can be validated using the measured dimensional 

deviation data. 

In Section 2.1, a sparse sensor placement strategy is introduced. Then, the reconstruction 

performance of the proposed method under small perturbations is presented in Section 2.2. Finally, 

the downstream parameter estimation and adaptive control strategy are proposed.  

2.1 Sparse sensor placement methodology 

The goal of the sparse sensor placement methodology is to select a subset of sensors from all potential 

sensor locations to reconstruct the entire measurement field. There are two types of sparse sensor 

placement strategies: 

(i) The first strategy is based on the sparse representation of the sensing signal to sample 

randomly on a universal encoding basis. This strategy is related to compressive sensing 

(Candès and Wakin 2008).  

(ii) The second strategy is based on the low-rank representation of the sensing signal with a set of 

known bases that lead to a designed measurement strategy. This type of strategy is closely 

related to experimental design (Chaloner and Verdinelli 1995).  

In the control context, the high-dimensional raw response signal is usually driven by a low-

dimensional critical control signal. This indicates that the response usually lives in known, lower-

dimensional space. Low-dimensional representation can retain the most meaningful features of the 

original data. Since the second approach exploits this low-rank structure, it is commonly satisfied in 

high-dimensional control systems. By adopting this approach, the sensing cost can be significantly 

reduced. 

Let       denote the response at time step   of a control signal      , i.e.,       , 

where   is assumed to be of full column rank,        and    .       {      }, can be 

projected into a low-dimensional space spanned by column space of  . We can reconstruct    with 

only   measurement points when there is no measurement noise. For robustness, we propose to use   

measurement points out of   potential locations where   {         }. For ease of exposition, 
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we will suppress the subscript   in the following discussion. Let sensor locations be   {       }  

{     } and    [   
      

]
 

 be the sparse measurement. Let   [   
      

]
 
 be the selection 

matrix, where    
 (i=1, 2, …, p) is a unit vector with all zeros except for a unit element on location   , 

i.e., 

         ( )  

where   is the measurement error that follows a multivariate Gaussian distribution, i.e., 

   (      ). 

The high-dimensional response   can be written as a linear combination of the column vectors of  , 

i.e.,   ∑  (   )  
 
 , where  (   )  is the  th column vector of matrix  . Substituting this 

relationship in Eq. ( ), we obtain  

          ( )  

Once    is measured, and    is known,   can be estimated as  ̂  (  )   , where (  )  

[(  )   ]  (  ) . The estimation error  ̂    has zero mean and covariance     [(  )   ]    

There are several commonly used optimization criteria for sensor placement or optimal experimental 

design (Chaloner and Verdinelli 1995), which are summarized as follows: 

(i) Spectral radius criterion (E-optimality): 

        | |  ‖[(  )   ]  ‖
 

       | |        ( )  

where      is the minimum singular value of   . 

(ii) Trace criterion (A-optimality): 

        | |    ([(  )   ]  )  ( )  

where   ( ) is the trace of matrix M. 

(iii) Determinant criterion (D-optimality): 

        | |     ((  )   )  ( )  

where    ( ) is the determinant of matrix  .  

These three criteria have different statistical interpretations: the E-optimality criterion 

maximizes the minimum eigenvalue of the information matrix; the A-optimality can minimize the 
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summation of marginal variances for  ; while the D-optimality maximizes the confidence region 

volume for parameters  . The choice of those criteria is usually based on specific problem 

requirements. In the following discussion, we will focus on the determinant criterion, which is widely 

used in sparse sensor placement (Joshi and Boyd 2008, Manohar et al. 2018a, Manohar et al. 2018b).  

 

 

2.2 Reconstruction performance under small perturbations  

In this section, we will derive the reconstruction performance under small perturbations. As 

mentioned in Section 2.1,   is necessary for deriving a sparse sensor placement strategy, which can 

be derived from the system model. However, the real system model may deviate from the system 

equations obtained from the engineering design (or from historical data). For example, in the 

automatic control for fuselage assembly, the system model is given by finite element analysis (Wen et 

al. 2018) or experimental design (Yue et al. 2018, Du et al. 2019), which is not the same as the system 

equation of incoming fuselages due to initial shape deviations. Meanwhile, it is not feasible to model 

every incoming fuselage individually. Therefore, we propose to use    from the designed system 

model to derive the sparse sensor placement strategy. In this case, the reconstruction performance of 

the sparse sensor placement under small perturbations needs to be quantified. Furthermore, the 

influence of the parameter estimation and control of this perturbed high-dimensional system needs to 

be studied. 

In the following discussions, we will use an    norm perturbation. The induced    norm of any 

matrix        is defined as ‖ ‖     ‖ ‖        ‖  ‖ . The induced    norm of a matrix   

is also its spectral norm, which equals the largest singular value of  . We use    as the matrix 

derived from engineering design which is also the one we observed (designed matrix), and   as the 

normalized true matrix derived from the system model of an incoming fuselage with initial shape 

deviation, which is the perturbed matrix from the designed one. We are interested in the 

reconstruction performance under a small    perturbation, i.e., ‖ ‖  ‖    ‖    is small.   is 

defined as the perturbation level. 
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Let  ̂  be the reconstructed signal which is estimated by using    and the measured signal   , 

i.e., 

 ̂     ̂      (   )
    ( )  

The distribution of the reconstruction error  ̂    is presented in the following proposition. 

Proposition 1. Let        be the perturbed matrix and          be the designed matrix. Let 

       be the perturbation bounded by  , i.e., ‖ ‖   . Let         and        be the 

selection matrix that solves one of the Equations (3-5) using    and  , respectively. Assume that the 

perturbation   is small such that the selection matrix     , and           is of full column 

rank. Let  ̂    (   )
   , where    is the measured signal subjecting to measurement error  

   (       ), i.e.,         , where   is the input control signal. Then the reconstruction error 

 ̂    also follows a multivariate Gaussian distribution with mean    and covariance   , i.e., 

 ̂      (     ), such that  

     (    )
         ( )  

       [(    )
     ]

  (  )
   ( )  

Moreover, 

‖  ‖  ‖  (    )
     ‖

 
‖ ‖    ( )

and with a probability at least (  
  

(‖   ‖   ) 
), 

‖ ̂   ‖  ‖  (    )
     ‖

 
‖ ‖   ‖  (    )

 ‖
 
‖   ‖   (  )   

The proof for Proposition 1 is provided in Appendix A. 

Discussion of Proposition 1 

Proposition 1 shows that  ̂  is no longer an unbiased estimator of   if there is a perturbation to the 

basis. However, the bias can be bounded tightly if the induced perturbation is small in terms of the   -

norm. The following discussions give the engineering interpretation of this proposition. 

(i) The probability (  
  

(‖   ‖   ) 
)  is dominated by the signal-to-noise ratio ‖   ‖   

 
. The 

higher the signal-to-noise ratio is, the more the estimation error  ̂    will concentrate to an 
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   ball with center   . Therefore, the reconstruction error will be bounded with a higher 

probability when the signal-to-noise ratio is high. 

(ii) Notice that there are two terms in ‖ ̂   ‖ : the first term is the bias    due to the 

perturbation and dominated by the perturbation magnitude  . Therefore, intuitively a smaller 

perturbation will also lead to a better reconstruction performance. The second term is 

necessary due to measurement errors, which will have a significant influence on the 

reconstruction performance, especially when the signal-to-noise ratio is low.  

 

 

2.3 Adaptive control of the perturbed system with sparse sensor measurements 

In this section, we will discuss the proposed control strategy. The goal is to estimate   and solve for 

the optimal control action that can achieve the control goal. Assume that the matrix         are 

derived from engineering design and the perturbation level   are known. 

Suppose a set of control signals   [       ]       and the corresponding 

reconstructed response signals  ̂  [       ]       are collected by sparse measurements, where 

    is the sample size. The sparse sampling and reconstruction are based on the known system 

matrix   . 

A common approach in adaptive control is to update the model using the least square method 

(Landau et al. 2011): 

 ̂         ‖ ̂    ‖
 
 (  )  

where ‖ ‖  is the Frobenius norm. 

Assume the control goal is to keep the response close to a target response signal   , then the 

control action   can be obtained as follows 

 ̂           ̂(    ) (  )  

where   ̂(   ) is the loss function. 
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Proposition 2. If the loss function is   ̂(    )  ‖    ̂ ‖
 

 
  then the control result of using SPAC 

by solving (12) with selection matrix   is 

      ( ̂)
 
    

where  ̂ is the solution of (  ), i.e.,  ̂    (   )
     (   )

  . 

The proof for Proposition 2 is provided in Appendix B. 

Note that there are two sources of control performance loss: 

(i) The reconstruction error of the response signal using the designed system matrix   . This 

can be reduced by increasing the number of sensors. 

(ii) The measurement error, which can be reduced by using sensors with a higher signal-to-

noise ratio.  

The number of sensors and sensor accuracy should be determined by the engineers considering the 

trade-off between control performance requirement and the sensing budget. 

The SPAC method for the perturbed system is summarized in Algorithm 1. 

Algorithm 1. SPAC method for the perturbed system 

Input: 

Sample size  , sensor budget  , known   , optimality criterion.  

Sparse sensor placement:  

Get the sensor selection matrix   by solving problems (3)-(5) with corresponding criteria.  

Adaptive control: 

Sampling and reconstruction:  

collect a set of control signal   [       ]       and the corresponding 

measurement    [  
      

 ]      , calculate the reconstructed response signal 

using:  ̂    (   )
    

Parameter estimation and control: 

Estimate the system equation by solving (11) and derive the control strategy by 

solving (12). 

3. Case Study 
This section will validate the proposed SPAC method using the shape control of a high precision 

composite fuselage assembly process (Yue et al. 2018, Du et al. 2019). In the assembly process of 
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composite fuselages, there are inherent dimensional variabilities due to the fabrication and 

transportation of composite parts. Those dimensional variabilities not only cause large gaps in the 

subassemblies but also lead to perturbations of fuselages’ mechanical properties from the designed 

ones. The perturbation makes the control strategy derived from the designed shape suboptimal. 

We propose to use the sensing feedback information to control the fuselage assembly with 

initial shape deviation. The models from engineering design or learned from historical data are used to 

derive the sparse sensor placement strategy for fuselages with initial shape deviation. On the one 

hand, due to the tight engineering specifications in the manufacturing process, the perturbed true 

model for each incoming fuselage should be close to the designed one, although not identical. This 

enables us to utilize the designed model to reconstruct the response signal. On the other hand, the 

dimension of the input control signal (e.g., the number of actuators) in the shape control of fuselage 

application is much smaller than the dimension of the response (e.g., the deformation of fuselage 

edges). Therefore, utilizing the sparse sensor placement concept is suitable to reduce sensing costs.  

The SPAC control framework for the high precision composite fuselage assembly process is 

shown in Figure 3. For an incoming fuselage, the sparse learning based automatic optimal shape 

control (Du et al. 2019) is applied to the fuselage. If the actual control performance and expected 

control performance are close to each other, no more control action is needed. Otherwise, the SPCA is 

applied to improve the control performance. Finally, if the control result meets the assembly precision 

requirement, the fuselage panels will be assembled. Otherwise, shimming is needed. 

 

Figure 3. SPAC control framework for high precision composite fuselage assembly process 

In Section 3.1, the FEA-based process model is briefly introduced. Then, the control 

performance of using the adaptive strategy is presented in Section 3.2. The accurate dynamic 

measurement of the fuselage’s high-dimensional shape deviation is expensive, though essential for the 
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high precision fuselage shape control. Therefore, a good balance between measurement budget and 

control precision can improve the control performance without a significant cost increase. 

Consequently, the SPAC approach is adopted in Section 3.3. A comparison study is also conducted to 

demonstrate the effectiveness of the proposed method. 

3.1 FEA-based process model 

In this case study, we will adopt the FEA-based process model since it is directly derived from the 

first principles and has a better engineering interpretation. The proposed method can be applied to 

both types of modeling approaches. For the detailed description of the FEA-based process model, 

readers are encouraged to refer to (Zhong et al. 2021). 

Let        be the deviation vector of points on the two edges of the fuselage and    

      be the actuator force vector, where    is the total number of degrees of freedom of nodes on 

the fuselage surface, and   is the total number of degrees of freedom of nodes on the two edges of the 

fuselage. The system equation can represent the relationship between the mechanical response 

behavior of nodes on edges and actuator forces as  

        (  )  

where          is the full rank modified stiffness matrix loaded from the FEA platform (according 

to design information). The number and locations of actuators are determined by adopting the sparse 

learning methodology (Du et al. 2019) and solving the following optimization problem: 

         
  

‖       ‖   ‖  ‖   (  )  

Subject to 

        

‖  ‖   ̅  

where    is the target shape and  ̅ is the upper bound of the allowable force to ensure the safety 

specifications of the fuselage structure.  ̅ can be determined by the maximum equivalent stress or 

failure criteria such as Tsai-Wu, Tsai-Hill, and Hoffman criteria (Jones 1998). The solution to 

Problem (14),   , is a sparse actuator force whose nonzero elements are controlled by the tuning 
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parameter  . The nonzero elements can indicate the location of actuators.   is selected such that the 

number of nonzero elements in    is within the required limit of actuators. Let      be the force 

vector consisting of nonzero elements in    and          be the mapping such that       .  

In the following control process, we will fix the actuator locations (  ) and only update the 

actuator forces ( ). Therefore, the system equation to be updated has the following form: 

           (  )  

where            . Notice that the dimension of   is usually small due to the actuator budget 

limit. While the response   itself can be high-dimensional, the change of  , due to control action  , 

lives in a low-dimensional space spanned by the left singular matrix of  . In the following discussion, 

we will demonstrate the proposed method using an FEA model built upon a set of parameters 

validated by Wen et al. (2018). There are 62 points on those two edges, generating a 186-dimensional 

response signal. 

3.2 Control performance of the adaptive strategy 

In this section, we will compare the control performance of the proposed SPAC method with the 

sparse learning method (Du et al. 2019) (one-shot control method) and the regular adaptive control 

method which measures the whole response signal. We verify that the SPAC method can achieve 

comparable control performance with the regular adaptive control method but with much less sensing 

cost.  

In practice, there are multiple ways to measure the fuselage shape deviations. Laser Radar 

(LR) (Muralikrishnan et al. 2016) can achieve high measurement accuracy, but the measurement 

speed is slow. iGPS can be used to perform dynamic measurements with high data acquisition rate. 

However, its accuracy is lower than that of LR. Due to the nature of adaptive control, the incoming 

fuselage can be measured offline before assembly. Therefore, high precision measurement techniques 

such as LR can be used. During the assembly process, in-situ measurement of the feedback signal is 

preferred for the adaptive control. Therefore, dynamic measurement techniques such as iGPS need to 

be adapted. To mimic this process, we generate 19 fuselages with initial shape deviation from FEA in 

our simulation. During the adaptive control process, we increase the measurement error to reflect the 
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fact of using the dynamic measurement technique, i.e., an i.i.d. Gaussian random noise with mean 

zero and standard deviation 0.066 mm (Mei and Maropoulos 2014) will be added to each node on top 

of the FEA simulation result as the measured deviation. 

We will first apply the sparse learning method (Du et al. 2019) on 19 incoming fuselages with 

initial shape deviations. Its control results are the baseline for the comparison study. For SPAC, we 

adopt the ‖ ‖  loss function in Equation (12). 

For the sparse learning method, the actuator budget is 20. After the actuator locations are 

fixed, we solve the control optimization problem to get its best one-shot control performance. As a 

one-shot control method, the sparse learning control model is derived based on the design 

information. To evaluate its control performance, we calculate (i) the true control result of applying 

the derived control strategy on the fuselage with the same initial shape deviation and the 

corresponding perturbed model; and (ii) the expected control result of applying the derived control 

strategy on an ideal fuselage with the same initial shape deviation and the designed model. The initial 

deviation (right-slanted bar), the true control result (crossed bar), and the expected control result 

(dotted bar) are shown in Figure 4.  

  

Figure 4. Comparison among the initial deviation, expected control result, and true control result 

In Figure 4, the x-axis represents the fuselage serial number, and the y-axis is the maximum 

deviation. We can see that even though the one-shot control strategy reduces the deviation 

significantly, in most cases, the real control performance is far worse than the expected one. This is 

due to the fact that the control law derived based on the FEA-based model for the designed shape is 
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not optimal for the incoming fuselage with specific dimensional errors and material properties 

characteristics. They may perform well on the ideal fuselage, but the control performance on a 

specific incoming fuselage with initial deviation is not guaranteed. The large discrepancy between the 

true control performance and the expected control performance indicates the necessity of adopting the 

adaptive control method.  

To evaluate the adaptive control performance, 100 simulations are conducted for each 

fuselage. In each simulation, we first randomly generate actuator forces as the input to FEA software 

and record the corresponding shape deviation. Then an i.i.d. Gaussian random noise with mean zeros 

and standard deviation 0.066 mm will be added to each node on top of the shape deviation as the 

measured response signal to mimic the measurement error. We repeat this process 100 times and get 

100 pairs of actuator's forces and response to estimate  . Finally, the control strategy is derived by 

solving Equation (12). The median and 3  limit of control performance is reported in Figure 5. In 

Figure 5, the fuselage serial number is shown on the x-axis, and the y-axis represents the maximum 

deviation. The right-slanted bar is the control performance using the one-shot control method, and the 

crossed bar with the 3-sigma error bound shows the performance of using the adaptive control 

method. We use the average percentage of performance improvement (APPI) as the evaluation 

criterion, i.e., 

     
 

  
∑

(   
    

)

   

  

   

       

where    
 and    

 are the maximum deviations of two control methods to be compared, i.e.,    
 is the 

maximum shape deviation of the  th fuselage by applying the one-shot control method and    
 is the 

maximum shape deviation of the  th fuselage after applying the proposed control method. The APPI 

evaluates the performance improvement of the proposed control method over the benchmark one-shot 

control method. The larger the APPI value indicates a better control performance. On average, the 

performance improvement is 54.31%. Note that when the expected and true control results are close, 

i.e., No.2, No.9, and No.13, the adaptive control does not improve the control result significantly. 

This is because when the process variability is low, the incoming fuselages can be represented very 
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accurately with the FEA-based model, and perturbations to the system equation have a slight and 

neglectable influence. According to Proposition 2, we can calculate the predicted adaptive control 

result (set   as the identity matrix), which is the dotted bar in Figure 5. We can see that the predicted 

result matches the experiment result. 

 

Figure 5. Comparison of the control performance between one-shot control and adaptive control  

 

As we mentioned in Section 3.2, measuring every point is an expensive and challenging task 

when considering the sensing budget. Since the change of response signal  , due to control actions, 

lives in a much lower-dimensional space, sparse sensor placement is a viable alternative. However, 

the lower-dimensional space is unknown due to the unknown matrix  . In the next section, we will 

show that, under small perturbations, the proposed method can still achieve satisfactory performance 

even using    (the design information) to develop a sensing strategy and reconstruct the entire 

response signal.  

3.3 Control performance of SPAC strategy 

In this section, the sparse learning method (Du et al. 2019) is applied to 19 fuselages with the same 

tuning parameters. Then, the proposed SPAC strategy is adopted to further control the fuselage to its 

target shape. For each fuselage, we assume that the sensor budget is restricted to 20, which means we 

should use at most 20 sensor measurements to reconstruct the 186-dimensional response. The 

determinant criterion is adopted, and the QR pivoting algorithm (Manohar et al. 2018a) is used to 
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select sensor locations. The selected sensor locations are shown as solid points in Figure 6. Notice that 

the sensor locations are selected according to the designed matrix   , which is the same for all 19 

fuselages. Therefore, the selected sensor locations are the same among these 19 fuselages. 

 

Figure 6. Selected sensor locations 

The control result is shown in Figure 7. The right-slanted bar is the one-shot control result; 

the crossed bar is the adaptive control result when all points are measured (186 dimensional), and the 

left-slanted bar is the SPAC result with only 20-dimensional measurement. According to Proposition 

2, we can calculate the predicted SPAC control result which is the dotted bar. We can see that the 

predicted result matches the experiment result. By adopting the SPAC method, the one-shot control 

performance is improved by 53.93%. It can achieve comparable control results with the adaptive 

control method but only measures less than 11% of the full response signal. This can significantly 

reduce the sensing cost.  
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Figure 7. Comparison among the one-shot control, the adaptive control with 186-dimensional 

measurement, and the SPAC with 20-dimensional measurement  

We conduct a sensitivity analysis by varying the number of sensors from 5 to 180 with the 

interval 5 and recording the corresponding control performance. The result is shown in Figure 8. The 

x-axis represents the number of sensors used for measurement and the y-axis represents the APPI 

value. The solid curve demonstrates the APPI of adaptive control result with 186-dimensional 

measurement and the dashed curve demonstrates the APPI of the SPAC method.  We can see that 

after the number of sensors reaches 20, the control performance of the SPAC method approaches the 

adaptive control result with 186-dimensional measurement. The control performance improvement of 

further increasing the number of sensors is not significant. This demonstrates the effectiveness of the 

proposed SPAC method. Notice that the APPI of the proposed SPAC method is unstable when the 

number of sensors is less than 20. This is because the number of sensors is less than the dimension of 

the subspace where the signal exists, which will lead to a suboptimal reconstruction performance and 

deteriorate the control performance. Acc
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Figure 8. Sensitivity analysis of the SPAC method by varying the number of sensors 

4. Conclusion 

High-dimensional systems with variability are common in many engineering applications due to 

inherent process variations. This paper proposes a SPAC method for perturbed high-dimensional 

systems to reduce the sensing cost and optimize the control performance. We formalize and analyze a 

sparse optimization framework for the sparse placement of measurement sensors and incorporate it 

into the adaptive control framework. We first establish the relationship between the reconstruction 

performance and the corresponding perturbation level. An analytical bound, as well as its engineering 

interpretation, are derived. An adaptive control strategy based on the sparse measurement is proposed, 

whose performance is validated using a case study from a high precision fuselage assembly process. 

The proposed method provides a holistic approach to make use of the feedback information 

for parameter estimation and control under sparse sensor placement strategies. By incorporating the 

designed system information, a significant reduction in sensing cost can be achieved while 

maintaining comparable control performance. One possible future research direction is to consider the 

trade-off between the number of sensors and the control performance to optimize the control and 

sensing cost. Another possible research direction is to study the performance of the SPAC strategy 

when the plant settings vary slowly over time.  
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