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Discovered in 1980, HTLV-1 (Human T-cell Leukemia Virus-1), was the first 

identified human retrovirus and is shown to be associated with a variety of diseases 

including: adult T-cell leukemia lymphoma (ATLL), tropical spastic paraparesis/HTLV-1 

associated myelopathy (TSP/HAM), chronic arthropathy, uveitis, infective dermatitis, and 

polymyositis. The mechanism by which the virus causes disease is still unknown. HTLV-

1 infection has been reported in many regions of the world but is most prevalent in 

Southern Japan, the Caribbean basin, Central and West Africa, the Southeastern United 

States, Melanesia, parts of South Africa, the Middle East and India. Approximately 30 

million people are infected by HTLV-1 worldwide, although only 3-5% of the infected 

individuals evolve Adult T-cell Leukemia (ATL) during their life and the prognosis for 

those infected is still poor. 

The retroviral proteases (PRs) are essential for viral replication because they 

process viral Gag and Gag-(Pro)-Pol polyproteins during maturation, much like the PR 

from Human Immunodeficiency Virus-1 (HIV-1). Various antiviral inhibitors are in clinical 

use and one of the most significant classes is HIV-1 PR inhibitors, which have used for 
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antiretroviral therapy in the treatment of AIDS. HTLV-1 PR and HIV-1 PR are 

homodimeric aspartic proteases with 125 and 99 residues, respectively. Even though 

substrate specificities of these two enzymes are different, HTLV-1 PR shares 28% 

similarity with HIV-1 PR overall and the substrate binding sites have 45% similarity.  

In addition to the 125-residue full length HTLV-1 PR, constructs with various C-

terminal deletions (giving proteases with lengths of 116, 121, or 122 amino acids) were 

made in order to elucidate the effect of the residues in the C-terminal region. It was 

suggested that five amino acids in the C-terminal region are not necessary for the 

enzymatic activity in Hayakawa et al. 1992. In 2004 Herger et al. had suggested that 10 

amino acids at the C-terminal region are not necessary for catalytic activity. A recent 

paper suggested that C-terminal residues are essential; and that catalytic activity lowers 

upon truncation, with even the last 5 amino acids necessary for full catalytic activity (1).  

The mutation L40I has been made to prevent autoproteolysis and the W98V 

mutation was made to make the active site of HTLV-1 PR similar to HIV-1 PR. We have 

characterized C-terminal amino acids of HTLV-1 PR as not being essential for full 

catalytic activity. We have discovered potential new inhibitors by in silico screening of 

116-HTLV-1 PR. These small molecules were tested kinetically for various constructs 

including the 116, 121 and 122-amino acid forms of HTLV-1 PR. Inhibitors with the best 

inhibition constants were used in HTLV-1 infected cells and one of the inhibitors seems 

to inhibit gag processing.  
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CHAPTER 1 
INTRODUCTION 

Retroviruses 

Retroviruses are a large family of RNA enveloped viruses. The mechanism of 

retroviral transcription differs from other organisms in that RNA is reverse transcribed 

into DNA which is integrated into the host genome then translated to proteins. Retroviral 

virions are 100 nm in diameter and packaged in 10 kilo bases double stranded RNA (2, 

3). 

 Retroviruses have recently been classified into two groups; simple and complex 

viruses, based on their genome organization (2).  Simple viruses include Gag (group 

antigen), which encodes for; the matrix, capsid and nucleocapsid protein, Pol 

(polymerase), which encodes for reverse transcriptase and integrase and Env 

(envelope), which encodes for surface and transmembrane proteins such as glycoprotein 

gp45 and gd20 (4). Complex viruses include extra non-structural genes besides Gag, Pol 

and Env (2). Although Murine Leukemia Virus (MLV) is a simple virus, Human Leukemia 

Virus-1 (HTLV-1) and Human Immunodeficiency Virus (HIV-1) are complex viruses 

because of their regulatory genes tax and tat, respectively. Beside the recent 

classification, retroviruses have been combined in three groups as oncoviruses, 

lentiviruses and spumaviruses according to morphology of the virions as well as the 

genomic structures. Not all the oncoviruses cause tumor formation and they are 

classified morphologically into three sub-groups as B-, C- and D-type particles (5). 

HTLV-1 is an oncovirus (2). Lentiviruses are associated with slow disease with long 

latent period such as HIV-1 and HIV-2 (6, 7). Spumaviruses, are known as foamy 
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viruses, cause pathogenic changes in the infected cell (7). Feline foamy virus is an 

example of spumavirus type (6). 

HTLV-1 

  HTLV-1 is a C-type oncovirus, and is classified as a complex virus. According to 

the The International Committee on Taxonomy of Viruses 

(http://www.ncbi.nlm.nih.gov/ICTVdb/), it is classified in the Retroviridae group and 

Deltaretrovirus subgroup with Bovine Leukemia Virus (BLV-1), Simian T-lymphotropic 

Virus-1-2 and 3 (STLV-1, 2, 3) (8). HIV-1 is in the Lentiretovirus subgroup, and thus 

differs from HTLV-1. HIV-1 is non-oncogenic, while HTLV-1 is oncogenic.  HIV-1 has a 

conical capsid, while HTLV-1 has a spherical capsid (9).  

Discovered in 1980, HTLV-1 (Human T-cell Leukemia Virus-1), was the first 

identified human retrovirus and is associated with a variety of diseases including: adult 

T-cell leukemia lymphoma (ATLL) (10), tropical spastic paraparesis/HTLV-1 associated 

myelopathy (TSP/HAM) (11), chronic arthropathy (12), uveitis (13), infective dermatitis 

(14), and polymyositis (15, 16).  

HTLV-1 infection has been reported in many regions of the world but is most 

prevalent in Southern Japan (17), the Caribbean basin (18, 19), Central and West Africa 

(20-23), the Southeastern United States, Melanesia (19), parts of South Africa, the 

Middle East and India (19, 24, 25). (Figure 1-1)  HTLV-1 subtype A, known as 

cosmopolitan subtype, is found in many endemic areas like Japan, the United States and 

Europe (26). Subtype B, D and F are found in Central Africa; subtype F in Central and 

South Africa; and subtype C in Asia (26). Approximately 30 million people are infected by 

HTLV-1 worldwide, and though only 3-5% of the infected individuals evolve ATL in their 

life, the prognosis for those infected is still poor (27, 28).  
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History and Discovery 

         HTLV-1 was first isolated from a cutaneous lymphoma patient on 1980 by Gallo 

(29-32). It was detected in T-cells of a patient who had mycosis fungoides. The newly 

recognized ATL was described by Uchiyama on 1977 (10), and this research suggested 

ATL antigen expressed by cell lines from ATL patients was recognized by antibodies in 

all serum of ATL patients. Anti-ATLA (adult T-cell leukemia virus-associated antigen) 

was detected in 1982; and another isolation was reported in 1981 (33). It was shown that 

both human T-cell leukemia virus (HTLV) and adult T-cell leukemia virus (ATLV) isolates 

were identical based on gene-specific probes (34). 

Global Implications 

Table 1-1 shows the countries that have the most prevalent HTLV-1 infection. 

Japan is the country with the highest level of HTLV-1 infection at 10% of the population, 

followed by the Caribbean with 6%, and sub-Saharan Africa with 5% HTLV-1 infection 

(19, 25). Most of the data of HTLV-1 prevalence rate is from selected populations, 

general population information is rare in these studies (25). The implications in Europe 

and United States are due to immigration or sexual contact with people from endemic 

areas (25). 

Transmission 

         HTLV-1 is transmitted primarily in three ways: mother–infant (mainly through 

breastfeeding) (35), sexual contact (36) and infected blood transmission (37, 38). Even 

though there is no case, transmission through saliva might be possible because of 

presence of proviral DNA and HTLV-1 antibodies (39). For all three routes, infected cells 

must be passed from the infected individual because the living HTLV-1 infected cells are 

essential for infection that occurs primarily with cell-cell contact (40, 41). The HTLV-1 
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infected cell and another cell form biological synapses, and viral RNA is transmitted to 

the target cell. Although HTLV-1 can infect almost any mammalian cell in vitro, it can 

only infect T-cells in vivo for an unknown reason (42). The transmission mechanism of 

HTLV-1 is not clearly understood in vivo or in vitro (43). 

Prevention and Treatment 

The median survival of adults with T-cell leukemia and lymphoma (ATLL) is 

determined as 1 year despite advances in both chemotherapy and supportive care.  

Cyclophosphamide (inhibits cell division, brand name cytoxan), adriamycin (doxorubicin/ 

hydroxydoxorubicin), vincristine (oncovin, inhibits cell division), and prednisolone drug 

therapy (CHOP) is one of the methods that has been used for treatment of ATLL patients 

and results in either complete remission (CR) or partial remission (PR). The more potent 

chemotherapy, consisting of VCAP (vincristine, cyclophosphamide, and adriamycin, 

which prevents RNA or DNA replication, and prednisolone), AMP (doxorubicin, 

ranimustine [MCNU], and prednisolone), and VECP (vindesine, etoposide, carboplatin, 

and prednisolone), improves the prognosis of ATL (44). However, the overall prognosis 

of ATL is still poor despite intensive chemotherapy (45).  Another combination that had 

been used is zidovudine plus interferon (ZDV/IFN which is a HIV-1 RT inhibitors) that 

gives a better CR result when it is used for the first-line therapy (46). Zidivudine is a drug 

used for HIV therapy.  

There are 6 classes of more than 20 approved antiretroviral drugs used to cure 

AIDS. Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), fusion inhibitors (FIs), 

CCR5 antagonists, and integrase strand transfer inhibitors (INSTI) are the 6 different 

classes of drugs. Two NRTIs plus either one NNRTI or a PI are the most extensively 
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studied combination regimens (47). Even though NNRTI-, PI- and INSTI-based regimens 

are equal alternatives according to current guidance, there are selected patients whom 

PI-based regimen seems to show the best result considering toxicity and dosing of the 

regimens (48). Introducing PIs to HIV treatment combinations in 1996 has predominantly 

lowered the morbidity and mortality due to HIV infection (48).  The addition of an inhibitor 

of HTLV-1 PR might have the same kind of beneficial effect seen with HAART in HIV 

therapy. 

The poor prognosis of HTLV-1 infection is associated with high lactate 

dehydrogenase (LDH) level (49). Most of the HTLV-1 infected patients are not able to be 

treated because of drug resistant leukemia cells (50, 51). P-glycoprotein was found to be 

overexpressed in various multidrug resistant cell lines (52-54). Bone marrow 

transplantation (BMT) has been successfully used to cure ATL (55). Allogeneic 

hematopoietic stem cell transplantation (allo-HSCT) provides sustained long-term 

survival for patients with adult T-cell leukemia/lymphoma (56). There is a case report 

which suggests unrelated cord blood transplantation (UCBT) should be a therapeutic 

option for ATL patients who do not have suitable donors and those who urgently require 

treatment (57). All of these treatments need to be studied further.  

There is no specific drug treatment for HTLV-1. Anti-HIV or anti-cancer regimens 

have been used as chemotherapic treatment of ATLL (51). There are studies on 

discovering drugs targeting HTLV-1 PR, reverse transcriptase (RT), integrase (IN) based 

on the success of antiretroviral treatment of AIDS and most extensively Tax proteins. 

Tax is a transcriptional activator viral genes, it transforms and immortalizes the T-cells 

(58). Despite the fact that Tax is essential for viral replication, 50% of ATLL patients lose 
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the ability to produce Tax due to mutations (59-62). RT and IN exist in low amounts (5-10 

fold less) in the HTLV-1 virion compared to PR; because two frameshifts are necessary 

to produce Gag-Pro-Pol polyprotein while one frameshift is Gag-Pro necessary for (63-

66). Therefore HTLV-1 PR is one of the best drug targets for ATLL patients (67). 

Genome and Structure 

HTLV-1 virus particles (80-100 nm in diameter) are enveloped viruses which target 

CD4
+ receptor on the host cell and replicates via a proviral DNA intermediate. The HTLV-

1 is a single stranded RNA virus; its genome is approximately 9 kb (68). It has Gag, Pol, 

Pro and env genes and uniquely a pX region at the end of the 3’ region. pX encodes for 

tax and rex which are involved in regulation and synthesis and processing of RNA of the 

virus as shown in Figure 1-2 (68). Similar to other retroviruses; Gag encodes for matrix 

(MA), about 14 kDa, capsid (CA), which provides the core for genomic RNA, is about 24 

kDa and nucleocapsid (NC) which is about 12-15 kDa (69). Pro encodes for protease 

(PR) of about 14 kDa that is essential for viral maturation (70); and pol encodes for 

reverse trascriptase (RT, 62kDa), which provides the reverse transcription, and 

integrase (IN, ) which helps the viral DNA integrate into host genome. Env encodes for 

surface protein (SU) about a 60 kDa and transmembrane protein (TM) about 21 kDa. 

Env proteins help virion to go into the cell (2, 24). (Figure 1-3) After protease cleavage 

which is necessary for maturation, capsid undergoes a morphological change from circle 

to pentagonal shape (71, 72). (Figure 1-3) 

Life Cycle 

Despite the fact that the mechanism by the virus causes which disease and how is 

still unknown, steps within the viral replication cycle have been shown to be critical for 

the development of mature, infectious HTLV-1(73). 
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The virus particle attaches to CD4+ receptor with the gp120 and then enters the 

cell. (Figure 1-4)  The virus releases its RNA and with the help of reverse transcriptase 

(RT), this single stranded RNA is transcribed into double stranded DNA in the cell 

cytoplasm. Then this viral DNA is transported into the nucleus of the cell where it is 

inserted into the host cell DNA with integrase (IN).  This form of retrovirus is called a 

provirus (74). Provirus is transcribed by the host-cell RNA polymerase, generating viral 

RNA. The host-cell machinery translates the viral RNA into proteins. Proteins and RNA 

assemble into virions that eventually bud from the host cell membrane. These new 

virions mature and continue the cycle of infection (9). (Figure 1-4) 

Gag and Gag/Pol Processing 

The sequence of Gag-Pro-Pol is shown in Figure 1-5.  Ribosomal frameshifting is a 

process that uses one mRNA to translate more than one protein by changing the reading 

frame at a specific site or sites.  The genes of the most retroviruses are translated as a 

single polypeptide by ribosomal frameshifting. This process occurs at the overlapping 

reading frame. There are two frameshifts for HTLV-1: one is in the -1 direction within the 

Gag-Pro overlap and one is in the Pro-Pol overlap to synthesize Gag, Gag-Pro, and 

Gag-Pro-Pol polyproteins (65, 75). Gag, Gag-Pol processing essential for viral 

maturation (76). 

HTLV-1 Protease 

Proteases are enzymes that catalyze the hydrolysis of proteins, belong to 

hydrolases group of enzymes according to the Nomenclature Committee of the 

International Union of Biochemistry and Molecular Biology. They are classified in four 

groups depending on the type reaction they catalyze, catalytic site residues and relation 

of the origin of the structure. MEROPS (http://merops.sanger.ac.uk/) is an online 
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database which is a source to get information about  proteases (such as name, identifier, 

gene name, organism and substrates) or their protein inhibitors (77). Proteases are 

divided further in three categories based on peptidase, family based on their sequences 

and clan according to their evolutionary origin. The most common classification is based 

on their catalytic residues which are combined in five subgroups: aspartic acid, serine, 

cysteine, metalloproteases and unknown or mixed active site proteases. 

    HTLV-1 protease belongs to the aspartic acid protease family; which catalyzes 

an acid-base mechanism (78). An enzyme bound water molecule attacks the amide 

bond to form a tetrahedral intermediate; then the conjugate base aspartate attacks to the 

intermediate to take the hydrogen so the amide nitrogen is expelled as the leaving group 

(78). (Figure 1-6) 

    The retroviral proteases (PRs) are essential for viral replication because they 

process viral Gag and Gag-(Pro)-Pol polyproteins during maturation, much like the PR 

from HIV-1 (Human Immunodeficiency Virus-1) (62, 79, 80). Various antiviral inhibitors 

are in clinical use and one of the most significant classes are HIV-1 PR inhibitors, which 

have proved to be an invaluable component of antiretroviral therapy in the treatment of 

AIDS (81). HTLV-1 PR and HIV-1 PR are homodimeric aspartic proteases with 125 and 

99 residues, respectively, in the monomers. Even though substrate specificities of these 

two enzymes are different, HTLV-1 PR shares 28% homology with HIV-1 PR overall and 

the substrate binding sites have 45% homology (82). 

Structure 

HTLV-1 PR (116 residues) has been crystallized by Mi Li in 2005 (27, 83). (Figure 

1-7) The protease was co-crystallized with Ac-Alanine-Proline-Glycine-Valine-Statin-

Valine-Methionine-Histidine-Proline inhibitor and the structure was refined at 2.5 Å 
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resolution. It had three homodimeric molecules per unit. When the structure was 

superimposed with 7 other retroviral proteases, it was seen that the flap, active site and 

the dimerization regions were conserved; while the elbow region of the proteases were 

divergent (83-88). (Figure 1-8) One of the different features of HTLV-1 PR compared to 

the other retroviruses is the presence of the two water molecule between the tips of the 

flaps (83). There are extra additional amino acids at the C-terminal region of HTLV-1 

protease compared to other aspartic acid proteases; it is only similar to Bovine Leukemia 

Virus-1 (BLV-1) PR (83-89). (Figure 1-9) 

Substrate 

Natural substrate cleavage sites are shown in Table 1-2 (90). Even though natural 

cleavage sites of HTLV-1 PR and HIV-1 PR are similar, their substrate specificities are 

different (82).  Based on cross reactivity of PRs using a vaccinia virus, it was determined 

that HTLV-1 PR was able process BLV Gag protein, but not HIV-1 PR Gag protein (91). 

This result shows there are other effects on PR cleavage beside the primary amino acid 

sequence. 

There is a nomenclature for naming the sub-sites of the substrate and the enzyme 

(92). (Figure 1-10) The cleavage bond is called the scissile bond and the amino acid next 

to it on the left is called P1 amino acid and to the right is called the P1’ amino acid; the 

numbers increase getting further away from the bond. The same procedure is applied for 

enzyme subsites that interact with each amino acid of a substrate or an inhibitor as S1 

and S1’ (27). 

All retroviral PRs prefer hydrophobic large residues at the P1 subsite; and HTLV-1 

PR prefers a hydrophobic P4 amino acid.  S1/S1’ The Trp98 has a drastic effect on the 

H-bonding and binding of inhibitor because of its big side chain. Four residues are 
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identical, and two are different in the S1 and S1’ pockets in 7 retroviral proteases. This 

subsite is large and hydrophobic (27, 68, 73). S2/S2’ Beside Met37, all the other 

residues are the same or similar. This subsite is large and hydrophobic. In subsites 

S3/S3’ 3 amino acids are different out of 6 amino acids. Trp98 has a big effect based on 

its side chain. Subsites S4/S4’ are hydrophobic and subsites S5/S5’ are hydrophilic (27, 

68, 73). 

Inhibitors 

Even though, HTLV-1 PR is significantly similar to HIV-1 PR, they have different 

inhibitor specificity (73, 93, 94). According to the literature and our experiments; it was 

determined that clinically used HIV-1 PR inhibitors have no or little inhibition effect on 

HTLV-1 PR (73). Based on the crystal structure of 116-residue HTLV-1 PR; the steric 

effect of Trp98 and Leu57 side chains might prevent possible inhibitor-protease 

interactions (27). 

Although HTLV-1 PR is an aspartic acid protease, pepstatin; which is an aspartic acid 

protease inhibitor has a low inhibition effect on HTLV-1 PR (Ki 100 ) (95). The best 

inhibitor for HTLV-1 PR is JG-365, a HIV-1 PR inhibitor, with Ki of 6.0 nM (93). The 

second most efficient inhibitor is a peptide inhibitor with Ki of 38 nM, followed by a non-

peptide inhibitor MES13-099 with Ki of 243 nM (93, 96). The cleavage products of (30-

-

C18 column by eluting with a linear gradient of 30-45% acetonitrile (0.1% TFA) and was 

monitored at 210 nm for these two inhibitors (93). Buffer including 100 mM sodium 

citrate, 5 mM EDTA, 1 mM DTT, and 1 M NaCl, pH 5.3) was used and the reactions 

were incubated at 37 °C for 5 min (93). 
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There are a couple of novel inhibitors (KNI-10729 and KNI-10516 that give 79% 

and 86 % inhibition at 50 nM concentration, respectively) found by Dr. Wlodawer’s lab 

recently (83). The hydrolysis of the  (0.2 mM) substrate fluorescent substrate( H-Lys ([7-

methoxycoumarin-4-yl]acetyl)-APQVL–(p-nitrophenylalanine)–VMHPL-

protease was determined in 0.2 M citrate buffer (pH 5.3), 1 mM dithiothreitol, 1 M NaCl, 5 

mM EDTA, 6% v/v glycerol, and 2% v/v DMSO solution at different inhibitor 

concentrations, and the reaction proceeded at 37ºC for 30 min, then the reaction was 

terminated with 20% aqueous trichloroacetic acid (15 lL). IC50 value was calculated by 

measuring the hydrolyzed substrate fragments and/or non-hydrolyzed substrate by probit 

model HPLC using a YMC-Pack Pro C18 column (linear gradient: 5–35% CH3CN in 

0.1% aqueous TFA; 1.0 mL/min; 215 nm; 40ºC), and the calculated from standard 

curves of the areas under the peaks at 6, 10, and 13 min by probit model (97). 

The structures of the inhibitors are shown in Figure 1-11. 
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Table 1-1. Percent prevalence of countries which are highly infected by HTLV-1 PR 
Country Prevalence 
Japan (98) 10% 
Caribbean (14) 6% 
sub-Saharan Africa (99) 5% 
Iran and Melanesia (100) <5% 
Europe and USA (101) 0.01–0.03% 
 
 
 
 
 
 
 
Table 1-2. Cleavage junction sequence of HTLV-1 PR 
Cleavage junction HTLV-1 amino acid sequence 
MA/CA PQVL/PVMH 
CA/NC TKVL/VVQP 
Gag/PR ASIL/PVIP 
PR/Pol PVIL/PIQA 
Pro/RT PAVL/GLEL 
RT-RH/IN VLQL/SPAD 
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Figure 1-1.  World map showing HTLV-1 endemic areas. Countries prevalence between 1-5% are shown in dark brown, 
less than 1% in orange (adapted from  Proietti, F. A et al. 2005).  

Papua New Guinea 

Japan 

South America Iran 

Sub-saharan Africa 
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Figure 1-2. HTLV-1 genome cartoon picture. Gag, Pro, Pol, , Env and Px open reading 
frames are shown in various color and they are flanked by long terminal 
repeats shown in red (adapted from Shuker, S. B. et al. 2003). 
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Figure 1-3. HTLV virion. A) Immature B) Mature. Lipid bilayer is shown in yellow, matrix 
(MA) is shown in red, capsid (CA) in black, NC in green. The 
electromicrograph of the mature and immature form of HTLV-1 is shown under 
the cartoon representation (adapted from Jiang, F. et al. 2000, and Briggs, J. 
A. 2004). 

Capsid Capsid 

B A 
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Figure 1-4. Retrovirus life cycle (adapted from Coffin, J. M. H. et al. 1997). 
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MGQIFSRSASPIPRPPRGLAAHHWLNFLQAAYRLEPGPSSYDFHQLKKFLKIALETPVWICPINY
SLLASLLPKGYPGRVNEILHILIQTQAQIPSRPAPPPPSSSTHDPPDSDPQIPPPYVEPTAPQVL
PVMHPHGAPPNHRPWQMKDLQAIKQEVSQAAPGSPQFMQTIRLAVQQFDPTAKDLQDLLQYLCSS
LVASLHHQQLDSLISEAETRGITGYNPLAGPLRVQANNPQQQGLRREYQQLWLAAFAALPGSAKD
PSWASILQGLEEPYHAFVERLNIALDNGLPEGTPKDPILRSLAYSNANKECQKLLQARGHTNSPL
GDMLRACQAWTPKDKTKVLVVQPKKPPPNQPCFRCGKAGHWSRDCTQPRPPPGPCPLCQDPTHWK
RDCPRLKPTIPEPEPEEDALLLDLPADIPHPKNLHRGGGLTSPPTLQQVLPNQDPTSILPVIPLD
PARRPVIKAQIDTQTSHPKTIEALLDTGADMTVLPIALFSSNTPLKNTSVLGAGGQTQDHFKLTS
LPVLIRLPFRTTPIVLTSCLVDTKNNWAIIGRDALQQCQGVLYLPEAKRPPVILPIQAPAVLGLE
HLPRPPEISQFPLNPERLQALQHLVRKALEAGHIEPYTGPGNNPVFPVKKANGTWRFIHDLRATN
SLTIDLSSSSPGPPDLSSLPTTLAHLQTIDLKDAFFQIPLPKQFQPYFAFTVPQQCNYGPGTRYA
WRVLPQGFKNSPTLFEMQLAHILQPIRQAFPQCTILQYMDDILLASPSHADLQLLSEATMASLIS
HGLPVSENKTQQTPGTIKFLGQIISPNHLTYDAVPKVPIRSRWALPELQALLGEIQWVSKGTPTL
RQPLHSLYCALQRHTDPRDQIYLNPSQVQSLVQLRQALSQNCRSRLVQTLPLLGAIMLTLTGTTT
VVFQSKQQWPLVWLHAPLPHTSQCPWGQLLASAVLLLDKYTLQSYGLLCQTIHHNISTQTFNQFI
QTSDHPSVPILLHHSHRFKNLGAQTGELWNTFLKTTAPLAPVKALMPVFTLSPVIINTAPCLFSD
GSTSQAAYILWDKHILSQRSFPLPPPHKSAQRAELLGLLHGLSSARSWRCLNIFLDSKYLYHYLR
TLALGTFQGRSSQAPFQALLPRLLSRKVVYLHHVRSHTNLPDPISRLNALTDALLITPVLQLSPA
DLHSFTHCGQTALTLQGATTTEASNILRSCHACRKNNPQHQMPQGHIRRGLLPNHIWQGDITHFK
YKNTLYRLHVWVDTFSGAISATQKRKETSSEAISSLLQAIAYLGKPSYINTDNGPAYISQDFLNM
CTSLAIRHTTHVPYNPTSSGLVERSNGILKTLLYKYFTDKPDLPMDNALSIALWTINHLNVLTNC
HKTRWQLHHSPRLQPIPETHSLSNKQTHWYYFKLPGLNSRQWKGPQEALQEAAGAALIPVSASSA
QWIPWRLLKRAACPRPVGGPADPKEKDHQHHG  
 
Figure 1-5. Gag-Pro-Pol sequence of HTLV-1.  Matrix is shown in dark blue (130 amino 

acids), capsid is shown in green (214 amino acids), nucleocapsid is shown in 
light blue (105 amino acids), protease is shown in red (125 amino acids), 
reverse transcriptase is shown in blue (563 amino acids) and integrase is 
shown in orange (300 amino acids)  
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Figure 1-6. Mechanism of aspartic acid protease-catalyzed peptide cleavage (adapted 
from Liu, H. et al. 1996). 

O 
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Figure 1-7. Cartoon of the crystal structure of 116-residue HTLV-1 PR (PDB#2B7F). 
Aspartic acid residues are shown in orange sticks (adapted from Satoh, T. et 
al. 2010).  

 

Figure 1-8. Superposition of seven retroviral PRs shown in ribbon representation.HTLV-1 
PR is colored blue (PDB#3LIY); HIV-1 PR (PDB#2FLE), green; HIV-2 PR 
(PDB#3EBZ), dark blue; SIV PR (PDB#2SAM), gray; RSV PR (PDB#2RSP), 
magenta; EIAV PR (PDB#2FMB), yellow; and FIV PR (PDB#4FIV), red. 
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Figure 1-9. Sequence Alignment of the Leukemia Retrovirus Proteases with Retroviral 
Proteases of Known Structure (besides BLV). The alignment for HIV-1, HIV-2, 
SIV, FIV, EIAV, and RSV proteases was generated based on the reported 
structures (PDB IDs: HIV-1, 2FLE; HIV-2, 3EBZ; SIV, 2SAM; FIV, 4FIV; EIAV, 
2FMB; and RSV, 2RSP). Hydrophobic residues are indicated in blue, 
hydrophilic residues in yellow. 
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Figure 1-10. Nomenclature of enzyme and substrate subsites (adapted from Schechter, 
I. et al. 1967). 

.
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A                                                                         B 

                          

R1: Ac-Ser-Leu-Asn    R2: Ile-Val-OMe                          R1: H-Pro-Val-Ile       R2: CH2C6H4I 

C 

 

D

 

E 

Figure 1-11. Structures of the best inhibitors of HTLV-1 PR. A.JG-365, B.Compound 
31,C. MES13-099, D.KNI-10729, E.KNI-10516  
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CHAPTER 2 
MATERIALS AND METHODS 

Site Directed Mutagenesis 

The HTLV-1 PR gene, which was obtained from NIH, was cloned into a pET11a 

vector (Novagen) using the restriction sites NdeI (NEB) and BamHI (NEB). To make the 

truncated forms of HTLV-1 PR, a stop codon has been introduced after the appropriate 

amino acid coding sequence. Complementary primers (Invitrogen) were designed 

according to the coding and non-coding DNA strand. The reactions were carried out 

using the Site Directed Mutagenesis Protocol (Stratagene) with 18 cycles of 

amplification using melting step at 98°C for 3 min followed by an annealing step at 55°C 

for 1 min, and extension at 72°C for 7 min,  then the reaction temperature was dropped 

to 4°C. To remove template DNA, 1 mL of the restriction enzyme Dpn1 (10 μL /mL) was 

added to the PCR reaction and the mixture was incubated at 37°C for 1 hr. Successful 

mutagenesis was confirmed by sequencing (ICBR Core, University of Florida, 

Gainesville, Florida).   

Transformation 

Transformation was done with using chemically component cells and One Shot 

Top 10 (Invitrogen) protocol with some modifications. 2.5 μL of the DNA (32.5 ng/μL) of 

interest was mixed with 25 μL of cell stock and the mixture was kept on ice for 30 min. 

The reaction mixture was then heat shocked in a 42ºC water bath for 45 s. The reaction 

mixture was replaced on the ice immediately for 15 min. Next, 

(2.0% Tryptone, 0.5% Yeast Extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, and 20 

mM glucose, pH 7) were  added to the reaction tube and placed in an incubator rotating 

at 250 rpm at 37 C for an hour. 75 μL of the cell culture were spread onto LB plates 
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containing ampicillin (50 μg/mL).  Plates were incubated at 37°C overnight to promote 

colony growth. A colony was randomly picked the next day and grown overnight (16 

hours) in 10 mL of LB with ampicillin (50 g/mL). The plasmid DNA was checked by 

sequencing to verify the correct amino acid sequence and mutations. Transformation 

into BL21(DE3) Rosetta pLysS cells (Invitrogen)  was done with the same method as 

above with addition of chloramphenicol  (34 g/mL) as well as ampicillin (50 μg/mL). 

Protein Expression 

LB medium (10 g Bacto-tryptone, 5 g yeast extract, 10 g NaCl in 1L water at pH 

7.5) was used for expression. The expressions were initiated with a 4% inoculation from 

overnight cultures of cells grown in LB media supplemented with 50 g/mL of ampicillin 

for BL21 Star DE3 cells or 50 g/mL of ampicillin and 34 g/mL of chloramphenicol for 

BL21 Star DE3 Rosetta pLysS cells. Expression cultures were grown overnight for ~16 

hr.  When the optical density reached 0.8, protein expression was induced with final 

concentration of 1 mM isopropyl b-D-thiogalactopyranoside. The cells were allowed to 

grow for an additional 3 – 4 h and then pelleted by centrifugation at 10000 x g for 10 min 

(102). Cell pellets were stored at -20 º C (95). 

Inclusion Bodies Extraction 

Cell pellets stored at -20 C overnight were thawed and resuspended in buffer (10 

mM Tris pH 7.5, 5 mM EDTA) and DNase I was added to a final concentration of 0.1 

mg/mL. SLMAminco French Pressure Cell at 1000 psi was used to break cells. After 

lysing the cells, urea was added to solution to 0.5 M final concentration and stirred for 

30 min. Cells were centrifuged at 5000 x g for 10 min. The procedure was repeated until 
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a clear supernatant was obtained (27). Pelleted inclusion bodies (IB) were stored at   -

80º C. Samples of IB were run on SDS-PAGE gels. 

Enzyme Purification and Refolding 

The inclusion bodies were solubilized in buffer B (8 M urea, 10 mM Tris-HCl pH 

7.5, 5 mM EDTA). All urea solutions were de-ionized by ion exchange to remove 

cyanates.  Solubilized inclusion bodies were loaded onto a Q Sepharose Fast Flow 

column (Pharmacia) equilibrated with buffer C (6 M urea, 10 mM Tris-HCl pH 7.5, 5 mM 

EDTA). As the pI of HTLV-1 PR is predicted to be 8.89, it did not bind to the Q Column. 

The flow through from the column was collected and adjusted to pH 4.0 with acetic acid. 

Various pH’s, as pH 3, 4, and 5,  have been tried, pH 4.0 resulted the best yield. (data 

not shown) The pH adjusted solution was then loaded onto a Sepharose Fast Flow SP 

column (Pharmacia) equilibrated in buffer D (6 M urea, 20 mM sodium acetate pH 4.0, 5 

mM EDTA) (102). The PR that bound to the column was eluted with 0.4 M NaCl. Rapid 

dilution with excess of 10 mM formic acid was used to refold the purified HTLV-1 PR.  

Size exclusion chromatography was used to determine purification and folding success. 

Purification of HTLV-1 PR was determined by 18% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS). 

Kinetic Assays 

The enzyme concentrations for HTLV-1 PR preparations were determined by 

Bradford assay (BioRad) and optical density  (OD) reading at 280 nm of the stock 

solutions after concentrating the purified PR using Amicon ultrafiltration devices 

(Amicon Ultra-15, Millipore). The chromogenic substrate A-P-Q-V-L*Nph-V-M-H-P-L, 

which mimics the natural Gag/Pol MA/CA cleavage site, was synthesized by ICBR Core 

Facility at UF. This substrate was used to assay enzyme activity in 2 X incubation buffer 
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(0.5 mM potassium phosphate pH 5.6, containing 10% glycerol, 2 mM EDTA, 10 mM 

dithiothreitol, 2 M NaCl) at 37 °C (103). Various NaCl concentrations were used to 

determine the optimum ionic strength and 2 M was selected based on the highest 

protease activity. (Data not shown)  The enzyme mixture and the substrate were 

incubated separately at 37 °C for 3 minutes before mixing them and monitoring 

cleavage of the substrate at 302 nm using a Cary 50 Bio Varian spectrophotometer 

equipped with an 18-cell multitransport system. The initial rate data for each assay was 

plotted versus substrate concentration to obtain the characteristic Michaelis-Menten 

curve.  The experimental curve was then fit to the following equation by using Sigma 

Plot:  

 )(
*max

SK
SVv

m  (3-1)
 

A non-linear Marquardt analysis was used to determine Km and Vmax for the 

substrate.(104) In the above Vmax is the 

maximum velocity, S is the substrate concentration, and Km is the Michaelis-Menten 

constant, which has the unit of molarity.  Every enzyme has a distinct Km value for a 

certain substrate. The Km value of an enzyme represents the substrate concentration 

required to reach the half of the maximum velocity (Vmax), is a measure of the 

concentration of the substrate required for an effective catalysis. The rate of the reaction 

was derived from the measured change of absorbance per unit time ( . The 

conversion factor was determined by using the exact concentrations of substrate, as 

determined by amino acid analysis. The initial values of the absorbance (i.e., before 

substrate cleavage at time zero), and after the completion of substrate cleavage (i.e., 

after 2 hours) were measured by UV Spectrometry four different substrate 
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concentrations. A graph was then plotted using the absorbance change versus 

substrate concentrations. The conversion factor is derived from the slope of the graph 

that converts the 

determined by Dr. Roxana Coman..  

The kcat values were determined using the following equation:  

 tot
cat E

Vk max

 (3-2) 

kcat is the turnover number of the enzyme which is a measure of its maximal catalytic 

activity. The reciprocal kcat is the time required by an enzyme molecule to turn over one 

substrate molecule. Etot is the total enzyme concentration in this formula, it was 

calculated by OD reading at 280 nm; the absorptivity coefficient is 14,000 L/mol.cm 

(90).
 

Determination of Ki and Relative Vitality Values 

Various inhibitors are used to provide information about the active site of the 

protein. Inhibition was measured as a decrease in the rate of substrate cleavage in the 

presence of inhibitor over time.   

After fitting the Michaelis-Menten curve in the absence of inhibitor, the assay is 

repeated twice in the presence of two different concentrations of inhibitor.  The curves 

are then simultaneously fit to the following equation:     
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 (3-3)

 

to determine Ki values of classical (non-tight binding) competitive inhibitors. In the 

above equation, is the rate of product formation, Vmax is the maximum velocity, Km is 

the Michaelis-Menten constant, S is the concentration of the substrate, I is the 
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concentration of inhibitor and Ki is the inhibition constant which is expressed in units of  

molarity. The graphs were fit in the cases of uncompetitive and noncompetitive inhibitor 

type of equations, and the best fits were obtained with the competitive inhibitor fit. Km 

and Kcat were determined for each inhibitor: in order to check the precision of the assay, 

they were repeated under the same conditions and found to be reproducible. Although 

no numerical values of the error bars were determined in these assays, but the Km 

values were very close to each other for each enzyme preparations.  Km value was 

determined and reproduced in the same range even after freezing and thawing. While 

determining the Ki values for each inhibitor, a consistent Km value was reproduced. 

Novel Protease Inhibitors 

In silico screening of over 140,000 compounds available from the National Cancer 

Institute Developmental Therapeutics Program was done by docking these small 

molecules into the active site of the HTLV-1 PR based on the crystal structure of the 

116-residue HTLV-1 PR available in the Protein Data Bank (PDB 2B7F) using 

DOCKv5.2.(105) The small molecules are available on the NCI website. 

(http://dtp.nci.nih.gov/index.html) (106). After water molecules were removed from the 

structure each compound was docked as a rigid body. The interactions between 

molecules are estimated by calculating approximate molecular mechanics interaction 

energies as implemented by the force field function in the DOCK program and 

compounds were ranked based upon predicted van der Walls and electrostatic 

interactions. A van der Waals surface representation of the model was generated using 

the program dms and the method of Richards (107).  Spheres characterizing the 

potential target sites of the protein were generated using the program sphgen.  Subset 

selection of spheres was performed using sphere select to within 6 Å of the target site. 
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Electrostatic grid files and bump filters were generated around the target site using the 

program grid with 10 Å buffers. The AMBER force field was used for vDW calculations. 

Docking was performed using DOCK6.0 (108), and all software programs referenced 

are distributed with the package. A database of 250,251 small molecules derived from 

the National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) plated 

set (109) was used for the docking calculations. A maximum of 5000 orientations was 

searched for each small molecule in the lig and database. All docking calculations were 

performed on the University of Florida High-Performance Computing cluster. The best 

40 compounds were selected and obtained from the National Cancer Institute. The 

stock solution was obtained by dissolving in 100% DMSO to a final concentration 50 

mM and stored at room temperature. 

ELISA and Western Immunoblotting Assays 

MT-2 cells were obtained from the AIDS Research and Reference Reagent 

Program (110, 111) National Institute of Allergy and Infectious Disease (Rockville, MD) 

and maintained in complete RPMI-1640 medium (Invitrogen) as previously described 

(112, 113). MT-2 cells were seeded at 4 x 105 cells per ml and cultured for 4 or 24 hrs at 

37oC in the presence or absence of 5, 10 or 50 μM of selected inhibitors. Total cell 

lysates were obtained using RIPA lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 

1% NP-40, 1% sodium deoxycholate and 0.1 % SDS) containing protease inhibitor 

(Sigma-Aldrich) and phosphate inhibitor (Thermo Scientific, Rockford, IL) Total cellular 

protein amount was measured with the BCA Protein Assay Kit (Thermo Scientific). 

Western blotting was performed as previously described (112, 113). Briefly, samples 

containing a total of 30 μg of total cellular protein were loaded onto a 4-12% SDS-Bis-

Tris Gels (Invitrogen) and subsequently transferred onto a 0.45 μM nitrocellulose 
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membrane (Invitrogen). Membranes were probed with anti-HTLV-1 p19 monoclonal 

antibody (Zeptometrix, Buffalo, NY). The primary antibody was detected with 

horseradish peroxidase (HRP)-conjugated anti-mouse IgG (GE HealthCare, 

Piscataway, NJ, USA). The membranes were stripped using restore Western stripping 

buffer (Thermo Scientific,) and re-probed with monoclonal anti- -actin (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) as internal control. Signals were detected using 

the enhanced chemilumnescence Western blotting detection reagent (GE HealthCare). 

MT-2 cells were seeded at 4 x 105 cells per ml and incubated in the presence or 

absence of 5 or 50 μM of selected inhibitors for 1 or 2 days. Levels of HTLV-1 p19 

production in culture supernatants were quantified using enzyme-linked immunosorbent 

assay kits for p19 (Zeptometrix, Buffalo, NY) according to the manufacturer's 

instructions. 

Cell growth was estimated by counting the cells using a hemocytometer or a 

machine counter. Cell viability was determined by counting the viable cells by staining 

with trypan blue. All the cell assays were done at NCI-Frederick facility in Dr. Tomozumi 

Imamichi’s laboratory. 
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CHAPTER 3 
EXPRESSION, PURIFICATION AND REFOLDING OF HTLV-1 PR 

The optimum methods and conditions for expression, purification and refolding of 

HTLV-1 PR have been investigated such as the most efficient E-coli cell line, method to 

lyse the bacterial cells, purification method determined to be ion exchange 

chromatography,  pH for ion exchange chromatography, NaCl concentration for the 

most active protease and the refolding method determined to be rapid dilution. 

The most efficient E. coli cell line was selected as Rosetta™(DE3)pLysS 

Competent Cells that enhance the expression of eukaryotic proteins that contain codons 

rarely used in E. coli. The pLysS plasmid encodes T7 phage lysozyme, 

-DE3, which contains the T7 bacteriophage gene I. 

Because pLysS strains express T7 lysozyme, which further suppresses basal 

expression of T7 RNA polymerase before the induction, they stabilize pET 

recombinants encoding target proteins that affect cell growth and viability. T7 lysozyme 

lowers the background expression level of target genes under the control of the T7 

promoter but does not interfere with the level of expression achieved after IPTG 

induction. Rosetta™(DE3)pLysS cell strains supply tRNA genes for AGG, AGA, AUA, 

CUA, CCC, GGA which are the rare codons used in E. coli on a Col-E1 compatible 

chloramphenicol-resistant plasmid. This cell strain has yielded higher expression 

efficiency of HTLV-1 PR, therefore the assays have continued by this cell strain 

selection. 

The pET 11a vector was selected as an expression vector. (Figure 3-1) Various 

constructs were cloned into pET11a by using Nde1 and BamH1 restriction enzymes. 

Digestion products from pET 11a vector and insert HTLV-1 PR are shown in Figure 3-2, 
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and cut vector and insert were ligated for 1 h, and then transformed into TOP 10 cells. 

(See Chapter 2)  

The 116-residue L40I and W98V amino acids substituted  HTLV-1 PR in pET 11a 

vector and 125-residue L40I amino acids substituted  HTLV-1 PR in pET 19b vector 

were provided from NIH. The L40I substitution was used to prevent autoproteolysis and 

the W98V substitution was introduced to make the active site region of HTLV-1 PR 

similar to HIV-1 PR (Figure 3-3). The 125-residue HTLV-1 PR was cloned in pET 11a 

vector of E. coli. Stop codons were introduced at the 121 and 122 residues to get 

various construct lengths. The primers are shown in Figure 3-4.  The PCR reactions 

were conducted on as mentioned in the experimental procedure. (See Chapter 2) 

Various concentrations of DNA from 0.1 to 0.5 ng were used as template. A gradient 

was used for annealing temperature between 43-60ºC. After the PCR reaction was 

finished, a DNA gel was run to determine PCR products. (Figure 3-5) PCR products 

which have the correct band were transformed in Rosetta™(DE3)pLysS E. coli cells. 

After cloning and site directed mutagenesis (SDM), DNA sequences were checked 

for correct frame locations of ribosome binding sites and restriction sites for protein 

translation. (Figure 3-6)  

The concentration of 1 mM IPTG was picked as the optimum concentration to 

induce expression of the gene based on literature (114). Different expression times 

were tried as shown in Figure 3-6. Because there was no significant change between 3 

h and 6 h, 3 h of expression was selected. 

The French Pressure Cell, Bug buster (Novagen) and sonication methods were 

used to break cells.  Resuspension  buffer (10 mM Tris pH 7.5, 5 mM EDTA, 0.5 M 
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urea) was added twice to wash the pellet and the samples centrifuged at 8000 rpm for 

10 min. (Figure 3-7) French pressure cell treatment gave the best yield as 2 g of 

inclusion bodies (IBs) were obtained compared to 1g of IBs obtained  with Bug buster 

and sonication.  

After solubilizing IBs in buffer B (8 M urea, 10 mM Tris-HCl pH 7.5, 5 mM EDTA), 

Q Sepharose Fast Flow column (Pharmacia) equilibrated with buffer C (6 M urea, 10 

mM Tris-HCl pH 7.5, 5 mM EDTA) was used to purify the protease from proteins that 

have lower pIs. The Q column flow through was adjusted to pHs 3, 4, and 5 as well as 

buffer D (6 M urea, 20 mM sodium acetate, 5 mM EDTA) to apply to a SP column 

(Pharmacia).  pH 4 gave the best purification for HTLV-1 PR. Various concentrations 

(0.3, 0.4, 0.5 M) of NaCl was used to elute the protease of the SP column. 0.4 M NaCl 

gave the best elution yield.  The SDS-PAGE gel of the purification of one of the 

constructs was shown in Figure 3-8. 

Many conditions have been tried for refolding of HTLV-1 PR. For the first condition  

the purified protease was dialyzed against 20 mM PIPES, pH7.0, containing 2 mM DTT, 

1 mM EDTA, 150 mM NaCl and 10% glycerol at 25 C for 3, 5 ,8 h and 16 h. (Figure 3-9) 

None of the time points gave any active protein, so folding was not accomplished.  

Overnight dialysis resulted in precipitation of the protease.  No active protease was 

obtained. Dialysis against 50 mM sodium acetate buffer (pH 5.0) containing 100 mM 

NaCl at 0°C for 3, 5, 9 and 24 h was used in an attempt to get folded protease, but this 

method failed as well. (Figure 3-10)  As mentioned in Kadas et al.; subsequent dialysis 

against  25 mM formic acid (pH 2.8) at 0°C for 6 h followed by dialysis against 50 mM 

sodium acetate buffer (pH 5.0) containing 100 mM NaCl at 0°C overnight was tried; also 
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yielded inactive protease. After testing them by Size Exclusion Chromatography and 

kinetic assays; none of these conditions provided correctly folded, active HTLV-1 PR. 

Only 10x rapid dilution of purified protein in 10 mM formic acid gave active, 

correctly folded HTLV-1 PR. This result was confirmed by size exclusion 

chromatography in Figure 3-11. 
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Figure 3-1. The expression vector pET11a (Novagen). 
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Figure 3-2. DNA gel picture of cloning. Lane A represents the cut insert of 121-residues 
HTLV-1 PR, lane B the cut vector of pET 11a and the lane C the molecular 
weight marker (1 kb DNA Ladder (NEB).  

 

 

Figure 3-3. Alignment of HIV-1 PR and HTLV-1 PR. W98V amino acid substitution is 
shown in pink spheres, HTLV-1 PR is shown in pink and HIV-1 PR in blue 
colors.  

         A                    B                   C 
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L40I 
Upper     GCAGACATGACAGTCATTCCGATAGCCTTGTTC 
Lower     GAACAAGGCTATCGGAATGACTGTCATGTCTGC 
 
121 HTLV-1 PR 
Upper     GGCAAAAGGGCCGTAAGTAATCTTG 
Lower     CCGTTTTCCCGGCATTCATTAGAAC 
 
122 HTLV-1 PR 
Upper     GGCAAAAGGGCCGCCTTAAATCTTG 
Lower     CCGTTTTCCCGGCGGAATTTAGAAC 
 

Figure 3-4. Primers for 121, 122-residue and L40I mutation of HTLV-1 PR. 

 

                                               1      2       3       4           5   
 
 
 
 
 
 
 
 
 
 
 

                                                
 
Figure 3-5. DNA gel picture of PCR products. Lane 1 is 0.5 ng 121-residue HTLV-1 PR 

elongation temperature at 52°C, Lane 2  100 pg 121-residue HTLV-1 PR 
elongation temperature at 52°C, Lane 3 is 0.5 ng 121-residue HTLV-1 PR 
elongation temperature at 43°C, Lane 4 is 100 pg 121-residue HTLV-1 PR 
elongation temperature at 43°C. Lane 6 is 0.5 ng 122-residue HTLV-1 PR 
elongation temperature at 52°C, Lane 7  100 pg 122-residue HTLV-1 PR 
elongation temperature at 52°C, Lane 8 is 0.5 ng 122-residue HTLV-1 PR 
elongation temperature at 43°C, Lane 9 is 100 pg 122-residue HTLV-1 PR 
elongation temperature at 43°C. Lane 5 and Lane 10 is 1 kb DNA ladder 
(NEB). 
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Figure 3-6. DNA sequence of HTLV-1 PR vector used in these studies. 
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                                               A      B         C       D    

 
 
 
 

                                A      B        C        D    

 
 
 
Figure 3-7. SDS PAGE (18%) gel of expression. 1. 116-residue HTLV-1 PR. 2. 121-

residue HTLV-1 PR. Lane A represents the Precision Plus Ladder (Biorad), 
lane B before IPTG induction, lane C 3 h after IPTG induction and lane D 6 h 
after IPTG induction. 
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                                                        A        B          C          D 

 

Figure 3-8. SDS-PAGE (18%) gel of inclusion bodies. 1. Lane A represents the 
Precision Plus Ladder (Biorad), lane B the first wash of IBs, lane C the 
second wash of IBs, lane D MW ladder and lane E IBs 121-residue HTLV-1 
PR. 2. Lane A represents the Precision Plus Ladder (Biorad), lane B before 
IPTG induction, lane C 3 h after IPTG induction and lane D. IBs 122-residue 
HTLV-1 PR. 
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Figure 3-9. SDS PAGE (18%) gel picture of purification of 121-residue HTLV-1 PR. 
Lane A is the Precision Plus Ladder (Biorad), lane B is the Q column flow 
through, lane C is the Q column elution by 1 M NaCl, lane D is the SP column 
flow through, lane E is the SP column elution by 0.4 M NaCl, lane F is the SP 
column elution by 1 M NaCl, and the lane G the Precision Plus Ladder 
(Biorad). 

 

 

Figure 3-10. SDS-PAGE (18%) gel of dialysis of HTLV-1 PR against 20 mM PIPES, pH 
7.0, containing 2 mM DTT, 1 mM EDTA, 150 mM NaCl and 10% glycerol at 
25ºC. Lane A is the Precision Plus Ladder (Biorad), lane B dialysis after 3 h, 
lane C dialysis after 5 h, lane D dialysis after 8 h, lane E dialysis overnight, 

and F is the precipitation after dialysis.  
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Figure 3-11. SDS-PAGE (18%) gel of dialysis of HTLV-1 PR against dialysis buffer-1 
(50 mM sodium acetate buffer (pH 3.0) containing 100 mM NaCl) at 25 Cº 
and dialysis buffer-2 (50 mM sodium acetate buffer (pH 4.0) containing 100 
mM NaCl). Lane A is the Precision Plus Ladder (Biorad), lane B is dialysis-1 
after 3 h, lane C is dialysis-1 after 5 h, lane D is dialysis-1 after 8 h, lane E is 
dialysis-1 overnight; lane F is dialysis-1 after 3 h, lane G is dialysis-1 after 5 h, 
lane H is dialysis-1 after 8 h, lane J is dialysis-1 overnight. 
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A 

B 

 

Figure 3-12. A. Graph of Size Exclusion Chromatography. (Each fraction has 2 mL)  B.
Calibration curve of Size Exclusion Column  
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CHAPTER 4 
KINETIC CHARACTERIZATION AND INHIBITOR DISCOVERIES OF HTLV-1 PR 

Truncated Forms of C-Terminal Region 

There are additional amino acids at the C-terminal region of HTLV-1 protease 

when compared to other aspartic acid proteases such as HIV-1 PR. HTLV-1 PR is most 

similar to BLV-1 PR. (Figure 1-7) The function of this extra loop and its effect on 

enzyme activity is still unclear. In the literature, it is controversial as well.  An in vivo 

study by Hayakawa et al. shows the last 5 amino acids at the C-terminal region are 

necessary for protease activity, although 5 amino acids prior to these 5 are not (115). 

These results might come from the cell components or other proteases in the cell, since 

the HTLV-1 PR was not isolated, purified and characterized.  Herger et al. showed that 

10 residues at the C-terminal region are not essential for full catalytic activity, since the 

full length and  -10  residue have the same specificity constant (116). Controversially, a 

60% decrease in the catalytic activity was determined by Li et al. comparing 116-

residue and full length (125-residue) HTLV-1 PR (27). A recent study by Kadas et al. 

shows that 120-residue HTLV-1 PR has 3% percent activity, while 116-residue has only 

residual activity (1). The dimerization tendency  and catalytic activity increase upon 

getting closer to full length (1). 

We have investigated the effect of C-terminal residues at catalytic activity. We 

have tried to a find construct with full catalytic activity and a crystallizable form of HTLV-

1 PR. 

Kinetic Characterization of Various Constructs  

116, 121, and 122-residues were used for kinetic characterization of HTLV-1 PR.  

(Figure 4-1) All the constructs were expressed and purified as described in Materials 
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and Methods. (Chapter 2) Final purity of each protease was verified by 18% SDS-PAGE 

(Figure 3-7). The purified constructs were concentrated with polysulfone membrane spin 

columns (mwco 10,000; GE Healthcare) to concentrations between 10-80 μM and were 

used for further enzyme characterization.   

Turnover number of each construct was determined by using various substrate 

concentrations from 15-75 M. Each substrate concentration has a different rate of 

reaction plotted and calculated by Sigma Plot software (Systat Software Inc.). (Figure 4-

2) Kinetic constants determination by Lineweaver-Burk equation is shown in Figure 4-3. 

Even though no error bars exists in the figure; Km value was reproduced many times in 

the same range.  The coefficient of determination (R2) is the proportion of variability in a 

data set. Larger values for R2 (close to 1) indicate that the data set fits into the equation. 

For each kinetic measurement, R2 was kept equal or greater than 0.98 for accuracy of 

the data. 

We have found that each construct has a distinct catalytic activity (Table 4-1). The 

substrate specificity constants (Kcat/Km) are similar for various lengths of HTLV-1 PR, 

indicating that the C-terminal amino acids are not essential for full protease activity. 

HTLV-1 PR in full length has not been refolded properly in our research; therefore there 

is no kinetic data for this construct. Each construct was utilized in further inhibitor 

studies. 

Inhibitor Discoveries 

Even though HIV-1 PR has been extensively studied, HTLV-1 PR which shares 

many similarities has not been as well characterized (81, 84, 117-123). Despite the 

similarities of both retroviral proteases, their substrate and inhibitor specificity are very 

different from each other (82, 94, 103).  
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Different substrate concentrations (15-75 M) were used to determine the 

inhibition constants of each inhibitor. Two different concentrations of inhibitor were used 

to determine the decrease in the rate of reaction for each substrate concentration and 

plotted by Sigma Plot software (Systat Software, Inc.). (Figure 4-4) Km value was 

reproduced and R2 was greater than 0.98.  

 Various aspartic acid protease inhibitors were tested to determine their inhibition 

effect on HTLV-1 PR. None of the clinically used HIV-1 PR inhibitors (obtained from 

NIAID) had any inhibition on HTLV-1 PR. (Ki>100 M) 22 inhibitors from the laboratory 

of Anders Hallberg at Uppsala University, 18 compounds from the laboratory of Sergio 

Romeo at University of Milan, and 19 compounds from other collaborators were tested 

against HTLV-1 PR. All of these compounds were designed against plasmepsins. Only 

four of the Swedish inhibitors (available in Dunn lab) have shown inhibition of HTLV_1 

PR with Ki values lower than 2 M. Their structures and Ki values are shown in Figure 

4-5 and possible H-bonding between the inhibitors and the active site were determined 

by Chimera software (UCSF) as shown in Figure 4-6 (124, 125). 

Kinetic Characterization of Various Constructs and Small Molecule Analysis 

By using the DOCK program (UCSF, San Diego), various inhibitors were docked in 

the active site of the HTLV-1 PR. 140,000 compounds available from the National 

Cancer Institute Developmental Therapeutics Program were used in docking 

experiments. These compounds obey Lipinski Rules of Five which are rules for 

druglikeness of a compound (126, 127). According to Lipinski, absorption or permeation 

of a drug is higher when there are less than 5 H-bond donors, 10 H-bond acceptors, the 

molecular weight (MWT) is lower than 500 and the calculated Log P (CLogP) is smaller 

than 5 (or MlogP.4.15) Energy binding values of the inhibitors were determined and 
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ranked by the DOCK program (UCSF, San Diego) (108). Top ranked inhibitors were 

purchased and tested to determine the inhibition on HTLV-1 PR as mentioned in the 

Method section.   

Some of the top ranked small molecules identified by in silico screening were 

tested in inhibition assays and several have shown an inhibition effect on the protease. 

The inhibition constants range between 1-78 μM for the 116-residue HTLV-1 PR (Table 

4-3). In general, the L40I mutant has lower inhibition constants (Ki), i.e., better binding, 

when compared to the double mutant (W98V/L40I) of HTLV-1 PR. The best inhibitor is 

Compound 1 with Ki = 0.8 ± 0.1 μM. The possible H-bonding between Compound 1 and 

HTLV-1 PR is shown in Figure 4-7. 

Five inhibitors were selected to determine inhibition constants for each construct. 

All of them have significantly better inhibition against the 116-residue HTLV-1 PR 

compared to any of the longer constructs. (Table 4-4) 

Discussion 

New therapies are needed to treat patients infected with HTLV-1. The viral target 

for most of the current treatments is unknown and most have many side effects. Due to 

the success seen with targeting the protease from HIV-1, we have focused our studies 

upon the protease from HTLV-1, which belongs to the same class of enzymes and 

shares structural and functional characteristics with HIV-1 PR. The specificity constants 

stay identical for various lengths of HTLV-1 PR, which indicates that the C-terminal 

amino acids are not essential for full protease activity. In an effort to look at the 

structural differences that may be present in this region and identify specific interactions 

between the active site residues and the inhibitor, crystallization trials are currently 

underway, both with and without inhibitors. 
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The compounds selected by the DOCK program have shown inhibition both in 

kinetic and cellular assays. Within the top ranked inhibitors, 13 of them gave inhibition 

constants ranging from 1 μM to 78 μM for the116-residue L40I HTLV-1 PR.  

15, 3, 5, 7-tetraazatricyclo [3.3.1.1~3, 7~] decane is the most common group in 

the structure of small molecules. Molecules with an electronegative element (Cl, Br or I) 

attached to it seem to give better inhibition as in Compounds 2, 4, and 7.  Alkenes 

attached to the 15, 3, 5, 7-tetraazatricyclo [3.3.1.1~3, 7~] decane molecule have lower 

inhibition. (Compound 3 and 8) Alcohol group has lower effect on inhibition compared to 

halogens comparing Compound 4, 7 and 8. Attaching a halogen decreases the 

inhibition constant for 35 fold, while attaching an alcohol group decreases for 4 fold. 

(Table 4-2) 

The inhibition constants for these small molecules increase for the longer 

protease constructs. Higher inhibition constant for small molecules means small 

molecules have lower inhibition for longer constructs. Only Compound 1 has low 

inhibitions constants for each of the 3 constructs tested here. The selection was made 

based on the inhibition constants values of 116-residue HTLV-1 PR. The different 

inhibition constant might be based on the extra residues interactions with the inhibitors 

in the active site of HTLV-1 PR.  
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Table 4-1. Specificity constants of various constructs of HTLV-1 PR. 
Residues Km (μM) kcat (s-1) kcat/Km (s-1 M-1) 
116 31±3.6 7.5x10-4±2x10-5 24±3 
121 47±5.2 9.0x10-4±1x10-5 19±2 
122 32.2±4.6 6.5x10-4±3x10-5 20±3 
R2>0.98 
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Table 4-2.  Inhibition constants of 13 inhibitors against L40I and L40I/W98V mutated 
116-residue HTLV-1 PR. The best of these, marked by asterisk (*), were used 
in subsequent experiments. 

Inhibitor Rankings Numbers Structures L40I 
Ki (μM) 

W98V/L40I 
Ki (μM) 

667746* 5,7 1 

 

0.8 ± 0.1 5.1 ± 0.4 

168615* 6 2 

 

1.1 ± 0.1 8.5 ± 0.4 

10408 10 3 

 

27 ± 2 9.3 ± 0.5 

172855* 12 4 

 

1.1 ± 0.1 5.6 ± 0.5 

30049 13 5 

 

4.5 ± 0.4 13 ± 1 

35024 14 6 

 

1.1 ± 0.1 5.7 ± 0.5 
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Table 4-2. continued 
Inhibitor Rankings Number

s 
Structures L40I 

Ki (μM) 
W98V/L40I 
Ki (μM) 

177977* 19 7 

 

8.4 ± 0.5 6.2 ± 0.4 

5062 25 8 

  

35 ± 4.0 45 ± 3.0 

21235 26 9 

 

35 ± 3.0 58 ± 5.0 

348978 37 10 

 

18 ± 1.0 35 ± 3.0 

4436 41 11 

 

9.3 ± 0.7 77 ± 9.0 

23429 42 12 

 

38 ± 2.0 38 ± 3.0 

362403* 44 13 

 

3.6 ± 0.2 5.7 ± 0.5 
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Table 4-3. Ki values of 5 compounds with various constructs of HTLV-1 PR 
                 Inhibition Constants Ki (μM) 

Compound  116 L40I 121 L40I 122 L40I 
1 0.8 ± 0.1 23 ± 2.0 11 ± 1.0 
2 1.1 ± 0.1 23 ± 1.0 >100 
4 1.0 ± 0.1 >100 >100 
7 8.4 ± 0.5 >100 89 ± 10 
13 3.6 ± 0.2 14 ± 1.0 >100 
R2>0.98 
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P V I P L D P A R R P V I K A Q V D T Q T S H P K T I E A L L D T G A D M T V L P I A 

L F S S N T P L K N T S V L G A G G Q T Q D H F K L T S L P V L I R L P F R T T P I 

V L T S C L V D T K N N W A I I G R D A L Q Q C Q G V L Y L P E A K G P P V I L   

Figure 4-1. HTLV-1 PR sequence. Residue 116 is shown in blue, residue 121 in orange 
and residue 122 in green. 
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Figure 4-2. Kinetic constant determination by Michaelis Menten equation. A.116  B.121 

C.122 (R2>0.98) 

Km= 31.4± 3.6 μM 

Km= 47.4± 5.2 μM 

Km= 32.2± 4.6 μM 
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Figure 4-3. Kinetic constant determination by Lineweaver-Burk equation. A.116  B.121 
C.122 (R2>0.98) 
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Figure 4-4. Inhibitor dissociation constant (Ki) Determination. Michaelis-Menten curve fit 
of rate ( mol/min/mg) versus substrate concentration (

R2>0.98 
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Figure 4-5. Structures of effective plasmepsin inhibitors. 
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Figure 4-6. Possible H-bonding distances of PM48, IM37, FS07, IM64 in the active site 
of HTLV-1 PR determined by Pymol (UCSF) with the help of Dr. David Ostrov 
laboratory at University of Florida, Gainesville. 
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Figure 4-6. continued. 
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Figure 4-7. Possible H-bonding distances of Compound 1 and HTLV-1 PR determined 
by Pymol (UCSF) with the help of Dr. David Ostrov laboratory at University of 
Florida, Gainesville.
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CHAPTER 5 
THE EFFECT OF SMALL MOLECULES ON HTLV-1 INFECTED CELLS 

Gag/Pol Processing 

Gag and Gag/Pol processing take place after HTLV-1 virus buds out of the cell. 

This process is essential for viral maturation and cell to cell spread (70). PR is the 

functional necessary viral component for this processing; therefore blocking PR is an 

effective way to inhibit Gag/Pol processing (70). PR is encoded by the Pro gene which 

is an open reading frame (ORF) overlaps with both Gag and Pol ORFs (69, 70, 128).  

Pro region does not exist in all the retroviruses like HIV-1 and RSV; but it exist in HTLV-

1, HTLV-2, Mouse Mammary Tumor Virus (MMTV) and Bovine Leukemia Virus (BLV) 

(63, 65, 129-132). Ribosomal shifting in the -1 direction is essential in all the 

retroviruses to align the various open reading frames (133-135). Two frameshifts are 

necessary for Gag, Pro, and Pol polyprotein synthesis of HTLV-1 (75, 136).  

 Targeting HTLV-1 PR, the inhibitors were expected to inhibit Gag processing of 

HTLV-1 (111, 137). MT-2 cells were used to test the inhibition effect of HTLV-1 protease 

inhibitors on HTLV-1 infected cells. MT-2 cell line was used for efficient HTLV-1 

production (138). It is derived by co-culturing bone marrow CD4+ T-lymphocytes of a 

healthy donor with leukemia cells of an ATL patient (139, 140). 

The selected five best compounds were also used at various concentrations at 

multiple incubation times to test their antiviral activity. Gag protein precursor, a 53 kDa 

protein, yields MA (p19, 19 kDa), CA (p24, 24 kDa) and NC (p12, 12 kDa) proteins after 

proteolytic cleavage. The p19 (MA) antigen has been used for Western Blotting assays 

as explained in Chapter 2. In Figures 5-1, 5-2 and 5-3 the p53 (Gag) bands are at 53 

kDa, p28 (MA precursor) are at 28 kDa, and p19 (MA) bands are at 19 kDa. All these 
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bands are present in each sample. The p28 protein, that is found to be linked with 

kinase activity of protein, is a combination of p19 and part of p24 (141). In each figure 

the thick band around 45 kDa appears after incubation of the cells with Compound 1 

inhibitor. Beta-actin protein was used as a loading control for each sample shown in 

Figures 5-1, 5-2 and 5-3. None of the inhibitors show toxic effects within the cells at 4 h, 

24 h, 2 days, or 6 days post-addition of the inhibitor.  

The amount of p19 produced is shown to be reduced with the addition of inhibitor 

and the longer incubation times in ELISA assays. (Figure 5-4)  In Figure 5-4B, the 

percent inhibition decreases within 48 hours of adding the inhibitor but there is still an 

inhibition effect on Gag processing. Even though no effect has been seen for C7 by 

Western Blotting, ELISA assay has shown some inhibition effect on the cells after 24 

hours incubation.  

Discussion 

After determining inhibition constants of the computationally top ranked 

compounds, only five of them were tested in the in vitro cell assays. Their effect on Gag 

processing was observed. Out of five compounds, the best compound (Compound 1) 

that was determined to have the lowest inhibition constant (Ki), was the only compound 

that also showed distinctive bands in the Western Blot and ELISA assays. Even after 4 

h of incubation resulted in MA-CA uncleaved product, this means the inhibitor effect 

starts before 4 h. (Figure 5-2) Reproducing the data at 24 h confirms inhibition of Gag 

processing. (Figure 5-1, Figure 5-2). 2 days and 6 days incubation results the same 

gene products at 45 kDa (MA-CA). (Figure 5-3) A similar effect was seen for HIV-1 PR 

with novel amino acid insertion; partially cleaved Gag products were seen in the 

Western Blotting (142). The ELISA P19 Antigen assays, which utilized the two best 
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inhibitor compounds identified by Western Blotting and kinetic analysis, support the 

Western Blotting data as shown in Figure 5-4. The amount of p19 protein was lower in 

the presence of Compound 1 compared to control cells (absence of any inhibitor) in the 

first or second day. (Figure 5-4A) The percent inhibition of Compound 1 at the first day 

is higher than at the second day. (Figure 5-4B) This result could mean in the case of 

drug usage, Compound 1 must be taken daily for efficient inhibition effect.  

  Compound 1, which was selected from the kinetic analysis for further testing, has 

also shown an inhibition effect on HTLV-1 infected cells, seeming to stop or slow down 

MA-CA cleavage. Inhibitor screening will continue to identify better compounds and 

crystal structures will be employed to develop possible drugs for HTLV-1.
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A 

 
Figure 5-1. Western Blot of selected inhibitors incubated in MT-2 cells. First lane shows 

the molecular weight markers, second lane shows control cells without any 
compound. The rest of the lanes are 50 μM of Compound 1, Compound 4, 
Compound 7, Compound 13, Compound 2, control cells without any 
compound, 5 μM of Compound 1 and Compound 7 incubated in MT-2 cells 
for 24 hours, respectively. 20 μg protein has been loaded for 24 hours of 
incubation cells.                   
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Figure 5-2. Western Blot of selected inhibitors incubated in MT-2 cells for 24 h. (A) First 

lane shows the molecular weight markers, second lane shows control cells 
without any compound. The rest of the lanes are 10 and 50 μM of Compound 
1. Compound 7 50 μM incubated in MT-2 cells for 4 hours and 24 hours of 
incubation, respectively. 10 μg of protein has been loaded for 4 hours and 20 
μg protein has been loaded for 24 hours of incubation cells. B) Beta-actin 
control loads of MT-2 cells. First lane shows molecular weight markers, 
second lane shows control cells without any compound. The rest of the lanes 
are 10 and 50 μM of Compound 1. Compound 7 50 μM incubated in MT-2 
cells for 4 hours, 24 hours of incubation, respectively. 10 μg of protein has 
been loaded for 4 hours and 20 μg protein has been loaded for 24 hours of 
incubation cells. 

B 

A 
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Figure 5-3. Western Blot of selected inhibitors incubated in MT-2 cells. (A) First lane 
shows the molecular weight markers, second lane shows control cells without 
any compound. The rest of the lanes are 10 and 50 μM of Compound 1. 
Compound 7 50 μM incubated in MT-2 cells for 2 and 6 days of incubation, 
respectively. B) Beta-actin control loads of MT-2 cells. First lane shows the 
molecular weight markers, second lane shows control cells without any 
compound. The rest of the lanes are 10 and 50 μM of Compound 1. 
Compound 7 50 μM incubated in MT-2 cells for 2 and 6 days of incubation, 
respectively. 10 μg of protein has been loaded. 

A 

B 
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A 

 
B 

 

Figure 5-4. A. ELISA assay graph representation. P19 (MA) protein concentration in the 
cells with 1 and 2 days of incubation with Compound 110 and 50 μM, 
Compound 7 50 μM. Control cells are shown as quadrangle, 10 μM 
Compound 1 incubated cells are shown as open squares, 10 μM Compound 
1 incubated cells are shown as squares and 50 μM Compound 7 incubated 
cells are shown as open triangles. B. ELISA assay bar representation. 
Percent P19 (MA) protein concentration in the cells with 1 and 2 days of 
incubation with Compound 1 ,10 and 50 μM, Compound 7 50 μM. (No error 
bars were indicated, because only one set of data was obtained.) 
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CHAPTER 6 
DETERMINING FLAP CONFORMATION OF HTLV-1 PR BY ELECTRON 

PARAMAGNETIC RESONANCE SPECTROSCOPY 

There are many methods that can be used to determine protein structure including 

X-ray crystallography, Nuclear Magnetic Resonance (NMR) Spectroscopy, and Electron 

Paramagnetic Resonance (EPR) Spectroscopy. Because HTLV-1 PR has flexible flap 

conformations, we have decided to use EPR to determine the flap confirmation of 

HTLV-1 PR beside the crystallography trials in our research. EPR, is a sensitive method 

for biological samples; examines the effects of the motion and polarity on the structure 

and has high accuracy.  EPR is a very sensitive method, it can measure fast dynamic 

changes of a molecule (143). EPR was picked for our research based on the 

quantitative analysis of the flap distances. Using NMR with EPR can provide broad 

information about the structure of a biomolecule. 

EPR, is also known as electron spin resonance (ESR) spectroscopy, measure the 

absorption of a paramagnetic substance when an external magnetic field applied in 

microwave radiation. Zeeman Effect is the interaction between the substance and the 

magnetic field.  Zeeman effect splits these two unpaired electron in the presence of the 

magnetic field, these two spin states have degenerate magnetic moments (ms= -1/2 and 

ms= +1/2). (Figure 6-1) The energy difference between these two spin states is 

calculated by Zeeman equation: 

E=hv = g B                       (7-1) 

Where E is the energy difference, h is the Planck’s constant (6.62606896×10  J.s), v 

is the microwave frequency, g is the splitting factor ( 2 for free electron),  is the Bohr 

magneton (9.27400915 x 10  J·T ), and B is the applied magnetic field (144). Enegy 

diagram is shown in Figure 6-1. 
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EPR has been used to determine the flap confirmation of HIV-1 PR by Fanucci 

and her co-workers (117, 145, 146). It was found that HIV-1 PR has a broad distribution 

of conformational change in the absence of the inhibitor, versus a narrow distribution in 

the presence of the inhibitor (117, 146). It is assumed HTLV-1 PR acts in a similar 

manner based on their genomic and sequence similarities.  The flaps of HIV-1 PR have 

three conformations: open or semi-open forms with no inhibitor, and the closed form 

with inhibitor bound (147). This result was supported by NMR results showing large 

conformational changes at the flap region (148-150). Site-directed spin labeling (SDSL) 

is a method to label the specific sites of the macromolecules with spin probes and 

observe the dynamic changes for macromolecules. The approach to SDSL is 

introducing a nitroxide site chain at a specific site with using mutagenesis (151).  

Nitroxide is the name of the compounds used in the spin labeling. These compounds 

have R2NO. radicals after removing hydrogen at the hydroxyl groups. There are three 

commonly used spin labeling probes; the methanethiosulfonate spin label (MTSL), 

the iodoacetamido-proxyl spin label (IAP) and the maleimido-proxyl spin label (MSL). 

The methanethiosulfonate spin label (MTSL) is commonly used for site-specific labeling 

of proteins. It is sensitive to the motions of the protein backbone and secondary 

structure compared to other labels. The structure of MTSL and its bound structure to 

free cysteine is shown in Figure 6-2. The intrinsic motion of spin label, the backbone 

flexibility in cysteine residue region, and the overall tumbling of the molecule in the 

solution can be measured by EPR / SDSL. 

 Using EPR / SDSL, the free electron (ms= ±1/2) on the MTSL spin label couples 

with the nuclear spin from nitrogen (mI =1). Based on 2I+1 rule, three energy transition 
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occur. Because MTSL binds to cysteine amino acid of a protein, any native cysteines 

are mutated to alanines and a cysteine in a desired region is introduced for analysis. 

Native cysteines were mutated to alanines at residue positions 90 and 109 for HTLV-1 

PR.   Based on HIV-1 PR mutations and used methods; three mutations were made 

(146). The glutamine at the 64th position, which is equivalent to lysine at 55th position of 

HIV-1 PR, was mutated to a cysteine for MTSL labeling. K55 was chosen based on the 

identical activity with the wild type, and the moiety of spin label cooperation (146).  

Mutations were made using the conditions described in the Site Directed Mutagenesis 

description in Chapter 2. The primers utilized for mutations are shown in Figure 6-3. It 

was confirmed that protease with the native cysteines mutated to alanines has the same 

catalytic properties as the wide type of HTLV-1 PR based on literature (82, 103). Protein 

expression, refolding, and purification methods were identical to those for wild type and 

purified protein was confirmed by 18% SDS-PAGE gel. (Figure 6-4 and 6-5) The next 

step is labeling the Cys 64 in the flap region of HTLV-1 PR with MTSL. 

The distance between nitroxide spin labels can be measure by two methods. 

Continuous Wave (CW) method measures the distances based on dipolar interactions 

and extracts the distance 8-20 Å (152), or Double Electron Electron Resonance (DEER)  

method ,which is the pulsed EPR, measures the distances by producing a spin echo. 

DEER capable of measuring distances 20-70 Å. The distance between the two alpha 

carbons of the glutamines at 64th position of HTLV-1 PR were determined by Chimera 

software (UCSF) to be 19 Å (124). (Figure 6-6)  Because the distance between nitroxide 

spin labels is between 8-20 Å, CW is a better method to measure the conformational 

changes of flaps of HTLV-1 PR. 
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Our future work is to determine the molecular dynamics of the HTLV-1 PR flaps 

in the presence and absence of Compound 1 with using MTSL labeling and EPR 

spectroscopy.   
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Figure 6-1. Energy diagram of a system with a free electron in the magnetic field. 

 

                                   

Figure 6-2. MTSL label structure a. unbound structure, b. structure of MTSL bound to 
cysteine. 

a b 

a 
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>D32N 
Upper   CGAAGCTCTACTAAACACAGGAGCAGACATG 
Lower   CATGTCTGCTCCTGTGTTTAGTAGAGCTTCG 
 
>C90A 
Upper   CCTATTGTTTTAACATCTGCGCTAGTTGATACC 
Lower   GGTATCAACTAGCGCAGATGTTAAAACAATAGG 
 
>C109A 
Upper   GCCTTACAACAAGCGCAGGGCGTCCTGTACC 
Lower   GGTACAGGACGCCCTGCGCTTGTTGTAAGGC 
 
>>Q64C 
 Upper  GGGGGCCAAACCTGCGATCACTTTAAGCTCACC 
Lower   GGTGAGCTTAAAGTGATCGCAGGTTTGGCCCCC 
 
Figure 6-3. Primers for D32N, C90A, C109A and Q64C mutations of HTLV-1 PR. 

 

 

 

 

Figure 6-4. SDS Page gel of expression of triple mutated HTLV-1 PR. Lane A shows the 
Precision Plus Ladder (Biorad), lane B before IPTG induction, lane C 3 h after 
IPTG induction and lane D 6 h after IPTG induction and lane E is the inclusion 
bodies. 
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Figure 6-5. SDS Page gel picture of purification of of triple mutated HTLV-1 PR.  Lane A    
shows the Precision Plus Ladder (Biorad), lane B Inclusion bodies, lane C Q 
column flow through, lane D Q column elution by 1 M NaCl, lane E SP column 
flow through, lane F SP column elution by 0.4 M NaCl, lane G SP column 
elution by 1 M NaCl, and the lane H the Precision Plus Ladder (Biorad). 

 

Figure 6-6 -1 PR. 
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CHAPTER 7 
CONCLUSIONS AND FUTURE WORK 

HTLV-1 was isolated from a cutaneous lymphoma patient in 1980 by Gallo and it 

was proved to be the causative agent for ATL (34, 153). The Centers for Disease 

Control and Prevention have identified HTLV-1 as emerging pathogen (154).  HIV-1 and 

HTLV-1 share many characteristics, but HIV-1 is more dangerous than HTLV-1 due to 

the effect of HIV-1 on the immune system (155). HTLV-1 infection has been reported in 

many regions of the world but is most prevalent in Southern Japan, the Caribbean 

basin, Central and West Africa, the Southeastern United States, Melanesia, parts of 

South Africa, the Middle East and India (24).  Approximately 30 million people are 

infected by HTLV-1 worldwide, and although only 3-5% of the infected individuals 

evolve ATL in their life, the prognosis for those infected is still poor (27). The overall 

prognosis of ATL is still poor despite intensive chemotherapy (45). The median survival 

time of leukemia patients is 7-8 months (156). There is no specific drug treatment 

against HTLV-1. Many studies have been focused on drug design against HTLV-1, 

especially inhibitors for HTLV-1 PR, as PR as a drug target has been successful, 

especially in the case of AIDS treatment (157-163). 

HTLV-1 PR is essential for viral replication and maturation. Therefore, it is a good 

target for drug design. First, conditions for expression, purification, refolding and kinetic 

characterization of HTLV-1 PR have been developed as mentioned in the Method 

chapter. HTLV-1 PR has a loop containing 10 extra amino acids at the C-terminal region 

only similar to BLV PR. It was determined that these 10 amino acids are not necessary 

for enzymatic activity. This research is significant to fully understand the enzymatic 

activity of HTLV-1 PR and the effects of the C-terminal residues on the activity.  
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Recombinant HTLV-1 PR has been used to identify inhibitors against HTLV-1 PR. 

In silico screening has been used for inhibitor discoveries using the crystal structure of 

116-residue HTLV-1 PR. 140,000 small molecules were docked in the protease active 

site, and top ranked molecules were determined by DOCKv5.2 program. Several top 

ranked small molecules have been assayed in vitro by measuring the cleavage of the 

substrate A-P-Q-V-L*Nph-V-M-H-P-L, which mimics the natural MA/CA cleavage site, 

and was synthesized by the ICBR Core Facility at UF. Selected inhibitors have been 

used in in vitro cell culture assays to determine the effect in HTLV-1 infected cells. An 

inhibitor with the lowest inhibition constant has been discovered to inhibit Gag / Pol 

processing based on Western Blot and ELISA assays. Targeting HTLV-1 PR to treat 

HTLV-1 related disease is a very promising way based on the issues discussed 

throughout this dissertation. These results confirm the inhibition effect of the HTLV-1 PR 

inhibitors in the cells. 

In addition to these studies, crystallization trials have been started for the HTLV-1 

PR. The conditions from the literature and various modifications have been tried. First 

the conditions that yielded the obtained crystals used to determine the structure of 

HTLV-1 PR in Li et al. has been employed (27). Various pHs, salt concentration and 

precipitate concentrations have been tried, but only needle shaped crystals without any 

diffractions have been obtained. Hampton Research crystal screening kits and 

detergent kits have been used; in addition, the purified sample has been sent to 

Hampton Research to determine optimum conditions for crystal trials.  No crystal 

structure has been obtained yet; new strategies will be tried to obtain a crystal structure 

while the set up crystal trays might produce crystals in time. Learning X-ray structure of 
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the full length HTLV-1 PR might provide a great insight to the inhibitor discoveries and 

treatment HTLV-1 related disease. 

EPR studies are underway to determine flap conformation in the presence and 

absence of inhibitor.  Necessary mutations and computational distance measurements 

have been made for EPR assays. Labeling and determination of flap conformational 

studies will continue using information of EPR studies of HIV-1 PR taking consideration 

of their structural similarities.  The discoveries of the flap confirmation of HTLV-1 PR 

would expand the information about the binding of the inhibitors and their effect on the 

structures, as well as the effect of the C-terminal residues on the structure of the 

protease. 

Expressing HTLV-1 PR in a soluble system would prevent folding and aggregation 

problems of HTLV-1 PR. Improving the folding properties by trying new strategies would 

help understanding the properties of full length of HTLV-1 PR. Obtaining information 

about the conformation of flaps can give details about the structure and the interactions 

between inhibitor and the protease. Determining crystal structure by X-ray 

crystallography or NMR would provide detailed information about enzyme active site, 

enzyme-inhibitor interactions.The best inhibitor that found by kinetic characterization 

can be improved after obtaining crystal structure of inhibitor bound HTLV-PR. It can be 

tried in animal model to observe the effect of the inhibitors.  There have been a few 

animal models identified for HTLV-1 in the listed references (164, 165). 

Understanding enzymology and structure of HTLV-1 PR is critical to design an 

inhibitor. Our in vitro assays help understanding enzymology of HTLV-1 PR, specifically 

effect of the last residues at the C-terminal region. The best inhibitor has effect in the 
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HTLV-1 infected cells. This work can lead a drug targeted at HTLV-1 PR to cure HTLV-

1 infected patients. 



 

94 

APPENDIX:  
SEQUENCE 

CATATGCCAGTTATACCGTTAGATCCCGCCCGTCGGCCCGTAATTAAAGCCCAGG

TTGACACCCAGACCAGCCACCCAAAGACTATCGAAGCTCTACTAGATACAGGAGC

AGACATGACAGTCATCCCGATAGCCTTGTTCTCAAGTAATACTCCCCTCAAAAAT

ACATCCGTATTAGGGGCAGGGGGCCAAACCCAAGATCACTTTAAGCTCACCTCCC

TTCCTGTGCTAATACGCCTCCCTTTCCGGACAACGCCTATTGTTTTAACATCTTG

CCTAGTTGATACCAAAAACAACTGGGCCATCATAGGTCGCGATGCCTTACAACAA

TGCCAGGGCGTCCTGTACCTCCCTGAGGCAAAAGGGCCGCCTGTAATCTTGGGAT

CC 

Figure A-1. DNA sequence of full length HTLV-1 PR with a start methionine with a 5’ 
NdeI site and a 3’ BamH1 site for directional cloning into pET-11a. 
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P V I P L D P A R R P V I K A Q V D T Q T S H P K T I E 

A L L D T G A D M T V L P I A L F S S N T P L K N T S V 

L G A G G Q T Q D H F K L T S L P V L I R L P F R T T P 

I V L T S C L V D T K N N W A I I G R D A L Q Q C Q G V 

L Y L P E A K G P P V I L 

Figure A-2. Protein sequence of full length HTLV-1 PR. 
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