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Modeling, Identification, and Control

of an Unmanned Surface Vehicle

Christian R. Sonnenburg

Abstract

This dissertation addresses the modeling, identification, and control of an automated planing vessel. To

provide motion models for trajectory generation and to enable model-based control design for trajectory

tracking, several experimentally identified models are compared over a wide range of speed and planing

conditions for the Virginia Tech Ribcraft Unmanned Surface Vehicle. The modeling and identification

objective is to determine a model which is sufficiently rich to enable effective model-based control design

and trajectory optimization, sufficiently simple to allow parameter identification, and sufficiently general to

describe a variety of hull forms and actuator configurations. Beginning with a 6 degree of freedom nonlinear

dynamic model, several linear steering and speed models are obtained as well as a thruster model.

The Ribcraft USV tracks trajectories generated with the selected maneuvering models by using a back-

stepping trajectory controller. A PD cascade trajectory control law is also developed and the performance

of the two controllers is compared using aggressive trajectories. The backstepping control law compares

favorably to the PD cascade controller. The backstepping control law is then further modified to account for

nonlinear sternward dynamics and for a constant or slowly varying fluid flow.
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CHAPTER

1

INTRODUCTION

Riverine operations pose extraordinary challenges for the U.S. Navy. The helmsman of a riverine vessel

must quickly and safely execute maneuvers to traverse unknown environments. Increasing the helmsman’s

prior knowledge of his surroundings allows for maneuvers to be executed at higher speeds, decreasing the

time necessary for sortie completion and giving an enemy combatant less time to react and retaliate.

The roles these servicemen play are invaluable, but every opportunity must be taken to mitigate casualties

and loss of life. The best way to increase safety is to remove the servicemen from their most dangerous

tasks altogether by automating the vessels they operate. For cases where the presence of servicemen is still

needed, automated vessels can provide advance reconnaissance. Autonomous vessels must reliably perform

aggressive maneuvers to successfully replace highly skilled human operators, requiring development of

advanced control algorithms. One facet of riverine robotics research [Thomsen et al., 2007] is focused on

developing methods to make the most dangerous tasks autonomous.
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1 Introduction

Many research, military, and commercial organizations are forging ahead with unmanned surface vehicle

(USV) development. Often manned vessels are converted to autonomous operation, though more and more

USVs are being designed for autonomous operation from their inception. USVs are outfitted with global

positioning system (GPS) receivers and attitude and heading reference system (AHRS) sensors for closed-

loop waypoint following and trajectory tracking. Other ancillary sensors like doppler velocity logs (DVL)

measure fluid flow allowing for even tighter control to waypoints and trajectories. Vessels on reconnaissance

missions may be equipped with laser line scanners and sound navigation and ranging (SONAR) equipment

to sense above surface and below surface obstacles respectively.

Research institutions develop USVs as test beds for various sensors and control algorithms. To expedite

research progress most of these USVs are converted manned vessels that use collections of off the shelf

components. Converted manned vessels have the added benefit of accommodation for occupants, which can

be used in the preliminary stages of control and sensor development. Once the performance of experimental

sensors and/or control logic have been validated, the results can be transitioned to commercial and military

uses.

The Norwegian University of Science and Technology in conjunction with Maritime Robotics has three

types of research vessels at their disposal. The aluminum planing monohull Kaasboll USV shown in Fig-

ure 1.1(a) measures 5.75 m in length and is equipped with a 50 hp Evinrude outboard E-tec motor propelling

the vessel to up to 20 kts. Fully actuated throttle and rudder are controlled using proportional controllers.

Vessel position, heading, velocity, and turn rate are all output from a Seapath 20 navigation system. An

onboard computer directly interfaces with MATLAB/Simulink software. The Viknes USV pictured in Fig-

ure 1.1(b) provides an all weather capability with its encapsulated cockpit. The vessel is an 8.3 m long

semi-displacement vessel with an inboard Yanmar 184 hp motor propelling the vessel to 20 kts. The Vik-

nes USV and Kaasboll USV contain the same sensor and computer suite. The 6.6 m long planning hull

Mariner USV shown in Figure 1.1(c) seeks to bridge the gap between research and application. The Mariner

USV uses the same software and hardware as its predecessors, though, with a top speed of 38 kts due to

its 150 hp Evinrude E-tec, the vessel clearly has a performance edge. The primary research purposes for

these vessels involve a variety of waypoint control, target tracking, path following, and trajectory tracking

2



1 Introduction

algorithms [Breivik, 2010].

(a) Kaasboll USV (b) Viknes USV

(c) Mariner USV

Figure 1.1: Maritime Robotics/NTNU USVs (Permission granted by Maritime Robotics)

The Institute of Intelligent Systems for Automation (ISSIA), part of the National Research Council (CNR)

located in Italy, uses their two USVs to test a variety system identification [Caccia et al., 2006,Caccia et al.,

2008b, Mišković et al., 2011], control [Bibuli et al., 2007, Bibuli et al., 2008, Bibuli et al., 2009], and path

planning algorithms [Bruzzone et al., 2011]. The Aluminum Autonomous Navigator for Intelligent Sam-

pling (ALANIS) shown in Figure 1.2(a) collects water samples and monitors the sea floor at sites deemed

interesting by its control logic [Caccia et al., 2009]. This vehicle, measuring 4.5 m in length, is equipped

with a 50 hp Honda outboard motor. Rudder and throttle actuation is accomplished through the use of two

brushless motors coupled with simple proportional control. ALANIS uses a Garmin 152 GPS for local-

ization, a Navicontrol smart compass SC1G measuring yaw, and Applied Geomechanics IRIS MD900-TW

Wide-Angle clinometer measuring pitch and roll. An automatic winch deploys and recovers the scientific

3



1 Introduction

instrumentation necessary for taking water samples. The Charlie USV shown in Figure 1.2(b) is a purpose

built catamaran USV [Caccia et al., 2007, Caccia et al., 2008a]. Two DC motors powered by four lead acid

batteries replenished by solar cells drive the 2.4 m vessel to a top speed of 2 m/s. The Charlie USV has a

GPS Ashtech GG24C for localization, a Kvh Azimuth Gyrotrac for yaw information, and an Applied Ge-

omechanics IRIS MD900-TW Wide-Angle clinometer measuring pitch and roll. The vessel is also equipped

with an anemometer, altimeter echo sounder, and side scan sonar. C++ control code runs on a single board

computer with a Linux operating system (OS). Research on the Charlie USV includes modeling and iden-

tification [Mišković et al., 2011], regulation tasks like speed and yaw control, line following [Bibuli et al.,

2008], path following [Bibuli et al., 2007, Bibuli et al., 2009], and path planning algorithms for tasks like

mine hunting [Bruzzone et al., 2011].

(a) ALANIS USV (b) Charlie USV

Figure 1.2: ISSIA-CNR USVs (Permission granted by ISSIA-CNR)

The Caravela USV and Delfim USV, developed at the Instituto Superior Téchic, and the ROAZ USV and

ROAZ 2 USV, developed at the Instituto Superior de Engenharia do Porto, are Portuguese USVs primarily

used to research automation of oceanographic data collection. The Caravela USV, still in the initial devel-

opment phase, will be 7 m long, 2 m wide, and 6 m tall. This vehicle, pictured in Figure 1.3(a), has an

anticipated range of 700 km achieved by using its 2 electric motors to propel itself to 4 kts. The Delfim

USV is a 3.5 m long autonomous catamaran, shown in Figure 1.3(b), developed as a testbed to research

4



1 Introduction

close interaction capabilities with underwater autonomous vehicles. Using its two electric motors, a DGPS,

attitude sensor, and echosounder in conjunction with mission specific navigation, guidance, and control algo-

rithms the Delfim USV acoustically communicates with underwater assets [Alves et al., 2006]. The ROAZ

USVs(Figure 1.4(a)) and ROAZ 2 (Figure 1.4(b)) [Martins et al., 2007b] are riverine and oceangoing au-

tonomous electric powered catamarans used to test unmanned oceanographic data collecting algorithms and

sensors as well as control laws focusing on coordinating multiple robots [Martins et al., 2007a]. Both ROAZ

USVs use side-scan sonar and conductivity, temperature, depths (CTD) sensors for bathymetry and under-

water vehicle docking. Additionally equipped with a thermographic camera and surface radar, the ROAZ

2’s mission capability expands to include harbor patrol and obstacle avoidance [Almeida et al., 2009].

(a) Caravela USV (b) Delfim USV

Figure 1.3: USVs developed at Instituto Superior Téchic (Permission granted by IST)

The Massachusetts Institute of Technology (MIT) pursues its surface aquatic autonomy goals with the Au-

tocat USV [Manley et al., 2000] and the Surface Craft for Oceanographic and Undersea Testing (SCOUT)

USV [Curcio et al., 2005]. The 1.8 m Autocat, shown in Figure 1.5(a), can travel up to 8 m/s for 4 hours,
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(a) ROAZ USV (b) ROAZ 2 USV

Figure 1.4: USVs developed at Instituto Superior de Engenharia do Porto (Permission granted by

ISEP)

propelled by a trolling motor or small gasoline outboard motor. Using DGPS and various oceanographic

survey equipment the Autocat accomplishes its primary oceanography mission. With the installation of a

high frequency sub-bottom profiler, communications link, or SONAR, the Autocat’s mission changes to

sub-bottom survey, AUV telemetry link, or marine life tracking. Utilizing converted kayak hulls, the low

cost SCOUT USVs, shown in Figure 1.5(b), were developed to test cooperative autonomy among multiple

agents. Powered using batteries and a trolling motor, the SCOUT USV can travel up to 5 knots. SONAR

devices and acoustic communications links can be used for oceanographic surveying and AUV communi-

cation. Equipped with GPS and compass devices the SCOUT USVs complete their missions autonomously

using waypoint control while actively avoiding collisions with each other.

The Marine and Industrial Dynamic Analysis (MIDAS) research group at the University of Plymouth,

UK has developed the Springer USV [Naeem et al., 2006b, Naeem et al., 2006a]. As a 4 m long catamaran

the Springer USV, shown in Figure 1.6, has plenty of internal space for the batteries required to drive its

two DC trolling motors and to power its navigation and sensor suite, located externally in pelican cases.

The vehicle’s tracking and control sensor suite includes a GPS, three different compasses (TCM 2, KVH

C100, and HMR 3000), a speed log, and depth sensors, all communicating with a Windows PC running

Labview via RS232 connections. Additional Windows PCs running MATLAB/Simulink implement guid-
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(a) Autocat USV (b) SCOUT USV

Figure 1.5: USVs developed at the Massachusetts Institute of Technology (Permission granted by

MIT)

ance and control routines. A two channel RoboteQ AX2850 controls power to the trolling motors yielding

speed control and differential steering control. To accomplish its pollution tracking objective the Springer

USV has a YSI environmental monitoring unit mounted below the water line between the two hulls. This

environmental monitoring unit reads pH, dissolved oxygen, turbidity, temperature, conductivity, ammonium

nitrate, chloride, chlorophyll, rhodamine, and oxygen reduction potential levels. Path planning, navigation,

and control algorithms designed to track pollution are shown in [Naeem et al., 2008, Naeem W and GN,

2007].
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Figure 1.6: The University of Plymouth’s Springer USV (Permission granted by UP)

Military and law enforcement companies design purpose built USVs. Most of these vehicles use basic

waypoint control or require a remote operator to complete their objectives, though a few outliers are advanc-

ing into more autonomous operation. Potential military applications include riverine operations, open water

interdiction, harbor patrol, anti-submarine warfare, mine sweeping, as well as target practice.

Israel utilizes the Stingray USV and Silver Marlin USV built by Elbit Systems and the Protector USV built

by Rafael Advanced Defense Systems for port defense and terrorist suppression, respectively. The 3.2 m

long Stingray USV shown in Figure 1.7(a) uses water jet propulsion and a 130 hp gasoline engine to propel

itself to 50 kts. This vehicle comes equipped with a gyrostabilized gimbal containing electro-optical/infra-

red sensors, a laser marker that auto tracks targets, and a night-cooled thermal imager. Vessel location and

orientation information comes from GPS, inertial measurements, and a fluxgate compass. A ground station

provides remote control capability though autonomous operation is possible using the aforementioned loca-

tion and orientation sensors. The Silver Marlin USV shown in Figure 1.7(b) represents the cutting edge in

Israeli military USV technology with its autonomous obstacle avoidance capabilities. Powered by two 315

hp marine diesel engines, the 10 m long Silver Marlin USV has a top speed of 44 kts while carrying a 2.5

ton payload for up to 24 to 36 hour missions. This 2.5 ton payload includes a remotely controlled, stabilized

weapon system and an electro-optic naval payload. Adaptive control improves the vessel’s operation in

rough seas at high speeds. The 9 m Protector USV shown in Figure 1.7(c) is a remotely controlled stealthy

rigid hull inflatable boat that uses water jet propulsion and a diesel engine to travel at speeds of up to 50
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kts. This vessel is equipped for surveillance and targeting purposes like the Stingray USV, however, with a

Mini-Typhoon stabilized weapon system the Protector USV also has offensive capabilities.

(a) Stingray USV (Permission granted

by Elbit Systems)

(b) Silver Marlin USV (Permission

granted by Elbit Systems)

(c) Protector USV (Permission granted

by Rafael Advanced Defense Systems

Ltd.)

Figure 1.7: Israeli military USVs

Canadian USV development includes agile autonomous vehicles used for targeting practice with the Bar-

racuda USV-T and Hammerhead USV-T. The 7.24 m rigid hull inflatable Barracuda USV-T reaches a top

speed of 36 kts due to its 225 hp inline 4 cylinder, after-cooled, marine diesel power plant. Speed, course,

and position tracking are accomplished with feedback signals coming from a GPS unit. The Barracuda USV-

T is capable of replicating high speed naval tactics by tracking sequences of commands that induce straight

line, zig zag, and evasive maneuvers. This vehicle can also be used to sweep for mines and other underwater

threats. The 5 m composite hull Hammerhead USV-T presents the same capabilities of the larger Barracuda

USV-T while traveling 4 kts faster with a 135 hp Mercury engine. The Hammerhead USV-T mimics not

only maneuvering behaviors but also visual, radar, and laser signatures with its additional radar and visual

augmentation systems.

Swedish military development of unmanned vessels spans decades from the SAM mine sweeper intro-

duced in the 1970s to the Piraya USV of today. The the current SAM 3 USV, shown in Figure 1.8(a), is a 20

ton remote controlled or autonomous mine sweeping vessel built by Kockums. Alternative configurations

allow the vessel to search for mines with SONAR. The SAM USV has endured the first Gulf War as well as

survivability tests that generate massive shockwaves by detonating munitions in close proximity to its hull.

At a length of 4 m the small, agile Piraya USV is the antithesis of the SAM USV. Groups of the 20 kt, 20
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hp vessel shown in Figure 1.8(b) autonomously operate in packs to efficiently patrol coastal waters by using

visual/infra-red cameras, radar, communications relays, chemical, biological, radiological, nuclear (CBRN)

sensors, loud speakers, and small firearms.

(a) SAM USV (b) Piraya USV

Figure 1.8: Swedish military mine sweepers and patrol USVs (Permission granted by Kockums)

The British QinetiQ multinational defense company builds the Blackfish USV and Sentry USVs designed

for harbor protections and patrol. The Blackfish USV shown in Figure 1.9 can travel at up to 40 kts propelled

by its electric motor and battery arrangement while keeping a gimbaled camera on target, which allows a

remote operator to remain a safe distance from the situation. This vessel can operate for up to an hour on

one battery charge with battery replacement only taking 5 minutes. In addition the Blackfish USV can be

outfitted with a gimbaled high resolution SONAR and underwater camera used to classify and identify un-

derwater swimmer threats. The common control unit from the Talon line of robots gives the Blackfish USV

heading and waypoint tracking. The newer, water jet propelled, stealthy Sentry USV can carry multiple

payloads while traveling at a 50 kts for up to 6 hours. A modular payload framework expands The Sentry

USV’s mission profile to include unmanned harbor patrol and security, battlefield reconnaissance and dam-

age assessment as well as intruder investigation. The Sentry USV communicates up to a line of sight 16

miles away using a microwave datalink and utilizes a gimbal stabilized high resolution camera and a smoke

marker launcher to help accomplish its mission. This vessel has heading and waypoint control similar to the

Blackfish USV.

The United States of America has a considerably large footprint in the military USV domain. Well

established USV programs include the SSC San Diego USV and Owl USV program. The SSC San Diego

10



1 Introduction

Figure 1.9: Blackfish USV (Permission granted by QinetiQ North America)

USV represents the research side of America’s military USVs with original research in obstacle avoidance

control algorithms while the recently proposed Draco ASW USV, Textron CUSV, and Piranha USV illustrate

the move to equip USVs with heavy armaments usually reserved only for manned operations. The SSC

San Diego USV, based out of the Space and Naval Warfare Systems Center in San Diego, is a Seadoo

2000 retrofitted for autonomy in order to operate as a military research testbed. Like many non-military

research institutes, this civilian vessel was chosen based upon the ease of installation of sensor and autonomy

packages. As a research testbed the SSC San Diego USV, shown in Figure 1.10(a) facilitated research into

avoidance of stationary and moving obstacles containing a degree of uncertainty in their of motion, which

causes the USV to follow Coast Guard International Regulations for Avoiding Collision as Sea (COLREGS),

or “rules of the road” [Larson et al., 2006, Larson et al., 2007]. Missions for the remotely controlled Owl

USV mainly consist of riverine and harbor reconnaissance through the use of infra-red and visible light

surface sensors (Owl 2) and subsurface sensors (Owl 4).

American USVs currently being designed with heavy armaments understandably have little public litera-
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ture. The anti-submarine Draco USV shown in Figure 1.10(b), showcases an anti-slamming hull design as

well as SONAR and torpedo arrays. The Textron CUSV is a large multi-mission vessel with a rear payload

bay allowing for autonomous launch and recovery of unmanned submersibles and aircraft. The modular

payload bay can also be fitted for anti submarine, mine hunting, communications, and surveillance mission.

The Piranha USV concept by Zyvex Marine features a unique hull design that incorporates carbon fiber

nano-composites, which allows for exceptionally long range and high payload capabilities.

(a) SSC San Diego USV (b) Draco ASW USV

Figure 1.10: American USVs

Autonomous vessel development has grown by leaps and bounds in the past fifteen years. Advanced

obstacle avoidance and path planning algorithms unlock a USV’s true “fire and forget” potential. To follow

these generated paths many control algorithms continue to resort to cross track and waypoint control [Larson

et al., 2006,Larson et al., 2007,Naeem et al., 2008]. More general path following [Bibuli et al., 2007,Bibuli

et al., 2008, Bibuli et al., 2009, Breivik, 2010, Aircardi et al., 2001, Breivik and Fossen, 2004] and trajectory

tracking [Godhavn, 1996, Toussaint et al., 2000, Petterson and Nijmeijer, 2001, Lefeber et al., 2003, Jiang,

2002, Do et al., 2002a, Do et al., 2002b] algorithms have also been developed for vessels with well defined

dynamics, but these methods typically involve restrictive assumptions about the dynamic model or the vessel

motion (such as “constant speed”).

The objective of this study is to devise and implement a control strategy giving a high speed planing vessel

the ability to robustly and accurately track aggressive trajectories that span the vessel’s entire performance

envelope. To fulfill this task a model which is sufficiently rich to enable effective motion planning and

control and sufficiently simple to allow straight forward parameter identification must be selected from a set
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of simple models whose parameters can be quickly and easily identified from standard motion data. Having

selected an appropriate model, dynamically feasible trajectories can be generated for the USV to follow. An

effective closed-loop control algorithm then enables tracking of aggressive trajectories in the presence of

environmental disturbances and modeling uncertainties.

Dissertation Overview

Chapter 2 presents a literature review for surface vehicle modeling, system identification, and motion

control. The surface vehicle model review includes both physics based and empirically devised dynamic

models describing vessel maneuvering motion. The system identification review spans discrete and contin-

uous model parameter identification in the time and frequency domain. Structured identification methods

for linear models that my also be allied to nonlinear systems are discussed. The control review focuses on

control algorithms for underactuated vehicles in planar motion.

Chapter 3 presents the Ribcraft USV, the testbed used to obtain system identification and control results

for this dissertation. The discussion includes details of the baseline performance capabilities and the hard-

ware used to make the vessel autonomous. The software architecture is presented and closed-loop control

implementation is explained.

Modeling is discussed, starting with a general nonlinear six degree of freedom model, in Chapter 4.

This most general model is distilled to a three degree of freedom planar motion model, which is then further

simplified by observing symmetries present on the research testbed. A vectored thrust bilinear thruster model

describes the input forces and moments. Two candidate speed models and three linear steering models, are

presented. All of these models incorporate the vectored thrust bilinear thruster model.

Parameter identification methods are shown in Chapter 5. First an algorithm that independently identifies

steady state and transient behavior is presented. Required field trials for steering and speed models are then

discussed, including the necessary adjustments to identify parameters for bistable sternward behavior. An

identification method requiring a specific set of input time histories extracts bilinear thrust parameters from

standard motion measurements. System identification results are presented and the best steering and speed

models are determined.

Chapter 6 begins with a brief definition of trajectory tracking error dynamics. A baseline PD cascade tra-
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jectory tracking control law and its stability properties are presented. An augmentation of the backstepping

control law presented in [Jiang and Nijmeijer, 1997,Jiang et al., 2001] allowing for more precise gain tuning

is then shown. Local exponential convergence is proven for the backstepping closed-loop time-varying sys-

tem. By backstepping the control law an additional time convergence is proven for the steering and speed

models selected from Chapter 5. Including parameter scheduling that accounts for disparities in planned and

actual model parameters yields a field implementable backstepping trajectory tracking control law that also

controls the bistable steering behavior prevalent in sternward motion. Finally, this backstepping control law

is augmented to account for constant (or slowly varying) flow conditions. Trajectory tracking performance

results of the PD cascade and backstepping control law are then compared.

Conclusions and an overall assessment of the identification and control strategies are shown in Chapter 7.

Contributions

• An identification method to find parameters of a bilinear thruster model using only vessel motion data.

• Development and validation of a speed-scheduled variable structure dynamic model for a planing

vessel.

• Identification of a vessel’s bistable sternward motion behavior.

• Development of a nonlinear backstepping controller that causes a high speed planing vessel to track

trajectories spanning the vessel’s entire forward and sternward speed envelope.

• Augmentation of the nonlinear backstepping controller to compensate for steady and slowly varying

fluid flow conditions.
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CHAPTER

2

BACKGROUND

This chapter reviews theory that relates to the remainder of the dissertation, providing context for results.

Section 2.1 presents an overview of models describing displacement vessel maneuvering motion, developed

through study of the underlying physics and observation through experimentation. Section 2.2 examines

methods of identifying parameters for linear models by minimizing error metrics in the time or frequency

domain. Section 2.3 describes path following and trajectory tracking methods that are applicable to vessels.

2.1 Modeling

Fossen [Fossen, 1991] provides a review of surface vessel motion models. In addition to the six degrees-

of-freedom (DOF) nonlinear motion model, he discusses a variety of “maneuvering” models that describe a

vessel’s motion in the horizontal plane. These are generally based on a combination of physical principles

and empirical observation, and they are often decomposed into speed (surge) and steering (sway and yaw)
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models.

The model of Abkowitz [Abkowitz, 1964] combines the planar rigid body equations with a third order

truncated Taylor series expansion of the hydrodynamic forces and moments about a steady straight line

motion. A few simplifying assumptions are made to limit the number of model parameters:

• Only first order acceleration terms are included

• The vessel has port to starboard symmetry

• Velocity and acceleration coupling is neglected

The model of Norrbin [Norrbin, 1970] incorporates planar rigid body equations with an exclusively em-

pirical representation of hydrodynamic forces and moments, based on detailed observations of scaled model

tow-tank experiments. Norrbin’s model also includes comprehensive modeling of effective rudder angle as

well as thrust modeling, absent in Abkowitz’s model. A simplified version of Norrbin’s model is described

by Blanke [Blanke, 1981].

The simplest and most popular steering model is the first order turn rate model described in [Nomoto et al.,

1957]. Although the model was developed for displacement vessels, it has been applied to semi-planing and

planing vessels, as well. A deficiency of Nomoto’s model is its inability to accommodate slipping motion, an

appreciable effect in some operating regimes. Nomoto’s first order steering model is expanded by including

a first order equation for sideslip [Yu et al., 2008a] This “Nomoto-with-sideslip” model is of the same order

as the linear steering model obtained by linearizing about steady forward motion, but with fewer parameters;

in transfer function form, the Nomoto-with-sideslip model omits a zero that appears in the linearized steering

equations.

Rolling motion can also be included in a vessel steering model, at least in scenarios where pitch and heave

decouple from the lateral modes [Amerongen and Cappelle, 1981, Son and Nomoto, 1981, Christensen and

Blanke, 1986]. The model of Christensen and Blanke [Christensen and Blanke, 1986] assumes that the

forces and moments involve square terms in surge velocity. This formulation includes rudders, propellers,

and bow thrusters lumped into a single roll moment term. While the vessel considered in the present work

undergoes appreciable rolling motion while maneuvering in calm water, the effect of rolling motion on the
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steering motion can be effectively incorporated into a simpler, planar motion model.

2.2 Parameter Identification

Parameter identification involves determining values for parameters in a structured model of a given system

such that input/state histories of the model best match input/state histories of the physical system. The model

can be based on physical insight concerning the actual system or it can take on a more general structure,

defined by some distribution of basis functions. The model can be linear or nonlinear and can evolve in

discrete or continuous time.

System identification is a mature field with an extensive body of literature. There exist several author-

itative textbooks on the topic [Jategaonkar, 2006, Ljung, 1999, Juang, 1994, Morelli and Klein, 2006]. In

general, model parameters are determined by minimizing a definition of error between the true and pre-

dicted state histories, for given input histories. A standard approach to minimize the error is least squares

regression. Variations on this approach include the instrumental variable method [Wong and Polak, 1967],

singular value decomposition, which is used in the Eigenvalue Realization Algorithm (ERA) in [Juang,

1994], stochastic approximation, and a variety of others.

Though all physical systems exhibit some degree of nonlinear behavior, only linear time invariant (LTI)

system identification is discussed here. Frequency domain identification is a common approach for LTI

systems [Morelli, 2000b]. In the frequency domain, the parameters to be identified are the coefficients of

the numerator and denominator polynomials in the input/output transfer function. A number of identification

methods compare frequency domain signal error between the identified model and experimental data; some

use the 2-norm [Bayard, 1994b, Bayard, 1994a, Sanathanan and Koerner, 1963, Klein, 1978, DuVal, 1981,

Morelli, 2000b, Theodore et al., 2004, Wang and Zhang, 2001, Lin and Wu, 1982, Morelli, 2000a, Selvam

et al., 2005] while others use the ∞-norm [Jacobson and Tadmor, 1993, Helmicki et al., 1991, Partington,

1992, Gu and Khargonekar, 1992, McKelvey et al., 1996] of the error. Advantages of identifying system

parameters in the frequency domain include the ability to truncate the measured frequency response, the

explicit capturing of system modes, and the lack of need for numeric differentiation. Truncation of the

measured frequency response to the frequency range of interest yields system identification uncontaminated
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by high-frequency disturbances. By identifying parameters based upon frequency data, prominent system

modes can be easily identified. Finally, since all frequency domain identification is done in the frequency

domain, time derivative of noisy data unnecessary. The primary disadvantages of frequency domain analysis

include the required application of a discrete Fourier transform on measured data, the constraint that only

linear systems can be identified, and the difficulty of attempting to identify heavily damped systems.

Time domain identification methods are also used for LTI systems [Jategaonkar, 2006, Hamel and Jate-

gaonkar, 1996, Klein, 1989], and common applications include the determination of aerodynamic or hy-

drodynamic coefficients [Sri-Jayantha and Stengel, 1988, Stalford, 1981, Yoon et al., 2004, Yoon and Rhee,

2003]. Identifying continuous time [Rao and Unbehauen, 2006] models requires the computation of signal

derivatives while identifying discrete time models does not.

In the continuous time domain, the measured derivative of state is compared with the estimated deriva-

tive of state. However, acceleration signals directly measured or deduced from noisy velocity data are

excessively noisy in general. These noisy signals must be subjected to a smoothing process, such as the

Savitzky-Golay algorithm described in [Savitzky and Golay, 1964], in order for the identification algorithms

to converge to correct system parameters. The Savitzky-Golay algorithm, which fits third order or greater

polynomial coefficients to a signal, intrinsically gives first and second derivatives of smoothed data. A

primary advantages of time domain system identification is its applicability to nonlinear systems.

Optimization methods are required to determine system parameters that minimize modeling error. Of-

fline “batch” optimization methods that directly find global minima include least square regression [Sten-

gel, 1986], the instrumental value method [Wong and Polak, 1967, Young, 1970, McKelvey, 1997, Gupta,

1978, Zimmermann and Mingori, 1996, Stoica and Soderstrom, 1983], which augments the least squares

regression if the state and noise are correlated, and singular value decomposition, which is required for

ERA implementation. Iterative offline optimization methods that start at an initial parameter guess and

search for a potentially local minimum include the gradient descent method, Newton-Raphson method,

Gauss-Newton algorithm, Dantzig simplex method, Nelder-Mead simplex method, neural network algo-

rithms [Narendra and Parthasarathy, 1990,Levin and Narendra, 1993,Kosmatopoulos et al., 1995,Levin and

Narendra, 1996,Chen et al., 1990,Chen and Billings, 1992], and the stochastic approximation method [Sakri-
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son, 1967, Kiefer and Wolfowitz, 1952, Robbins and Monro, 1951]. In this work, least squares regression is

used to identify parameters.

This review has shed light on the vast variety of parameter identification techniques though the primary

goal of vessel parameter identification has not been specifically addressed. Parameter identification meth-

ods applied to surface vessels include frequency domain approaches [Selvam et al., 2005] and time do-

main approaches [Källström and Åström, 1981, Åström and Källström, 1976, Muske et al., 2008, Hayes,

1971, Mišković et al., 2011]. Optimization of parameters is done using hybrid-extended Kalman filtering

[Yoon and Rhee, 2003,Yoon et al., 2004,Hayes, 1971,Fossen et al., 1996], recursive least squares [Nguyen,

2008], and artificial neural network (black box) methods [Rajesh and Bhattacharyya, 2008]. Note that all

identification methods require parameter optimization, though the specific algorithms are often not explic-

itly stated. Two overviews of marine system identification methods give insight into system identification

methods used currently [Ødegård, 2009] and in the past [Brinati, 1973].

2.3 Trajectory Tracking

Path following for nonholonomic and underactuated vehicles [Bibuli et al., 2009, Sordalen and Canudas de

Wit, 1993, Soetanto et al., 2003, Micaelli and Samson, 1993, Aircardi et al., 2001] provides convergence to

curves in space, though not necessarily convergence to a time-parameterized trajectory. Trajectory tracking

controllers drive the full state of a system to a desired time-varying reference state.

Development of trajectory tracking control laws using inertial Cartesian position error in conjunction

with nonlinear backstepping is straightforward. By taking the time derivative of a candidate Lyapunov

function containing the inner product of Cartesian position error, a virtual input can be defined that makes

the Lyapunov function’s time derivative negative. This method is repeated until the forward force input

is encountered in a Lyapunov time derivative. Defining a forward force control law to cancel out the top

value of the only non-negative 2-vector in the inner product in the Lyapunov function allows an additional

virtual input to be defined for the bottom value of the 2-vector. Backstepping a final time exposes the turn

moment input, which is defined to give a negative Lyapunov function, yielding exponential convergence

to a trajectory [Godhavn, 1996]. Unfortunately the vehicle’s velocity must remain non-zero, which cannot
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be guaranteed by trajectory selection, and forces and moments must be directly applied. Modifying this

backstepping method has made it possible to to overcome non-minimum phase issues brought on by defining

the inputs more realistically as forces output from a rear thruster [Toussaint et al., 2000], though the non-zero

vehicle velocity requirement remains.

Body fixed Cartesian trajectory tracking control laws avoid the non-zero vehicle velocity constraint found

in inertial Cartesian frame trajectory control. The value of avoiding this inadequacy is essential since manip-

ulation of the reference trajectory cannot guarantee non-zero vehicle velocity. However, reference trajecto-

ries, which one can easily manipulate, must not contain instances of zero velocity. Early results using body

fixed position error in trajectory control take advantage of kinematic relationships to yield global asymp-

totic stability and local exponential stability of a wheeled robot [Kanayama et al., 1990]. This control law is

modified to include path following [Fierro and Lewis, 1995] and stabilization by utilizing the averaging ap-

proach that yields a smooth transition between trajectory tracking and stabilization [Pettersen and Nijmeijer,

1999]. A control law exploiting backstepping and boundedness of the sine of a term divided by that term

yields global asymptotic stability [Jiang and Nijmeijer, 1997], which is expanded to include saturation phe-

nomena [Jiang et al., 2001]. Exploiting the triangular structure of the error variables coming about due to a

transformation to the body frame. combined with an additional transformation, yields exponentially stable

vessel dynamics when recursive vector backstepping is used [Petterson and Nijmeijer, 2001]. Both inertial

and body fixed Cartesian formulations yield trajectory tracking at the expense of exceedingly complex con-

troller structure. Simplification of controller structure can be accomplished using body fixed Cartesian error

fashioned into a cascade system.

A cascade approach to trajectory tracking first proposed for mobile robots [Panteley et al., 1998] sets three

conditions that yield global uniform asymptotic stability for a time varying cascade system, which is then

expanded for exponential stability. A cascade system is one where the inner subsystem is additively per-

turbed by the state of an outer subsystem multiplied by a function containing inner and outer system states.

A key feature of the cascade system is independence of the outer subsystem from the inner subsystem. Us-

ing a body fixed Cartesian error frame two independent controllers command turn rate to induce heading

convergence and forward speed to induce along-track error convergence. Note that cross-track error never
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enters the formulation. If reference turn rate is persistently excited (PE) these two independent controllers

put the system into cascade form giving asymptotically stable trajectory tracking. This control formulation

is augmented to provide global asymptotic stability for vessel dynamics [Lefeber et al., 2003]. Including

backstepping into the cascade approach for vessels gives exponential convergence [Jiang, 2002]. However,

the restrictive condition of PE reference turn rate remains. By introducing an intermediate “virtual” refer-

ence turn rate and speed used to give non-zero reference turn rate [Do et al., 2002a], the PE condition is

lifted allowing convergence to straight sections of reference trajectories, which is then further augmented to

give simultaneous trajectory tracking and stabilization [Do et al., 2002b].
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CHAPTER

3

RIBCRAFT USV

The Autonomous Systems and Controls Laboratory’s (ASCL) mission of demonstrating mapping, trajectory

planning, and control algorithms for riverine environments calls for a capable autonomous vessel. Require-

ments include quick construction to expedite mission readiness, durability to handle aggressive intended and

potentially unindented actuation, dynamic stability to keep electronics and possible occupants safe, ease of

maintenance to prevent downtime, and space for multiple occupants for debugging and preliminary testing

stages of development. Designing and constructing a vessel is too costly and time consuming, so an existing

model is chosen and converted for autonomous operation. The rest of this section discusses the performance

and capabilities of the selected vessel and the hardware and software used to make it autonomous. Literature

related to the vessel and its autonomy package includes [Gadre et al., 2012a, Gadre et al., 2009, Xu et al.,

2009a, Xu et al., 2009b, Xu et al., 2010, Xu et al., 2012, Sonnenburg et al., 2010, Stilwell et al., 2011, Son-

nenburg and Woolsey, 2012, Sonnenburg and Woolsey, 2013, Gadre et al., 2012b].
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3.1 The Ribcraft 4.8

3.1 The Ribcraft 4.8

The rigid hull inflatable Ribcraft 4.8 best fits the criteria stated above. With its deep V-hull the Ribcraft 4.8

has excellent handling qualities. The vessel exhibits minimal skidding in turns, planes with ease, and remains

stable throughout its performance envelope. The deep V-hull coupled with high bow sheer has the added

benefit of superior sea-keeping abilities in rough seas. The vessel’s rigid hull is constructed of fiberglass

with a full width composite stringer system to increase strength. The inflatable tubes made of Hypalon

resist damage due to impact, preventing mishap due to botched docking, while simultaneously providing

extra buoyancy for sea-keeping. Due to its light weight this vessel is easily transported and launched with a

trailer. The particular Ribcraft 4.8 used by the ASCL is equipped with a 50hp four-stroke Honda outboard

motor propelling the vessel to a top speed of 22 knots.

3.2 The Autonomy Hardware

Outfitting this capable stock vessel for autonomy first requires additional hardware to actuate the thrust

angle and throttle electronically, giving remote control capabilities. Sensing devices must then be mounted

that feed information to closed loop control and trajectory planning algorithms. With the hardware in place,

an in-house software package gives the ability to control actuators using open loop commands or simple

closed loop controllers, which track desired propeller rpm, speed, heading, or location. Modifying these

controllers or developing more advanced nonlinear trajectory tracking control laws built on the existing

software architecture expands the capabilities of the autonomous vehicle. Data recorded from the sensing

devices by the software package gives the ability to identify vessel dynamic motion and to debug mapping,

planning, and control algorithms. Additionally, the software package contains a vessel simulator allowing

for exhaustive debugging of complicated algorithms, reducing wasted time spent in the field.

3.2.1 Input Control Hardware

The Ribcraft’s battery, which is charged by the outboard motor’s alternator, powers all hardware. This 12

volt supply passes through a DC MegaPAC DC to DC switcher made by Mission Power Solutions with
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Vicor components that converts all power to a 12 volt and 5 volt power line. These power lines first pass

through a relay board that acts as an onboard emergency stop. When the emergency stop button is pressed

the signal voltage keeping the relays closed is cut, causing the relays to open the circuit, which cuts power

to the actuators. The vessel has off board E-stop capabilities by using a Torc SAFESTOP transmitter in

conjunction with a Torc SAFESTOP receiver tied to the ignition. When the emergency button is pressed or

when the transmitter-receiver radio link is lost the onboard receiver cuts power to the spark plugs, which

shuts the engine off but leaves throttle position and thrust angle actuation unaffected. After traveling through

the relay board, the power lines pass through a fuse board, which prevents excessive amperage from reaching

the sensitive actuator components. Figure 3.1 shows the Vicor, relay board, and fuse board, Figure 3.5 shows

the onboard emergency stop, and Figures 3.2(a) and 3.2(b) show the Torc wireless emergency stop.

Vicor

Relay

Board
Fuse Board

Figure 3.1: The Vicor, relay board, and fuse board in the Ribcraft USV’s electronics box

A M81120 Raymarine hydraulic pump incorporated into the power steering system drives turning motion
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(a) Torc onboard receiver (b) Torc off board transmitter

Figure 3.2: The Torc wireless E-stop

of the outboard engine. This particular pump has a maximum stall pressure of 750 psi, which defines the

rate limit for actuation. Variable amperage up to 60 A from a RoboteQ AX500 motor controller provides

power to a hydraulic motor capable of sourcing 5 A to orient the outboard engine to the commanded an-

gle. This motor controller is capable of receiving open loop speed control as well as closed loop speed or

position control through a serial port input, radio-control pulse-width input, or 0 to 5 V analog input. A

Raymarine position sensor measures the angle of the outboard motor relative to the vessel, allowing closed

loop outboard orientation using the motor controller’s built in PID controller. This position sensor outputs a

voltage between 0 and 5 V, however, full deflection of the outboard engine only nets a voltage between 2.1

and 2.9 V yielding low resolution position control. Furthermore the PID gains, constrained by maximum

values of 10, underutilize the available power of the motor controller. Using four op amps for a combination

of voltage following, offsetting, and amplifying transforms the voltage sweep from 2.1 to 2.9 V to 0 to 5

V, recovering position resolution and motor controller utilization. Figure 3.3 shows the op amp board, and

motor controller installed in the electronics box while Figure 3.4 shows the position sensor installed next to
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Op Amp Board

Motor

Controller

Voltage from

Position Sensor

Amplified Voltage

to Controller

Figure 3.3: The op amp board and motor controller

the outboard motor.

Glendinning devices actuate the engine throttle and gear assemblies for remote and manual operation.

Throttle and gear adjustments on the stock Ribcraft are made from the cockpit by using a lever that pushes

and pulls two shrouded metal cables. A Glendinning Smart Actuator uses powerful electric motors to push

and pull these cables based upon forward and reverse throttle commands. These throttle commands come

from an electronic throttle lever for manual control or an Analog Control Interface that accepts an analog

voltage from 0 to 5 V for computer control. For the Analog Control Interface a voltage of 2.5 V gives the

neutral throttle position while higher voltages give forward throttle and lower voltages give reverse throttle.

In order to electronically control throttle, a digital potentiometer accepts hex values from 0 to FF through

a serial connection causing one of 256 different voltages spanning 0 to 5 V to be output. Figure 3.7 shows

the Smart Actuator and Analog Control Interface, Figure 3.6 shows the digital potentiometer, and Figure 3.5

shows the electronic throttle lever.
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Position

Sensor Cable to

Op Amp

Board

Linkage to Outboard Motor

Figure 3.4: The Raymarine position sensor for steering feedback

3.2.2 Sensor Hardware

A PIC30F3011 Microchip programmable microcontroller measures engine RPM and consequently propeller

RPM. The microcontroller intercepts one of the four engine spark plugs’ 12 volt pulses that are normally

destined for the stock RPM gauge. Before entering the microcontroller two resistors scale the voltage pulses

to 5 volts to conform to the chip’s TTL standard. The internal oscillator rated at 7.37 Mhz, used for internal

timing and accurate quadrature calculations, calculates time between pulses. This internal oscillator triggers

an interrupt to the quadrature timer, immediately yielding the time since the last interrupt for every rising

5 V edge coming from the raw RPM pulses. Period information is transformed into an engine RPM value

and saved. The same internal oscillator also triggers an interrupt at 10 Hz to send the saved engine RPM

value along a serial RS232 at a baud rate of 115200, which enables a connected computer to both log engine

RPM information as well as instantaneously use it for control purposes. This device, pictured in Figure 3.8
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E-stop

Electronic

Throttle

Lever

Figure 3.5: The emergency stop and electronic throttle lever

operates at all times when the circuit to the boat battery is closed.

A ComNav Vector G2 DGPS compass mounted on aluminum bars located at the stern of the Ribcraft

USV, as shown in Figure 3.9, measures position and orientation. The Vector G2 can interface with vessel

navigation equipment using the NMEA 0183 standard via two independent RS-422 ports or through two

standard serial RS-232 ports. This GPS device is highly configurable with a multitude of different NMEA

0183 and proprietary output messages giving satellite fix data, satellites in view, pseudo range error statistics,

active satellites, range residual, true heading, magnetic heading, rate of turn, course and speed over ground,

and time and date information. These output messages can be individually enabled and disabled, which re-

duces message clutter and increases the peak message output rate for a given baud rate. Internal filters with

configurable time constants can smooth turn rate and heading, though this capability is disregarded in lieu of

filters implemented in the control software. Since the Vector G2 is a DGPS device, position information is

enhanced by satellite corrections sent from a nearby base. As previously stated, this device also outputs true
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Commanded

5 Volt Sweep 

Serial Input

Power

Figure 3.6: The digital potentiometer converting serial commands into analog voltage

heading and turn rate information by utilizing two internal GPS receivers. Instead of computing heading

by comparing position information of the two GPS receivers, which would yield inaccurate and noisy mea-

surements, the phase shift of the satellite radio signal, measured by the two GPS receivers, gives a relative

orientation between the device from the signal source. Adding the absolute angle of the GPS satellite from

North gives the true heading of the device. Magnetic fields and local magnetic deviations, which degrades

uncalibrated AHRS measurements, do not affect the Vector G2’s heading and turn rate measurements.

The Ibeo Alasca laser line scanner and electronic control unit (ECU) detects obstacles and shorelines.

The laser line scanner uses four infrared lasers whose beams reflect off of an angled spinning mirror and

onto objects around the device. These lasers are mounted with small incremental differences in vertical

angle giving a band of object detection along the horizon as the laser beams spin. Up to four “echoes” or

laser reflections can be measured for a given laser pulse, allowing detection of multiple, potentially semi-

transparent, objects by a single laser pulse. This echo collecting method of range finding does not see

obstacles that reflect the original pulse away from the device, meaning laser scans of bodies of water do not

elicit false detection of obstacles. A purpose built ECU must be used to compute range from the collected

laser measurements due to the exceptionally small times between pulse and reflection. Ibeo’s proprietary
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Analog
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Throttle and Gear

Cables to Engine

Figure 3.7: The Smart Actuator and Analog Control Interface to control throttle

range algorithms are used in the ECU and are consequently not discussed in this description. The ECU

calculates distances up to 100 m at a resolution of 1 cm and distances above 100 m at a resolution of 10

cm. The ECU’s parameters can be adjusted and calculations measured from either a CAN bus or ethernet

connection while an RS232 port can provide synchronization between multiple devices. Due to its ease of

implementation, the ethernet connection on the ECU is used on the Ribcraft USV. The laser line scanner

is shown in Figure 3.9. Combining range and relative angle measurements with GPS position and heading

gives absolute position of obstacles in space.

The laser line scanner is nominally pointed towards the nose of the vessel, but additional fine tuning of

its orientation is required to avoid errant laser scans of water or sky replacing useful scans of the horizon.

A DirectedPerception PTU-D100 gimbal pitches and rolls the laser line scanner in concert with orientation

measurements from a Microstrain 3DM-GX1 AHRS, which is mounted with the laser line scanner, to im-
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RPM Board

Serial Connection

Augmented Spark

Plug Lead

Power

Figure 3.8: The engine RPM sensor

prove shoreline detection. This gimbal uses two high strength stepper motors in order to rotate up to 15

pounds of payload along two axes. Open loop serial commands via RS232 or RS485 cables yield gimbal

movement to desired positions at user defined rates. On initialization the gimbal pans and tilts through its

entire range of motion to calibrate the device, giving reliable convergence to desired orientations as long

as the stepper motors do not slip. Closed loop control using pitch and roll measurements from the AHRS

avoids issues of stepper motor slippage while enhancing shore line scans by keeping the laser scanner level

in pitch and roll relative to the horizon during aggressive maneuvering induces large pitch and roll angles.

The Microstrain 3DM-GX1 fuses measurements from 3 orthogonal on-board magnetometers, which read

Earth’s magnetic field direction, and 3 orthogonal linear accelerometers, which read acceleration due to

vehicle motion and gravity, to find a moving orientation frame, which can be interpreted as Euler angles,

quaternions, or a rotation cosine matrix. Iron calibration and temperature correction improve accuracy of

the magnetometers and accelerometers respectively. Angular rate gyroscopes, which are predominately free
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ComNav DGPS
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Figure 3.9: The DGPS, gimbal, laser line scanner, and AHRS

of drift, give angular rate information without the need of the other sensors. In addition to keeping the laser

line scanner level, the gimbal and AHRS setup can be commanded to give small amplitude sinusoids in pitch

relative to the horizon in order to identify obstacles both near and far, generating better data. The gimbal and

AHRS are shown in Figure 3.9. With the description of the hardware complete, discussion of the software

suite, which measures the sensors and animates the actuators of the Ribcraft USV, completes the test vehicle

discussion.

3.3 The Autonomy Software

Closed loop control algorithms must combine reading of sensor data and actuation of inputs to yield desired

performance. Logging of both sensor data and actuator positions is essential to identifying vessel dynamics,

debugging controller software, and displaying results for validation and publication. Organizing these mul-
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tiple input and output data streams in a coherent manner requires cleverly designed software structure that

is general enough to allow for a multitude of sensor and actuator combinations and configurations.

The software, written in C++, borrows heavily from an in-house library developed by Brian McCarter

dubbed the Autonomous Application Framework (AAF). This library defines a fundamental base class called

“Managed,” which contains elemental features that all components of devices, sensors, commands, and con-

trollers share. This class is derived from the “Echelon” class that provides a program wide event framework.

The main program begins by calling “USV” and “Control” functions, which use the “Factory” class tem-

plated on “Managed” transport, device, command, and controller objects, which yields transport, device,

command, and controller “factories”. These factories’ “register” functions instantiate all constituent objects

while imbuing them with a shared pointer and mapping, allowing for appropriate object calling and destruc-

tion. A thread is created when any “Managed” object is instantiated, allowing for all “Managed” objects

to run concurrently. With all of the objects instantiated, the software is now running, reading sensors, and

ready to execute commands by commanding devices. However, knowledge of the intricacies of instantia-

tion, software/device interfacing, and inter-process and outside-software communication are still required to

fully understand how the software operates.

The USV software reads XML configuration files upon initialization of the code by using the Boost

“Property Tree” library wrapped by the “Config” class. Registering each constituent “Managed” object,

while giving the compiler knowledge of all available objects, does not instantiate the object. Instantiation

occurs when the register command is processed, causing a query to the appropriate XML file that indicates

whether the “Managed” object will be instantiated. Once instantiated and a thread created, the object’s

own “Config” function reads additional configuration information, which might include things like serial

port addresses for sensors and devices, controller gains and filter cutoff frequencies for control algorithms,

and vessel dynamic parameters for the simulator. These XML files are read only once, only during initial

software start up, so for any edit to the configuration files to take effect, the software must be stopped and

restarted. Using XML configuration files allows entire chunks of device and control code to be included or

omitted dynamically and enables gain adjustments without the need for lengthy recompilation of the code.

Interfacing between hardware components and the software is accomplished mostly through serial com-
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munication, though the laser line scanner requires TCP/IP communication through an ethernet connection.

Wrapping both the TCP/IP and serial communication functions found in the Boost “ASIO” library with the

“Transport” class allows for seamless use of input/output functionality in the AAF library. Asynchronous

reading and writing is used in place of blocking functions to prevent portions of code from hanging for

longer than a user specified timeout, which is defined in the appropriate “Config” function. Writing to serial

ports is the primary vehicle for commanding the digital potentiometer and motor controller and querying

rudder position information and orientation from the motor controller and AHRS. Note that the DGPS and

RPM sensor constantly send information at a set rate, which only requires asynchronous reading at a fast

enough rate to prevent the buffer from filling.

Though communication between software and hardware has been discussed, an efficient way to commu-

nicate common data between multiple software processes and independent programs is essential to simplify

implementation of closed loop control laws and path planning algorithms. The Lightweight Communica-

tions and Marshalling (LCM) is a set of tools and libraries originally developed for the MIT DARPA Urban

Challenge Team used to allow multiple devices and programs to communicate quickly in a high bandwidth

environment. This communication method centers around UDP multicast, which requires no centralized

data server and yields very fast information transfer at the cost potential packet loss and ordering mismatch.

Aside from simplifying communication within a single program the benefits of using LCM also includes the

ability to communicate between different programs written using different languages (C, C++, Java, Python,

MATLAB, and C# are supported). This cross-program capability allows the same data to be used with both

a script language, used in preliminary algorithm development and validation, and a compiled language, used

to implement said algorithms. Also, all LCM data is cross-platform and can be used simultaneously with

32 bit and 64 bit hardware architecture, vastly simplifying a potentially complex task. The “LCM” class in

AAF acts as a wrapper integrating the basic available functionality of the LCM library.

Note that software communication for some of the core functionality does not use this broadcasting pro-

tocol, instead opting to simply use mutually exclusive read/write logic and using the object’s “get” functions

to transfer data between objects, however, this method becomes convoluted when multiple objects require

data from a single thread. Each of the objects needing data must individually lock data for reading and
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writing, requiring a complex series of actions for intuitively simple functionality. To make matters worse,

debugging random runtime errors like segmentation faults and other issues due to nuanced mistakes in writ-

ing this communication method requires a considerable additional time investment over standard debugging

practices.

Logging information from sensors and inputs, control subsystem states, and error messages is essential

for debugging control law behavior and complex software actions. With a bug free software framework and

control laws, sensor and input logs provide validation information that can be displayed in plots showing

controller performance. The AAF library provides a wrapper for the Apache log4cxx logging framework

to give logging functionality. Logging of the sensors, inputs, and control subsystems only requires a file

to be created and a header printed in the initialization functions of devices and control laws, followed by

function calls that print fresh information as it arrives. However, logging of software behavior such as

thread instantiation and communication requires logging to be prioritized as trace, debug, info, warn, error,

and fatal allowing messages to be enabled and disabled appropriately. Logging of these messages is saved

to multiple locations by using appenders allowing messages to be segregated based on level while also being

collected into a single file. Note that the logging discussed thus far involves printing data to multiple files

that can be read by simple text editors, however, the LCM protocol also includes a logging functionality that

broadcasts UDP data exactly as it was observed in the field. These saved files can be played like a record in

real time or faster or slower than reality. The ability to recreate actual UDP broadcasts allows for software

debugging in the lab that exactly recreates the conditions in the field.

A Cascading controller structure simplifies how multiple simple controllers interact. Additionally, com-

plicated control algorithms with a cascaded structure can be divided into elemental sub-controllers by using

the cascaded structure. First, an input is sent to the control structure, which then trickles down a predefined

input hierarchy until an enabled controller that accepts the given input is encountered. The input is not acted

upon and “drops out of the bottom” of the hierarchy if no appropriate controller is enabled. The controller

that accepts the given input computes an output that either directly commands an actuator or becomes an-

other input, which again trickles down the input hierarchy. This process is repeated until the final input

drops out of the bottom of the hierarchy or a command is sent to an actuator. The controller with the highest
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order in the hierarchy is used in cases where multiple control elements contain the same input. A control

input could feasibly be used on one control element, which outputs the same type of control input that is

acted upon be another controller lower in the hierarchy. It will be seen in the control section that the PD

cascade trajectory tracking controller takes advantage of this hierarchical structure. However, this control

structure is largely left unused for more advanced nonlinear controllers.

To expedite the implementation of advanced controllers, as much debugging as possible must be relegated

to simulations in the laboratory environment to avoid time intensive tests in the field. The AAF library

contains a simulator class, which provides the framework necessary to develop simulations of actual vessels.

A “run” function takes states and inputs from the previous time step and propagates them in time using a

prescribed model structure with parameters populated from an XML file read in a config function (like all

other managed classes in AAF). The states propagated forward are sent to functions that emulate AHRS and

DGPS measurements, which are broadcast using the appropriate LCM device channels. Control laws see

these LCM broadcasts as if they were actual devices that react to actuator adjustments like the actual vessel

as long as the models accurately estimate vessel dynamics. Bug free control laws developed in a scripting

language like MATLAB or Simulink can be compared to the C++ control simulations until the C++ control

law is also bug free. With the implemented C++ control laws completely debugged, only control gain

adjustments in the field, used to account for discrepancies in the simulated and actual vessel, are required.

Installation and development of the autonomy package was a team effort. However, the explicit contribu-

tions the author has made include:

• Installation of the manual e-stop and throttle lever

• Installation and calibration of the Smart Actuator system

• Development of the PIC digital engine RPM measuring board

• Augmentation of existing RPM code to read output of PIC chip

• Development of the Op Amp board enhancing rudder actuation and position resolution

• Augmentation of rudder software allowing for correct measurement of rudder position

36



3.3 The Autonomy Software

• Implementation of up to third order filters giving smoothed signals their derivatives

• Adjustment of turn rate, RPM, and speed PID controllers using a priori steady state relationships that

allows for additional feedforward inputs

• Implementation of a cascaded PD trajectory tracking controller utilizing aforementioned PID con-

trollers

• Implementation of a backstepping control algorithm

• Inclusion of Ribcraft USV motion models into the simulator class

The Ribcraft USV with the complete autonomy package installed is shown in Figure 3.10.

Figure 3.10: The fully autonomous Ribcraft USV
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CHAPTER

4

USV DYNAMIC MODELING

Having developed a nonlinear, physics-based model, one may consider this and/or reduced complexity mod-

els as candidate models for motion planning and control design. Conventional analysis of the six DOF

motion of a rigid vessel is decoupled into a “seakeeping” model capturing vessel behavior in waves and a

“maneuvering” model describing motion in the horizontal plane. The three DOF maneuvering mode ignores

roll, pitch, and heave dynamics. The water is assumed to be calm and, for initial modeling and identifica-

tion purposes, currents are neglected. The effects of currents and flow gradients on marine vessel dynamics

have been carefully considered in [Woolsey, 2011, Thomasson and Woolsey, 2012]; it is straight forward to

incorporate these effects into the USV dynamic model, if necessary.

Hydrodynamicists characterize surface vessel performance in terms of the Froude number Fr = U/
√
Lg,

where U is the operating speed, L is the length of the submerged portion of the hull, and g is the acceleration

due to gravity. As Faltinsen [Faltinsen, 2005] explains, the weight of a vessel operating with a Froude
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number less than about 0.4 to 0.5 is almost completely supported by the hydrostatic force of buoyancy, a

condition called displacement mode. At the other extreme, in planing mode, the weight of a vessel operating

with a Froude number greater than about 1.0 to 1.2 is almost completely supported by a hydrodynamic

force that scales roughly with the square of speed. For intermediate values of the Froude number, both the

hydrostatic and hydrodynamic force contribute significantly in balancing the vessel’s weight, a condition

called semi-displacement mode. Recall that the Ribcraft USV is designed as a planing vessel, but it routinely

operates in each of the three modes. A successful modeling effort will adequately capture the variations in

vehicle performance over the full range of achievable Froude numbers.

4.1 Kinematics

The USV is modeled as a rigid hull with an articulated outboard motor. Define a body-fixed reference

frame whose x-axis (denoted by the unit vector bx) points forward along the longitudinal axis of the boat,

whose y-axis (denoted by the unit vector by) points to starboard, and whose z-axis (denoted bz = bx ×
by) points downward, completing the orthonormal triad. We assume that the USV is symmetric about

its longitudinal plane and that the body reference frame is chosen such that the inertia tensor is diagonal:

I = diag(Ixx, Iyy, Izz).

Suppose that the vector x denotes the position of the body coordinate origin with respect to some inertially

fixed reference frame, denoted by the unit vectors ix, iy, and iz . Let R denote the proper rotation matrix

which maps free vectors from the body frame to the inertial frame. Let the body vector v = (u, v, w)T

represent the translational velocity of the body reference frame with respect to the inertial reference frame.

Similarly, let ω = (p, q, r)T represent the body angular rate relative to the inertial reference frame shown

in Figure 4.1.

The rigid body kinematic equations are

ẋ = Rv (4.1)

Ṙ = Rω̂ (4.2)
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Figure 4.1: Body fixed 6 DOF reference frame

where the notation ·̂ denotes the 3 × 3 skew-symmetric matrix satisfying âb = a × b for vectors a and b.

These equations relate the body’s translational and rotational velocity to the rate of change of position and

attitude. The matrix R is typically expressed in coordinates, using the conventional Euler angles φ, θ, and

ψ, for example. In this case, the matrix differential equation (4.2) is replaced by three equations relating φ̇,

θ̇, and ψ̇ to ω. Specifically,

η̇ = J(η)ν (4.3)

where the states of this system are

ν =
[

u v w p q r
]T

η =
[

x y z φ θ ψ
]T
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and

J(η) =

















cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinφ sinψ + cosψ cosφ sin θ 0

sinψ cos θ cosψ cosφ+ sinφ sin θ sinψ − cosψ sinφ+ sin θ sinψ cosφ 0

− sin θ cos θ sinφ cos θ cosφ 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0

0 0

0 0

sinφ tan θ cosφ tan θ

cosφ − sinφ

sinφ
cos θ

cosφ
cos θ

















4.2 Nonlinear 6 DOF Dynamics

The dynamics of a boat can be described as

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ

where M is the mass matrix, C is the Coriolis and centripetal matrix, D is the damping matrix, g is a vector

of restoring forces and moments due to the interaction between buoyancy and gravity, and τ is a vector of

control forces and moments.

Effects of buoyancy’s interaction with gravity, manifested in g(η), give the metacentric stability proper-
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ties of a ship. Simplifying to bodies with symmetry in the xz-plane gives

g(η) = −

















−ρg
∫ z

0 Awp(τ)dτ sin θ

ρg
∫ z

0 Awp(τ)dτ cos θ sinφ

ρg
∫ z

0 Awp(τ)dτ cos θ cosφ

ρg∇GMT sinφ cos θ cosφ

ρg∇GML sin θ cos θ cosφ

ρg∇(−GML cos θ +GMT ) sinφ sin θ

















where ρ is water density, g is gravity, z is the depth at the lowest point of the vehicle, ∇ is displaced

water volume, Awp is the water plane area, GMT is the transverse metacentric height, and GML is the

longitudinal metacentric height.

The mass matrix M and Coriolis and centripetal matrix C can be decomposed to

M = MA +MRB and C(ν) = CA(ν) +CRB(ν)

where the subscript “RB” denotes rigid body contributions and the subscript “A” represents added mass and

inertia.

Looking exclusively at the rigid body terms we have the symmetric positive definite mass matrix

MRB =

















m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ixx −Ixy −Ixz
mzG 0 −mxG −Iyx Iyy −Iyz
−myG mxG 0 −Izx −Izy Izz

















where m is the total mass,
(

xG yG zG

)T

is the vector between the center of gravity and vehicle origin,
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and

I =








Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz








is the inertial tensor that accounts for lack of symmetry with off-diagonal terms. Using the parallel axis

theorem gives the terms containing the mass variable combined with elements of the center of gravity vector,

which adds to the rotational inertia. The corresponding rigid body Coriolis and centripetal matrix is

C(ν) =

















0 0 0 m(yGq + zGr)

0 0 0 −m(yGp+ w)

0 0 0 −m(zGp− v)

−m(yGq + zGr) m(yGp+ w) m(zGp− v) 0

m(xGq − w) −m(zGr + xGp) m(zGq + u) Iyzq + Ixzp− Izzr

m(xGr + v) m(yGr − u) −m(xGp+ yGq) −Iyxzr − Ixyp+ Iyyq

−m(xGq − w) −m(xGr + v)

m(zGr + xGp) −m(yGr − u)

−m(zGq + u) m(xGp+ yGq)

−Iyzq − Ixzp+ Izzr Iyzr + Ixyp− Iyyq

0 −Ixzr − Ixyq + Ixxp

Ixzr + Ixyq − Ixxp 0

















The vessel accelerates nearby fluid around its body during motion, effectively adding inertia to the system,

which is accounted for by including added mass terms. All vehicles moving in a fluid (including heavier-

than-air aircraft) have added mass, but its effects become more pronounced when the density of the fluid
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approaches as the density of the vehicle. The added mass matrix is defined as

MA = −

















Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

















Knowing the added mass matrix of a system allows for the immediate derivation of the corresponding

added mass Coriolis and centripetal matrix. Using the equation for fluid kinetic energy

TA =
1

2
νTMAν

with Kirchhoff’s equations for a rigid body moving through an incompressible fluid gives

d

dt

∂TA
∂u

= r
∂TA
∂v

− q
∂TA
∂w

+XA

d

dt

∂TA
∂v

= −p∂TA
∂w

− r
∂TA
∂u

− YA

d

dt

∂TA
∂r

= q
∂TA
∂u

− p
∂T

∂v
+ ZA

d

dt

∂TA
∂u

= w
∂TA
∂v

− v
∂TA
∂w

+ r
∂TA
∂q

− q
∂TA
∂r

−KA

d

dt

∂TA
∂v

= u
∂TA
∂w

− w
∂TA
∂r

− r
∂TA
∂p

−MA

d

dt

∂TA
∂r

= v
∂TA
∂u

− u
∂TA
∂v

+ q
∂TA
∂p

− p
∂TA
∂q

−NA
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4.2 Nonlinear 6 DOF Dynamics

Extracting the added mass Coriolis and centripetal matrix we have

C(ν) =

















0 0 0 0 −C3 C2

0 0 0 C3 0 −C1

0 0 0 −C2 C1 0

0 −C3 C2 0 −C6 C5

C3 0 −C1 C6 0 −C4

−C2 C2 0 −C5 C4 0

















where

C1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

C2 = Xv̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

C3 = Xẇu+ Yẇv + Zẇw + Zṗp+ Zq̇q + Zṙr

C4 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr

C5 = Xq̇u+ Yq̇v + Zq̇w +Kq̇p+Mq̇q +Mṙr

C6 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr

The damping matrix is composed of a linear damping matrix and quadratic damping matrix such that

D = Dl +Dq
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4.2 Nonlinear 6 DOF Dynamics

The linear damping matrix arrises due to laminar friction on the body of the boat and takes the form

Dl = −

















Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr

















The quadratic damping matrix comes about due to pressure drag off of the hull of the boat and is shown as

Dq(ν) =

















Xu|u||u| Xv|v||v| Xw|w||w| Xp|p||p| Xq|q| Xr|r||r|
Yu|u||u| Yv|v||v| Yw|w||w| Yp|p||p| Yq|q||q| Yr|r||r|
Zu|u||u| Zv|v||v| Zw|w||w| Zp|p||p| Zq|q||q| Zr|r||r|
Ku|u||u| Kv|v||v| Kw|w||w| Kp|p||p| Kq|q||q| Kr|r||r|
Mu|u||u| Mv|v||v| Mw|w||w| Mp|p||p| Mq|q||q| Mr|r||r|
Nu|u||u| Nv|v||v| Nw|w||w| Np|p||p| Nq|q||q| Nr|r||r|

















Applying assumptions of port/starboard symmetry considerably simplifies the added mass matrix giving

MA = −

















Xu̇ 0 Xẇ 0 Xq̇ 0

0 Yv̇ 0 Yṗ 0 Yṙ

Zu̇ 0 Zẇ 0 Zq̇ 0

0 Kv̇ 0 Kṗ 0 Kṙ

Mu̇ 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 Nṗ 0 Nṙ

















In its current state the added mass matrix is positive definite but not symmetric. In the presence of waves

and forward vessel motion this matrix will stay asymmetric, but for slow speeds on inland bodies of water
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4.2 Nonlinear 6 DOF Dynamics

the waves can be assumed to be small enough to allow for symmetry [Fossen, 1995]. This gives

MA = −

















Xu̇ 0 Zu̇ 0 Mu̇ 0

0 Yv̇ 0 Kv̇ 0 Nv̇

Zu̇ 0 Zẇ 0 Mẇ 0

0 Kv̇ 0 Kṗ 0 Nṗ

Mu̇ 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 Nṗ 0 Nṙ

















However, the vessel will be traveling at a nontrivial forward speed requiring (4.2), which becomes

M =

















m−Xu̇ 0 −Xẇ 0 mzG −Xq̇ 0

0 m− Yv̇ 0 −mzG − Yṗ 0 mxG − Yṙ

−Zu̇ 0 m− Zẇ myG −mxG − Zq̇ 0

0 −mzG −Kv̇ 0 Ix −Kṗ 0 −Ixz −Kṙ

mzG −Mu̇ 0 −mxG −Mẇ 0 Iy −Mq̇ 0

0 mxG −Nv̇ 0 −Izx −Nṗ 0 Iz −Nṙ

















when combined with the rigid body mass matrix. Making the assumption that the center of rotation matches

the center of gravity in the pitch and roll axes allows the mass matrix to become

M =

















m−Xu̇ 0 −Xẇ 0 −Xq̇ 0

0 m− Yv̇ 0 −Yṗ 0 mxG − Yṙ

−Zu̇ 0 m− Zẇ 0 −mxG − Zq̇ 0

0 −Kv̇ 0 Ix −Kṗ 0 −Ixz −Kṙ

−Mu̇ 0 −mxG −Mẇ 0 Iy −Mq̇ 0

0 mxG −Nv̇ 0 −Izx −Nṗ 0 Iz −Nṙ
















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4.2 Nonlinear 6 DOF Dynamics

subsequently yielding the Coriolis and centripetal matrix

C(ν) =

















0 0 0

0 0 0

0 0 0

−m(yGq + zGr) m(yGp+ w)− C3trunc m(zGp− v) + C2trunc

m(xGq − w) + C3trunc −m(zGr + xGp) m(zGq + u)− C1trunc

m(xGr + v)− C2trunc m(yGr − u) + C2trunc −m(xGp+ yGq)

m(yGq + zGr) −m(xGq −w) −C3trunc −m(xGr + v) +C2trunc

−m(yGp+ w) + C3trunc m(zGr + xGp) −m(yGr − u)− C1trunc

−m(zGp− v)− C2trunc −m(zGq + u) + C1trunc m(xGp+ yGq)

0 −Iyzq − Ixzp+ Izzr − C6trunc Iyzr + Ixyp− Iyyq + C5trunc

Iyzq + Ixzp− Izzr + C6trunc 0 −Ixzr − Ixyq + Ixxp−C4trunc

−Iyxzr − Ixyp+ Iyyq − C5trunc Ixzr + Ixyq − Ixxp+ C4trunc 0

















where

C1 = Xu̇u+Xẇw +Xq̇q

C2 = Yv̇v + Yṗp+ Yṙr

C3 = Xẇu+ Zẇw + Zq̇q

C4 = Yṗv +Kṗp+Kṙr

C5 = Xq̇u+ Zq̇w +Mq̇q

C6 = Yṙv +Kṙp+Nṙr

Even with these simplifications, the ship dynamic models contain too many parameters for feasible param-

eter identification. Since the primary goal of this ship modeling discussion is to provide a suitable structure

for a maneuvering model, the roll, pitch, and heave dynamics are ignored in all of the following modeling

sections.
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4.3 Planar Kinematics

4.3 Planar Kinematics

ψ

bx

by

ix

iy

u

v

r

v

T (V, δn)

δs

Figure 4.2: Schematic depiction of a USV.

To simplify matters, we will ignore the roll, pitch, and heave dynamics and consider USV motion in the

horizontal plane. Figure 4.2 illustrates the state and input variables for a planar USV model with a gimbaled

thruster (e.g., an outboard engine). Referring to (4.1) and (4.2), the kinematic model for a USV in planar

motion in the absence of currents is








ẋ

ẏ

ψ̇








=








cosψ − sinψ 0

sinψ cosψ 0

0 0 1















u

v

r








With the total velocity V =
√
u2 + v2, we define the sideslip angle β and the course angle χ as follows:

β = arcsin
( v

V

)

and χ = ψ + β

These definitions are illustrated in Figure 4.3. Note that the course angle and the heading angle are equal
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4.4 Planar Nonlinear 3 DOF Dynamics

unless the vehicle is slipping. Recognizing that




u

v



 =




cos β − sinβ

sin β cos β








V

0



 ,

we may write








ẋ

ẏ

ψ̇








=








cosψ − sinψ 0

sinψ cosψ 0

0 0 1















cosβ − sinβ 0

sinβ cosβ 0

0 0 1















V

0

r








or 






ẋ

ẏ

χ̇








=








cosχ − sinχ 0

sinχ cosχ 0

0 0 1















V

0

r + β̇







. (4.4)

where

V cos ββ̇ = v̇ − V̇ sin β

The speed-and-sideslip representation provides a useful alternative view, despite the ambiguity in the def-

inition of β when V → 0. Note that (4.4) is not really a kinematic model, though, because β̇ depends on

acceleration as well as velocity.

4.4 Planar Nonlinear 3 DOF Dynamics

By truncating the 6 DOF nonlinear model to the 3 DOF that define maneuvering motion we inevitably loose

fidelity while gaining simplicity. For instance, thrust line effects, which makes smaller boats lean into turns,

are neglected. Since the thrust is coming from below the center of gravity and the turning moment is due

to a force opposing the direction of the turn, the boat naturally leans into the turn. “Sea-keeping” behavior

describing motion due to waves and metacentric stability is also neglected. With these effects ignored the
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4.4 Planar Nonlinear 3 DOF Dynamics

ψ

u

v

β
χ

v

Figure 4.3: Definitions of side slip and course angles.

pitch, roll, and heave equations of motion become

Z = K =M = 0

p = q = w = 0

g(η) = 0

with the 3 DOF state vectors

ν =
(

u v r
)T

η =
(

x y ψ
)T

which are truncations of the 6 DOF state vectors, though the original notation is retained. The mass matrix

for this planar configuration is

M =








m−Xu̇ 0 0

0 m− Yv̇ mxG −Nv̇

0 mxG −Nv̇ Iz −Nṙ







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4.4 Planar Nonlinear 3 DOF Dynamics

The Coriolis and centripetal matrix is

C(ν) =








0 0 −m(xcgr + v) + Yv̇v +
Nv̇+Yṙ

2 r

0 0 (m−Xu̇)u

m(xcgr + v)− Yv̇v − Yṙ+Nv̇
2 r (Xu̇ −m)u 0








The original 6 DOF drag matrix can be further simplified by exploiting the assumption that forward drag

decouples from turning and sideslip drag giving

Dl = −








Xu 0 0

0 Yv Yr

0 Nv Nr








for linear drag and

Dq(ν) =








Xu|u||u| 0 0

0 Yv|v||v| Yr|r||r|
0 Nv|v||v| Nr|r||r|








for quadratic drag.

For a vessel with a steerable outboard motor, the control forces and moment depend on the propeller speed

δn and the thrust deflection angle δs. Details concerning the actuator model are given next, in Section 4.5.
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4.4 Planar Nonlinear 3 DOF Dynamics

The three DOF equations of motion are:

(m−Xu̇)u̇−m(xcgr
2 + vr) + Yv̇vr +

Yṙ +Nv̇

2
r2 +Xuu+X|u|u|u|u = Xctrl(δr, δn)

(4.5)

(m− Yv̇)v̇ + (mxcg − Yṙ)ṙ + (m−Xu̇)ur + Yvv + Yrr + Y|v|v|v|v + Y|r|r|r|r = Yctrl(δr, δn)

(4.6)

(mxcg −Nv̇)v̇ + (Izz −Nṙ)ṙ +mxcgur − Yv̇uv −
Yṙ +Nv̇

2
ur +Xu̇uv

+Nvv +Nrr +N|v|v|v|v +N|r|r|r|r = Nctrl(δr, δn)

(4.7)

Though the nonlinear equations (4.5), (4.6), and (4.7) are based on physical principles, the hydrodynamic

effects are modeled rather simplistically, based on reduced complexity models developed over the years for

displacement vessels. The nonlinear model of Abkowitz [Abkowitz, 1964] includes a third-order truncated

Taylor series expansion of the hydrodynamic forces and moment. Reduced complexity variants, in which

only the essential, empirically observed hydrodynamic effects are retained, are described in [Norrbin, 1970]

and [Blanke, 1981]. Because of the importance of wave-induced roll coupling in ocean vessel dynamics,

a number of models have been developed to capture coupling with this additional DOF [Amerongen and

Cappelle, 1981, Son and Nomoto, 1981, Christensen and Blanke, 1986]. Considering operations in the

relatively confined environment of a river, we neglect any coupling between horizontal plane motions (surge,

sway, and yaw) and rolling motion.

Models that accurately exhibit nonlinear hydrodynamic effects is an active research field. Many re-

searchers take a numeric approach similar to CFD approaches used to model aircraft forces and moments.

Papers include [Katayama et al., 2001, Katayama et al., 2002] for modeling transverse proposing effects

of a planing vessel, [S.Sutulo and Soares, 2005], which characterizes a 6 DOF model for catamaran mo-

tion, [Ayaz et al., 2006, Armaoglu et al., 2006] for 6 DOF motion that considers frequency dependent phe-

nomena with memory effects in random waves in astern seas for semi-displacement vessels, and [Javanmardi

et al., 2008], which models distinctive behavior of a trimaran vessel. Models of these complex hydrody-
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4.5 Actuation

namic effects can also be determined through experimentation in tow tanks. Papers include [Ikeda et al.,

2000], which displays results for very high speed planing vessel tests based on the planar motion mechanism

(PMM) test and [T.Katayama et al., 2000], which uses the PMM test for unstable periodic motions of high

speed vessels.

4.5 Actuation

The propeller thrust and angle define the control forces and moment appearing in equations (4.5), (4.6),

and (4.7). A typical outboard motor includes a small vertical surface (a rudder) which generates a hydro-

dynamic side force that provides some stability and control. We assume that propeller thrust generates the

entire turning moment, though one could easily incorporate the effect of rudder force if needed.

Thrust T is a function of the vessel speed V and the propeller speed δn as described in Fossen [Fossen,

1991]:

T = ρD4KT (J0)|δn|δn (4.8)

where ρ is water density, D is the diameter of the propeller, and KT is a thrust coefficient which depends on

the advance ratio

J0 =
V (1− w)

δnD

In the definition of J0, the dimensionless “wake fraction number” w < 1 accounts for the relative reduction

in flow velocity into the propeller due to the vessel’s wake. In general, the thrust coefficient is a nonlinear

function of the advance ratio, but Fossen [Fossen, 1991] suggests KT is well-modeled as a linear function

KT = α1 + α2J0 (4.9)

particularly when J0 > 0, that is, when the direction of the vessel motion is commensurate with propeller

rotation. However, the actual values of α1 and α2 might change with the sign of J0; propellers and ves-

sel hulls are typically designed to be most efficient in forward motion and will have different parameters

describe their thrust for each direction of rotation.
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4.6 Simplified Vessel Dynamics

Using (4.8), one finds that

T = cV δn+ d|δn|δn (4.10)

where

c = (1− w)ρD3α2

d = ρD4α1

For model identification purposes, it will be sufficient to find the two parameters c and d, rather than the five

parameters w, ρ, D, α1, and α2.

The control forces and moment in equations (4.5), (4.6), and (4.7) are

Xctrl = (cV δn + d|δn|δn) cos δr (4.11)

Yctrl = (cV δn + d|δn|δn) sin δr (4.12)

Nctrl = xδr(cV δn+ d|δn|δn) sin δr (4.13)

where xδr is the longitudinal moment arm from the center of rotation to the pivot point of the thruster.

In the following sections, we present several simplified variants of the dynamic equations (4.5-4.7) with

actuation model (4.11-4.13). The objective is to obtain a model that is rich enough to enable effective motion

planning and control, simple enough to allow quick identification, and general enough to describe a variety

of vehicles operating over a large range of speeds.

4.6 Simplified Vessel Dynamics

Planing dynamics exist in powerful, purpose built small to medium boats including the Ribcraft USV. At

slow speeds these boats act similarly to large boats that drag themselves through the water, completely

relying upon buoyancy to stay afloat. At higher speeds the small to medium boats are pushed up out of

the water with the hull of the boat skidding across the water. To add to the complexity of these vessels’

dynamics, their steady state pitch angle changes based upon speed, changing the planform exposed to the
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4.6 Simplified Vessel Dynamics

water and consequently changing the added mass terms. With these added complexities a speed scheduled

set of parameters for simplified steering and speed models is sought as an alternative to the nonlinear planar

3 DOF model.

4.6.1 Speed Dynamics

Simplified forward speed models retain drag terms but exclude terms that couple forward velocity with side

velocity and turn rate.

4.6.1.1 Quadratic Drag Speed Model

For straight line motion, equation (4.5) simplifies to

mu̇ = Xu̇u̇+Xuu+X|u|u|u|u+ (cuδn + d|δn|δn) (4.14)

If the turn rate r and the side velocity v are small, the speed model (4.14) continues to be a valid representa-

tion of (4.5). Note that (4.14) contains the thrust model shown in Section 4.5. This thruster model will also

be vital in the steering modeling section.

4.6.1.2 Linear Drag Speed Model

Linearizing equation (4.5) about the steady motion corresponding to the state and input values

u = u0, v = 0, r = 0, δr = 0, and T = T0 (4.15)

one obtains the perturbation dynamics

(m−Xu̇)∆u̇ = (Xu + 2Xu|u|u0)∆u+∆T (4.16)

where

u = u0 +∆u and T = T0 +∆T
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4.6 Simplified Vessel Dynamics

Note that small perturbations in v and r do not affect u; again, the speed dynamics decouple from the

steering dynamics.

Equation (4.16) provides a first order linear model relating propeller speed to vehicle speed, in the neigh-

borhood of the nominal condition (4.15):

∆u̇ = au∆u+ bu∆T (4.17)

Writing equation (4.17) in terms of the original (non-perturbation) variables gives

u̇ = auu+ buT − (auu0 + buT0)
︸ ︷︷ ︸

bubias

(4.18)

Model identification requires finding the three parameters au, bu, and bubias . While this (speed-parameterized)

first order, linear time-invariant system is a standard model, other variations have been proposed; see Breivik

et. al. [Breivik et al., 2008], for example. For cases where the vessel drag force is a complicated function

of forward velocity, this model, used with a speed scheduled set of parameters, can adequately estimate

forward speed dynamics.

4.6.2 Steering Dynamics

Having modeled the vessel’s motion along the longitudinal axis, it remains to determine the steering model,

describing sway and yaw motions. As in the simplified speed dynamics section, the steering dynamics are

decoupled from forward velocity. Like the simplified speed models only drag and mass matrix terms survive

linearization with the coupling terms terms from the Coriolis and centripetal matrix excluded.
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4.6 Simplified Vessel Dynamics

4.6.2.1 Linear Steering Dynamics

Simply linearizing (4.6) and (4.7) about the steady motion (4.15) gives








m− Yv̇ 0 mxcg − Yṙ

0 1 0

mxcg −Nv̇ 0 Iz −Nṙ















v̇

ψ̇

ṙ








+








−Yv 0 mu0 − Yr

0 0 1

−Nv 0 mxcgu0 −Nr











v

r



 =








1

0

xδr







T0δr

(4.19)

Writing (4.19) in the form







v̇

ψ̇

ṙ








= A








v

ψ

r








+BT0δr (4.20)

one finds that there are six elements of A and B to be identified. Anticipating that there may some bias

in the steering dynamics, such that a turning moment is induced even when the the rudder is centered,

equation (4.20) can be augmented as follows








v̇

ψ̇

ṙ








= A








v

ψ

r








+BT0δr +Bbias (4.21)

In this case, two additional parameters must be identified to determine Bbias.

4.6.2.2 Nomoto’s Steering Models

Considering large displacement vessels, Nomoto and colleagues [Nomoto et al., 1957] suggested that turn

rate can be described as a simple first order equation relating the rudder angle δr to the turn rate r at a given

forward speed u0:

τ ṙ + r = Krδr

where

Kr =
T0xδr

Izz −Nṙ

58



4.6 Simplified Vessel Dynamics

Adding an integrator to incorporate heading information gives




ψ̇

ṙ



 =




0 1

0 − 1
τr








ψ

r



+




0

xδr
τr(Izz−Nṙ)



T0δr +




0

bbias



 (4.22)

Vessels that steer with a vectored thruster (and possibly a rudder) generally create a nonzero sideslip angle

β while turning. Nomoto’s model assumes, however, that the vessel is constrained to move in the direction

in which it is pointed; it cannot slip while turning. To address this deficiency in the Nomoto model (4.22)

without resorting to the full linearized steering model (4.21), one can incorporate a first order lag model for

sideslip [Yu et al., 2008b]:

τββ̇ + β = −Kβr (4.23)

Combining equations (4.22) and (4.23) gives the system








β̇

ψ̇

ṙ







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− 1
τβ

0 −Kβ
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0 0 1

0 0 − 1
τr















β

ψ

r








+








0

0

xδr
τr(Izz−Nṙ)
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




b1bias

0

b2bias








(4.24)

Note that, like (4.16) these linear steering models can capture complex dynamics not described by (4.5),

(4.6), and (4.7), by using a speed scheduled set of steering parameters. An additional example of the need

for parameter scheduling of simplified models will be shown in the subsequent section describing sternward

dynamics of the Ribcraft USV.

4.6.2.3 Considering Sternward Steering Behavior

The Ribcraft USV is intended to operate in potentially unknown riverine environments, which includes

confined areas that do not contain a navigable passage to the desired destination, requiring the vehicle to

first back up and then turn around. A dynamic model for reverse motion is needed in order to safely execute

sternward maneuvers.

The Ribcraft USV exhibits a bifurcation in equilibria when driving in reverse. With the rudder centered
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4.6 Simplified Vessel Dynamics

and the throttle fixed at a setting that results in sternward motion, the vessel may enter into either a left or

right turn. Once turning motion is established, significant rudder input is required to turn in the opposite

direction.

Investigation of this phenomenon is necessary because simple linear controllers that do not account for

these unique dynamics cannot track desired headings. If the bifurcation causes the boat to be uncontrollable

then reverse motion should be avoided altogether. However, the dynamics of the boat are slow enough to be

within the bandwidth of human control, leading to the conclusion that a more advanced controller, coupled

with a dynamic model or set of dynamic models, might give reasonable tracking.

As a mechanical analog to the surface vessel moving in reverse, first consider a planar pendulum that

is spinning about its vertical axis. This well-known dynamical system, a simple model of Watt’s flyball

regulator [Beltrami, 1998], exhibits a pitchfork bifurcation when the spin rate exceeds a critical value. If

the pendulum pivot is offset from the spin axis, the pitchfork bifurcation degenerates into a saddle-node

bifurcation. In our analogy, the spin rate of the pendulum is similar to the backward speed of the surface

vessel while the pendulum offset is analogous to the steering angle.

Using insight provided by the whirling planar pendulum dynamics, a set of linear steering models, which

contain more tuning parameters than the planar pendulum formulation, estimate the sternward bistable dy-

namics. This set of linear steering models includes an unstable steering model at the zero turn rate equi-

librium sandwiched between two stable left and right turn biased steering models. A switching envelope

around the unstable zero turn rate equilibrium connects the three models in state space.

A set of model structures estimating vessel steering and speed dynamics has been developed, but these

models can accurately estimate the Ribcraft USV motion only after their parameters have been determined

by using an experimental system identification method. The method used to identify motion parameters for

the Ribcraft USV is described in the following chapter.
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CHAPTER

5

MODEL IDENTIFICATION

The USV model parameter identification method is broken down into two steps. The first step is to determine

the steady-state relationship between inputs and outputs from open-loop maneuvers. With the “DC gains”

determined, the second step is to identify any additional parameters that govern transient behavior. Inspired

by previous system identification efforts for autonomous underwater vehicles [Petrich, 2009, Petrich and

Stilwell, 2011], we implement simple controllers for motion variables of interest (e.g., speed and heading)

and obtain closed-loop state histories corresponding to specified, desired output histories (e.g., a square

wave in heading angle). Using closed-loop system responses instead of open-loop responses allows more

control over the vehicle’s motion in the confined operating environments where field tests are performed.

The Ribcraft USV’s actuators have nonlinear characteristics such as rate limiting, saturation, time delay,

and deadband. These nonlinear effects can be determined experimentally by simply comparing actual and

commanded inputs. Actuator nonlinearities are not explicitly used in the dynamic models, but are instead
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5.1 Identifying Steady-State Input/Output Relationships

applied to vessel simulations used in preliminary gain tuning and feasible trajectory generation. These

actuator limitations have an unavoidable effect on closed-loop behavior, requiring time consuming gain

tuning.

When estimating model parameters, the question of identifiability naturally arises. For linear dynamic

models, as discussed in Petrich [Petrich, 2009], it is sufficient to verify that the system’s Markov param-

eters depend appropriately on the parameters to be identified [Grewal and Glover, 1976]. For nonlinear

dynamic models, one may consider local identifiability by linearizing around a nominal state. For the USV,

identifiability analysis is straightforward and is included in Appendix A.

5.1 Identifying Steady-State Input/Output Relationships

To determine the steady-state relationship between inputs and states for a stable system, one applies a con-

stant input and measures the steady-state output. For the vectored thrust USV considered here, the two

constant inputs are the thrust angle δs and the propeller speed δn. Performing these steady-state exper-

iments over a range of thrust angles and propeller speeds defines a two-parameter family of steady-state

operating conditions.

We begin by considering linear, time-invariant systems with bias

ẋ = Ax+Bu+Bbias (5.1)

where x(t) ∈ R
n, u(t) ∈ R

m, and A, B, and Bbias have commensurate dimensions. The identification task

is to determine the n(n+m+ 1) parameters appearing in A, B and Bbias. Note that if the only biases are

in the inputs and are known then the relationship Bbias = Bubias, where ubias is an input offset, excludes

bias from being directly identified. However, the additional parametric freedom provided by Bbias results

in better matches of the vehicle’s steady-state performance. A primary requirement is that the resulting

parameter values should recover observed steady-state behavior.

Assuming that the matrix A in (5.1) is Hurwitz, a constant input uss will eventually result in a steady
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5.1 Identifying Steady-State Input/Output Relationships

state

xss = Φuss +Φbias

For a sufficiently rich set of inputs uss, one may determine the n(m + 1) parameters defining the matrix

Φ = A−1B and the vector Φbias = A−1Bbias from experimental data. These steady-state parameters

may be used to constrain the remaining identification process. Noting that

0 = Axss +Buss +Bbias (5.2)

= (AΦ+B)uss + (AΦbias +Bbias) (5.3)

for m linearly independent inputs, the following n(m + 1) linear equations constrain the choice of the

n(n+m+ 1) parameters appearing in A, B and Bbias:

0 = AΦ+B (5.4)

0 = AΦbias +Bbias (5.5)

Incorporating these constraints leaves n2 free parameters to be determined from dynamic (transient) system

response data.

Note that unconstrained parameter identification will always minimize the equation error to a lower value

than constrained identification since the unconstrained approach finds parameters that give a match weighing

the steady state/transient trade off based upon the makeup of transient and steady behavior contained in the

particular data set used. Constraining parameters of the estimated models forces steady state behavior to

match exactly, regardless of the content of any particular data set. In fact, after steady state data has been

collected and analyzed, experiments can be designed that have little to no steady state motion, yet the

constrained approach will still yield correct steady state behavior.
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5.2 Identifying Dynamic Parameters

5.2 Identifying Dynamic Parameters

Having found the steady state parameters appearing in Φ and Φbias, one seeks the remaining “dynamic

parameters” appearing in the model (5.1). We begin with the thruster dynamic model, which requires special

consideration, and then describe identification of the steering and speed dynamics.

Since the identification scheme does not directly consider noise in inputs, states, and state derivatives

but experimental measurements are noisy and state derivatives are not directly measured, experimental data

must be filtered to smooth the data and generate estimates of time derivatives. To simultaneously smooth

and differentiate measurements, we use the Savitzky-Golay filter [Savitzky and Golay, 1964]. This filter

uses least squares regression to fit a polynomial to signal data within a moving window; the time derivative

is estimated using the derivative of the polynomial.

5.2.1 Identifying Thruster Parameters

In this section, we consider identification of the thruster model (4.10). Consider the speed dynamics (4.5)

for the case of straight line motion :

u̇ =
Xu

(m−Xu̇)
u+

X|u|u

(m−Xu̇)
|u|u+

T

(m−Xu̇)
(5.6)

The parameters Xu̇, Xu, and X|u|u may be considered coefficients in a polynomial expansion of the hydro-

dynamic surge force around a nominal condition. Because the USV is a planing vessel, the waterline will

vary with the nominal state. These “hydrodynamic derivatives” are therefore parameterized by the nominal

forward speed u0. The thrust term T̃ is

T̃ =
T

m−Xu̇

=
c

(m−Xu̇)
︸ ︷︷ ︸

c̃

uδn +
d

(m−Xu̇)
︸ ︷︷ ︸

d̃

|δn|δn (5.7)

To identify the parameters c̃ and d̃ in (5.7), one may isolate dynamics due to thrust by examining the initial

64



5.2 Identifying Dynamic Parameters

response to step inputs in throttle, starting from straight line motion with a steady speed u0 corresponding

to a fixed thrust T̃0:

0 =
Xu

(m−Xu̇)
u0 +

X|u|u

(m−Xu̇)
|u0|u0 + T̃0 (5.8)

Substituting perturbation values

u = u0 +∆u and T̃ = T̃0 +∆T̃

into the dynamic equation (5.6) gives

∆u̇ =
Xu

(m−Xu̇)
(u0 +∆u) +

X|u|u

(m−Xu̇)
|(u0 +∆u)| (u0 +∆u) + (T̃0 +∆T̃ ) (5.9)

Subtracting the steady state condition (5.8), assuming that u0 > 0 is much larger than |∆u|, and ignoring

higher order perturbation terms leaves

∆u̇ = ã∆u+∆T̃ with ã =
1

(m−Xu̇)

(
Xu + 2X|u|uu0

)

It is straight forward to verify that, in the initial limit,

u̇(0) = ∆T̃ (5.10)

Thus, with high rate data for the vessel speed u and the propeller speed δn, and using a Savitzky-Golay filter

to determine the acceleration u̇, one obtains a collection of initial accelerations corresponding to step inputs

in throttle. Recalling the thrust relation (5.7) and applying the pseudoinverse, one obtains a least square

error solution to the over-determined linear algebraic system for c̃ and d̃. Experimental identification results

for the Ribcraft USV verify that c̃ and d̃ do not vary with the nominal speed, even in planing mode, making

T̃ differ from T by a constant scale factor. This scale factor can be absorbed into the input parameters of the

steering and speed models in Section 4.6, allowing T̃ to replace T for system identification.
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5.3 Model Identification Results

5.2.2 Identifying Linear State Transient Dynamics

Referring to (5.1), suppose we have obtained sampled data for a state history x(t) and, using the Savitzky-

Golay algorithm, the corresponding state rate history ẋ(t) in response to some suitably rich input history

u(t). These data define a system of algebraic equations for the parameters appearing in A and B. At each

of the N sample times ti, for i ∈ {1, . . . , N}, one has

ẋ(ti) = Ax(ti) +Bu(ti) +Bbias

Incorporating the steady-state constraints (5.4) and (5.5) by substituting

B = −AΦ and Bbias = −AΦbias

gives nN equations

ẋ(ti) = A (x(ti)−Φu(ti)−Φbias) (5.11)

for the n2 parameters of A. A least square estimate for these parameters can be obtained using the pseudo-

inverse [Stengel, 1986] for N > n. Of course, the absolute accuracy of the estimate depends on the system

structure and the data quality. An input history that excites all of the dynamic modes will yield much better

parameter estimates, as can be verified using independent validation data.

5.3 Model Identification Results

Field trials for the Ribcraft USV were performed in order to compare the various simple models first de-

scribed in Chapter 4. Section 5.3.1 describes an experimentally obtained steady-state map which relates

the fixed values of throttle, propeller speed, and thrust angle to steady turn rate, forward velocity, and side

velocity. Actuator dynamics, found by applying step thrust angle or throttle commands while recording the

actual thrust angle or propeller speed, are discussed in Section 5.3.2. Section 5.3.3 shows parameter fits

for the thruster model. Section 5.3.4 presents simplified vehicle dynamic model parameters deduced from

closed-loop field trials involving commanding square waves in heading and velocity while recording time
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histories of thrust angle, propeller speed, orientation, and velocity. Finally, the unique sternward dynamics

of the Ribcraft USV are considered in Section 5.3.5 by extending analysis of steady state behavior, thruster

modeling, and transient dynamics for bifurcated turn rate behavior.

5.3.1 Steady-State Input/Output Relationships

To obtain steady-state motion data, the following sequence of open-loop experiments was performed.

1. Set δs̃ = 0◦ with the USV heading in a safe direction at idle speed.

2. Increment throttle by a fixed amount (e.g., 5%). Allow the speed to reach steady-state.

a) Increment δs̃ by a fixed amount (e.g., 7.5◦).

b) Set δs = δs̃ and wait for the USV to complete two circular paths.

c) If δs is not saturated, return to Step 2(a). Else, continue

d) If δs is at maximum, set δs = 0 and return to Step 2(a) incrementing by negative thrust angle

values. Else, continue

3. If the throttle is not saturated, return to Step 2. Else, end the test sequence.

Steady-state motion data for the Ribcraft USV are given in Figure 5.1; tabulated steady state gain values

are given in Table 5.1. The vessel’s throttle has a dead band from -20% to roughly 35%. For identification

purposes throttle settings ranged from 35% to 65%, providing data on the transition from the dead band

region into the semi-displacement and planing region. Thrust angle settings ranged from −30◦ to 30◦ thrust

angle. The steady state linear fits are described by

rss = Krδsss +Krbias (5.12)

βss = Kβrss +Kβbias (5.13)

vss = Kvδsss +Kvbias (5.14)
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5.3 Model Identification Results

Table 5.1: DC gains of β, v, and r for the Ribcraft USV.

Forward Speed, (m/s) Kβ Kβbias Kv Kvbias Kr Krbias

1.1 -1.44 0.44 0.0060 -0.009 -0.28 0.87

1.5 -1.36 0.62 0.0056 -0.004 -0.28 0.84

2.6 -0.26 1.20 0.0060 0.031 -0.60 1.97

3.0 -0.13 0.71 0.0040 0.021 -0.68 2.11

3.2 0.00 1.08 -0.0000 0.056 -0.76 2.02

4.0 0.08 1.17 -0.0036 0.080 -0.76 2.03

7.6 -0.10 1.22 0.0096 0.135 -0.76 2.28

9.2 -0.12 1.11 0.0120 0.122 -0.76 2.21

Values of r, β, and v are predominantly linear. Note that the units are in deg/s for turn rate, deg for thrust

angle and sideslip angle, and m/s for sideslip velocity. High sideslip angles are observed at low speed. Turn

rate, r, increases with throttle, but sideslip angle, β, and sideslip velocity, v, decrease to negligible values in

the semi-displacement region (throttle values of 45%, 50%, 55%).

Figure 5.2 shows steady forward speeds vs. propeller speed for δs = 0 with curve fits for the reverse,

displacement, semi-displacement, and planing modes. The good quality of the fits validates consideration

of these four distinct speed regions. Note that Froude numbers of 0.45 and 1 (corresponding to speeds of

3.1 (m/s) and 7 (m/s)) define the boundaries between the forward velocity modes.

5.3.2 Actuator Nonlinearities

The propulsion and steering assemblies impose physical constraints on propeller speed and thrust angle ad-

justments. The Ribcraft USV has a an outboard motor that is limited to rotate roughly ±30◦ from δs = 0◦

(perpendicular to the transom of the boat). The outboard’s steering angle rate saturates at roughly ±15 deg/s

due to limitations of the hydraulic motor that steers the thrust angle. The thrust angle is tightly controlled by

a PID controller when reference commands satisfy these magnitude and rate limits. The throttle commands

the manifold pressure in the engine with a delay of roughly 0.5 seconds. Changing gear (forward, neutral,

or reverse) gives an additional 1.5 second delay. Furthermore, the steady state relationship between throttle
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Figure 5.1: Steady state relationships for the Ribcraft USV
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Figure 5.2: Steady state speed fits

position and manifold pressure is nonlinear. Because the manifold pressure and engine dynamics are not

measured or estimated, we characterize the steady-state relationship between throttle setting and propeller

speed. Throttle is measured in percent; there is a deadband from -20% to 35%. When the throttle is at 0%

the engine disengages from the propeller providing no thrust. The engine has hysteresis in the displacement

speed region, as can be observed in Figure 5.3. One might expect hysteresis in the throttle/forward speed re-

lationship when passing between the semi-displacement and planing modes, but none is evident. Hysteresis

is only apparent in the throttle/propeller speed relationship; see Figures 5.2 and 5.3. The data fits for throttle

in reverse, displacement/semi-displacement, and planing modes

δT = 0.0184δn − 12.88 (5.15)

δT = 1.02× 10−5δn|δn| − 0.0054δn + 37.08 (5.16)

δT = 0.0328δn − 11.41 (5.17)
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shown in Figure 5.3 define the steady-state relationship between throttle and propeller speed outside the

deadband region; these fits are used to define a feedforward term in the PID engine speed controller to

mitigate hysteresis effects. Green data points show steady states attained by accelerating from lower speeds

to higher speeds while red data points show steady states attained by decelerating from higher speeds to

lower speeds. Within a single speed mode hysteresis is prevalent but further amplified along the boarder

between the semi-displacement and planing modes.
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Figure 5.3: Steady state throttle fits

5.3.3 Thruster Model

The detailed steps required to extract c̃ and d̃ from (5.7), as introduced in Section 5.2.1, are as follows:

1. Define δT̃ = 35% and δT̃ss = 0% and set δs = 0 with the USV heading in a safe direction.
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2. Set throttle to δT = δT̃ss and wait for steady state

3. Set throttle to δT = δT̃ and wait for steady state

4. If, δT̃ <= 65% increment δT̃ by 5% and return to Step 2. Else, go to Step 5.

5. If, δT̃ss <= 60% increment δT̃ss by 5%, set δT̃ = δT̃ss + 5% and return to Step 2. Else, end the test

sequence.

for identification in the displacement and semi-displacement region. For planing thruster identification the

test sequence is as follows:

1. Define δT̃ = 75% and δT̃ss = 70% and set δs = 0 with the USV heading in a safe direction.

2. Set throttle to δT = δT̃ss and wait for steady state

3. Set throttle to δT = δT̃ and wait for steady state

4. If, δT̃ <= 95% increment δT̃ by 5% and return to Step 2. Else, go to Step 5.

5. If, δT̃ss <= 90% increment δT̃ss by 5%, set δT̃ = δT̃ss + 5% and return to Step 2. Else, end the test

sequence.

Velocity, acceleration, and propeller speed are recorded during the execution of the steps to extract c̃ and

d̃ in (5.7). Figure 5.4 shows a fit of c̃ and d̃. The thrust fit matches the data well, yielding parameter values

c̃ = −1.42 × 10−4 (s−1RPM−1) and d̃ = 8.96 × 10−7 (ms−2RPM−2). Note, however, that experimental

data were unavailable at high RPM and low speed or at low RPM and high speed.

5.3.4 Speed and Steering Dynamic Parameters

The nonlinear speed model with identified thrust parameters only contains two additional parameters to

identify, which are used to constrain steady state speed behavior. A regression is performed to find these

drag parameters by utilizing the constraint that drag must balance thrust for all steady speeds. Figures 5.5

and 5.6 show a comparison of the estimated acceleration due to drag and thrust for displacement and planing
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Figure 5.4: Thrust parameter fitting

regions respectively. This fit between thrust and drag seems to match well though validation plots will show

that these small discrepancies lead to large steady state speed errors.

Figures 5.7, 5.8, and 5.9 show actual acceleration terms compared to acceleration estimated by the sim-

plified dynamic models containing identified parameters. The difference between these acceleration terms is

minimized in the least squares sense by finding model parameters using a “batch” regression. The estimated

acceleration terms are computed using the actual smoothed input and state data combined with a model

structure containing identified parameters. Recall that the actual acceleration terms are found as a byproduct

of the Savitzky-Golay smoothing filter.

Figures 5.10, 5.11, and 5.12 show representative time histories (actual and simulated) of u, r, and β for
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Figure 5.8: Actual and estimated turn acceleration for a range of forward speeds
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Figure 5.9: Actual vs. estimated sideslip angular rate for a range of forward speeds
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the feedback controlled Ribcraft USV in response to commanded square waves in heading and speed. These

plots use validation data sets, obtained independently of the data used for model identification. Examining

Figure 5.10, it is clear that the first order linear speed model identified for this displacement speed range

captures the behavior of the vehicle in surge while the nonlinear speed model fails to converge to correct

steady state velocities. A single set of parameters for the nonlinear speed model, identified for each speed

regime using steady state behavior (shown in Figures 5.5 and 5.6), poorly estimates speed behavior, which

indicates that quadratic and linear drag terms do not adequately model the vessels speed dynamics. For

the data shown in the Figures 5.11 and 5.12, the Nomoto model with sideslip and the linear model best

approximate the true course angle history when the boat is moving at low speeds. This observation illustrates

the need to account for sideslip dynamics at low speeds, when the vessel is operating in displacement mode.

Table 5.2 shows parameter identification cost function values for identified models of the Ribcraft USV

steering dynamics. These values were computed using the same validation data sets used to make Fig-

ures 5.10, 5.11, and 5.12. Time histories of estimated turn rate and sideslip angle are calculated using

steering model parameters and actual thrust angle time histories taken from validation data. The cost func-

tion

J =

√
√
√
√ 1

ttotal

N∑

i=1

(βest(i) − βval(i))2 +

√
√
√
√ 1

ttotal

N∑

i=1

(rest(i)− rval(i))2 (5.18)

provides a comparison between estimated turn rate and sideslip and actual turn rate and sideslip (from

the validation data). The value ttotal is the total time of the time histories, states with the “val” subscript

denote actual validation data, and states with the “est” subscript denote states estimated with steering model

parameters. Note that asterisks in Table 5.2 indicate that the given parameters yield an unstable system.

Since steady state sideslip angle decreases to near zero for some displacement and semi-displacement

speed regions, sideslip angle may not be sufficiently excited to overcome signal and wave noise in these

speed regions. Noiseless parameter identification would give time constants that are negative but very close

to zero, but the parameter identification method, using the derivative of state containing wave and signal

noise, does not guarantee “well-behaved” models.
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Figure 5.10: Measured forward speed vs. simulated forward speed for a range of forward speeds
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Figure 5.11: Actual and simulated turn rate time histories for a range of forward speeds
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Figure 5.12: Actual vs. simulated sideslip angle time histories for a range of forward speeds
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Table 5.2: Steering model cost function values.

Forward Speed, (m/s) Nomoto Nomoto w/ Side Slip Linear

1.1 5.5 3.6 2.7

1.5 2.5 1.9 2.3

2.6 1.9 1.9 *

3.0 1.4 1.4 *

3.2 0.8 0.9 *

4.0 0.4 0.4 0.7

7.6 0.3 0.3 0.3

9.2 0.5 0.5 0.4

It is unsurprising that the linear steering model performs well at low speeds, since this model has the most

parameters. The Nomoto-with-sideslip model performs comparably, however, and requires fewer parame-

ters. Because the sideslip angle remains quite small during maneuvers at higher speeds one may justifiably

adopt the Nomoto steering model in this speed region. Consequently a speed-scheduled Nomoto-with-

sideslip model (4.24) is used to describe vessel motion for generating and tracking trajectories. The model

parameters that describe sideslip dynamics are non-zero at low speed, but are set equal to zero at higher

speeds, effectively constraining the sideslip angle to remain zero.

Table 5.3 shows the parameter values obtained for the linear steering model (4.21). Table 5.4 shows the

parameter values for the Nomoto model with sideslip (4.24). Table 5.5 shows the parameter values for the

Nomoto model (4.22). Table 5.6 shows the parameter values obtained for the linear speed model (4.18).

Note that T̃ = T
m−Xu̇

= buT is used in system identification, so bu is not needed for the linear speed model.

In these tables, a∗ and b∗ refer to the elements ∗ in the state matrix A and input matrix B respectively. If a

and b appear without a subscript, then the state and input matrices are scalars.
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5.3.5 Special Considerations: Sternward Steering Bifurcation Behavior

Field trials used for forward motion parameter identification must be adjusted for the Ribcraft USV’s unique

sternward system identification while the analysis methods remain the same. The steady state turn rate

behavior is the most prominent example of this difference between forward and sternward motion analysis.

To identify steady state sternward behavior the following steps were performed:

1. Saturate δs to the left (negative) with the USV heading in a safe direction at idle speed.

2. Set throttle to a set negative value. Allow the speed to reach steady-state.

a) Increment δs by a fixed amount (e.g., 7.5◦).

b) Wait for the USV to complete two circular paths.

c) If the turn rate does not change sign, return to Step 2(a). Else, continue

d) If current turn rate is negative, saturate δs to the right (positive) and return to Step 2 incrementing

by negative thrust angle values. Else, end the test sequence

Note that the bifurcated sternward dynamics requires finding steady state behavior for both stable turn

regions, embodied in the first step of saturating the thrust angle to the left, which forces the vessel into the

left equilibrium. The thrust angle is incremented in this stable left turn region until falling into the right

turn equilibrium. This procedure is then repeated for the right turn equilibrium. Steady state sternward

behavior can be seen in Figure 5.13. Quadratic fits map these equilibrium turn rate regions to thrust angle

Table 5.3: Linear steering model parameter values (using linear fit of steady-state gains).

Forward Speed, (m/s) a11 a12 a21 a22 b1 b1bias b2 b2bias
1.1 -0.14 -0.004 4.62 -0.19 -0.0009 0.0017 -0.91 0.20

1.5 -0.29 0.002 19.53 -0.15 0.0116 -0.0031 -0.79 0.21

2.6 -0.31 0.020 14.38 -0.52 0.0191 -0.0289 -0.56 0.57

3.0 -0.29 0.032 17.28 -0.92 0.0194 -0.0624 -0.58 1.59

3.2 -0.08 0.031 17.60 -1.14 0.0145 -0.0576 -0.54 1.32

4.0 -0.46 0.066 -8.71 -0.99 0.0228 -0.0969 -0.37 2.71

7.6 -0.81 0.034 18.59 -0.89 0.0159 0.0323 -0.41 -0.48

9.2 -0.42 0.013 11.99 -0.39 0.0068 0.0222 -0.20 -0.61
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5.3 Model Identification Results

Table 5.4: Nomoto-with-sideslip steering model parameter values.

Forward Speed, (m/s) aβ bβ bβbias ar br brbias
1.1 -0.140 -0.20 0.061 -0.34 -1.06 0.29

1.5 -0.135 -0.10 0.008 -0.40 -1.11 0.77

2.6 0.035 -0.01 0.042 -0.39 -0.33 0.78

3.0 -0.004 -0.00 0.003 -0.52 -0.30 1.10

3.2 -0.001 0.00 0.001 -0.69 -0.33 1.40

4.0 -0.175 0.01 0.205 -1.29 -0.46 2.62

7.6 -0.275 -0.03 0.337 -1.08 -0.39 2.47

9.2 -0.203 -0.02 0.226 -0.29 -0.10 0.65

values well with rss = −0.0032δs2 − 0.4428δs + 11.99525 and rss = 0.0072δs2 − 0.5684δs − 6.77138

corresponding to mappings for the left and right equilibrium region respectively where rss is measured in

deg/s and δs is measured in deg. Taking reverse speed and thrust angle as bifurcation parameters, one finds

a pitchfork bifurcation at zero thrust angle that degenerates into a saddle-node bifurcation when the thrust

angle is offset.

Thrust identification is constrained to only finding the quadratic thrust term. The limited sternward speed

envelope prevents field trials with thrust step inputs starting from a steady speed. However, since speed

remain low, thrust is estimated well by without a thrust decay term. Field trials for sternward thrust identifi-

cation involve commanding step inputs in throttle starting from rest. A thrust parameter of d̃ = 7.31× 10−8

(ms−2RPM−2) fits the data shown in Figure 5.14.

Table 5.5: Nomoto steering model parameter values.

Forward Speed, (m/s) ar br brbias
1.1 -0.34 -1.06 0.29

1.5 -0.40 -1.11 0.77

2.6 -0.39 -0.33 0.78

3.0 -0.52 -0.30 1.10

3.2 -0.69 -0.33 1.40

4.0 -1.29 -0.46 2.62

7.6 -1.08 -0.39 2.47

9.2 -0.29 -0.10 0.65
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Table 5.6: First order linear speed model parameter values.

Forward Speed, (m/s) au bubias
1.1 -0.12 0.07

1.5 -0.31 0.33

2.6 -0.58 0.85

3.0 -1.09 2.19

3.2 -1.00 1.75

4.0 -0.17 -1.12

7.6 -0.06 -1.65

9.2 -0.10 -1.31

Parameter identification for both the nonlinear and linear speed models simply requires steady state data

(recall the forward nonlinear speed model uses the same procedure). For the linear speed model to elicit

zero steady state velocity for zero propeller speed, its biasing term must be zero, leaving only one parameter,

which must be utilized to identify steady state motion. The nonlinear and linear speed models with identified

parameters for sternward motion are

u̇ = −0.14u|u| + 7.01 × 10−8δn|δn| (5.19)

and

u̇ = −0.19u+ 7.01 ×−8 δn|δn| (5.20)

respectively. Figure 5.15 shows a comparison of the estimated acceleration due to drag and thrust for the

sternward speed region.

Stable left and right turn steering models separated by an unstable steering model situated at the zero

turn rate condition are used to estimate the vehicle’s bifurcated steering dynamics. By commanding either

positive or negative sets of square waves in turn rate, instead of heading, sternward dynamics are excited for

only one turn rate region at a time, ensuring that only one model is exercised by the experiment. Additionally

commanding closed-loop control about zero turn rate allows for identification of steering parameters about

the unstable equilibrium. Including the steady state mapping shown in Figure 5.13 into the standard turn

rate PID controller allows for sufficient turn rate control for parameter identification.
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Figure 5.13: Steady state backwards turn rate fit

Figures 5.16 and 5.17 show actual acceleration terms compared to acceleration estimated by the simplified

dynamic models. The difference between these acceleration terms is minimized in the least squares sense

by finding model parameters using the same “batch” regression used for forward motion. The estimated

acceleration terms are computed using the actual smoothed input and state data combined with a model

structure containing identified parameters. Note that, unlike forward parameter identification, parameters

are scheduled by regions of turn rate rather than speed. Also, the unstable model does not include steady

state constraints.

Figures 5.18 and 5.19 show representative time histories (actual and simulated) of r and β for the feed-

back controlled Ribcraft USV in response to commanded square waves in positive, negative, and zero turn

rate. These plots use validation data sets, obtained independently of the data used for model identification.

Though the unstable zero turn rate validation plot may look featureless, the simulation generating the plot

uses actual open loop thrust angle measurements; not closed-loop control. The closed-loop thrust angle
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measurements, which stabilize the actual Ribcraft USV, are used as open loop inputs to the unstable steering

model. The identified model for the unstable system matches the vessel dynamics closely, as confirmed by

the validation data. For the data shown in the Figures 5.11 and 5.12, the Nomoto model with sideslip and the

linear model best approximate the true course angle history. This observation illustrates the continued need

to account for sideslip dynamics in sternward motion. For the stable cases the linear model gives marginally

better fits of both sideslip angle and turn rate while the Nomoto model with sideslip best approximates the

unstable zero turn rate region.

Table 5.7 shows parameter identification cost function values for identified models of the Ribcraft USV

sternward steering dynamics. These values were computed using the the same cost function, (5.18), used

for forward motion parameter identification, which computes costs using the validation data sets shown in

Figures 5.18 and 5.19. As previously qualitatively noted, the linear steering model best approximates the

stable turn rate dynamics, while the simple Nomoto model best accounts for unstable steering dynamics

about the zero turn rate equilibrium. However, like in the forward motion case, the added complexity of

including two additional parameters for the linear model is considered not worth the slight edge in turn rate

estimation.

Table 5.7: Sternward steering model cost function values.

Turn Rate Region Nomoto Nomoto w/ Side Slip Linear

positive 15.7 4.4 4.0

negative 11.9 4.6 3.0

zero 4.7 2.2 7.4

Table 5.8 shows the parameter values obtained for the linear steering model (4.21) for sternward motion.

Table 5.9 shows the parameter values for the Nomoto model with sideslip (4.24) for sternward motion.

Table 5.10 shows the parameter values for the Nomoto model (4.22) for sternward motion. Like for forward

motion, a∗ and b∗ refer to the elements ∗ in the state matrix A and input matrix B respectively. If a and b
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Table 5.8: Linear steering model parameter values for sternward motion

Turn Rate Region a11 a12 a21 a22 b1 b1bias b2 b2bias
positive -0.58 0.022 -2.36 -0.15 -0.0019 -0.078 0.12 -0.15

negative -0.37 0.012 0.077 -0.34 -0.0014 -0.0029 0.14 4.47

zero -0.66 0.040 7.09 -0.20 -0.0045 -0.078 0.18 1.64

Table 5.9: Nomoto-with-sideslip steering model parameter values for sternward motion

Turn Rate Region aβ bβ bβbias ar br brbias
positive -0.51 -0.74 2.74 -0.27 0.13 0.15

negative -0.28 -0.26 -1.45 -0.21 0.07 2.24

zero -0.34 -1.10 1.05 0.12 0.10 0.688

appear without a subscript, then the state and input matrices are scalars.

Table 5.10: Nomoto steering model parameter values for sternward motion

Turn Rate Region ar br brbias
positive -0.27 0.13 0.15

negative -0.21 0.07 2.24

zero 0.12 0.10 0.68

Examining Tables 5.2 and 5.7, one finds it is reasonable to use the Nomoto-with-sideslip model at speeds

below 2.6 m/s and to use the simpler Nomoto model at higher speeds. Table 5.11 shows the parameter values

corresponding to the steering model adopted for the given reference speed. Combined with the the first order

linear speed model (4.18) and the bilinear thrust model (4.10), this multiple-model representation for the

steering dynamics enables one to generate dynamically feasible reference trajectories for the Ribcraft USV.

Note that though the nonlinear speed model works best in sternward motion, the linear model is implemented

to provide continuity between forward and sternward models. Using the linear model potentially results in

errors in steady state behavior; however, these errors are not realized when used to control the vehicle. The

resulting trajectories may then be tracked using algorithms developed in Chapter 6.
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Table 5.11: Speed and steering model parameter values. (Parameter units suppressed.)

Forward Turn

Speed (m/s) Region au bubias aβ bβ bβbias ar br brbias
-1.0 positive -0.19 0 -0.51 -0.74 2.74 -0.27 0.13 0.15

-1.0 negative -0.19 0 -0.28 -0.26 -1.45 -0.21 0.07 2.24

-1.0 zero -0.19 0 -0.34 -1.10 1.05 0.12 0.10 0.688

1.1 N/A -0.12 0.07 -0.140 -0.20 0.061 -0.34 -1.06 0.29

1.5 N/A -0.31 0.33 -0.135 -0.10 0.008 -0.40 -1.11 0.77

2.6 N/A -0.58 0.85 0.035 -0.01 0.042 -0.39 -0.33 0.78

3.0 N/A -1.09 2.19 N/A N/A N/A -0.52 -0.30 1.10

3.2 N/A -1.00 1.75 N/A N/A N/A -0.69 -0.33 1.40

4.0 N/A -0.17 -1.12 N/A N/A N/A -1.29 -0.46 2.62

7.6 N/A -0.06 -1.65 N/A N/A N/A -1.08 -0.39 2.47

9.2 N/A -0.10 -1.31 N/A N/A N/A -0.29 -0.10 0.65
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CHAPTER

6

TRAJECTORY TRACKING

Two trajectory tracking controllers are formulated to control the Ribcraft USV, whose dynamics are modeled

using the linear speed model and the Nomoto-with-sideslip steering model with speed-scheduled parameters.

First, the problem of tracking a reference trajectory is formulated by defining tracking error dynamics.

(Recall that the generation of these reference trajectories is not a focus of this dissertation though the process

makes use of the models developed in Chapters 4 and 5.) Next, we develop a cascade of proportional-

derivative (PD) controllers whose inputs are the reference heading and speed signals, modified based on the

tracking error. As an alternative to the PD cascade, we describe a nonlinear tracking control law, derived

through backstepping. The “inner loop” of the backstepping control law is based on results described in

[Jiang and Nijmeijer, 1997, Jiang et al., 2001]. By including turn rate scheduled steering dynamics, the

backstepping control law is extended to consider closed-loop sternward trajectory tracking. An additional

augmentation to the backstepping control law yields global asymptotic control in the presence of constant
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6.1 Problem Formulation

or slowly varying flow. Both control laws are implemented on the Ribcraft USV and the experimental

results are compared for forward trajectory tracking. The backstepping control law is also implemented

for sternward motion on the Ribcraft USV. Simulations confirm the backstepping control law’s ability to

account for constant or slowly varying flow.

6.1 Problem Formulation

A riverine vessel moving in still water obeys the following kinematics:

ẋ = V sinχ (6.1)

ẏ = V cosχ (6.2)

with x and y representing the position of the boat in cartesian coordinates, V representing the speed of the

boat, and χ representing the course angle. The speed and steering dynamics are estimated using the Nomoto

model with sideslip, the linear speed model, and the assumption that V ≈ u, giving

u̇ = auu+ T̃ + bubias (6.3)







β̇

ψ̇

ṙ








=








aβ 0 bβ

0 0 1

0 0 ar















β

ψ

r








+








0

0

br







T̃ δs+








bβbias

0

brbias








(6.4)

where β is the sideslip angle, ψ is the vessel heading, r is the vessel turn rate, δs is the rudder input, and T̃

is the thrust produced by the propeller, divided by the unknown parameter (m−Xu̇). Recall from (5.7) that

T̃ = c̃uδn + d̃δn|δn|

The parameters au, bubias , aβ , bβ , bβbias , ar, br, and brbias are scheduled by nominal equilibrium speed u0.

Note that the course angle χ satisfies

χ = ψ + β. (6.5)
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6.1 Problem Formulation

To simplify controller development, we recast the dynamics (6.4) in terms of ψ, r, and χ, giving








χ̇

ψ̇

ṙ








=








aβ −aβ 1 + bβ

0 0 1

0 0 ar















χ

ψ

r








+








0

0

br







T̃ δs+








bβbias

0

brbias








(6.6)

with eigenvalues of aβ , 0, and ar.

Assume a reference trajectory has been generated based upon an initial state and reference rudder and

propeller speed inputs. Specifically,

ẋr = ur sinχr (6.7)

ẏr = ur cosχr (6.8)







χ̇r

ψ̇r

ṙr








=








aβ −aβ 1 + bβ

0 0 1

0 0 ar















χr

ψr

rr








+








0

0

br







T̃rδsr +








bβbias

0

brbias








(6.9)

u̇r = auur + T̃r + bubias (6.10)

(Since we have assumed that V ≈ u, in normal operation, we also require that Vr ≈ ur.) The trajectory

tracking error is




es

ey



 = R(χ)




xr − x

yr − y



 (6.11)

eu = ur − u (6.12)

eχ = χr − χ (6.13)

eψ = ψr − ψ (6.14)

ėψ = rr − r (6.15)
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6.1 Problem Formulation

Differentiating the error variables gives

ės = (χ̇r − aβeχ + aβeψ − (1 + bβ)ėψ)ey − ur + eu + ur cos eχ (6.16)

ėy = −(χ̇r − aβeχ + aβeψ − (1 + bβ)ėψ)es + ur sin eχ (6.17)







ėχ

ėψ

ëψ








=








aβ −aβ 1 + bβ

0 0 1

0 0 ar















eχ

eψ

ėψ








+








0

0

br








(T̃rδsr − T̃ δs) (6.18)

ėu = aueu + T̃r − T̃ (6.19)

Figure 6.1 shows all of the state components, as well as the reference state, and the along track and cross

track errors.

V

Vr

ψ

ψr

β

βr

χr

χ

(x, y)

(xr, yr)

es

ey

Figure 6.1: Notation and formulation of cross track and along track error.
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6.2 A Cascaded PD Control Approach

6.2 A Cascaded PD Control Approach

A simple closed-loop controller incorporating a series of proportional and PD controllers is devised. The

cross track and along track error terms are used to adjust the reference speed and heading such that the vessel

converges to the correct reference position. Define the speed and heading corrections

ucorr = kpses (6.20)

ψcorr = kpyey (6.21)

To establish a speed and heading that drive the vessel toward the desired trajectory, we define the following

propeller speed and rudder commands

δn = δnr + kpu(ucorr + eu) + kdu(u̇corr + ėu) (6.22)

δs = δsr + kpψ(ψcorr + eψ) + kdψ(ψ̇corr + ėψ) (6.23)

The control structure can be seen in Figure 6.2.

The closed-loop error dynamics are

ės = (χ̇r − aβeχ + aβeψ − (1 + bβ)ėψ)ey − ur + eu + ur cos eχ (6.24)

ėy = −(χ̇r − aβeχ + aβeψ − (1 + bβ)ėψ)es + ur sin eχ (6.25)







ėχ

ėψ

ëψ








=








aβ −aβ 1 + bβ

0 0 1

0 0 ar















eχ

eψ

ėψ








+








0

0

br







fψ(es, ey, eχ, eψ , eψ̇, eu) (6.26)

ėu = fu(es, ey, eχ, eψ , eψ̇, eu) (6.27)
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6.2 A Cascaded PD Control Approach

where

fψ(es, ey, eχ, eψ, eψ̇, eu) = δsr

(

c̃δnrur + d̃δn2

r

)

− (kdψ (kpy (kes (aβeχ − aβeψ + (bβ + 1)er − χ̇r) + ur sin(eχ))

+ er) + δsr + pψ(eψ + eykpy ))

(

1

2d̃k2du
c̃(ur − eu)

(

2aβd̃k
2

du
eχeykps − 2aβ d̃k

2

du
eψeykps

+
(

−4aβd̃k
2

du
eχeykps + 4aβd̃k

2

dv
eψeykps + 4aud̃k

2

dv
eu − 4bβd̃k

2

du
ereykps + c̃2k2due

2

u

− 2c̃2k2dueuur + c̃2k2duu
2

r + 4c̃d̃δnrk
2

du
ur − 2c̃kdueu + 2c̃kdvur + 4d̃2δn2

rk
2

du

+ 4d̃χ̇rk
2

du
eykps − 4d̃k2duereykps + 4d̃k2dueukps + 4d̃k2dukpsur cos(eχ)− 4d̃k2dvkpsur

+4d̃δnrkdu + 4d̃kdueskpskpu + 4d̃kdueukpu + 1
) 1

2

+ 2bβd̃k
2

du
ereykps + c̃kdueu − c̃kduur

− 2d̃χ̇rk
2

du
eykps + 2d̃k2duereykps − 2d̃k2dueukps − 2d̃k2dukpsur cos(eχ) + 2d̃k2dukpsur

−2d̃δnrkdu − 2d̃kdueskpskpu − 2d̃kdueukpu − 1
)

+
1

4d̃k4du

(

2aβd̃k
2

du
eχeykps

− 2aβd̃k
2

du
eψeykps +

(

−4aβd̃k
2

du
eχeykps + 4aβd̃k

2

du
eψeykps + 4aud̃k

2

du
eu

− 4bβd̃k
2

du
ereykps + c̃2k2due

2

u − 2c̃2k2dueuur + c̃2k2duu
2

r + 4c̃d̃δnrk
2

du
ur − 2c̃kdueu

+ 2c̃kduur + 4d̃2δn2

rk
2

du
+ 4d̃χ̇rk

2

du
eykps − 4d̃k2duereykps + 4d̃k2dueukps

+4d̃k2dukpsur cos(eχ)− 4d̃k2dukpsur + 4d̃δnrkdu + 4d̃kdueskpskpu + 4d̃kdueukpu + 1
) 1

2

+ 2bβd̃k
2

du
ereykps + c̃kdueu − c̃kduur − 2d̃χ̇rk

2

du
eykps + 2d̃k2duereykps − 2d̃k2dueukps

−2d̃k2dukpsur cos(eχ) + 2d̃k2dukpsur − 2d̃δnrkdu − 2d̃kdueskpskpu − 2d̃kdueukpu − 1
)2
)

(6.28)
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6.2 A Cascaded PD Control Approach

and

fu(es, ey, eχ, eψ, eψ̇, eu) =
1

2d̃k2du

(

2aβd̃k
2

du
eχeykps − 2aβ d̃k

2

du
eψeykps +

(

−4aβd̃k
2

du
eχeykps

+ 4aβ d̃k
2

du
eψeykps + 4aud̃k

2

du
eu − 4bβd̃k

2

du
ereykps + c̃2k2du(eu − ur)

2

+ 2c̃kdu(2d̃δnrkduur − eu + ur) + 4d̃2δn2

rk
2

du
+ 4d̃χ̇rk

2

du
eykps − 4d̃k2duereykps

+ 4d̃k2dueukps + 4d̃kdu
2kpsur cos(eχ)− 4d̃k2dukpsur + 4d̃δnrkdu + 4d̃kdueskpskpu

+4d̃kdueukpu + 1
) 1

2

+ 2bβd̃k
2

du
ereykps + c̃kdueu − c̃kduur − 2d̃χ̇rk

2

du
eykps

+ 2d̃k2duereykps − 2d̃k2dueukps − 2d̃k2dukpsur cos(eχ) + 2d̃k2dukpsur − 2d̃δnrkdu

−2d̃kdueskpskpu − 2d̃kdueukpu − 1
)

(6.29)

The error dynamics are nonlinear and time-varying. However, linearizing about a reference trajectory with

constant reference speed and course rate results in a linear, time-invariant system.

Linearizing the error dynamics (6.24-6.27) gives

















ės

ėy

ėχ

ėψ

ëψ

ėu

















=

















0 χ̇r 0

−χ̇r 0 ur

0 0 −aβ
0 0 aβ

a51 a52 −brkdψkpyur
(
c̃urϕ3 + ϕ2

3

)

−kpskpu
kdu

(
1

ϕ1

+ 1
)

−χ̇rkps
(

1

ϕ1

+ 1
)

0

0 0 1

0 0 0

bβ + 1 0 0

0 1 0

−brkpψ
(
c̃urϕ3 + ϕ2

3

)
ar − brkdψ

(
c̃urϕ3 + ϕ2

3

)
a56

0 0 a66

































es

ey

eχ

eψ

ėψ

eu

















(6.30)
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where

ϕ1 =
√

c̃2k2duu
2
r + 4c̃d̃δnrk

2
du
ur + 2c̃kduur + 4d̃2δn2rk

2
du

+ 4d̃δnrkdu + 1

ϕ2 =

√

c̃2k2duu
2
r + 4c̃d̃δnrk

2
du
ur + 2c̃kduur + 4d̃2δn2rk

2
du

+ 4d̃δnrkdu + 1− c̃kduur − 2d̃δnrkdu − 1

2d̃k2du

ϕ3 =
−
√

c̃2k2duu
2
r + 4c̃d̃δnrk2duur + 2c̃kduur + 4d̃2δn2rk

2
du

+ 4d̃δnrkdu + 1− c̃kduur − 2d̃δnrkdu − 1

2d̃k2du

ϕ4 = 4aud̃k
2
du

− 2c̃2k2duur − 2c̃kdu + 4d̃k2dukps + 4d̃kdukpu

and

a51 = br

(

χ̇rkdψkpy
(
c̃urϕ2 + ϕ2

2

)
− δsr
kdv

(

c̃urkpskpu

(
1

ϕ1
− 1

)

+ ϕ2

(

2d̃kpskpu
ϕ1

− 2d̃kpskpu

)))

a52 = br

(

−kpψkpy
(
c̃urϕ3 + ϕ2

3

)
+ δsr

(

c̃urχ̇rkps

(
1

ϕ1
+ 1

)

+ ϕ3

(

2d̃χ̇rkps
ϕ1

+ 2d̃χ̇rkps

)))

a56 = −brδsr
((

− ϕ4

2ϕ1
+ c̃kdu − 2d̃k2dukps − 2d̃kdukpu

)(

c̃ur

2d̃k2du
+ 1

)

+
ϕ3

k2du
− c̃ϕ3

)

a66 =
1

2d̃k2du

(

− ϕ4

2ϕ1
+ c̃kdu − 2d̃k2dukps − 2d̃kdukpu

)

Assume that ur, δnr, and χ̇r are constants, which makes (6.30) an LTI system.

We analyze closed-loop stability of the PD cascaded control system by finding eigenvalues of (6.30),

which is populated using identified models shown in Table 5.5 and control gains obtained through exper-

imental tuning shown in Table 6.1. Table 6.2 shows the system eigenvalues for a range of operating con-

ditions. All eigenvalues are in the left half plane, indicating exponential stability of the LTI system (6.30).

Note that the eigenvalues are dependent upon ur and χ̇r. The nominal value χ̇r = 0 is used. Only five

eigenvalues exist for higher speeds since the Nomoto steering model is used.

105



6.3 A Backstepping Control Approach

Table 6.1: Control Gains for the PD control system for the Ribcraft USV.

ur (m/s) kpy kpψ kdψ kps kpV kdV
1.1 0.4 −1.0 −0.5 0.1 50 50
1.5 0.4 −1.0 −0.75 0.1 50 50
2.6 0.4 −0.6 −1.0 0.1 50 50
3.0 0.4 −0.8 −0.9 0.1 50 50
3.2 0.4 −0.8 −0.9 0.1 50 50
4.0 0.4 −1.0 −0.5 0.1 50 50
7.6 0.3 −0.5 −0.5 0.1 50 50
9.2 0.2 −0.4 −1.0 0.1 50 50

Table 6.2: Ribcraft USV Closed-Loop Linearized PD Control System Eigenvalues

ur (m/s) λ1 λ2 λ3 λ4 λ5 λ6
1.1 -5.47 -0.31 -0.01+0.31ı -0.01-0.31ı -0.19 -0.04

1.5 -5.21 -0.43 -0.02+0.39ı -0.02-0.39ı -0.16 -0.04

2.6 -5.02 -0.44 -0.01+0.27ı -0.01-0.27ı -0.04

3.0 -4.51 -0.55 -0.01+0.28ı -0.01-0.28ı -0.04

3.2 -4.60 -0.70 -0.02+0.27ı -0.02-0.27ı -0.04

4.0 -5.43 -1.16 -0.01+0.31ı -0.01+0.31ı -0.04

7.6 -5.57 -1.07 -0.03+0.36ı -0.03-0.36ı -0.04

9.2 -5.54 -0.34 -0.03+0.46ı -0.03-0.46ı -0.04

6.3 A Backstepping Control Approach

Alternatively, one may use backstepping to attenuate the error terms es, ey , eu, eχ, and eψ . Take the adjusted

position error to be



es

ey



 = κ5R(χ)




xr − x

yr − y



 (6.31)

where κ5 is a constant parameter. (This parameter will ultimately play the role of a turn rate gain in the

inner loop of the backstepping controller.) The rates of change of the along track and cross track error are




ės

ėy



 =




χ̇ey + κ5(−ur + eu + ur cos eχ)

−χ̇es + κ5ur sin eχ



 (6.32)
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We transform and group the tracking error variables as follows:






η

ξ

eψ




 =













η1
η2
η3

ξ1

ξ2
eψ













=











es
ey
eχ

−aβeψ + (bβ + 1)ėψ
eu
eψ











(6.33)

The error dynamics, in the transformed variables, are

η̇1 = (χ̇r − aβη3 − ξ1)η2 + κ5(−ur + ξ2 + ur cos η3) (6.34)

η̇2 = −(χ̇r − aβη3 − ξ1)η1 + κ5ur sin η3 (6.35)

η̇3 = aβη3 + ξ1 (6.36)

ξ̇1 =
ar(bβ + 1)− aβ

1 + bβ
ξ1 +

(ar(bβ + 1)− aβ)aβ
1 + bβ

eψ + (bβbr + br)(T̃rδsr − T̃ δs) (6.37)

ξ̇2 = auξ2 + T̃r − T̃ (6.38)



ėψ

ëψ



 =




0 1

0 ar








eψ

ėψ



+




0

br



 (T̃rδsr − T̃ δs) (6.39)

Following in the spirit of [Jiang et al., 2001,Jiang and Nijmeijer, 1997] we define the following virtual inputs

ξ1 = φ1(η) and ξ2 = φ2(η) to stabilize the η̇ subsystem (6.34), (6.35), and (6.36):

ξ1 = φ1(η) = −sin η3
η3

η2urκ5 − κ1 tanh(κ2η3)− aβη3 (6.40)

ξ2 = φ2(η) = ur − ur cos η3 − κ3 tanh(κ4η1) (6.41)

where the parameters κ1, κ2, κ3, κ4, and κ5 are positive tuning factors that adjust controller sensitivity and

amplitude. The candidate Lyapunov function

V1(η) =
1

2
η21 +

1

2
η22 +

1

2
η23 (6.42)
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is positive definite. The derivative of the candidate Lyapunov function is

V̇1 = η1η̇1 + η2η̇2 + η3η̇3

= η1((χ̇r − aβη3 − ξ1)η2 − κ5(ur − ξ2 − ur cos η3)) + η2(−(χ̇r − aβη3 − ξ1)η1 + κ5ur sin η3)

+ η3(aβη3 + ξ1)

= −κ3κ5η1 tanh(κ4η1) + η1η2(χ̇r − aβη3 − ξ1)− η1η2(χ̇r − aβη3 − ξ1) + κ5η2ur sin η3

+ η3

(

−sin η3
η3

κ5η2ur − κ1 tanh(κ2η3)

)

= −κ3κ5η1 tanh(κ4η1)− κ1η3 tanh(κ2η3) ≤ 0

Lemma 6.3.1. Assume that χr and ur are bounded. Also, assume that ur(t) 6= 0 on [0,∞). All trajectories

of (6.34), (6.35), and (6.36) with inputs defined by (6.40) and (6.41) are globally uniformly bounded and

lim
t→∞

|η| = 0

Proof: Since the candidate Lyapunov function is positive definite and radially unbounded and the candi-

date Lyapunov function’s derivative is negative semidefinite, η is uniformly bounded and defined for t ≥ 0.

Note that the Lyapunov function’s second derivative is bounded. By Barbalat’s lemma, η1 and η3 converge

to zero. To prove that η2 converges to zero note that η3 → 0 as t→ ∞ and

sin θ

θ
=

∫ 1

0
cos(sθ)ds

so
∫ 1
0 cos(sη3)ds → 1 as t → ∞. Recall that ur(t) 6= 0 for all t ≥ 0. The η3 dynamics of the closed-loop

system are

η̇3 = −κ1 tanh(κ2η3) + κ5η2ur

∫ 1

0
cos(sη3)ds

Note that η3 tends to 0 so η2ur
∫ 1
0 cos(sη3)ds must go to 0, which implies that η2 → 0. �

Lemma 6.3.2. The equilibrium state η = 0 for the system (6.34-6.36) under the feedback control law

(6.40-6.41) is exponentially stable for continuous and bounded ur 6= 0 and χ̇r.
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Proof: The linearized closed-loop system around the equilibrium point is

η̇ =








−κ3κ4κ5 χ̇r 0

−χ̇r 0 κ5ur

0 −κ5ur −κ1κ2








η (6.43)

The system (6.43) is exponentially stable if

PA(t) +AT (t)P = −Q(t) (6.44)

where P and Q(t) are positive definite symmetric matrices. Define a constant, positive definite matrix

P =








p1 0 0

0 p2 p3

0 p3 p4








(6.45)

From (6.44), we have

Q(t) =








2p1κ3κ4κ5 −χ̇r (p1 − p2) χ̇rp3

−χ̇r (p1 − p2) 2p3urκ5 (p4 − p2)urκ5 − p3κ1κ2

χ̇rp3 (p4 − p2) urκ5 − p3κ1κ2 2p4κ1κ2 − 2urκ5p3








To simplify analysis, set p1 = p2 and p3 =
p1−p4
sgn(ur)

. Then

Q(t) =








2p1κ3κ4κ5 0 χ̇r(t)(p1−p4)
sgn(ur)

0 2(p1 − p4)|ur(t)|κ5 0

χ̇r(t)(p1−p4)
sgn(ur)

0 2p4κ1κ2 − 2|ur(t)|κ5(p1 − p4)








The matrix Q(t) is positive definite provided the leading principal minors are positive. Setting p4 > 0 and
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p1 = p4 + ǫ where ǫ > 0 is arbitrarily small, the leading principal minors are

2p1κ3κ4κ5 > 0

4p1p3|ur|κ3κ4κ25 > 0

−2χ̇2
rκ5 (p1 − p4)

3 |ur|+ 8κ1κ2κ3κ4κ
2
5p1 (p1 − p4) p4|ur| − 8κ3κ4κ

3
5p1 (p1 − p4)

2 u2r > 0

Thus, by Lyapunov’s indirect method, the time-varying closed-loop system (6.34-6.36), with feedback con-

trol law (6.40-6.41), is locally exponentially stable. �

Setting the inputs to




T̃ δs

T̃



 =




T̃rδsr

T̃r



+





1
br(bβ+1) 0

0 1













ar(bβ+1)−aβ
1+bβ

ξ1 +
(ar(bβ+1)−aβ)aβ

1+bβ
eψ

auξ2





−




(−(
∫ 1
0 cos(sη3)ds)κ5ur)(−(χ̇r − aβη3 + ξ1)η1 + κ5ur sin η3)

−κ3κ4sech2(κ4η1)((χ̇r − aβη3 + ξ1)η2 + κ5(−ur + ur cos η3 + ξ2))





−




(−(
∫ 1
0 sin(sη3)sds)η2κ5ur − κ1κ2sech2(κ2η3)− aβ)(aβη3 + ξ1)

ur sin η3(aβη3 + ξ1)





+




η3

η1



+K




ξ1 + (

∫ 1
0 cos(sη3)ds)η2κ5ur + κ1 tanh(κ2η3) + aβη3

ξ2 − ur + ur cos η3 + κ3 tanh(κ4η1)







 (6.46)

asymptotically stabilizes the equilibrium η = 0 and ξ = 0 if βr, χr, δsr, ur, δnr are bounded, the matrix

K =




k1 k2

k2 k3





is positive definite, and T̃ 6= 0. The rudder angle may be found directly from (5.6) and the propeller speed

is

δn =
−c̃u+

√

(c̃u)2 + 4d̃T̃

2d̃
(6.47)

Figure 6.3 shows the dynamics of the transformed tracking error variables (6.33) separated into constituent
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subsystems where Kctrl is the control law, (6.46) combined with the thrust mapping (6.47) to output thrust

angle, δs, and propeller speed, δn.

Proposition 6.3.3. The control law (6.46) globally asymptotically stabilizes the dynamic system (6.34-6.38)

about the equilibrium η = 0 and ξ = 0 and eψ remains bounded and converges asymptotically to zero

provided βr, χr, δsr, ur, and δnr are bounded, T̃ 6= 0, and − aβ
1+bβ

< 0.

Proof: The proof of Proposition 6.3.3 follows from Lyapunov stability analysis of the closed-loop system

[Khalil, 2002]. For simplicity, we consider only the special case in which the parameters aβ and bβ do not

change values due to model switching; the discontinuities that are introduced by these isolated changes in

parameter values can be addressed with slight modifications of the Lyapunov function [Liberzon, 2003].

Consider the error dynamics in (6.34-6.38). Choose the radially unbounded candidate Lyapunov function

V2 =
1

2
η21 +

1

2
η22 +

1

2
η23 +

1

2
(ξ −φ(η))T (ξ − φ(η)) > 0 (6.48)

Applying the control law (6.46), the time derivative of (6.48) is

V̇2 = −κ3η1 tanh(κ4η1)− κ1η3 tanh(κ1η3)− (ξ − φ(η))TK(ξ − φ(η)) ≤ 0

Using Lemma 6.3.1 for the η subsystem, and recalling that K is positive definite, the equilibrium is globally

asymptotically stable by Lyapunov’s direct method, provided eψ is bounded so that the input (6.46) remains

well-defined.

Rearranging the ξ1 transform in (6.33) gives

ėψ =
aβ

bβ + 1
eψ +

1

bβ + 1
ξ1 (6.49)

Since
aβ

1+bβ
< 0, the system (6.49) is exponentially stable. Since ξ1 remains bounded while the input (6.46) is

well-defined, eψ (and ėψ) remains bounded; see Lemma 4.6 in [Khalil, 2002]. Furthermore, as ξ1 converges

to zero, so do eψ and ėψ . �

At higher speeds, the sideslip dynamics become extremely stable and β remains very close to zero. Rather
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6.3 A Backstepping Control Approach

than vary the structure of the speed-scheduled steering dynamics by eliminating β as a state variable, we set

aβ = 0 and bβ = 0 with the understanding that β remains zero in this higher speed regime. Referring to

(6.33), we see that ξ1 = ėψ , in this case. The dynamics (6.39) are then superfluous; the ξ1 dynamics are

given by (6.37). In this scenario the control law (6.46) globally asymptotically stabilizes (6.34-6.38).

In an effort to understand similarities between the PD control law and the backstepping control law we

linearize the error dynamics (6.16-6.19) controlled by (6.46) giving

















ės

ėy

ėχ

ėψ

ëψ

ėu

















=

















0 χ̇r 0

−χ̇r 0 urκ5

0 0 aβ

0 0 0

(aβ+χ̇r)urκ5−k2κ3κ4
bβ+1 −k1urκ5

bβ+1 a53

−k3κ3κ4 − 1 −χ̇rκ3κ4 − k2urκ5 −k2(aβ + κ1κ2)

0 0 κ5

0 0 0

−aβ bβ + 1 0

0 1 0

aβ(aβ+k1+κ1κ2)
bβ+1 −aβbβ+(bβ+1)(k1+κ1κ2)

bβ+1 − k2
bβ+1

aβk2 (−bβ − 1)k2 −k3 − κ3κ4

































es

ey

eχ

eψ

ėψ

eu

















(6.50)

where

a53 = −
a2β + k1aβ + κ1κ2aβ + u2rκ

2
5 + k1κ1κ2 + 1

bβ + 1

Assume that ur, δnr, and χ̇r are constants, which makes (6.50) an LTI system.

We analyze closed-loop stability of the backstepping control system by finding eigenvalues of (6.50),

which is populated using identified models shown in Table 5.5 and control gains, tuned through experimental

and simulated trials, in Table 6.4. Table 6.3 shows the system eigenvalues for a range of operating conditions.

All eigenvalues are in the left half plane, indicating exponential stability of the LTI system (6.50). Note that
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the eigenvalues are dependent upon ur and χ̇r. The nominal reference course rate χ̇r = 0 is used. Only five

eigenvalues exist for higher speeds since the Nomoto steering model is used at these speeds.

Comparing Tables 6.3 and 6.2 one can see that the backstepping control law has eigenvalues that are

considerably more negative than the PD control law, indicating that the backstepping control law has faster

convergence than the PD control law. These more negative eigenvalues are partly due to (6.50) having three

more nonzero terms than (6.30). (6.30) has a total of 6 gains for each speed region that can be adjusted to

affect the system’s eigenvalues, but (6.50), however, has 9 gains that cover the full speed envelope.

Table 6.3: Ribcraft USV Closed-Loop Linearized Backstepping Eigenvalues

ur (m/s) λ1 λ2 λ3 λ4 λ5 λ6
1.1 -19.95 -1.26 -1.00 -0.24 -0.18 -0.05

1.5 -19.95 -1.26 -0.96 -0.24 -0.15 -0.09

2.6 -19.95 -1.26 -0.60 -0.45 -0.24 *

3.0 -19.95 -1.26 -0.53+0.29ı -0.53-0.29ı -0.24

3.2 -19.87 -1.26 -0.53+0.37ı -0.53-0.37ı -0.24

4.0 -19.95 -1.26 -0.53+0.58ı -0.53-0.58ı -0.24

7.6 -19.95 -0.53+1.43ı -0.53-1.43ı -1.26 -0.24

9.2 -19.95 -0.53+1.77ı -0.53-1.77ı -1.26 -0.24

Table 6.4: Ribcraft USV Linearized Backstepping Control Gains

κ1 κ2 κ3 κ4 κ5 k1 k2 k3
1 1 1 1 .2 20 .1 .5

Control gains in Table 6.4 were chosen to accommodate actuator rate limiting and saturation. Adjusting

κ1 and κ2 changes how aggressively the vessel points to the desired position. Increasing κ5 is analogous

to increasing the “look ahead” distance in a cross track controller. Increasing κ3 and κ4 increases how

aggressively the vessel speeds to the desired position.

6.3.1 Incorporating Model Parameter Scheduling in Backstepping Control

The results in Chapter 5 show that linear speed and steering models, with a speed-scheduled set of model

parameters, adequately describe the dynamics of the Ribcraft USV. Earlier formulations of the backstepping
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control law in Section 6.3 assume that a single set of model parameters is used. The backstepping control

law must be modified to include a speed scheduled set of model parameters. First, the control law must be

augmented to account for discrepancies between parameters for the actual vessel state and for the virtual

vehicle state. Secondly, the control law must additionally be changed to ensure that the Lyapunov function

used to prove stability is smooth.

6.3.1.1 Discrepancies in Parameters

The model parameters used to create the reference trajectory switch values when the reference speed varies

significantly. The vessel’s actual speed and the reference speed may fall into different regimes, corre-

sponding to different model parameter values. The trajectory tracking control law must account for these

disparities in parameters.

Let the subscript “r” denote parameter values associated with the reference trajectory at a given instant;

parameters without this subscript correspond to the vessel’s actual speed. Differentiating (6.12-6.15), we

have

ėu = aueu + T̃r − T̃ +∆auur +∆bubias







ėχ

ėψ

ëψ








=








aβ −aβ 1 + bβ

0 0 1

0 0 ar















eχ

eψ

ėψ








+








0

0

br








(T̃rδsr − T̃ δs)

+








∆aβχr −∆aβψr +∆bβψ̇r +∆bβbias

0

∆arψ̇r +∆brT̃rδsr +∆brbias







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where

∆au = aur − au

∆bubias = bubiasr − bubias

∆bβbias = bβbiasr − bβbias

∆aβ = aβr − aβ

∆bβ = bβr − bβ

∆ar = arr − ar

∆br = brr − br

∆brbias = brbiasr − brbias

The change of variables








η

ξ

eψ








=

















η1

η2

η3

ξ1

ξ2

eψ

















=


















es

ey

eχ

−aβeψ + (bβ + 1)ėψ +
(

∆aβχr −∆aβψr +∆bβψ̇r +∆bβbias

)

eu

eψ


















(6.51)
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gives the transformed trajectory tracking error dynamics

η̇1 = (χ̇r − aβη3 + ξ1)η2 − ur + ξ2 + ur cos η3 (6.52)

η̇2 = −(χ̇r − aβη3 + ξ1)η1 + ur sin η3 (6.53)

η̇3 = aβη3 + ξ1 (6.54)

ξ̇1 =

(
ar(bβ + 1)− aβ

1 + bβ

)

ξ1 +

(
(ar(bβ + 1)− aβ)aβ

1 + bβ

)

eψ + br(bβ + 1)(T̃rδsr − T̃ δs)

+ (1 + bβ)(∆arψ̇r + brrTrδsr +∆brbias)−
(ar(1 + bβ)− aβ)(∆aβχr −∆aβψr +∆bβψ̇r +∆bβbias

)

1 + bβ

+ (∆aβχ̇r −∆aβψ̇r +∆bβψ̈r) (6.55)

ξ̇2 = auξ2 + T̃r − T̃ +∆auur +∆bubias
(6.56)




ėψ

ëψ



 =




0 1

0 ar








eψ

ėψ



+




0

br



 (T̃rδsr − T̃ δs) +




0

∆arψ̇r +∆brT̃rδsr +∆brbias



 (6.57)

Compare with the original backstepping error dynamics (6.34-6.39).

Augmenting the original control to accommodate the discrepancy in actual and reference model parame-
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ters simply requires adjusting the outer loop steering and speed dynamics as follows:




T̃ δs

T̃



 =




T̃rδsr

T̃r



+





1
br(bβ+1) 0

0 1













ar(bβ+1)−aβ
1+bβ

ξ1 +
(ar(bβ+1)−aβ )aβ

1+bβ
eψ

auξ2





+




(1 + bβ)(∆arψ̇r + brrTrδsr +∆brbias)−

(ar(1+bβ)−aβ )(∆aβχr−∆aβψr+∆bβψ̇r+∆bβbias
1+bβ

∆auur +∆bubias





+




(∆aβχ̇r −∆aβψ̇r +∆bβψ̈r)

0





−




(−
∫ 1
0 cos(sη3)dsκ5ur)(−(χ̇r − aβη3 + ξ1)η1 + κ5ur sin η3)

−κ3κ4sech2(κ4η1)((χ̇r − aβη3 + ξ1)η2 + κ5(−ur + ur cos η3 + ξ2))





−




(−
∫ 1
0 sin(sη3)sdsη2κ5ur − κ1κ2sech2(κ2η3)− aβ)(aβη3 + ξ1))

ur sin η3(aβη3 + ξ1)





+




η3

η1



+K




ξ1 + (

∫ 1
0 cos(sη3)ds)η2κ5ur + κ1 tanh(κ2η3) + aβη3

ξ2 − ur + ur cos η3 + κ3 tanh(κ4η1)







 (6.58)

This modified control law cancels the additional terms. Closed-loop stability properties follow as for (6.46).

Proposition 6.3.4. The control law (6.58) globally asymptotically stabilizes the dynamic system (6.52-6.56)

about the equilibrium (η, ξ) = (0,0) and eψ remains bounded and converges to zero, provided βr, χr, δsr,

ur, and δnr are bounded and T̃ 6= 0.

The proof of Proposition 6.3.4 follows similarly to the proof of Proposition 6.3.3.

6.3.1.2 Discontinuities in the Lyapunov Function

Without a smooth Lyapunov function Proposition 6.3.4 only proves stability if parameters never switch,

which is an impractical assumption. To regain global asymptotic stability of the parameter scheduled vessel

dynamics we expand upon method shown in [Liberzon, 2003] requiring one or more Lyapunov functions for

each switched subsystem. Each Lyapunov function must prove asymptotic stability of its associated subsys-

tem as well as maintain continuity along the switching manifolds between adjacent subsystems’ Lyapunov
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functions.

Assume there exists a set of Lyapunov functions

{

V (i) =
1

2
η21 +

1

2
η22 +

1

2
η23 +

1

2
(ξ −φ(η))TH(i)(ξ − φ(η)) > 0

∣
∣
∣ i = 1, 2, 3, . . .

}

(6.59)

where H(i) is a constant, positive, diagonal 2× 2 matrix

H(i) =




h
(i)
1 0

0 1





The superscript (i) found in the function V (i) and matrix H(i) correspond to the current continuous subsys-

tem. Proper definition of the H(i+1) (indicating the next continuous subsystem) guarantees that switching

between V (i) and V (i+1) is smooth. The switching manifolds are defined by the actual and reference ves-

sels’ forward velocity. A Lyapunov function exists for every instance that the reference or estimated vessel

parameters switch. Specifically,

h
(i+1)
1 = h

(i)
1

(

ξ
(i)
1 − φ

(i)
1 (η)

ξ
(i)
1 − φ

(i)
1 (η)−∆a∗βeψ +∆b∗β ėψ + (−∆a∗βχr +∆a∗βψr −∆b∗βψ̇r −∆b∗βbias)−∆a∗βη3

)2

(6.60)

when the actual vessel’s parameters switch and

h
(i+1)
1 = h

(i)
1




ξ
(i)
1 − φ

(i)
1 (η)

ξ
(i)
1 − φ

(i)
1 (η) + (∆a∗βrχr −∆a∗βrψr +∆b∗βrψ̇r +∆b∗βbiasr

)





2

(6.61)

when the reference vessel’s parameters switch. Like for Lyapunov function V and matrix H the ξ1 and φ1
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with the superscripts (i) and (i+ 1) correspond to the current and next continuous subsystems. Note that

∆a∗β = a
(i+1)
β − a

(i)
β

∆a∗βr = a
(i+1)
βr

− a
(i)
βr

∆b∗β = b
(i+1)
β − b

(i)
β

∆b∗βr = b
(i+1)
βr

− b
(i)
βr

∆b∗βbias = b
(i+1)
βbias

− b
(i)
βbias

∆b∗βbiasr = b
(i+1)
βbiasr

− b
(i)
βbiasr

By using (6.60) and (6.61) continuity is maintained between Lyapunov functions. Furthermore if H(1) is

positive and diagonal all successive matrices {H(i) | i = 2, 3, 4, . . . } will be positive and diagonal provided

a switch in aβ and bβ parameters does not cause ξ1 − φ1(η) → 0.

Proposition 6.3.5. If H(1) is positive and diagonal then {H(i) | i = 2, 3, 4, . . . } are positive and diagonal

provided switching manifolds do not cause the discontinuous state ξ1 to induce ξ1 − φ1(η) → 0 and ξ1 −
φ1(η) 6= 0 at the time the parameters switch.

Proof: Looking at the non-zero terms of H(i+1) during switches and assuming H(i) is positive and

diagonal we have

h
(i+1)
1 = h

(i)
1 ∆2

vessel > 0

for vessel parameter switching and

h
(i+1)
1 = h

(i)
1 ∆2

ref > 0

for reference trajectory parameter switching where

∆vessel =
ξ
(i)
1 − φ

(i)
1 (η)

ξ
(i)
1 − φ

(i)
1 (η)−∆a∗βeψ +∆b∗β ėψ + (−∆a∗βχr +∆a∗βψr −∆b∗βψ̇r −∆b∗βbias)−∆a∗βη3

120



6.3 A Backstepping Control Approach

and

∆ref =
ξ
(i)
1 − φ

(i)
1 (η)

ξ
(i)
1 − φ

(i)
1 (η) + (∆a∗βrχr −∆a∗βrψr +∆b∗βrψ̇r +∆b∗βbiasr

)

Since it is assumed that H(1) is positive and diagonal and between any step H(i) → H(i+1) > 0 then H(i)

remains positive and diagonal for all values of (i) by induction. �

Unlike the standard backstepping technique the Lyapunov functions (6.59) contains a positive, diagonal

matrix H. The traditional multivariable backstepping technique employs the control law

u = G−1
a (η, ξ)

(

−fa(η, ξ) +
∂φ

∂η
(f(η) +G(η)ξ)−

(
∂V

∂η
G(η)

)T

−K(ξ − φ(η))

)

for the Lyapunov function

Va(η, ξ) = V (η) +
1

2
(ξ − φ(η))T (ξ − φ(η))

where V (η) > 0 and V̇ ≤ −W (η) for a positive definite function W yielding a Lyapunov rate

V̇a =
∂V

∂η
(f(η) +G(η)ξ) + (ξ − φ(η))T

(

ξ̇ − ∂φ

∂η
η̇

)

=
∂V

∂η
(f(η) +G(η)φ(η)) +

∂V

∂η
G(η)(ξ − φ(η))

+ (ξ − φ(η))T
(

fa(η, ξ) +Ga(η, ξ)u− ∂φ

∂η
(f(η) +G(η)ξ)

)

≤ −W (η)− (ξ − φ(η))TK(ξ − φ(η)) < 0

assuming K is positive definite, proving asymptotic stability of the equilibrium (η, ξ) = (0,0) of the

system

η̇ = f(η) +G(η)ξ (6.62)

ξ̇ = fa(η, ξ) +Ga(η, ξ)u (6.63)
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Including a positive diagonal H we have the control law

u = G−1
a (η, ξ)

(

−fa(η, ξ) +
∂φ

∂η
(f(η) +G(η)ξ)−H−1

(
∂V

∂η
G(η)

)T

−K(ξ − φ(η))

)

(6.64)

for the Lyapunov function

Va(η, ξ) = V (η) +
1

2
(ξ −φ(η))TH(ξ −φ(η)) (6.65)

which gives the Lyapunov rate

V̇a =
∂V

∂η
(f(η) +G(η)ξ) + (ξ − φ(η))TH

(

ξ̇ − ∂φ

∂η
η̇

)

=
∂V

∂η
(f(η) +G(η)φ(η)) +

∂V

∂η
G(η)(ξ − φ(η))

+ (ξ − φ(η))TH

(

fa(η, ξ) +Ga(η, ξ)u− ∂φ

∂η
(f(η) +G(η)ξ)

)

≤ −W (η)− (ξ −φ(η))TKH(ξ − φ(η)) < 0

proving asymptotic stability of the equilibrium (η, ξ) = (0,0) for the system defined by (6.62) and (6.63)

as long as K is restricted to being positive and diagonal.

Assume a set of positive diagonal matrices H(i) exists, giving a set of Lyapunov functions V
(i)
a (η, ξ)

defined by (6.59) that are continuous on switching manifolds for systems (6.62) and (6.63) where (ξ−φ(η))

switches between subsystems. Using H(i) and a positive diagonal K in (6.64) will then globally asymptotic

stabilize the equilibrium (η, ξ) = (0,0) for (6.62) and (6.63).
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6.3 A Backstepping Control Approach

Using the knowledge gained from using the Lyapunov function (6.65) we set the control law to




T̃ δs

T̃



 =




T̃rδsr

T̃r



+





1
br(bβ+1) 0

0 1













ar(bβ+1)−aβ
1+bβ

ξ1 +
(ar(bβ+1)−aβ )aβ

1+bβ
eψ

auξ2





+




(1 + bβ)(∆arψ̇r + brrTrδsr +∆brbias)−

(ar(1+bβ)−aβ )(∆aβχr−∆aβψr+∆bβψ̇r+∆bβbias
1+bβ

∆auur +∆bubias





+




(∆aβχ̇r −∆aβψ̇r +∆bβψ̈r)

0





−




(−
∫ 1
0 cos(sη3)dsκ5ur)(−(χ̇r − aβη3 + ξ1)η1 + κ5ur sin η3)

−κ3κ4sech2(κ4η1)((χ̇r − aβη3 + ξ1)η2 + κ5(−ur + ur cos η3 + ξ2))





−




(−
∫ 1
0 sin(sη3)sdsη2κ5ur − κ1κ2sech2(κ2η3)− aβ)(aβη3 + ξ1))

ur sin η3(aβη3 + ξ1)





+H(i)−1




η3

η1



+K




ξ1 + (

∫ 1
0 cos(sη3)ds)η2κ5ur + κ1 tanh(κ2η3) + aβη3

ξ2 − ur + ur cos η3 + κ3 tanh(κ4η1)









(6.66)

which asymptotically stabilizes the equilibrium η = 0 and ξ = 0 if βr, χr, δsr, ur, δnr are bounded, the

gain matrix

K =




k1 0

0 k2





is constant, positive, and diagonal, T̃ 6= 0, and the set of matrices

H(i) =




h
(i)
1 0

0 1





are all constant, positive, and diagonal by conforming to (6.60) and (6.61).

Proposition 6.3.6. The control law (6.66) globally asymptotically stabilizes the dynamic system (6.34-6.38)

about the equilibrium η = 0 and ξ = 0 and eψ remains bounded and converges asymptotically to zero

123



6.3 A Backstepping Control Approach

provided βr, χr, δsr, ur, and δnr are bounded, T̃ 6= 0, and
aβ

1+bβ
< 0.

Proof: Consider the error dynamics in (6.34-6.38). Choose the set of radially unbounded candidate

Lyapunov functions

V
(i)
2 =

1

2
η21 +

1

2
η22 +

1

2
η23 +

1

2
(ξ −φ(η))TH(i)(ξ −φ(η)) > 0 (6.67)

where H(i) is a positive diagonal matrix defined in (6.60) and (6.61), switches to a positive diagonal H(i+1)

such that subsequent Lyapunov functions are continuous along the switching manifold. Applying the control

law (6.66), the time derivative of (6.67) is

V̇
(i)
2 = −κ3η1 tanh(κ4η1)− κ1η3 tanh(κ1η3)− (ξ − φ(η))TKH(i)(ξ − φ(η)) ≤ 0

Using Lemma 6.3.1 for the η subsystem, and recalling that K is a positive diagonal matrix and the positive

diagonal H(i) induces continuity of (ξ − φ(η) between switching manifolds, the equilibrium is globally

asymptotically stable by Lyapunov’s direct method, provided eψ is bounded so that the input (6.66) remains

well-defined. Boundedness of eψ is shown in (6.3.3). �

6.3.2 Including Sternward Bifurcation Dynamics

The control law (6.66) can be applied to sternward dynamics by carefully adjusting how the reference

trajectory is generated and augmenting the stability proof to account for cases where actual and reference

parameters never converge. We assume that a single stable model with a zero turn rate equilibrium is used

to generate reference trajectories. This assumption simplifies the optimization approach used to generate

feasible trajectories that avoid obstacles en route to a set goal. However, the parameter discrepancies noted

in Section 6.3.1 will now exist even for the zero error case, requiring the stability properties to be reanalyzed.

If, for the zero error case, all parameter discrepancies are zero then Proposition 6.3.5 proves global asymp-

totic stability of the system. However, reference trajectories are generated using a stable turn rate model with

an equilibrium about zero turn rate, but the estimated vessel is modeled by stable left and right turn steering

models and an unstable zero turn rate model.
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Proposition 6.3.7. The control law (6.66) globally asymptotically stabilizes the dynamic system (6.34-6.38)

about the equilibrium η = 0 and ξ = 0 and eψ remains bounded and converges asymptotically to zero

provided βr, χr, δsr, ur, and δnr are bounded, T̃ 6= 0, and
aβ

1+bβ
< 0.

Proof: Consider the error dynamics in (6.34-6.38). Choose the set of radially unbounded candidate

Lyapunov functions

V
(i)
2 =

1

2
η21 +

1

2
η22 +

1

2
η23 +

1

2
(ξ −φ(η))TH(i)(ξ −φ(η)) > 0 (6.68)

where H(i) is a positive diagonal matrix defined in (6.60) and (6.61), switches to a positive diagonal H(i+1)

such that subsequent Lyapunov functions are continuous along the switching manifold. Applying the control

law (6.66), the time derivative of (6.68) is

V̇
(i)
2 = −κ3η1 tanh(κ4η1)− κ1η3 tanh(κ1η3)− (ξ − φ(η))TKH(i)(ξ − φ(η)) ≤ 0

Using Lemma 6.3.1 for the η subsystem, and recalling that K is a positive diagonal matrix and the posi-

tive diagonal H(i) induces continuity of (ξ − φ(η) between switching manifolds, the equilibrium is glob-

ally asymptotically stable by Lyapunov’s direct method, provided eψ and H(i) are bounded so that the

input (6.66) remains well-defined. Boundedness of H(i) is shown in Proposition 6.3.5).

Rearranging the ξ1 transform in (6.33) gives

ėψ =
aβ

bβ + 1
eψ +

1

bβ + 1
ξ1 +∆aβχr −∆aβψr +∆bβψ̇r +∆bβbias

Since
aβ

1+bβ
< 0, the system (6.49) is exponentially stable. Since ξ1 remains bounded while the input (6.66)

is well-defined and the “∆” terms are finite, eψ (and ėψ) remains bounded; see Lemma 4.6 in [Khalil, 2002].

Note that as ξ1 converges to zero, eψ and ėψ remain bounded but do not converge to zero due to parameter

discrepancies between the model used to generate trajectories and the models used to estimate actual vessel

dynamics. �

The result that the eψ terms do not converge to zero for cases where reference and actual dynamics is
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6.3 A Backstepping Control Approach

intuitive. For only two actuators to stabilize three error terms requires that reference and actual systems

match and that at least one of the error terms is stable. In our case the β dynamics and consequently χ

dynamics are stable as well as the u dynamics, which allows for the terms in ξ to be stabilized without

regard for the particular heading of the boat.

6.3.3 Including Steady and Slowly Varying Flow

Vessels operating in riverine environments must contend with and compensate for fluid flow. Assuming that

flow velocity varies slowly enough to be considered uniform and constant over the time scale of interest, we

consider an inertial “flow frame” that moves at constant speed relative to the stationary inertial frame. Note

that if the reference trajectory is generated with knowledge of this flow, the closed-loop system will behave

identically to the case where there is no flow. The control law attenuates relative errors between the actual

and reference vessel states. Suppose, however, that the reference trajectory is generated without knowledge

of the flow.

Define the reference course angle and velocity (in the inertial frame) to now include flow terms giving

χrnew = βrflow + χr (6.69)

and

urnew = urflow + ur (6.70)

The additional terms βrflow and urflow are functions of ψr, rr, and ur that modify the reference trajectory’s

original body states to drive the reference vessel to the original position in the presence of flow. Specifically,

βrflow = tan−1

(
Vflow sin(−χr + ψflow)

ur + Vflow cos(−χr + ψflow)

)

(6.71)
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and

urflow =
(
(ur + Vflow cos(−χr + ψflow))

2

+V 2
flow sin2(−χr + ψflow)

) 1
2 − ur (6.72)

where Vflow and ψflow correspond to the magnitude and direction of the fluid flow. Recall that we are

assuming u ≈ V . Both (6.71) and (6.72) are bounded since ur and χr are bounded. Taking time derivatives

of (6.71) and (6.72) (assuming these time derivatives are well-defined) yields

β̇rflow = − Vflow (u̇r sin(−χr + ψflow))

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

+
χ̇rVflow (ur cos(−χr + ψflow) + Vflow)

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

(6.73)

and

u̇rflow =
u̇r(ur + Vflow cos(−χr + ψflow))

√

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

+
Vflowur (χ̇r) sin(−χr + ψflow)

√

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

− u̇r (6.74)

The new reference variables χrnew and urnew replace the original χr and ur terms, however, the speed and

course reference model parameters do not reflect this change. Using (6.73) and (6.74) we modify the speed

bias bubiasr and course bias bβbiasr causing the reference models to match their augmented speed and course
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states. Specifically,

bβbiasr = χ̇rnew − aβrχrnew + aβrψr − (1 + bβr)rr

=
Vflow (u̇r sin(−χr + ψflow))

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

+
χ̇rVflow (ur cos(−χr + ψflow) + Vflow)

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

− χ̇r + aβrψr − (1 + bβr)rr

− aβr tan
−1

(
Vflow sin(−χr + ψflow)

ur + Vflow cos(−χr + ψflow)

)

(6.75)

and

bubiasr = u̇rnew − aururnew − T̃r

=
u̇r(ur + Vflow cos(−χr + ψflow))

√

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

+
Vflowur (χ̇r) sin(−χr + ψflow)

√

2Vflowur cos(−χr + ψflow) + u2r + V 2
flow

− u̇r − aur
(
(ur + Vflow cos(−β − ψ + ψflow))

2

+V 2
flow sin2(−χr + ψflow)

) 1
2 − T̃r (6.76)

Incorporating these new model parameters and reference states in (6.46) restores asymptotic stability of the

system (6.34-6.38) in the presence of constant fluid flow unaccounted by the generated reference trajectory.

Proposition 6.3.8. The control law (6.66), with a generated reference trajectory not considering flow, glob-

ally asymptotically stabilizes the dynamic system (6.34-6.38) about the equilibrium η = 0 and ξ = 0 in the

presence of constant flow with magnitude and direction Vflow and ψflow provided the reference trajectory’s

course and speed are modified using (6.72) and (6.71) and the reference model parameters are adjusted

using (6.75) and (6.76). eψ remains bounded and but does not converge to zero provided ψr, χr, δsr, ur, and

δnr are bounded, T̃ 6= 0, and provided aβ and bβ are constant and satisfies − aβ
1+bβ

< 0.
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Proof: Consider the error dynamics in (6.34-6.38). Choose the radially unbounded candidate Lyapunov

function

V2 =
1

2
η21 +

1

2
η22 +

1

2
η23 +

1

2
(ξ − φ(η))TH(i)(ξ − φ(η)) > 0 (6.77)

Applying the control law (6.66), the time derivative of (6.77) is

V̇2 = −κ3η1 tanh(κ4η1)− κ1η3 tanh(κ1η3)− (ξ − φ(η))TKH(i)(ξ − φ(η)) ≤ 0

Using Lemma 6.3.1 for the η subsystem, and recalling that K is positive and diagonal, the equilibrium is

globally asymptotically stable by Lyapunov’s direct method, provided eψ is bounded so that the input (6.66)

remains well-defined.

Rearranging the ξ1 transform in (6.33) gives

ėψ =
aβ

bβ + 1
eψ +

1

bβ + 1
ξ1 +∆aβχr −∆aβψr +∆bβψ̇r +∆bβbias (6.78)

Since
aβ

1+bβ
< 0, the system (6.78) is exponentially stable. Since ξ1 remains bounded while the input (6.66)

is well-defined and the “∆” terms are finite, eψ (and ėψ) remains bounded; see Lemma 4.6 in [Khalil, 2002].

Note that as ξ1 converges to zero, eψ and ėψ remain bounded but do not converge to zero due to parameter

discrepancies between the model used to generate trajectories and the models used to estimate actual vessel

dynamics. �

6.4 Control Results

The control laws developed in this section are mostly tested in the field, resulting in good tracking results,

primarily for the backstepping control law. First, forward tracking control laws are tested using steady speed,

followed by aggressive variable speed, reference trajectories. The backstepping control law outperforms

the PD cascade control law prompting the decision to only implement the backstepping sternward motion

control law, which shows good tracking performance in the presence of significant actuator limitations.

Finally, due to the lack of independent flow measurements and appropriate field flow conditions, a simulation
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of the flow augmented backstepping trajectory tracker is shown in lieu of field implemented results.

6.4.1 Forward Motion Experimental Results

Due to the hierarchal nature of the PD trajectory tracking controller, lower level controllers are tested first.

Incrementally higher level controllers are tested until finally the trajectory tracking controllers are tested.

The performance of the rudder and propeller speed control are first tested. The trajectory tracking control

algorithms defined in Sections 6.2, 6.3 and 6.3.1 assume rudder angle and propeller speed are directly

controlled. In reality, a motor controller actuates hydraulics that drive the rudder and a throttle actuator

sets the throttle position. A PID loop implemented on the motor controller controls rudder motion. A PID

controller, coupled with a nonlinear steady-state gain mapping, controls propeller speed. Figures 6.4(a) and

6.4(b) show rudder and propeller speed performance respectively.

Heading control is tested for forward motion, with PD parameters tuned to accommodate rate limiting

in the actuators. Figure 6.5(a) shows the boat tracking to a northern heading after facing south. The ratio

between proportional and derivative gain varies for different traces, illustrating the effects of derivative

control on a system with rate limited inputs. Too much derivative gain causes the system to oscillate on its

way to a zero heading while too little derivative gain causes the system to overshoot considerably. The ideal

ratio between proportional and derivative control yields no oscillatory behavior or overshoot. This ratio is

a function of the rate limit and the maximum achievable turn rate. The rate limit stays constant through the

operating envelope, but the maximum turn rate varies, requiring use of gain scheduling with speed.

Wrapping the speed controller around the propeller speed control results in good speed tracking. Fig-

ure 6.5(b) shows the boat tracking desired speed by sending propeller speed commands to the propeller

speed controller. The speed tracking ability demonstrated in Figure 6.5(b) requires a feedforward propeller

speed command that corresponds to the desired forward speed. This feedforward propeller speed command

is replaced by the open-loop time history of commanded propeller speed when the forward speed controller

is incorporated into the PD cascade described in Section 6.2.

Figure 6.6 shows the performance of the trajectory tracking controllers with a reference trajectory that has
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Figure 6.5: Heading and speed tracking performance
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constant propeller speed and a sinusoid in rudder angle. (All trajectories begin at the origin.) Circles and

velocity vectors denote position and velocity at ten second intervals. The backstepping trajectory tracking

control law, implemented without considering Lyapunov function discontinuities, immediately converges to

the reference trajectory and stays within a few meters of the desired position. The PD cascade trajectory

tracking control law results in slightly poorer tracking performance than the backstepping control law.
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Figure 6.6: Trajectory tracking control for constant propeller speed and a sinusoid in rudder

Figure 6.7 shows the performance of the trajectory tracking controllers with a reference trajectory that has

a sinusoid in propeller speed coupled with a sinusoid (of higher frequency) in rudder angle. This reference
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trajectory contains aggressive maneuvering including taking sharp turns during hard deceleration and accel-

eration. Since the reference speed varies, parameter switching in the control laws is tested. Furthermore,

such an aggressive reference trajectory tests the controllers’ effectiveness in the presence of unmodeled

dynamics including interaction with wake dynamics that are noticeable during simultaneous deceleration

and turning. Like the previous trajectory plot, circles and velocity vectors denote position and velocity at

ten second intervals. The backstepping trajectory tracking control law forces convergence to the reference

trajectory and the vessel stays within a few meters of the desired position, though oscillations are noticeable

when wake dynamics become prevalent. The PD cascaded trajectory tracking control results in qualitatively

correct behavior, but the vessel’s trajectory fails to converge to the reference trajectory.

The backstepping control law clearly outperforms the PD cascaded control law for the field tests presented

in Figures 6.6 and 6.7. For steady speed reference trajectories the PD cascaded control law oscillates about

the reference trajectory while the backstepping control law converges quickly. For variable speed refer-

ence trajectories the PD cascaded control law’s performance degrades considerably while the backstepping

control law converges to the reference trajectory.

6.4.2 Sternward Motion Experimental Results

Figure 6.8 shows the performance of the trajectory tracking controller with a reference trajectory that has

constant propeller speed and a sinusoid in thrust angle. Circles and velocity vectors denote position and

velocity at twenty second intervals. The backstepping trajectory tracking control law immediately converges

to the reference trajectory and stays within a few meters of the desired position indicated by the close

correlation of the reference and backstepping position circles and velocity vectors. At times where the

vehicle switches to a different turn rate region the vessel briefly diverges from the desired position due to

short times of unavoidable actuator saturation. Figure 6.9 shows the propeller speed and rudder position

during the trajectory run in Figure 6.8. Note that the rudder is consistently rate limited and/or saturated

throughout the run, yet the control law with the tuned control gains in Table 6.4 tracks the trajectory well.
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Figure 6.7: Trajectory tracking control for sinusoids (of differing frequency) in propeller speed and

rudder

6.4.3 Control in Flow Simulation Results

Figure 6.10 shows the performance of the trajectory tracking controllers in a constant North to South flow of

1 m/s using a reference trajectory generated with constant propeller speed, a sinusoid in thrust angle, and the

1 m/s North to South constant flow. Circles and velocity vectors denote position and velocity at ten second

intervals. The backstepping trajectory tracking control law results in immediate convergence toward the

reference trajectory; notice the close correlation of the actual and reference positions and velocity vectors.
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Figure 6.8: Trajectory tracking control for constant propeller speed and a sinusoid in thrust angle in

sternward motion

The PD cascade trajectory tracking control law, which modifies the reference trajectory heading to steer

the vessel toward the path, results in sloppy performance similar to the experimental results. Note that the

convergence properties in flow and without flow are identical if the reference trajectory is convected with

the same flow as the vessel.

Figure 6.11 shows the performance of the trajectory tracking controllers in a constant North to South

flow of 1 m/s using a reference trajectory generated with a constant propeller speed and a sinusoid in thrust
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Figure 6.9: Actual actuator inputs of propeller speed and rudder position used in the trajectory track-

ing control run in Figure 6.8

angle and without knowledge of the 1 m/s North to South flow. Like Figure 6.10, Figure 6.11 has circles

and velocity vectors denoting position and velocity at ten second intervals. The backstepping trajectory

tracking control law with flow compensation results in immediate convergence, as in the previous case

shown in Figure 6.10. The backstepping trajectory tracking control law without flow compensation results

in convergence with a roughly 5 m south steady state error from the desired path. The PD cascaded trajectory
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Figure 6.10: Trajectory tracking control for constant propeller speed and a sinusoid in thrust angle

with the generated reference trajectory and actual vessel both being convected with flow

tracking control results in extremely poor performance.

The backstepping control law clearly outperforms the PD cascaded control law in the simulations shown

in Figures 6.10 and 6.11. In cases where the generated flow trajectory shares the same fluid flow as the

actual vessel, stability properties are unchanged. The backstepping control law remains quite effective when

a known flow is directly compensated for. Simulations underscore that the backstepping control law is also

effective when there is a mismatch between the true and assumed flow, while the PD cascade control law
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Figure 6.11: Trajectory tracking control for constant propeller speed and a sinusoid in thrust angle

with the reference trajectory generated assuming no flow with the actual vessel in flow

performs very poorly.
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CHAPTER

7

CONCLUSIONS

By combining experimental parameter identification for simple motion models with a model-based trajec-

tory tracking algorithm, a new field tested maneuvering method causes the planing Ribcraft USV to converge

to aggressive reference trajectories. The simple motion models include a globally valid thruster model and

a set of locally valid linear steering and speed models that together sufficiently capture planing vessel dy-

namics. A trajectory tracking control law is developed using the simple models, yielding global asymptotic

stability about a trajectory for a planing vessel.

A parameter identification method is developed to identify all transient dynamics. First, thruster dynam-

ics, which are valid through the entire forward motion regime, are identified by using a unique set of field

experiments that accentuate only dynamics dependent on thrust. Second, linear equations are fit to steady

state steering behavior for a range of forward speeds, encompassing the displacement, semi-displacement,

and planing regions. Exciting the vessel dynamics by providing closed-loop commands in heading and
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speed gives rich enough data sets to identify transient forward motion.

The Ribcraft USV and other planing vessels are streamlined for forward motion. Performance in stern-

ward motion is not as good. Specifically designed closed-loop turn rate field experiments separately excite

the stable left and right turn dynamics as well as the unstable zero turn rate equilibrium. These complex

dynamics are modeled with turn rate scheduled linear steering models for each region, which are identi-

fied using the previously stated identification procedure in conjunction with the turn rate field experiments.

Thrust and speed parameter identification mirrors the methods used for forward identification, but only a

single thrust parameter and single set of speed parameters are found due to prohibitive speed constraints.

A PD cascade trajectory tracking controller and a backstepping trajectory tracking controller are devel-

oped to force the Ribcraft USV to track feasible trajectories generated using the identified set of steering and

speed models. The standard PD cascade trajectory tracking controller, which does not intrinsically account

for vessel dynamics, is implemented as a baseline that the backstepping control law is compared against.

The PD controller first uses position error to augment commanded reference speed and heading, which are

then tracked using simple lower level controllers.

The backstepping trajectory tracking controller, like the PD controller, causes the Ribcraft USV to con-

verge to a time-varying reference state history. First, the problem is formulated to account for a single set

of steering and speed parameters. Switching between additional parameter sets is accomplished by under-

standing discrepancies in parameters between the reference and actual vessel and by preventing potential

discontinuities in the Lyapunov function. Field experiments show superior trajectory tracking of the back-

stepping control law over the PD cascade control law for steady forward speed and aggressive variable

forward speed reference trajectories. The backstepping trajectory tracking control law for forward motion

assumes that actual and estimated vessel parameters match once all errors have been attenuated, which is

not true for sternward motion.

Discrepancies between reference and actual sternward model parameters persist for all time since a single

stable model is used to generate a sternward reference trajectory while two stable models and one unstable

model describe the actual Ribcraft USV sternward steering motion. The backstepping control law remains

unchanged between forward and sternward motion cases; however, in sternward motion the heading error re-
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mains bounded but does not converge to zero. This boundedness is acceptable since all other error terms are

attenuated. Field experiments demonstrate that the backstepping control law overcomes bistable dynamics

and actuator limitations to track to a reference trajectory.

The trajectory tracking control laws intrinsically account for fluid flow if the flow is constant, the reference

trajectory is generated in the flow, and flow relative velocity is measured. Both the reference and actual

vehicle states are simply convected along the flow. However, by augmenting reference trajectories generated

without the knowledge of the flow condition, lost stability is reclaimed. Additionally, the bias terms in the

reference steering and speed models must be adjusted to rectify the disconnect between the original and

augmenting reference trajectory. With discrepancies again appearing in terms between the reference and

actual models the heading error remains bounded but does not converge to zero. Due to the absence of flow

measuring devices and appropriate environments with fluid flow, simulations instead of field experiments

confirm the control law’s stability.
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APPENDIX

A

IDENTIFIABILITY CALCULATIONS

An identifiability test, described in Grewal et. al [Grewal and Glover, 1976], is performed on all linear

dynamic models shown in this dissertation. This test provides assurance that the identified parameters

of each model uniquely define any given trajectory. Steady state behavior is constrained to mirror the

identification procedure, though biasing terms are omitted to conform to the test’s linearity restriction. It is

trivial to note that the biasing terms do not affect the identifiability of these systems.
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A.1 Nomoto’s Model and Linearized Speed Model

A.1 Nomoto’s Model and Linearized Speed Model

The Gramian for Nomoto’s model and the linearized speed model is

G(θ) =
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which has rank 1, so Nomoto’s model is identifiable.
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A.2 Nomoto’s Model with Sideslip

A.2 Nomoto’s Model with Sideslip

The Gramian for Nomoto’s model with sideslip is
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The Jacobian of the Gramian is

∂G(θ)

∂θ
=













































0 0

0 0

−kr 0

−krkβθ2 −krkβθ1
−kr 0

−2krθ1 0

−krkβθ2 (2θ1 + θ2) −krkβθ1 (θ1 + 2θ2)

−2krθ1 0

−3krθ
2
1 0

−krkβθ2
(
3θ21 + 2θ2θ1 + θ22

)
−krkβθ1

(
θ21 + 2θ2θ1 + 3θ22

)

−3krθ
2
1 0

−4krθ
3
1 0

−krkβθ2
(
4θ31 + 3θ2θ

2
1 + 2θ22θ1 + θ32

)
−krkβθ1

(
θ31 + 2θ2θ

2
1 + 3θ22θ1 + 4θ32

)

−4krθ
3
1 0

−5krθ
4
1 0













































which has rank 2, so Nomoto’s model with sideslip is identifiable.
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A.3 Planar Steering Model

A.3 Planar Steering Model

The Gramian for the planar steering model is

G(θ) =
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θ21 + θ4θ1 + θ24 + θ2θ3

)
(θ4kr + θ3kv)

θ3
(
θ21 + θ4θ1 + θ24 + θ2θ3

)
(− (θ2kr + θ1kv))−

(
θ34 + 2θ2θ3θ4 + θ1θ2θ3

)
(θ4kr + θ3kv)























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A.3 Planar Steering Model

The Jacobian of the Gramian has rank 4, so the linear planar steering model is identifiable. Specifically,

∂G(θ)

∂θ
=









































−kv

0

−2kvθ1 − krθ2

−kvθ3

−kv
(

3θ21 + 2θ2θ3
)

− krθ2 (2θ1 + θ4)

−θ3 (krθ2 + kv (2θ1 + θ4))

−2kv
(

2θ31 + 3θ2θ3θ1 + θ2θ3θ4
)

− krθ2
(

3θ21 + 2θ4θ1 + θ24 + 2θ2θ3
)

−θ3
(

2krθ2 (θ1 + θ4) + kv
(

3θ21 + 2θ4θ1 + θ24 + 2θ2θ3
))

−kr

0

−kvθ3 − kr (θ1 + θ4)

−krθ3

−kvθ3 (2θ1 + θ4)− kr
(

θ21 + θ4θ1 + θ24 + 2θ2θ3
)

−θ3 (kvθ3 + kr (θ1 + 2θ4))

−kr (θ1 + θ4)
(

θ21 + θ24 + 4θ2θ3
)

− kvθ3
(

3θ21 + 2θ4θ1 + θ24 + 2θ2θ3
)

−θ3
(

2kvθ3 (θ1 + θ4) + kr
(

θ21 + 2θ4θ1 + 3θ24 + 2θ2θ3
))

0

−kv

−kvθ2

−krθ2 − kv (θ1 + θ4)

−θ2 (krθ2 + kv (2θ1 + θ4))

−krθ2 (θ1 + 2θ4)− kv
(

θ21 + θ4θ1 + θ24 + 2θ2θ3
)

−θ2
(

2krθ2 (θ1 + θ4) + kv
(

3θ21 + 2θ4θ1 + θ24 + 2θ2θ3
))

−kv (θ1 + θ4)
(

θ21 + θ24 + 4θ2θ3
)

− krθ2
(

θ21 + 2θ4θ1 + 3θ24 + 2θ2θ3
)

0

−kr

−krθ2

−kvθ3 − 2krθ4

−θ2 (kvθ3 + kr (θ1 + 2θ4))

−kvθ3 (θ1 + 2θ4)− kr
(

3θ24 + 2θ2θ3
)

−θ2
(

2kvθ3 (θ1 + θ4) + kr
(

θ21 + 2θ4θ1 + 3θ24 + 2θ2θ3
))

−kvθ3
(

θ21 + 2θ4θ1 + 3θ24 + 2θ2θ3
)

− 2kr
(

2θ34 + 3θ2θ3θ4 + θ1θ2θ3
)








































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