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Design of a Scaled Flight Test Vehicle Including Linear Aeroelastic Effects

Charles A.G. Eger

(ABSTRACT)

A procedure for the design of a scaled aircraft using linear aeroelastic scaling is developed

and demonstrated. Previous work has shown the viability in matching scaled structural

frequencies and mode shapes in order to achieve consistent linear scaling of simple models.

This methodology is adopted for use on a high fidelity joined-wing aircraft model. Natural

frequencies and mode shapes are matched by optimizing structural ply properties and non-

structural mass. A full-scale SensorCraft concept developed by AFRL and Boeing serves as

the target model, and a 1/9th span geometrically scaled remotely piloted vehicle (RPV) serves

as the initial design point. The aeroelastic response of the final design is verified against the

response of the full-scale model. Reasonable agreement is seen in both aeroelastic damping

and frequency for a range of flight velocities, but some discrepancy remains in accurately

capturing the flutter velocity.
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Chapter 1

Introduction

The concept of aeroelastic scaling involves the design of a smaller span vehicle that has the

same scaled aeroelastic response as a full-span target vehicle. The testing of these smaller

scale models can be particularly beneficial in studying the flutter response of the target

vehicle while keeping costs and manufacturing time low. This work aims to extend existing

aeroelastic scaling methodologies in the context of an actual flight test vehicle.

The primary motivation of this work was to facilitate the development of an aeroe-

lastic scaling technique for use on a joined-wing aircraft design. Originally proposed by

Wolkovitch,1 joined-wing designs have many potential benefits over conventional designs

including lighter weight and less induced drag. Further research into the subject has demon-

strated that these weight optimal designs can be prone to geometric nonlinearities, particu-

larly aft wing buckling.2,3

1
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A full-scale joined-wing SensorCraft (JWSC) concept developed by AFRL and Boeing4

was geometrically scaled to produce a 1/9th span RPV by Richards et al.5 The RPV was

designed to have similar rigid flight dynamics as the full-scale model and has successfully

completed a flight demonstration. Figure 1.1 shows the RPV during flight testing. The

SensorCraft is intended to serve as a next generation, high altitude, long endurance (HALE)

platform to perform intelligence, surveillance, and reconnaissance (ISR) capabilities. The

unique geometry of the joined-wings allows for the construction of advanced radar antennas

into all four lifting surfaces, providing a complete, unobstructed, 360◦ radar field.4

Figure 1.1: Geometrically scaled RPV built to 1/9th span of full-scale model.
Photo provided by courtesy of the author.

The next phase of research aims to modify the geometrically scaled design to also match

the aeroelastic properties of the full-scale model. In order to fully scale the design, a method-

ology for matching the unique nonlinear response of the joined-wing design is required. Pre-

vious research has shown this to be an important concern in joined-wing aircraft.2,3 While

matching the nonlinear response is indeed desired, this work develops a methodology for

scaling the linear aeroelastic response, particularly the critical flutter condition, of the full-

scale model as an initial design step. Linear scaling aided in determining the feasibility of

modifying the current manufacturing method to reach an aeroelastically scaled design.
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The scaling technique used in this work is an extension of previous research. Aeroelastic

scaling is achieved by matching the modal frequencies and shapes between the scaled ve-

hicles through the optimization of a finite element model, matching the stiffness and mass

distributions. A flutter analysis is used to verify the accuracy of the scaling procedure.



Chapter 2

Literature Review

The use of scaling laws to achieve similitude between models of different size has its roots

in classical dimensional analysis. In his Historico-critical Review of Dimensional Analysis ,6

Macagno provides a detailed historical review of the concept. The familiar π-theorem was

first formally generalized by Vaschy7 in 1892 and later again by Buckingham8 in 1914. The

theorem states that an equation with n physical variables and k primary dimensions can be

rewritten using p = n−k non-dimensional terms. By matching these non-dimensional terms

between scaled models, physical similitude is produced. The process of non-dimensionalizing

governing equations is the basis of all scaling theory.

The concept of applying scaling theory to aeroelastic applications is outlined by Bis-

plinghoff et al. in Aeroelasticity .9 Examples of how to non-dimensionalize the aeroelastic

equations are given. In a typical mechanics problem, the primary dimensions are mass,

4
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length, and time, though other combinations of these are also common. The number of

primary dimensions is equal to the number of scale factors that must be chosen to relate the

models. The main design challenge of aeroelastic scaling is matching the stiffness and mass

distributions between the models. It is noted that a scaled flutter model is usually not suited

to also act as a structural model, since the mass requirements in each case are different.

Further insight into aeroelastic scaling is given by Molyneux in Aeroelastic Modelling .10

Using classical scaling theory, the equations of an aerothermoelastic system are non-dimensionalized.

In order to achieve perfect aerothermoelastic similarity, the full and scaled models would have

to be built exactly the same. By relaxing some of the non-dimensional requirements, a more

practical scaling theory can be produced. For example, if the flow regime of the models is

considered to be incompressible, Mach number matching can be neglected. This is a safe

assumption when the maximum velocity of the flow is small relative to the local speed of

sound. The Reynolds number is related to the boundary layer and heat transfer along the ve-

hicle surface and is generally of little importance to aeroelastic effects. Neglecting to match

the Reynolds number makes flow density a free parameter in the scaling problem. Using

an internal beam structure to achieve the required stiffness properties is proposed as one

possible design solution.

Another extensive look into aeroelastic modeling is given by Wolowicz et al. in their

NASA Technical Paper Similitude Requirements and Scaling Relationships as Applied to

Model Testing .11 Using classical theory, scaling requirements for different model tests are

outlined. The section on flutter scaling states the requirement to correctly scale mass, inertia,
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and stiffness between the models. Considerations for actually testing built models inside of

a wind tunnel are also made. This work serves as a good reference for what the scaling

requirements for a given problem are, but little is offered on how to actually achieve these

requirements within a model.

Modern work has extended the classic aeroelastic scaling theory to a range of different

applications. Friedmann et al. outlined a method for aeroservoelastic scaling in which

control laws enter into the governing equations.12 Control laws and servos often make the

aeroelastic system nonlinear, requiring a more rigorous approach to ensure accurate scaling.

A computer simulation model was used to account for the added requirements. The technique

was successfully applied to a baseline model to produce an aeroelastically scaled model. The

scaling was verified using root locus plots, flutter response, and divergence response.

Pototzky has also extended the classic aeroelastic scaling theory to include servoelastic

effects.13 He provides a modal approach to scaling the equations of motion, avoiding applying

a complicated scaling routine to a detailed finite element model. Applying scale factors to

the finite element model as a whole would be difficult and computationally intensive. Scaling

rules were instead applied to the modal matrices of the model. Scaling of the generalized

modal mass matrix was assumed to provide correct scaling of the normal mode shapes. The

procedure was verified by comparing root locus plots and time histories of control simulations

between a full-scale model and a wind tunnel model. This method to aeroelastic scaling is

of particular interest to the work of this thesis which also uses a modal approach to non-

dimensionalize the equations of motion.
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The concept of achieving aeroelastic scaling through the optimization of a finite element

model has been in development for years. An early example of this work is provided by

French et al.14 A finite element model was scaled by matching the stiffness and mass dis-

tributions in separate optimization routines. Stiffness was first matched by reducing the

error between target and current flexibility matrix elements at chosen grid points by chang-

ing the dimensions of structural elements within the model. Mass distribution was then

matched by optimizing the converged stiffness model by changing non-structural concen-

trated masses. The error in the modal deflections was minimized while constrained to match

the desired modal frequencies. Attempting to only match the modal frequencies produced

poorly matching mode shapes. The technique was verified on an example problem, produc-

ing a model with a predicted flutter response that matched the full-scale response very well.

This work demonstrated the feasibility of designing physical properties and dimensions of a

finite element model to match a desired response rather than modifying the system matrices

directly.

Richards et al.15 extended the work of French et al.14 and proposed applying the un-

coupled optimization technique to a scaled joined-wing SensorCraft design. Instead of match-

ing flexibility matrix elements in the stiffness optimization step, static deflections from the

target model were matched. Matching the scaled static deflection response was assumed to

correctly match the stiffness distribution. The modal response was then matched by design-

ing concentrated masses in a second optimization routine. The technique was successfully

applied to a simplified test case using a cantilevered wing design. Again, the feasibility of op-
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timizing a finite element model to produce an aeroelastically scaled design was demonstrated

by this work.

Pereira et al.16 provided a different approach to matching the stiffness and mass distribu-

tions of a scaled model. Instead of performing the optimization in two steps, the stiffness and

mass distributions were matched in the same optimization routine by matching the modal

response. The scaled natural frequencies of a joined-wing model were optimized to match

a full-scale design. Mode shapes did not enter the design process. The design variables of

the problem were the all of the rib thicknesses of the model. This technique resulted in a

normalized flutter speed that matched the full-scale design, but the aeroelastic frequencies

did not match around or above the flutter speed. Manufacturability was a concern during

the design process, because the scaled design was actually built and ground tested. The

modal response of the built wind tunnel model matched well the expected scaled results.

This work demonstrated the feasibility of using finite element optimization to design and

build a scaled wind tunnel model.

Bond et al.17 extended the work of Pereira et al.16 and attempted to add a matching

nonlinear geometric stiffness to the scaling problem. Mass and stiffness distributions were

again matched in the same optimization step, but mode shapes were now included in the

problem formulation. Buckling eigenvalues and mode shapes were also included in an attempt

to capture the nonlinear response. A modified Goland wing with an attached strut was

used to verify the technique. The first three natural frequencies and mode shapes and

critical buckling eigenvalue were matched between the scaled and target model. The resulting
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aeroelastic frequency and damping matched well throughout the velocity profile, but the

nonlinear static response only matched up to 60% of the buckling load. In addition, it was

demonstrated that matching mode shapes was required for a matching aeroelastic response.

Work has continued in an attempt to better capture the nonlinear response of the target

model while keeping a matching aeroelastic response. Ricciardi et al.18 extended the work of

Bond et al.17 by employing a more rigorous approach to matching this nonlinear response.

Using a beam model representative of the joined-wing SensorCraft design, nonlinear static

deflections were matched for various loading conditions to account for geometric nonlinear-

ities. A second optimization was performed to match the modal response by designing the

non-structural mass. The aeroelastic frequency and damping and nonlinear static response

of the models were matched successfully.

A different technique for performing nonlinear aeroelastic scaling was provided by Wan

et al.19 Rather than using optimization to design the structural components of the model,

the required non-dimensional matrices of the system were scaled directly by matching scaled

cross-sectional properties. The technique was successfully employed on a model of a very

flexible aircraft. The importance of matching the Froude number in aeroelastic scaling

problems was also demonstrated. This work showed that with complete access to the system

matrices of the problem, nonlinear aeroelastic scaling by this analytical method is effective

and accurate. The complete internal structure of the target model is needed to employ this

technique, data not publicly available for the joined-wing SensorCraft model.

The work presented in this thesis is mainly an extension of the work by Bond et al.17
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The primary goal was to extend the direct modal matching technique to a built-up, free-free

flight test vehicle. For the linear scaling procedure presented here, buckling eigenvalues and

mode shapes were not included in the formulation.



Chapter 3

Scaling Theory and Methodology

3.1 Non-dimensionalizing the Equations of Motion

The first step to any scaling problem is to non-dimensionalize the governing equations of

motion. For this work, a modal approach to scaling is developed based on the transient

linear aeroelastic equations of motion

[M]{ẍ}+ [K]{x} = [Ak]{x}+ [Ac]{ẋ}+ [Am]{ẍ}+ [M]{ag} (3.1)

where {x} is a vector of elastic and rigid body degrees of freedom, [M] is the mass matrix, [K]

is the stiffness matrix, [Ak], [Ac], and [Am] are the aerodynamic matrices, and {ag} is a vec-

tor containing gravitational accelerations for each degree of freedom. To non-dimensionalize

the system, the components of each coefficient matrix must have unified dimensions. Coeffi-

11
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cient matrix dimensions are unified using a dimensional transformation matrix, [T], that is

derived to non-dimensionalize the physical coordinate vector. For example, if the physical

coordinates are two displacement and two rotation degrees of freedom

{x} =



h1

θ1

h2

θ2


(3.2)

then a non-dimensional vector of physical coordinates, {x̄}, is attained using

{x} = [T]{x̄} =



b 0 0 0

0 1 0 0

0 0 b 0

0 0 0 1





h1/b

θ1

h2/b

θ2


=



h1

θ1

h2

θ2


(3.3)

The coefficient matrices are uniformly dimensionalized by pre-multiplying by [T]T and post-

multiplying by [T]. Take the mass matrix for example

[M̆] = [T]T [M][T] (3.4)

where (̆) denotes a matrix with uniform dimensions. By substituting for {x} with the gen-

eral form of Eq. 3.3 and pre-multiplying by [T]T the equations of motion are uniformly
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dimensionalized.

[M̆]{¨̄x}+ [K̆]{x̄} = [Ăk]{x̄}+ [Ăc]{ ˙̄x}+ [Ăm]{¨̄x}+ [M̆]{ăg} (3.5)

Each term in Eq. 3.5 is has units of force×length. Non-dimensional deformations in terms

of the modal coordinates are

{x̄} = [Φ]{η} (3.6)

where {η} is the vector of model coordinates and [Φ] is the matrix of non-dimensional mode

shapes. The first six mode shapes are rigid body deformations in a free vibration case. Mass

and stiffness matrices are diagonalized using the bi-orthogonality property

〈m〉 = [Φ]T [M̆][Φ] (3.7)

〈k〉 = [Φ]T [K̆][Φ] =
〈
mω2

〉
(3.8)

where 〈ω〉 is the diagonal matrix of modal frequencies. Aerodynamic coefficient matrices are

modified equivalently

[ak] = [Φ]T [Ăk][Φ] (3.9)

[ac] = [Φ]T [Ăc][Φ] (3.10)

[am] = [Φ]T [Ăm][Φ] (3.11)
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Using modal coordinates, the equations of motion are

〈m〉 {η̈}+
〈
mω2

〉
{η} =

[ak]{η}+ [ac]{η̇}+ [am]{η̈} (3.12)

+ 〈m〉 [Φ]−1{ăg}

Dimensions of the aerodynamic matrices and acceleration vector are moved outside as scalar

coefficients

〈m〉 {η̈}+
〈
mω2

〉
{η} =

1

2
ρV 2Sb

(
[āk]{η}+

b

V
[āc]{η̇}+

b2

V 2
[ām]{η̈}

)
(3.13)

+
g

b
〈m〉 [Φ]−1{āg}

where barred aerodynamic matrices are non-dimensional. Mass is non-dimensionalized using

m1, modal mass (uniformly dimensionalized as inertia) of the first mode.

〈m̄〉 {η̈}+
〈
m̄ω2

〉
{η} =

1

2

ρSb

m1

V 2

(
[āk]{η}+

b

V
[āc]{η̇}+

b2

V 2
[ām]{η̈}

)
(3.14)

+
g

b
〈m̄〉 [Φ]−1{āg}
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where 〈m̄〉 is a diagonal matrix of non-dimensional masses with m̄1 = 1. Time is non-

dimensionalized using ω1, the modal frequency of the first mode

〈m̄〉 {??η}+
〈
m̄ω̄2

〉
{η} =

1

2

ρSb

m1

V 2

ω2
1

(
[āk]{η}+

ω1b

V
[āc]{

?
η}+

ω2
1b

2

V 2
[ām]{??η}

)
(3.15)

+
g

ω2
1b
〈m̄〉 [Φ]−1{āg}

where 〈ω̄〉 is a diagonal matrix of non-dimensional modal frequecies, and
?

() denotes the

derivative with respect to non-dimensional time τ = tω1. Multiplying the aerodynamic term

by b2/b2 and the gravitational term by bV 2/bV 2

〈m̄〉 {??η}+
〈
m̄ω̄2

〉
{η} =

1

2

ρSb(b2)

m1︸ ︷︷ ︸
µ1

V 2

ω2
1b

2︸︷︷︸
1/κ21

[āk]{η}+
ωb

V︸︷︷︸
κ1

[āc]{
?
η}+

ω2b2

V 2︸︷︷︸
κ2

[ām]{??η}

 (3.16)

+
gb

V 2︸︷︷︸
1/Fr2

V 2

ω2
1b

2︸︷︷︸
1/κ21

〈m̄〉 [Φ]−1{āg}

three non-dimensional parameters emerge: reduced frequency κ1 = ω1b
V

, an inertia ratio

µ1 = ρSb(b2)
m1

, and Froude number Fr = V√
bg

. The final form of the non-dimensional aeroelastic
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equations is

〈m̄〉 {??η}+
〈
m̄ω̄2

〉
{η} =

1

2

µ1

κ21

(
[āk]{η}+ κ1[āc]{

?
η}+ κ21[ām]{??η}

)
(3.17)

+
1

Fr2κ21
〈m̄〉 [Φ]−1{āg}

For the scaled model to have a matching linear aeroelastic and flight dynamic response, the

following are required to match the full-scale model:18

1. Reduced frequency of the first mode κ1

2. Inertia ratio µ1

3. Froude number Fr

4. Non-dimensional modal masses 〈m̄〉

5. Non-dimensional modal frequencies 〈ω̄〉

6. Non-dimensional mode shapes [Φ]

7. Aerodynamic shape

8. Mach number if compressibility effects are important

9. Reynolds number if viscous effects are important
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3.2 Calculating the Scaling Parameters

Items 1, and 4-6 in the enumerated list from the previous section are matched through an

optimization of the modal response of the scaled model, detailed in the next chapter. Items

2 and 3 are matched through the correct choice of scaling parameters. Items 7-9 are required

for matching the aerodynamic matrices. Scaling of compressibility and viscous effects can be

neglected with the assumption they will have a small influence for the present problem. Thus,

the Mach number and Reynolds number will not be matched within this scaling procedure.

The length ratio is specified as 1/9th for the scaled flight test model. The aerodynamic

shape of the target model, Item 7, is scaled directly using this ratio. The subscript w

indicates the joined-wing target model, and the subscript m indicates the scaled model.

λ =
bm
bw

=
1

9
(3.18)

The airspeed ratio between the target and scaled models is selected to match the Froude

number, Item 3.

Fr =
Vm√
bmg

=
Vw√
bwg

(3.19)

Vm
Vw

=

√
bm
bw

=
√
λ =

1

3
(3.20)

The combination of length ratio and velocity ratio determine the time scale, setting the
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frequency ratio.

ωm
ωw

=
Tw
Tm

=
bw/Vw
bm/Vm

=
1√
λ

= 3 (3.21)

The total mass M and air density of the models must provide a matching inertia ratio,

Item 2. Choosing either the mass ratio or the density ratio sets the other parameter.

µ =
ρmSmb

3
m

mm

=
ρwSwb

3
w

mw

(3.22)

ρmb
3
m

Mm

=
ρwb

3
w

Mw

(3.23)

ρm
ρw

=

(
bw
bm

)3
Mm

Mw

=

(
1

λ

)3
Mm

Mw

= 729
Mm

Mw

(3.24)

Using these scaling equations (3.18 - 3.24), any parameter from the target or scaled

model can be transformed into the other scale regime. By matching the modal frequencies

and shapes through an optimization problem according to these scaling equations, a linearly

scaled model with aeroelastic effects is produced.



Chapter 4

Optimizing the Scaled Modal

Response

A finite element model of the full-scale Boeing SensorCraft concept provided by AFRL4

serves as the target of the scaling procedure, and a high fidelity finite element model of the

geometrically scaled RPV provided by Richards et al. serves as the initial design point.5

The initial finite element model provided was coded in ANSYS. Appendix A details the

conversion process performed to create an acceptably equivalent model in Nastran.

The scaled RPV model was built to be aeroelastically stiff when compared to the full-

scale model. In order to capture the scaled linear aeroelastic response, the modal response of

the scaled model was matched to the Boeing target model through an optimization routine.

Nastran finite element software was used to perform the optimization process. The following

19
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sections detail the formulation of the optimization problem.

Two separate modal optimizations were performed during the scaling procedure. The

first was a free vibration case representative of the vehicle in flight. The second was a con-

strained vibration case more representative of a stationary wind tunnel test. The constrained

vibration case was originally introduced after the free case had trouble matching the tar-

get center of gravity location and pitch inertia. While some of these matching problems

have been alleviated, the scaling procedure was still carried out using both of the boundary

conditions.

4.1 Design Variables

The skins of the geometrically scaled RPV consist mainly of carbon fiber ply layups. The

internal structure consists of carbon fiber surrounding a foam core.5 The initial design

variables of the optimization were the wings, tail boom, and substructure composite ply

layer thicknesses and nonstructural ballast masses placed throughout the model. Figure 4.1

shows the locations of the concentrated nonstructural masses that were designed.
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Figure 4.1: Node locations of the designed nonstructural masses on the scaled model.

These initial design variables did not provide acceptable mode shapes. Ply layer thickness

design variables in the fuselage of the model were added in an attempt to better capture the

modal response. In addition, movable concentrated nonstructural masses were added to the

fuselage and tail boom strake. The location and value of these masses were added as design

variables.

Loose bounds were placed on all of the design variables to give the optimization as much

design space as possible. The minimum skin thickness for a given ply layer was set to 0.001

mm, and no bounds were placed on the values of the concentrated masses.

4.2 Objective Function

An aeroelastic analysis at sea level density of the joined-wing structure in free flight includ-

ing the first thirty elastic modes indicated that the critical flutter mechanism was mainly

comprised of the fifth mode. This same analysis using only the first five elastic modes re-

duced the flutter velocity by 6.3%. Thus, it was assumed that matching the first five elastic
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modes would sufficiently capture the critical flutter mechanism. Normalized mode shapes of

the first five elastic modes were extracted from the modal response of the target model and

matched in the optimization routine. The modal deflections from a selected set of publicly

cleared nodes shown in Figure 4.2 formed the objective function, Equation 4.1. A similar

aeroelastic analysis was used to determine that the first six elastic modes should be matched

in the constrained flutter case. There was a 16.1% difference in the flutter velocity between

using thirty and six modes in the analysis. Thus, an additional mode was added to the

objective function in the constrained case.

min

(
5 or 6∑
i=1

Wi ‖{φ̄}w,i − {φ̄}m,i‖

)
(4.1)

Figure 4.2: Nodes of the scaled model used in the objective function to match the target
mode shapes.

Here, {φ̄}w,i is a subset of the ith normalized mode shape of the full-scale target model,

{φ̄}m,i is a subset of the ith normalized mode shape of the scaled RPV model, and Wi is

the weighting factor for the ith mode. The subset of the normalized mode shapes used
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correspond to the matched nodes shown in Figure 4.2. Modal deflections in the x, y, and z

translational directions from this subset of nodes were used in this objective function. No

rotational degrees of freedom were used in the objective function. It was assumed that wing

twist could be captured by matching the translational degrees of freedom of matched nodes

along both the leading and trailing edges of the structure.

The aeroelastic analysis of the free vibration case indicated that the critical flutter mech-

anism was mainly comprised of the fourth and fifth elastic modes. Thus, the fourth and

fifth mode shapes were weighted more heavily than the rest of the shapes at W4 = 9.0 and

W5 = 10.0. The first elastic mode shape was weighted at W1 = 7.0 due to large initial error

in the first mode shape. The remaining two mode shapes were weighted at W2,3 = 1.0. The

constrained vibration case was originally introduced in an effort to alleviate significant differ-

ences in pitch rotation seen in the free case. Thus, all of the mode shapes in the constrained

case were weighted equally at Wi = 1.0 in order to form a baseline for comparison. Changing

these weights in both cases would cause certain mode shapes to match better than others.

4.3 Constraints

The optimization was constrained such that the normal frequencies of the target and scaled

models obeyed the ratio in Equation 3.21 to within ±2%. No constraint was placed on the

total mass of the scaled vehicle. Thus, the density ratio was set by the resulting optimized

mass using Equation 3.24.



Charles A.G. Eger Chapter 4. Optimizing the Scaled Modal Response 24

Constraints were later added to match the scaled center of gravity location and pitch

inertia to within ±5% of the target model in an attempt to better match the mode shapes

in the free vibration case. Without these constraints, extraneous rigid body pitch rotation

was present in some of the mode shapes. It was originally assumed that matching the modal

frequencies and shapes would correctly place the center of gravity and inertias within the

optimization routine, but this was not the case. These mass property constraints were not

required in the constrained vibration case since the extraneous rigid body pitch rotation was

removed by nature of the boundary conditions. Better matching of the mode shapes was

achieved without these constraints. While the global rigid body pitch problem was alleviated

with this constrained boundary condition, local pitch effects in regions such as the tail boom

strake were still a concern.

4.4 Optimization Results

4.4.1 Free Vibration Case

Table 4.1 shows the results of the free vibration optimization routine. With no constraints on

the total mass, the first five elastic frequencies were successfully matched to within ±4.6%.

The third and fifth elastic frequencies were not able to be matched as closely as desired.

The center of gravity location and pitch inertia were successfully matched to within ±4.8%.

Equation 3.24 was used to set the density ratio using the unconstrained total mass of the
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scaled model, approximately 413 kg.

ρm
ρw

= 729
Mm

Mw

= 729

(
412.980 kg

66076.5 kg

)
= 4.556

(4.2)

Table 4.1: Results of the free scaled model optimization.

Property Scaled target model value Optimized model value % difference
Elastic mode

1 ω (Hz)
2.223 2.199 -1.080%

Elastic mode
2 ω (Hz)

2.798 2.816 0.643%

Elastic mode
3 ω (Hz)

3.740 3.854 3.048%

Elastic mode
4 ω (Hz)

5.015 5.000 -0.299%

Elastic mode
5 ω (Hz)

6.043 6.320 4.584%

xcg (mm) 1240.49 1182.44 -4.680%
ycg (mm) ∼0.0 ∼0.0 N/A
zcg (mm) 113.95 108.48 -4.800%

Iyy (kg ·m2) 173.5 169.2 -2.428%

Figures 4.3 through 4.7 show the aeroelastic paneling mode shapes generated from the

target and scaled models. Qualitative similarity is seen in each of the shapes. Before applying

constraints to match the center of gravity location and pitch inertia, large differences in rigid

body pitch rotation were visible when comparing the first, fourth, and fifth elastic modes.

The application of these constraints has alleviated most of this discrepancy in the first elastic

mode, but some extraneous rotation is still visible in the fourth and fifth modes.
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(a) Target first elastic panel mode shape. (b) Scaled first elastic panel mode shape.

Figure 4.3: First elastic mode shape comparison.

(a) Target second elastic panel mode shape. (b) Scaled second elastic panel mode shape.

Figure 4.4: Second elastic mode shape comparison.

(a) Target third elastic panel mode shape. (b) Scaled third elastic panel mode shape.

Figure 4.5: Third elastic mode shape comparison.
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(a) Target fourth elastic panel mode shape. (b) Scaled fourth elastic panel mode shape.

Figure 4.6: Fourth elastic mode shape comparison.

(a) Target fifth elastic panel mode shape. (b) Scaled fifth elastic panel mode shape.

Figure 4.7: Fifth elastic mode shape comparison.

4.4.2 Constrained Vibration Case

Table 4.2 shows the results of the constrained vibration optimization routine. With no

constraints on the total mass, center of gravity location, or pitch inertia, the first six natural

frequencies were successfully matched to within ±2.6%. The first three frequencies were

not able to be matched as closely as desired. Excluding the center of gravity and pitch

inertia constraints was only beneficial by nature of the boundary conditions. As with the

free vibration case, Equation 3.24 was used to set the density ratio using the unconstrained

total mass of the scaled model, approximately 363 kg.
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ρm
ρw

= 729
Mm

Mw

= 729

(
362.705 kg

66076.5 kg

)
= 4.002

(4.3)

Table 4.2: Results of the constrained scaled model optimization.

Property Scaled target model value Optimized model value % difference
Mode 1 ω (Hz) 1.239 1.207 -2.583%
Mode 2 ω (Hz) 2.098 2.150 2.479%
Mode 3 ω (Hz) 2.538 2.601 2.482%
Mode 4 ω (Hz) 3.704 3.736 0.864%
Mode 5 ω (Hz) 4.929 4.921 -0.162%
Mode 6 ω (Hz) 5.110 5.130 0.391%

Figures 4.8 through 4.13 show the aeroelastic paneling mode shapes generated from the

target and scaled models. Very good qualitative similarity is seen in each of the shapes, but

some noticeable differences are present. There is a large discrepancy in the curvature of the

aft wing in the third mode shape. This problem seems to be unrelated to the difficulty in

matching the inertias and might be alleviated by changing the objective function weight W3.

There is also significant difference in the local pitch angle of the tail boom strake in the sixth

mode shape. From the horizontal plane, the target mode shape shows 9.03◦ pitch down in

the strake while the scaled shape shows 14.08◦ pitch down. This difference demonstrates

the importance of matching the pitch inertia, even in the constrained vibration case. While
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the global rigid body pitch problem was removed using the boundary conditions, local rigid

pitch effects such as those in the tail boom strake are still a concern. Adding pitch inertia

constraints to this case may alleviate some of these differences.

(a) Target first panel mode shape. (b) Scaled first panel mode shape.

Figure 4.8: First constrained mode shape comparison.

(a) Target second panel mode shape. (b) Scaled second panel mode shape.

Figure 4.9: Second constrained mode shape comparison.

(a) Target third panel mode shape. (b) Scaled third panel mode shape.

Figure 4.10: Third constrained mode shape comparison.
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(a) Target fourth panel mode shape. (b) Scaled fourth panel mode shape.

Figure 4.11: Fourth constrained mode shape comparison.

(a) Target fifth panel mode shape. (b) Scaled fifth panel mode shape.

Figure 4.12: Fifth constrained mode shape comparison.

(a) Target sixth panel mode shape. (b) Scaled sixth panel mode shape.

Figure 4.13: Sixth constrained mode shape comparison.



Chapter 5

Aeroelastic Response Verification

A flutter analysis was conducted on the optimized scaled models using ZONA’s ZAERO

software in order to verify the scaling procedure. The ratios calculated in equations 4.2 and

4.3 were used to set the flight densities of the models. Table 5.1 shows the chosen densities

and corresponding altitudes. Infinite plate splines were used to transfer deformations and

loads between the structural finite element model and the aerodynamic panel model.

Table 5.1: Flight densities and altitudes for aeroelastic response verification.

Scaled model Target free case Target constrained case
Flight density

(kg/m3)
1.225 0.269 0.306

Altitude (m) Sea level ∼ 13, 000 ∼ 12, 000

31
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5.1 Free Vibration Aeroelastic Results

Figures 5.1 and 5.2 show the aeroelastic damping and frequency plots, respectively, of the

free flutter analysis. The data from the scaled model was normalized to the full-scale target

regime.

Decent similarity is seen in all of the aeroelastic modes except mode three on the damping

plot up to a scaled velocity of approximately 500 knots. Past 600 knots, aeroelastic modes

one and four coalesce in a fashion not seen in the target model.

Very good similarity is seen in all of the modes on the frequency plot up to a scaled

velocity of approximately 300 knots. Past this point, scaled mode four begins to drift away

from the target until it coalesces with scaled mode one. The original difference in matching

of the third and fifth elastic frequencies within the optimization process is also evident.

Figure 5.1: Aeroelastic damping from the free flutter analysis.
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Figure 5.2: Aeroelastic frequency from the free flutter analysis.

Table 5.2 compares the critical free flutter mode found using each model. Though the

scaled flutter velocities show reasonable agreement, they occur in different aeroelastic modes.

The flutter frequencies are also not in agreement. Different flutter modes are being captured,

as seen in Figure 5.3. Modal participation factors show that the target flutter mode is mainly

comprised of the fifth elastic mode coupled with the fourth mode. The scaled flutter mode

is mainly comprised of the fourth elastic mode coupled with the first mode. Table 5.3 shows

the modal participation factors for the target and scaled free flutter modes. The factors are

normalized such that the primary mode has 100% participation.

The discrepancies in the aeroelastic response of the free vibration case are most likely

attributed to the remaining pitch rotation differences between the models. The fourth and

fifth elastic modes still show significant pitch differences, shapes that are important to the
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target critical flutter response. Better similarity should also be achieved by matching the

third and fifth elastic frequencies closer to their targets.

Table 5.2: Free flutter results.

Property Target value Scaled optimized value % difference
Flutter mode 5 4 N/A

Velocity (knots) 610.670 651.619 6.706%
Frequency (Hz) 1.992 1.235 -38.002%

(a) Target flutter panel mode shape. (b) Scaled flutter panel mode shape.

Figure 5.3: Free flutter mode shape comparison.

Table 5.3: Free flutter modal participation factors.

Target partcipation Scaled participation
Mode 1 4.508% 83.671%
Mode 2 0.008% 0.010%
Mode 3 0.001% 0.013%
Mode 4 50.038% 100%
Mode 5 100% 6.368%

5.2 Constrained Vibration Aeroelastic Results

Figures 5.4 and 5.5 show the aeroelastic damping and frequency plots, respectively, of the

constrained flutter analysis. The data from the scaled model was normalized to the full-scale
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target regime.

Decent similarity is seen in all of the aeroelastic modes except mode six on the damping

plot up to a scaled velocity of approximately 500 knots. The damping in mode 6 never

matches as closely as the other modes, but the scaled and target values do trend in the same

direction.

Decent similarity is seen in all of the aeroelastic modes on the frequency plot through

nearly the entire velocity profile. Modes three and six show the greatest difference at higher

velocities, but these modes always trend in the same fashion.

Figure 5.4: Aeroelastic damping from the constrained flutter analysis.
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Figure 5.5: Aeroelastic frequency from the constrained flutter analysis.

Table 5.4 compares the critical constrained flutter mode found using each model. The

flutter velocities are not as close as desired in order to deem the scaling procedure a complete

success. Unlike the free vibration case, however, the same flutter mode is being captured as

seen in Figure 5.6. The flutter frequencies also match very well. Modal participation factors

show that this flutter mechanism is mainly comprised of the third structural mode coupled

with the sixth mode. Table 5.5 shows the modal participation factors for the target and

scaled constrained flutter modes.

The initial differences in the third and sixth mode shapes are evident in the flutter mode

shapes. This is to be expected since the flutter mechanism is mainly comprised of these

two modes. The aft wing shows a slightly different curvature between the target and scaled

shapes, and the tail boom strake is again pitched differently. The strake is pitched down
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13.64◦ in the target shape and 16.28◦ in the scaled shape. The incorrectly scaled inertia

in the strake seems to be causing the entire tail boom to not deform as expected. Adding

inertia constraints to the optimization routine of this case may alleviate the problem.

Table 5.4: Constrained flutter results.

Property Target value Scaled optimized value % difference
Flutter mode 6 6 N/A

Velocity (knots) 614.218 526.744 -14.242%
Frequency (Hz) 1.557 1.553 -0.257%

(a) Target flutter panel mode shape. (b) Scaled flutter panel mode shape.

Figure 5.6: Constrained flutter mode shape comparison.

Table 5.5: Constrained flutter modal participation factors.

Target partcipation Scaled participation
Mode 1 0.018% 0.001%
Mode 2 1.908% 4.881%
Mode 3 100% 100%
Mode 4 0.006% 0.005%
Mode 5 0.316% 0.012%
Mode 6 67.758% 58.298%



Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Two modal optimizations were performed on a 1/9th span RPV finite element model, yielding

partially aeroelastically scaled designs. The aeroelastic response showed good similarity in

most modes of both the free and constrained vibration cases. In the free vibration case, a

scaled flutter mode was captured that was near the target flutter velocity but not frequency.

However, this scaled flutter mode occurred in a different aeroelastic mode than the target and

was mainly comprised of different structural modes. The correct flutter mode was captured

in the constrained vibration case. Although the flutter velocity in this case did not match

as closely as desired, the flutter frequency was nearly identical to the target value.

The results presented show that aeroelastic scaling through a modal optimization is

38
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possible. The methodology presented by Bond et al.17 has been extended to a built-up

model representative of a flight test vehicle including rigid body degrees of freedom. The

error in the aeroelastic response is most likely due to the remaining difference in the scaled

mode shapes and frequencies, especially the extraneous rigid body rotation still present in the

fourth and fifth elastic modes of the free vibration case. Bond demonstrated the importance

in accurately matching the mode shapes to produce a correctly scaled design, and this

importance is evident in the presented results. The presented work has also demonstrated

the need to correctly match the scaled center of gravity location and inertia. Without these

mass property constraints, the free vibration case produced poorly matching mode shapes

with extraneous rigid body pitch rotations. By removing the majority of the inertia matching

problems in the constrained vibration case, much better results were produced.

During the scaling procedure, manufacturability was neglected in order to verify the

aeroelastic scaling procedure with as much design freedom as possible. Thus, the resulting

optimal designs presented would be impossible to build and test. The accuracy in the ply

layers needed to attain these results would be impossible to reproduce. Differences in ply

thicknesses of some thin layers of the optimal designs were on the order of 1/1000thmm, a

resolution not possible with the current wet layup technique. The uncertainty in the resin

control of the manufacturing process would likely produce a vehicle that was not represen-

tative of the designed finite element model. In addition, the high final mass of the vehicles

would require much larger propulsion systems than those currently implemented. The flight

test RPV was designed for take off weights in the range of approximately 60-90 kg, and each
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of the vehicle’s two jet engines was rated for approximately 20 kg of thrust.4 The optimal

designs presented in this work were on the order of 400 kg. Thus, a propulsion system

roughly four times as powerful would be needed to fly the designed vehicles. With these

concerns in mind, it can be concluded that it would be infeasible to design an aeroelastically

scaled flight test vehicle using the as built 1/9th span RPV as a starting point. The same

carbon fiber ply layup manufacturing technique is not suited for the scaled design, and an

entirely new structure would need to be designed.

6.2 Recommendations

Better matching the target frequencies and mode shapes is required for producing a better

scaled aeroelastic response. This section outlines some recommendations on how to achieve

this better matching modal response while employing the same overall scaling technique and

methodology.

The presented results have showed that matching the scaled center of gravity location and

pitch inertia is critically important to matching the mode shapes and thus the aeroelastic

response. The free vibration case employed a ±5% constraint on these mass properties,

so more stringent constraints could potentially produce better mode shapes. Some pitch

concerns remained in the constrained vibration case, especially in the tail boom strake.

Thus, adding inertia constraints to this case could also produce better mode shapes.

In order to get specific mode shapes and frequencies to match closer, the weights Wi in
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the objective function and the frequency constraints could be changed. A higher weight and

more stringent frequency constraint could cause one mode to look better, likely at the cost

of other modes. Increasing W3 and W6 in the constrained vibration case could potentially

produce a better aeroelastic response since these were the worst matching modes and those

most important to the flutter mechanism.

The objective function itself could be improved by adding more matching nodes and

more degrees of freedom. Only translational degrees of freedom have been used in this work.

Adding rotational freedoms may produce better mode shapes. In addition, wing twist could

be better matched by calculating and matching normalized slopes between the leading and

trailing edges.
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Appendix A

Finite Element Model Conversion

The initial design point for the modal optimization problem presented in this thesis was

a high fidelity finite element model of the 1/9th span geometrically scaled RPV provided

by Richards et al.5 The original finite element model was coded in ANSYS. This appendix

details the conversion process performed to create an acceptably equivalent model in Nastran.

The converted Nastran model was used in the aeroelastic scaling procedure of this thesis.

A.1 Initial ANSYS Conversion

The original finite element model was coded within the ANSYS Classic environment. To

begin the conversion process, the model was exported to an archive file using the following

command from the ANSYS command line:
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[ cdwrite, db, ’file’, ’cdb’ ]

This command produced a .cdb file that was imported into Femap, a Nastran pre/post

processor program. This initial import into Femap only correctly converted certain portions

of the original ANSYS model. The items correctly converted included:

1. Node locations and numbering

2. Element location, numbering, and material coordinate system orientation

3. Beam and rod properties

4. Concentrated mass properties, locations, and rigid connections to the model

Items incorrectly imported included:

1. Some material properties

2. Ply element properties

3. Connections between separate pieces of the model (such as the wings to the fuselage)

Each of these items was manually converted from the original ANSYS model.

A.2 Fixing the Material Properties

Most of the material properties were correctly imported by Femap during the initial con-

version, but some corrections in formatting were required. Material properties were defined
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in the ANSYS .cdb file using the MPDATA and MPTEMP commands. Using the ANSYS

Command Reference and Nastran Quick Reference Guide, individual material properties

were converted into Nastran MAT8 cards. MAT8 cards define orthotropic materials in Nas-

tran. Isotropic materials from ANSYS could also be written to MAT8 cards by defining

the same properties in each direction. Temperature dependent properties were written to

Nastran MAT4 cards.

A.3 Fixing the Ply Element Properties

None of the ply layer element properties were imported correctly during the initial conversion.

Ply properties were defined in the ANSYS .cdb file using the EBLOCK and SEC* commands.

Custom written MATLAB scripts were used to read the data from these commands and

write them to Nastran PCOMP cards. PCOMP cards define ply layer element properties in

Nastran.

Each line of numbers in the EBLOCK command represented a single element within

ANSYS. The first large section of the EBLOCK command corresponded to the ply elements.

The pertinent fields of each line were defined as follows. Fields 1-3 denoted the ANSYS

“property” number. Field 4 denoted the section number of a corresponding SECTYPE

command. The SECTYPE commands contained the actual information about the ply layup

including number of plys, ply thicknesses, ply materials, and ply angles. Field 5 denoted the

element coordinate system number (already correctly read). Field 11 denoted the element
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number (already correctly read). Fields 12-19 denoted the node numbers of the element

(already correctly read).

A custom MATLAB script was used to assign each element a property number related

to fields 1-3. Each ANSYS defined “property” generally consisted of the same SECTYPE.

Thus, each ANSYS “property” received a corresponding Nastran PCOMP card numbered

x001 where x was the “property” number. Should an ANSYS “property” consist of more than

one SECTYPE, the ones place of the PCOMP card was increased. For example, PCOMP

1003 referred to the third SECTYPE of the first ANSYS “property.” Approximately 890

types of PCOMP property cards were defined this way. Some exceptions were made to

account for the changing ANSYS “property” numbers. One exception to this rule was

ANSYS “property” 19, which consisted of elements within the body of the fuselage. Every

one of these elements had a unique SECTYPE, so a unique PCOMP card was written for each

element. Elements within the fuselage received PCOMP cards starting at number 900001.

The ANSYS SECTYPE commands contained the actual ply information written to the

Nastran PCOMP cards. The SECTYPE command defined the section number, referenced in

field 4 of an EBLOCK line. Following this, a SECOFFSET command defined the reference

plane of the section. Next, the SECBLOCK command defined the number of layers n in the

ply section. The following n lines defined the ply thickness, ply material, and ply angle of

the particular layer. The SECCONTROLS command was not used in the conversion.

The combination of EBLOCK and SEC* commands was used to link each Nastran

element with a PCOMP card containing the ply layup information.
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A.4 Fixing the Model Connections

Large pieces of the vehicle such as each of the wings, the control surfaces, and the fuselage

were not connected through traditional elements within the original ANSYS model. These

individual pieces were “glued” together using ANSYS contact elements. Unfortunately, no

easily implementable equivalent of these elements exists within the version of MSC.Nastran

used in this thesis. MSC.Nastran provides BCBODY and BSURF cards to define contact

regions, but these commands were never successfully implemented into the model. A simple

and effective solution was to tie the parts together using Nastran RBE2 elements. These

rigid bar elements were defined within overlapping areas of the connection regions. If nodes

were within a certain defined distance of each other, a rigid bar element was placed between

them, forcing the nodes to deflect and rotate the same amount.

Using rigid elements between nodes sets the “stiffness” within the connection regions.

The tied nodes cannot move away from each other, creating a very stiff connection. To

allow for some design freedom with the connection stiffness, Nastran CROD elements could

be defined between the nodes with corresponding PROD properties. The area and stiffness

of the rods could be tuned to achieved a different overall stiffness within the connection

region. This technique was applied for a few test cases, but it was found to cause numerical

errors when performing some nonlinear static deflection tests and modal analysis tests. For

this reason, the rigid RBE2 elements were used for the majority of the work presented in

this thesis. Use of actual connection regions through the Nastran BCBODY and BSURF
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commands may be worth re-exploring for a more realistic representation of the actual vehicle.

The connections representing the servos of the control surfaces were modeled in Nastran

by carefully examining the defined connections in the original ANSYS model. Corresponding

rigid and flexible bar connections were created to match the ANSYS model. The servo

connecting nodes were allowed to rotate around each other in order to simulate actual control

surface deflection.

A.5 Model Verification

Once the complete model had been converted to Nastran, a verification step was performed

to gauge the accuracy of the conversion process. A modal analysis was performed on both the

ANSYS and Nastran models, and the natural frequencies of each model were compared. Once

the error in the frequencies was acceptable, the model was deemed adequately converted.

Table A.1 compares the first six elastic frequencies after the conversion process.

Table A.1: Results of the finite element model conversion.

Property ANSYS model value Nastran model value % difference
Elastic mode 1 ω (Hz) 9.746 9.278 -4.802%
Elastic mode 2 ω (Hz) 14.763 12.983 -12.057%
Elastic mode 3 ω (Hz) 19.303 18.598 -3.791%
Elastic mode 4 ω (Hz) 23.335 21.795 -6.600%
Elastic mode 5 ω (Hz) 28.094 27.416 -2.413%
Elastic mode 6 ω (Hz) 35.978 34.474 -4.180%



Appendix B

High Fidelity Flight Test Modeling

Parallel to the aeroelastic scaling work presented in this thesis, the converted Nastran finite

element model of the flight test RPV was used to conduct high fidelity modeling tests. Some

of these tests and validations were concurrently run in ANSYS to provide assurance that the

models were producing acceptable results. This appendix documents the most noteworthy

high fidelity tests that were performed using the converted Nastran model in order to aid the

RPV flight test effort. The main goals of the high fidelity modeling effort were as follows:

1. Attempt to identify the nonlinear response desired in the flight test

2. Determine which aircraft components or regions require redesign

3. Propose and test new designs of these components before manufacturing
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B.1 Early Design Exploration

To act as a starting point for the high fidelity tests, a low fidelity representative beam model

of the RPV was created by Anthony Ricciardi. A parametric study on this model that varied

beam and joint stiffnesses concluded that a rotational “leaf” spring at the fuselage/forward

wing joint and a soft aft wing would produce the greatest nonlinear response. These design

changes were implemented into the high fidelity model for initial testing.

To quickly model a soft aft wing, materials in the aft wing structure (not including the

control surfaces) were singled out. The elastic modulus of these materials was then multiplied

by a scaling factor in order to reduce the overall stiffness of the entire aft wing. As a base

case, the aft wing was taken to 5% of the original stiffness.

The rotational “leaf” spring was modeled by defining coincident nodes at the fuse-

lage/forward wing joint. Connection nodes on the fuselage were tied to one coincident node

while connection nodes of the wing were tied to the other. The coincident nodes were con-

nected using a torsional spring element constrained to rotate about defined local coordinate

systems. These coordinate systems provided the correct bending direction of the forward

wing. The element spring stiffness k could be tuned to change the stiffness of the joint

connection. Figure B.1 shows the rotational “leaf” spring within the high fidelity model.
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(a) Wing connections to joint node.

(b) Local coordinate systems.

Figure B.1: Rotational “leaf” spring joint.

A static 2.5g trim load case calculated from the low fidelity beam model was used to test

the design. The test was conducted using 5% aft wing stiffness and k = 1 × 107N · mm.

Figure B.2a shows the linear static results, and figure B.2b shows the nonlinear static results.

(a) Linear static deflection. (b) Nonlinear static deflection.

Figure B.2: 2.5g trim load static deflection results with soft aft wing and spring joint.

The relative vertical deflection of the mid point of the aft wing measured from a straight

line between the wing end points was calculated in each case. In the linear case, the relative

deflection was 28.5 mm. In the nonlinear case, the relative deflection was 38.3 mm, an

increase of about 34%. These results indicated that softening the aft wing would indeed
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produce a nonlinear response that was appreciably different than the linear response. The

deflection shapes themselves were never meant to be representative of the nonlinear response

expected in flight, however. This quick, qualitative test was only meant to show that a

nonlinear response could be achieved through the softening of the aft wing and inclusion of

a “leaf” spring joint.

B.2 Aft Wing Ladder Structure

Subsequent parametric tests and manufacturing concerns suggested that the “leaf” spring

design may not have been as beneficial as originally thought. Thus, the next set of design

efforts was concentrated on the design of a softer aft wing. Ricciardi designed a ladder beam

structure to serve as the load bearing member of the aft wing. Forward and aft spars were

connected with evenly spaced rungs, and an aluminum alloy was chosen as the material.

Cross sectional properties of the spars and rungs could be designed. Concentrated ballast

masses were placed along the length of the ladder.

After successful initial tests on the low fidelity beam model, the ladder structure was

implemented into the high fidelity model. The original aft wing was removed and replaced

with the beam ladder structure. The aerodynamic shell that would surround the ladder was

assumed to carry no load and was neglected from the model. Figure B.3 shows the integrated

ladder structure into the high fidelity model.
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Figure B.3: Aft wing ladder beam structure integrated into high fidelity model.

With the integration of the designable ladder structure, various cross sectional properties

could be tested on the high fidelity model. Research continues in an attempt to find the

design that produces a measurable nonlinear response in flight.

B.3 Model Tuning and Forward Wing Testing

If the aft wing was made extremely flexible, a greater portion of the load during flight would

be carried in the forward wing. Concerns arose as to whether or not the existing forward

wing could carry the added load without failing. An extensive experiment was conducted

on the ANSYS model and flight test RPV to determine the feasibility of keeping the current

forward wing.20 Portions of the study were mirrored on the Nastran model as a verification.

The Nastran model was first updated and tuned to better match the latest experimental

results. An optimization was run in order to tune the materials within the model to match

a static tip deflection. For these tests, the aft wing was removed completely, and a point

load was applied to the aft wing connection joint. The results of the initial tuning are shown
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below. Figure B.4 compares the wing tip deflections of the tuned ANSYS and Nastran models

and the RPV. Figure B.5 compares the root deflections. Up to a load of approximately 10

kg, all of the models agree reasonably well. See Reference 20 for more extensive details on

the experimental set-up and execution.

Figure B.4: Wing tip deflections after model tuning.
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Figure B.5: Root deflections after model tuning.

In order to better capture the strain profile of the forward wing, fillets were added to the

top and bottom of the shear web spars. These fillets were modeled by adding a layer onto

the bottom of the ply elements along the side of each shear web. The thickness of the fillets

could be changed to better tune the model to the experimental results and were given an

initial thickness of 8 mm. Figure B.6 shows the locations of the added fillets in one of the

forward wings.



Charles A.G. Eger Appendix B. High Fidelity Flight Test Modeling 60

Figure B.6: Fillet locations in forward wing.

Strain results were compared between the models. Major and minor principal strains

were measured at the root of the forward wing at the top of the leading edge shear web,

trailing edge shear web, and middle depression. Figure B.7 shows the major principal strain

profile of the top ply layer at a load of 13.8 kg and the locations of the strain measurements.

Figures B.8, B.9, and B.10 compare the measured strains from the leading edge, trailing

edge, and middle region, respectively.

Up to a load of approximately 10 kg, the models agree very well along the leading and

trailing edges. Some significant difference is seen in the middle strain region, however. Thus,

the model was considered reasonably tuned within the linear experimental region up to a

load of 10 kg. Extensive panel buckling at higher load steps was not accurately captured.

The tuned Nastran model agrees reasonably well with the ANSYS model used in the

experimental study of Reference 20. As concluded in this work, the existing forward wing

is not suited to carry a flight load without the presence of a load bearing aft wing. Thus,

research efforts are now concentrating on redesigning both the forward and aft wings in order
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to produce a measurable nonlinear response in flight. These new designs can be integrated

into the high fidelity Nastran model for testing.

Figure B.7: Major principal strain of top ply layer at 13.8 kg and measurement locations.
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Figure B.8: Leading edge strain measurements after model tuning.
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Figure B.9: Trailing edge strain measurements after model tuning.
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Figure B.10: Middle region strain measurements after model tuning.
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