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A comparison of viscoelastic stress wakes for two-dimensional
and three-dimensional Newtonian drop deformations in a viscoelastic

matrix under shear
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(Received 22 October 2008; accepted 21 June 2009; published online 16 July 2009)

A recent experimental study of a Newtonian drop suspended in a viscoelastic matrix undergoing
simple shear displays a transient overshoot in drop deformation which is qualitatively similar to
two-dimensional (2D) numerical simulation results. Despite the similarity, an interpretation in light
of the 2D result is misleading because the overshoot is absent in the fully three-dimensional (3D)
simulation. This motivates a study of regimes where qualitatively different and interesting features
such as overshoots in deformation occur for a 2D drop but not for a 3D drop. The influence of
viscoelastic “wakes” that emanate from the drop tips is reported. The viscoelastic wakes are larger
and of higher magnitude in 3D than in 2D, and lead to more deformation in 3D. During drop
evolution, the less deformed drop is found to be aligned more with the flow direction. As the
drop-to-matrix viscosity ratio increases from 1 to past 3, drop rotation is promoted, with
accompanying retraction when the capillary number is sufficiently high. Thus, a 3D overshoot in

deformation is promoted with increasing viscosity ratio. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3182830]

I. INTRODUCTION

Recent experimental studies of Newtonian drops sus-
pended in Boger fluids and sheared have been compared to
model equations and small deformation asymptotics.l_8
Higher deformations require a fully numerical approach9_”
which is computationally expensive because of the need to
capture viscoelastic stresses that have large gradients local-
ized next to the drop surface. At this time, a two-dimensional
(2D) numerical simulation is completed on a personal com-
puter in a few hours. This would be a reasonable first step,
rather than the three-dimensional (3D) simulation which uses
at least 16 CPUs parallelized over a week. Figure 1 compares
experimental data for a Newtonian drop in a Boger fluid at
drop-to-matrix viscosity ratio A=1.5, capillary number Ca
=0.36, and matrix Weissenberg number We=2.12." The ex-
perimental data are predicted fairly well by the 3D numerical
simulation [3D (—) and 2D (- -)]. The 2D simulation is
qualitatively similar but underpredicts the data. On the other
hand, there are experimental results that show qualitatively
similar behavior as in 2D simulations, but which are quali-
tatively different from 3D simulations. An example is Fig. 11
in Ref. 8, where the experimental data undergo transient
overshoots before settling down to steady state shapes. Co-
incidentally, this behavior is qualitatively similar to 2D simu-
lations, but not the 3D simulations. We note that the lack of
an overshoot in our 3D simulation is corroborated by Ref.
11. This raises a question about the interpretation of experi-

“Electronic mail: afkhamis@math.vt.edu. URL: http://www.math.vt.edu/
people/atkhamis.

YElectronic  mail:
people/ptyue.

“Electronic mail: renardyy @aol.com. URL: http://www.math.vt.edu/people/
renardyy.

ptyue@math.vt.edu. URL: http://www.math.vt.edu/

1070-6631/2009/21(7)/072106/7/$25.00

21, 072106-1

mental data in the light of the less computationally expensive
2D option. We shall investigate a case where the 2D or ini-
tially cylindrical drop undergoes an elongation followed by
retraction while the 3D or initially spherical drop grows
gradually in deformation toward a steady state or to breakup
for large values of Ca.

We consider a Newtonian drop of initial radius R, and
viscosity 7, suspended in a viscoelastic matrix of total vis-
cosity 7,=7m,+7, and retardation parameter B=1,/7,,
where 7, and 7, denote the solvent and polymeric viscosity,
respectively. The upper and lower boundaries of the domain
are set into motion so that sufficiently far away from the
drop, the flow is simple shear with shear rate y. The govern-
ing equations for each liquid are incompressibility V-u=0
and momentum transport

p(i_lzl+ (u- V)u> =V (=pI+T+7[Vu+(Vw)']) +F,

(1)

where T denotes the extra stress tensor and the surface ten-
sion force is computed as a body force F in the numerical
formulation. The Oldroyd-B constitutive model for the ma-
trix liquid is

7{% +(u-V)T-(Vu)T - T(VU)T:| +T=7,[Va+ (Vu)'],

2)

where 7 is the relaxation time. Drop deformation in the
velocity-velocity gradient plane is defined by D=(L-B)/(L
+B), where L and B are the longest and shortest lengths from
the center to the interface. The angle of inclination 6 is de-
fined to be the angle between the longest axis of the drop and

© 2009 American Institute of Physics
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FIG. 1. Deformation (top) and angle of inclination (bottom) as a function of
dimensionless time for a Newtonian drop in a viscoelastic matrix at A=1.5,
Ca=0.36, and We=2.12. Experimental data from Ref. 1 (O), Oldroyd-B
model simulation 3D (—), and 2D (- -).

the flow direction. The drop-to-matrix viscosity ratio is de-
noted by A=,/ 7,. We define the capillary number Ca
=Ry¥7,/T’, where I' is interfacial tension. A Reynolds num-
ber is defined by Re=pj/R(2)/ n,, and is small throughout. A
Weissenberg number is We=y7. A dimensionless time is de-
fined by 7=t7.

Il. NUMERICAL RESULTS FOR 2D AND 3D
DROP EVOLUTIONS

Transient 3D simulations are conducted with our in-
house volume-of-fluid (VOF) code detailed in Refs. 12—15.
Briefly, the code uses a finite difference methodology on a
regular Cartesian mesh. The placement of each fluid is deter-
mined by a volume fraction function for one of the liquids in
each grid cell. The interface shape is reconstructed with the
piecewise linear interface reconstruction scheme, and is ad-
vected in a Lagrangian manner by the computed velocity
field. Aggarwal and Sarkar'' developed a numerical method-
ology based on front tracking for a 3D transient study of the
effect of matrix viscoelasticity on drop deformation in shear
flow. Figure 2 shows that our results compare well with the
transient and steady state simulations of Ref. 11. It should
also be noted that overshoots are not predicted in our simu-
lations, nor in their work.

We focus on A=1, We=0.75, and B=0.5 at which the
2D numerical study of Ref. 16 finds overshoots in deforma-
tion, i.e., an initial elongation followed by retraction to sta-
tionary state. Reference 16 uses a diffuse-interface model, in
which the interfacial position is determined by a phase-field
variable which evolves according to a Cahn—Hilliard formu-
lation. We have independently checked the results of Ref. 16
with our VOF code and with an initially cylindrical drop in
3D simulations. In particular, we find that the overshoots are
not due to inertial effects because they remain unchanged
when the Reynolds number is reduced from 0.1 to 0.02.

We use a computational domain of sides L,=2L,=2L,
=16R, (3D) and L,=L,=8R,, (2D) with x as the flow, y as the
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FIG. 2. Newtonian drop deformation in viscoelastic matrix. Numerical
simulations at We=1 (—) and We=2 (- - -) are compared to the numerical
simulations of Ref. 11, We=1 (O) and We=2 ([>), at A\=1, 8=0.5, Ca
=0.3, and Re=0.1.

vorticity, and z as the velocity gradient directions. We found
that this domain size is sufficiently large to eliminate bound-
ary effects. We use mesh size Ax=Ay=Az=R,/12 (3D) and
Ax=Az=R,/12 (2D) with the time step of Af=0.0001. We
performed a spatial and temporal convergence test at Re
=0.1,0.05,0.02 and found that results are independent of the
mesh size, time step, and Reynolds numbers. For the vis-
coelastic matrix, we fix the retardation parameter at 5=0.5,
for ease of comparison with the 2D results of Ref. 16.

Figure 3 compares the 2D and 3D deformations; in par-
ticular, Fig. 3(a) shows the 2D deformation normalized by
the stationary state deformation Dy, clearly showing (i) that
the overshoot increases as the capillary number is increased;
and (ii) for Ca=0.5,0.6, an undershoot is also observed after
the exhibit of the overshoot before the drop reaches a steady
shape. Figure 3(b) compares the 2D and 3D deformations,
showing the agreement for small Ca=0.1,0.2. At Ca=0.3,
the overshoot in 2D becomes apparent. We therefore exam-
ine the viscoelastic stresses at this capillary number. In par-
ticular, the extra stress tensor is zero on the Newtonian side,
while it grows with time on the viscoelastic side of the in-
terface. Figure 4 shows the trace of the extra stress tensor at
f=1,2,3,4,12 for (a) the 2D drop and (b) the 3D. As shown,
viscoelastic stresses grow and then approach to stationary
state values by =12. The extra stress tensor is multiplied by
the surface area to yield the force exerted on the drop. The
initially cylindrical drop has a surface area that extends infi-
nitely in the y direction, while the 3D drop has a concentra-
tion of stresses at the tips in a localized round region. Thus,
when the 2D and 3D deformations are almost equal, as at
Ca=0.3, viscoelastic stresses for the initially cylindrical drop
are less than those of the initially spherical drop. This is
confirmed in Fig. 4 by examining the temporal evolution of
the trace of the extra stress tensor, which is higher in 3D
throughout the evolution, pulling out the tip of the drop.

At =4, the 2D drop has already reached maximal defor-
mation and begins retracting, at which time the 3D drop is
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FIG. 3. Evolution of deformation for a Newtonian drop in a viscoelastic
matrix at A=1, We=0.75, and Ca=0.1 (O), 0.2 (), 0.3 (V), 0.4 ({), 0.5
(A), and 0.6 (). (a) 2D numerical simulations normalized by the station-
ary state showing relative magnitude of overshoot which increases with
capillary number; (b) 2D (—) and 3D (- - -) simulations for total deforma-
tion D.

still elongating. We therefore compare the components of the
extra stress tensor at /=4. Figure 5 shows contours of the
(x,x), (z,z), and (x,z) components in (a) 2D and (b) 3D
simulations. These contribute a surface force equal to Tn
=(Tun+Tyn,,Tn+T,.n,), where n=(n,,n;) is the normal
at the interface. Normals are indicated with straight arrows in
Fig. 5. The dominant component is (x,x) which acts at the tip
where the normal to the interface points mostly in the (—x)
direction, which contributes to pulling the tip out, with larger
magnitude in 3D than in 2D.

The (x,z) component is roughly half of the magnitude of
the (x,x) component. The (x,z) component in 2D is positive
above the drop where the normal vector, sketched at the in-
terface, points mostly in the z direction. This results in a
force that rotates the drop toward the flow direction. The 2D
contribution at the drop tip is identified with the normal vec-
tor that mostly points in the (-x) direction, with a small
contribution in the (—z) direction, resulting in a force that
rotates the drop away from the flow direction. Compared to
this, the (x,z) extra stress component for the 3D drop has a

Phys. Fluids 21, 072106 (2009)

larger contribution at the drop tip, and rotates it out of the
flow direction.

The relatively small (z,z) component in 3D is located
along the interface where the normal points mostly in the
(—x) direction, perpendicular to the z direction, and therefore
contributes little in the way of rotating the drop. The corre-
sponding 2D (z,z) component is placed where the normal to
the interface has a nontrivial z-component, which acts to ro-
tate the drop toward the flow direction. Therefore, while the
2D drop rotates and retracts, continued elongation is pro-
moted in 3D.

At Ca=0.4 and higher, the 2D overshoot becomes more
pronounced, and the drop settles to stationary state, while the
3D case does not overshoot but breaks above 0.4. To see that
extra stresses are always larger in 3D than 2D, we also in-
vestigated the Ca=0.5 case at /=4 in which the 2D overshoot
in deformation is more noticeable. The simulations show
qualitatively similar behavior of extra stresses as for the Ca
=0.3 case. We noticed an increase in the magnitude of the
stress components; however, the placement and the behavior
of the extra stress components are the same as in Fig. 5; we
therefore do not show the results of Ca=0.5.

Figure 6 presents the breakup process at Ca=0.5. The
drop deforms to form dumbbells which become the first
daughter drops, held together by a neck that thins until end
pinching occurs. The contours of the trace of T show that the
stresses build up at the interface outside the tip of the drop,
pulling the ends out. The magnitude of maximal stress in-
creases and the placement of the maximal value moves to-
ward the interface, adding to the difficulty in numerical res-
olution. At f=87.5, the drop elongates sufficiently to begin
end pinching. In addition to the drop tip area, viscoelastic
stress begins to build up at the neck during the necking or
pinch-off. After /=87.5, the daughter drops move away with
the flow, while the filament retracts due to interfacial tension.

We note that the 2D overshoots also occur in the
Newtonian—Newtonian system for Stokes flow. For example,
it is known that for the case of a Newtonian drop in a New-
tonian matrix at A=1, the 2D drop overshoots for sufficiently
high capillary numbers such as Ca=0.5. On the other hand,
the 3D drop breaks up for Ca=0.43 and below this critical
capillary number, no overshoots have been found."”"

The Newtonian counterpart of Fig. 3 is shown in Fig. 7
also for N=1. Figure 7 shows that as the capillary number
increases from 0.1 to 0.6, (i) at Ca=0.3 and higher, the drop
deforms more in 3D than in 2D; (ii) a slight overshoot in
deformation occurs in 2D but not in 3D; and (iii) 2D droplet
deformations reach stationary states at these capillary num-
bers while the 3D drop breaks up above Ca=0.4. In each
case that we have examined, decreased drop deformation
correlates with more drop rotation; hence, we next turn our
attention to the angle of inclination of the droplet.

Figure 8 shows the steady state angle of inclination 6, as
a function of the final deformation D, for a Newtonian drop
in a viscoelastic matrix (A\=1, We=0.75), and its corre-
sponding Newtonian counterpart (A=1). At the same steady
state deformation, the 2D drop (- - -) is more rotated toward
the flow direction than the 3D (—). A higher shear rate is



072106-4 Afkhami, Yue, and Renardy Phys. Fluids 21, 072106 (2009)
0.65 /_/_ 0.17 0.65. 022
0.6 : : ; ;; 0.16 0.6 0.21
0.15 0.2
0.55 0.55
0.14 0.19
0.5 0.5
0.13 0.18
. 045
0.12 0.17
- 0.1 04 0.6
02 0.25 03 0.35 04 0.45 05 o4 0'33.2 0.25 0.3 0.35 04 0.45 0. 9:18:
X 0.44 0.65 0.65
042
0.6 0.6 06
04
0.55 0.55
0.38 055
0.5 05
0.36 05
0.45 045,
0.34
045
04 032 04
~
t = 20'38.2 0.25 03 0.35 04 0.45 05 08 0'33.2 0.25 03 0.35 04 0.45 05 %4
0.65 0.65 11
06
0.6
055 055 . . .
FIG. 4. Newtonian drop in viscoelas-
tic matrix. Contours of the trace of the
0.5 X
05 extra stress tensor at \=1, Ca=0.3,
- || and We=0.75, in the x-z cross section
of the drop. =1,2,3,4,12. (a) 2D
045 . . .
A [(—) in Fig. 3] and (b) 3D [(- - -) in
Fig. 3].
A
t — 3 035 04
_— 02 0.25 0.3 0.35 04 0.45 05 .
0.65
06
0.6
055 055
0.5
05
045
045
0.4
~
t = 4 0332 025 03 035 04 04 05 O
065 13
125
12
1.15
11
1.05
1
0.95
09
0.85
~
t — 12 & 08
= 32 025 03 035 04 045 025 03 035 04 045 05

required for the cylindrical interface to achieve the same de-
formation as for the spherical drop (—). To achieve the same
amount of deformation, the viscoelastic matrix case is more
aligned with the flow direction than the Newtonian—
Newtonian system because the viscoelastic stresses

(b)

contribute to elongation. For low deformation such as Ca
~0.1, the 2D simulation predicts the spherical drop evolu-
tion well because the dominant deformation occurs in the
velocity-velocity gradient plane, in which both spherical and
cylindrical drops project as circular shapes.
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lll. DEPENDENCE OF OVERSHOOT
ON VISCOSITY RATIO

For a Newtonian drop in a Newtonian matrix in Stokes
flow, simple shear rotates the drop with an angular velocity
of order 7y, while the viscous force elongates it at a rate of the
order of the viscous stress on the drop divided by 7,. The
viscous stress arises from the product of the matrix viscosity
with the shear rate. The mechanism for settling to a steady
shape is drop rotation toward the flow direction, away from
the extensional axis that is at 45° to the flow direction. Thus,
the drop cannot break if the rotation rate is much larger than
the deformation rate: ¥ (7,,7)/ 7, or A3 1.*° Experimen-
tally and theoretically, it is known that there is a critical
viscosity ratio of roughly 3.1 beyond which the drop does

(b)

not break. We shall show that the 3D viscoelastic matrix case
also rotates and retracts to a stationary state at higher viscos-
ity ratios, reminiscent of the qualitative features of the 2D
overshoot discussed in Sec. II.

Figure 9(a) shows transient drop deformations for the
experimental data of Ref. 5 at Ca=0.43 and We=0.645,
while varying the viscosity ratio A from 2 to 8. This figure
shows that the overshoots increase with increasing N. For A
=8, the capillary number is increased to Ca=0.6 (- -), which
yields a higher overshoot since viscous shear initially elon-
gates the drop more at Ca=0.43. Figure 9(b) shows the evo-
Iution of the drop inclination angle. On increasing N, we
observe a decrease in € and a decrease in the steady state
deformation. Similarly, a significant overshoot is also ob-
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served in the transient deformation of a Newtonian drop-
Newtonian matrix system at a sufficiently large viscosity ra-
tio. In Figs. 9(a) and 9(b), the transient drop deformation and
inclination angle are shown also for a Newtonian drop in a
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FIG. 7. Evolution of deformation for a Newtonian drop in a Newtonian
matrix at A=1. Ca=0.1 (O), 0.2 (), 0.3 (V), 0.4 (), 0.5 (A), 0.6 (); 2D
(—) and 3D (- - -) simulations.
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(—) results are compared.
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FIG. 9. (a) 3D drop deformation D and (b) drop inclination angle 6 vs
dimensionless time for A=2 ([J), 4 (V), and 8 (A) at fixed Ca=0.43, We
=0.645, and the case A\=8, Ca=0.6 (). In (b), the latter case has a negative
angle or an undershoot in 6 between 7= 6.5 and 10. Newtonian drop in a
Newtonian matrix at Ca=0.43 and A=8 (- - -) is also plotted.
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Newtonian matrix at Ca=0.43 and A\=8 (- - -). This demon-
strates that for A=8, even a Newtonian drop-Newtonian ma-
trix system shows overshoot under shear. Small deformation
theory21 and experiments22 confirm the oscillations in defor-
mation in a Newtonian system when \ is large.

A comparison of Figs. 9(a) and 9(b) shows that the re-
traction in D corresponds to the angle of orientation aligning
more with the flow direction. The case A=8, Ca=0.6 (- -),
shows a marked overshoot and undershoot in deformation
and angle before reaching a steady shape. Viscoelastic
stresses that develop in response to shear elongate the drop
further, but only after a time scale determined by the relax-
ation time. Depending on the balance of viscous and vis-
coelastic effects, if the drop has not reached a critical length
before aligning with the flow direction, it retracts instead of
breaking. This overshoot becomes more pronounced with in-
creasing viscosity ratio with other parameters fixed. At
higher viscosity ratios, overshoots and undershoots are am-
plified with increasing capillary number.

IV. CONCLUSIONS

Drop deformation in 3D at A=1 for a viscoelastic matrix
at We=0.75, B=0.5 is qualitatively different from 2D in
that the 2D drop elongates and then retracts while the 3D
drop evolves gradually toward a steady state and to breakup
for sufficiently large Ca. A study of the extra stress tensor for
2D and 3D shows that there is a viscoelastic wake located at
a short distance away from the drop tip, extending outward,
where the dominant viscoelastic stress is the (x,x) compo-
nent which pulls the tip out. The (x,z) and (z,z) components
in 2D add more rotation toward the flow direction, while the
3D case remains at a higher angle of inclination. Once a drop
rotates toward the flow direction, it lies in a region of low
velocities; both viscous force and viscoelastic force decrease
and the drop retracts. Rotation is promoted when the viscos-
ity ratio increases past 1, and this contributes to overshoots
in transient deformation history.
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