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Numerical simulation of breakup of a viscous drop in simple shear flow
through a volume-of-fluid method

Jie Li, Yuriko Y. Renardy,a) and Michael Renardy
Department of Mathematics and ICAM, 460 McBryde Hall, Virginia Tech, Blacksburg, Virginia 24061-0123

~Received 10 March 1999; accepted 28 October 1999!

A spherical drop, placed in a second liquid of the same density, is subjected to shearing between
parallel plates. The subsequent flow is investigated numerically with a volume-of-fluid~VOF!
method. The scheme incorporates a semi-implicit Stokes solver to enable computations at low
Reynolds number. Our simulations compare well with previous theoretical, numerical, and
experimental results. For capillary numbers greater than the critical value, the drop deforms to a
dumbbell shape and daughter drops detach via an end-pinching mechanism. The number of daughter
drops increases with the capillary number. The breakup can also be initiated by increasing the
Reynolds number. ©2000 American Institute of Physics.@S1070-6631~00!02002-X#
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I. INTRODUCTION

The study of dynamics of a drop in shear flow is
fundamental importance in dispersion science, and
evoked great interest, most notably since the experimen
G. I. Taylor.1,2 The reader is referred to two review articles3,4

for references on this subject. More recently, experime
observations of the sheared breakup have been record
Ref. 5: A strong shear is applied to a single drop, wh
elongates and undergoes end pinching via a process whi
termed ‘‘elongative end pinching’’ as opposed to ‘‘retracti
end pinching,’’ studied in Ref. 6. These processes, wh
yield daughter drops, are paradigms of theoretical invest
tions into emulsification and mixing.4,7–9 Computational
studies10 have elucidated regimes where the drop deforms
the point of breaking, but results on the motion past brea
are limited. Further numerical exploration on the stages
the formation of daughter drops under shear are reporte
this paper. The simulations are conducted as thr
dimensional initial value problems, with the volume-of-flu
scheme.11,12

The experimental work of Ref. 5 focuses on a visco
drop suspended in a second immiscible liquid~the matrix
liquid! in a cylindrical Couette device. The difference in de
sity between the two liquids is a minor effect, and the flow
sufficiently slow, so that centrifugal effects in the cylindric
device are not important. A theoretical model for this is si
ply three-dimensional Couette flow with zero gravity,
shown in Fig. 1. The liquid drop has an undeformed radiua
and viscositymd , and the matrix liquid has viscositymm .
The matrix liquid is undergoing a simple shear flow betwe
two parallel plates, placed a distanced* apart. The undis-
turbed velocity field isu5ġzi, whereġ is the imposed shea
rate. Additional parameters for our numerical simulations
the interfacial tensions, and the spatial periodicitieslx* and
ly* in the x andy directions, respectively. There are six d
mensionless parameters: A capillary number Ca5aġmm /s,

a!Electronic mail: renardyy@math.vt.edu
2691070-6631/2000/12(2)/269/14/$17.00
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where an average shear rate is definedġ5U* /d* , the vis-
cosity ratio l5md /mm , the Reynolds number Re
5rmġa2/mm, the dimensionless plate separationd5d* /a, di-
mensionless spatial periodicitieslx5lx* /a andly5ly* /a.

In the study of drop dynamics in shear flow, one of t
greatest difficulties is that the domain of interest contains
unknown free boundary, namely the interface. The interf
moves from one location to another, and may undergo se
deformations including breakup. The interface plays a ma
role in defining the system and it must be determined as
of the solution. To investigate this problem numerically, t
primary step is to choose an interface tracking method.

There are many interface tracking methods,13 such as the
moving grid method, the front tracking method, the level
method and the volume-of-fluid method, hereinafter cal
the VOF method. Each of these methods has its own adv
tages and disadvantages. In the past, all numerical studie
a viscous drop in shear flow have been performed with
boundary integral method, combined with a front tracki
method. An advantage of the front tracking method is the
of marker particles to track the interface explicitly; the info
mation regarding location and curvature of the interface
explicitly available during the whole calculation proces
Therefore, each boundary condition can be applied dire
and accurately. This generally reduces by a considera
amount the resolution required to maintain accuracy. A
consequence, boundary integral methods have been ap
successfully to the problem of drop deformation in she
flow. However, the implementation of boundary integr
methods poses a major obstacle, because it is very difficu
handle merging and folding interfaces. This requires
ordering the interface points and can result in a signific
logical programming and computational overhead. The V
method, on the other hand, provides a simple way of trea
the topological changes of the interface, as well as eas
generalization to the three-dimensional case. The latter
issues are key issues in the simulation of drop breakup
simple shear flow. The VOF method was first introduced
DeBar14 in 1974, followed by significant advance from
© 2000 American Institute of Physics
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Youngs’ work15 eight years later. Recent works include Re
16–19.

Our numerical study differs from previous works in th
following points. The velocity and pressure are used
primitive variables and the incompressibility constraint
satisfied on the fluids by a projection method. The bound
integral method incorporates a simple shear flow out to
finity. We examine the limitations of this assumption b
changing the plate separation, from placing the plates c
to the drop and then farther away. We can also take
account the inertia term and consider higher Reynolds n
ber flow, and therefore, investigate the approximation of l
Reynolds number motion by Stokes flow. Previous num
cal works, on the other hand, are quasi-steady Stokes flo
Given the drop shape at each time step, the boundary inte
method is used to solve for a steady velocity field through
iteration. Our numerical method is designed to solve ini
value problems, and a steady solution would be reac
eventually. However, for capillary numbers close to critic
this evolution takes a longer time and becomes computat
ally expensive. From the theoretical point of view, our co
could be converted to a steady code by neglecting the ti
dependent acceleration term. However, the details in our
jection method are not easily converted, and the numer
resolution does not become cheaper. We, therefore, com
the past Stokes flow results against low Reynolds num
flow and against unsteady Stokes flow, where the iner
convective term has been neglected.

The VOF method conserves mass accurately, and th
essential for calculating the steady solution at low capill
numbers because the final shapes are obviously sensitiv
the drop volume. However, questions have been raised
the accuracy of calculation for the surface tension forc20

The goal of this work is, therefore, twofold. On the one ha
we investigate the physics of the deformation of a visco
drop by simple shear by the VOF method. On the other ha
this is a prototype problem to test the accuracy of the V
method, through the comparison with existing results fr
the boundary integral approach. A satisfactory compari
will be shown in subsequent sections, thus justifying the
of the VOF method to explore the dynamics of a drop in
breakup regime, which is difficult to treat with the bounda
integral method. The rest of this paper is organized as
lows. In Sec. II, the governing equations and the numer

FIG. 1. Flow schematics. The computational domain is spatially periodi
the x and y directions with periodicitieslx* and ly* , respectively. Plate
separation isd* . Upper wall moves with velocity (U* ,0,0). The lower wall
is at rest. Drop radius isa, and drop viscosity ismd . The matrix viscosity if
mm .
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method are given. In Sec. III, we study the deformation o
viscous drop for subcritical capillary number, where the dr
is stretched to an approximately ellipsoidal shape. The
tails of the shape and the values of the critical capillary nu
ber, computed by our method for various viscosity ratios
the drop to matrix liquids, agree quantitatively with results
the literature. The main advantage of our method is tha
conserves mass, and no rescaling of the mass is needed
ing the calculation. A loss of mass would otherwise cause
overestimation of the interfacial tension force. This accura
is especially important for the computation of this evolutio
where each stage depends sensitively on the interfacial
sion force. In Sec. IV, the breakup of a viscous drop is
vestigated. Figure 13 shows an experimental observatio
Ref. 5 for two fluids of different viscosities, and our nume
cal simulation of Fig. 16 captures the main features. Initia
the elongative end-pinching mechanism produces the lar
daughter drops, followed by the production of a small dro
then a large drop, then a small drop, then two large dro
toward the center of the bridge. Section V is an investigat
of inertial effects. The dynamics of the drop breakup f
Stokes flow is replicated at low Reynolds numbers, and
addition of a small amount of inertia leads to small chang
However, an increase in Reynolds number, which is equ
lent to making the liquids less viscous, leads to more co
plicated flow patterns. Finally, a conclusion is given in Se
VI.

II. NUMERICAL METHOD

A. The equations of motion

The flow is composed of two immiscible liquids of dif
ferent densities and viscosities. The placement of the
fluids is represented by a concentration functionC

C~x!5H 1 fluid 1

0 fluid 2
. ~2.1!

The average values of density and viscosity are interpola
by the following formulas

r5Cr11~12C!r2 , ~2.2!

m5Cm11~12C!m2 . ~2.3!

The concentration functionC is governed by a transpor
equation

]C

]t
1u•¹C50, ~2.4!

whereu is the velocity of the flow. The fluids are incom
pressible

¹•u50, ~2.5!

and governed by the Navier–Stokes equations

rS ]u

]t
1u•¹uD52¹p1¹•mS1F, ~2.6!

n
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wherer is the density,m the viscosity,p the pressure,S the
strain rate tensor

Si j 5
1

2 S ]uj

]xi
1

]ui

]xj
D ,

and F the source term for the momentum equation.F in-
cludes gravity and the interfacial tension force. The inter
cial tension force isFs5sknSds , wheres is the interfacial
tension,k is the mean curvature andnS is the normal to the
interface.

B. Temporal discretization and projection method

Our numerical method is composed of three parts:
second-order VOF method to track the interface, a projec
method to solve the Navier–Stokes equations on the M
grid ~Fig. 2!, and finally, a continuum method for modelin
the interfacial tension.16,17,21–23The 2D ~two-dimensional!
version is explained in detail in Ref. 11, and the axisymm
ric version in Ref. 12. The generalization to the thre
dimensional version is straightforward and we sketch it he

1. The volume fraction field

In order to successfully represent and track the interfa
we must answer three questions:~1! How do we represen
the interface on a finite mesh?~2! How will the interface
evolve in time? and~3! how should we apply boundary con
ditions on the interface? At the discrete level, the concen
tion functionC is represented by the volume fraction of o
fluid, say fluid 1. This is also called the VOF function. Whe
a cell is filled by fluid 1, VOF51, and when a cell does no
contain any of this fluid, VOF50. The interface lies in the
cells with the VOF between 0 and 1. It is well known that t
VOF method conserves mass while still maintaining a sh
representation of the interface. One of the most import
ingredients is the accurate computation of the curvature
the interface from the volume fraction field. This difficult
provides a test of accuracy for our implementation of
boundary conditions posed at the interface.

Given an interface, we can calculate a unique volu
fraction field. On the other hand, given a volume fracti
field, the reconstruction of the interface, together with
accurate orientation and local curvature, poses a prob
This affects the approximation of the boundary conditions
the interface. The interfacial tension condition at the int
face cannot be applied directly, but rather as a body fo
over the cells which contain the interface. Two such form

FIG. 2. Location of variables in a MAC mesh cell.
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lations have been implemented in this work. The first is
continuous surface force formulation of Ref. 24, in whi
fs5sknS , andFs5fs¹C. The second is the formulation o
Ref. 21, in which Fs5¹•T5sdSknS and T5@(12nS
^ nS)sdS#, which leads to a conservative scheme for t
momentum equation. We have compared the results obta
from these two formulations. The difference is very sma
roughly 1% for the simulation of a drop settling to a stea
solution on the 64364 mesh. We have a preference for t
second formulation because we only need to estimate
first derivatives ofn.

2. The projection method

The simultaneous solution of the continuity and mome
tum equations is computationally expensive. An efficient a
proximation is provided by a projection method,25 which
proceeds as follows. Given the physical quantities at ti
level n, the first step is to calculate an intermediate veloc
u* which satisfies

u* 2un

Dt
52un

•¹un1
1

r
~¹•~mS!1F!n. ~2.7!

u* is not, in general, divergence-free. We then correctu* by
the pressure term

un112u*

Dt
52

¹p

r
, ~2.8!

whereun11 at time leveln11 satisfies

¹•un1150. ~2.9!

The key idea of this projection method is to substitute E
~2.8! into Eq. ~2.9!, to obtain a Poisson equation for th
pressure

¹•S ¹p

r D52
¹•u*

Dt
. ~2.10!

The solution of this equation is the most time-consum
part of the Navier–Stokes solver and an efficient solution
crucial for the performance of the whole method. Potentia
the multigrid method is the most efficient method. The ba
idea of the multigrid method26 is to combine two comple-
mentary procedures: One basic iterative method to red
the high-frequency error, and one coarse grid correction s
to eliminate the low-frequency error. We choose a two-co
Gauss–Seidel iterative method because it breaks the de
dence between the variables and, therefore, allows for pa
lelization of the scheme. We use a Garlerkin method to p
vide a good coarse grid correction.

3. Three-dimensional semi-implicit scheme

The above description completes the characterization
our numerical method. However, one weakness is that
an explicit method, and not suitable for simulations of lo
Reynolds number flows or Stokes flows. For an expli
method, the time stepDt should be less than the viscous tim
scale,Tm5rh2/m, whereh denotes the mesh size. Ther
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fore, simulations of low Reynolds number flows or Stok
flows are subject to strict stability limitations and are expe
sive. In order to overcome this difficulty, we have presen
a semi-implicit scheme for the two-dimensional case in R
11 and proved that this scheme is unconditionally stable.
more difficult to prove the stability of the three-dimension
~3D! scheme. The stability analysis can be carried out
follows. The 3D semi-implicit scheme for theu-component
is
ol

es
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u* 2un

Dt
5

1

rn

]

]x
~2mnux* !1

1

rn

]

]y
~mnuy* 1mnvx

n!

1
1

rn

]

]z
~mnuz* 1mnwx

n!, ~2.11!

and similarly for the v, w components. Letu,v,w
;exp(iax1iby1igz) and let m51, r51 for simplicity.
Then
S u* 2un

Dt

v* 2vn

Dt

v* 2vn

Dt

D 5S 22a22b22g2 0 0

0 2a222b22g2 0

0 0 2a22b222g2
D S u*

v*
w*

D 1S 0 2ab 2ag

2ab 0 2bg

2ag 2bg 0
D S un

vn

wn
D ,

~2.12!

which reduces to

S 11Dt~2a21b21g2! 0 0

0 11Dt~a212b21g2! 0

0 0 11Dt~a21b212g2!
D S u*

v*
w*

D
5S 1 2abDt 2agDt

2abDt 1 2bgDt

2agDt 2bgDt 1
D S un

vn

wn
D . ~2.13!
gen-
a-

st-
he
w

o-
le,
The eigenvalues of the left matrix are 11Dt(2a21b2

1g2), 11Dt(a212b21g2) and 11Dt(a21b212g2).
The eigenvalues of the right matrix are solutions of the f
lowing cubic equation

detS 12l 2abDt 2agDt

2abDt 12l 2bgDt

2agDt 2bgDt 12l
D 50. ~2.14!

Let h512l. The above equation can be written as

h32~a2b21a2g21b2g2!Dt222a2b2g2Dt350.
~2.15!

For the cubic equation

h31ah21bh1c50, ~2.16!

we first compute

Q[
a223b

9
5

1

3
~a2b21a2g21b2g2!Dt2,

R[
2a329ab227c

54
5a2b2g2Dt3.

SinceQ3>R2, the cubic equation has three real roots. Th
are found by computing

u5arccos~R/AQ3!,
-

e

in terms of which the three roots are

h1522AQ cosS u

3D2
a

3
,

h2522AQ cosS u1p

3 D2
a

3
, ~2.17!

h3522AQ cosS u12p

3 D2
a

3
.

However,

uh1,2,3u2<~ u2AQu!2< 4
3 ~a2b21a2g21b2g2!Dt2

<~a21b21g2!2Dt2.

It is then easy to see the absolute values of the three ei
values of the right matrix are less than those of the left m
trix. In summary, the above semi-implicit scheme is fir
order accurate in time and unconditionally stable. T
stability of this scheme is crucial for the simulation of lo
Reynolds number flow and Stokes flow.

C. Spatial discretization

An Eulerian mesh of rectangular cells is used. The m
mentum equations are finite differenced on a locally variab
staggered mesh. As Fig. 2 shows, thex component of veloc-
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ity ui 2(1/2),j ,k , the y component of velocityv i , j 2(1/2),k and
the z component of velocitywi , j ,k2(1/2) are centered at the
right face, front face and top face of the cell, respective
whereas the pressure,pi , j ,k is located at the center. This i
the so-called MAC method. In our previous work, the co
centration function was defined on the same mesh grid as
velocity and the pressure. This is not obligatory. Indeed, l
Reynolds number flow is characterized by slow change
velocity in space and in time. On the other hand, the fl
behavior is dominated by the interface evolution. Therefo
in order to achieve accurate representation of the interf
more concentration values are needed. Based on this o
vation, we define the concentration function on a compu
tional grid which is twice as fine as the grid for the veloc
and pressure~Fig. 3!. An adaptive mesh would be superio
but our two-level method is easily built upon our previo
work and presents a compromise between the simplicity
the efficiency. To insert our previous routines into the tw
level-mesh grid method, the only work we need to do is
implement a prolongation procedure, which extrapolates
velocities from the coarse grid to the fine grid and a rest
tion procedure, which transfers the concentration value fr
the fine grid to the coarse grid. The prolongation relations
derived by a bilinear interpolation. For each coarse g
node, four~eight! fine grid values are derived for the 2D ca
~3D case!. For theu-velocity in the 2D case, let (ic, jc) and
( i f , j f ) denote coarse and fine mesh indices, respectiv
Then i f 52(ic)21, j f 52( jc)21 and

U f~ i f , j f !5 1
4 ~3U1

c1U2
c!,

U f~ i f , j f 11!5 1
4 ~U1

c13U2
c!, ~2.18!

U f~ i f 11,j f !5 1
8 ~3U1

c1U2
c13U3

c1U4
c!,

U f~ i f 11,j f 11!5 1
8 ~U1

c13U2
c1U3

c13U4
c!, ~2.19!

FIG. 3. Coarse and fine mesh grid.

FIG. 4. Scalar measures of deformation and orientation.
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where the superscriptsc, f denote coarse and fine grid va
ues. Thev-velocities can be prolongated by equivalent re
tions. To recover the concentration function on the coa
grid, the restriction procedure is simply made by averag
nearby values; that is

Cc~ ic, jc !5 1
4 ~Cf~ i f , j f !1Cf~ i f 11,j f !1Cf~ i f , j f

11!1Cf~ i f 11,j f 11!!. ~2.20!

This two-level method refines only the interface tracking
the finer grid and keeps the resolution of the velocity field
the coarse grid. This is a cheap way to improve accuracy,
it should be used with caution because the velocity@Eq.
~2.19!# interpolated from the coarse grid is no long
divergence-free on the fine grid. This may violate the m
conservation. A divergence-free interpolation can be
tained through the following lower order formulas:

U f~ i f , j f !5U1
c ,

U f~ i f , j f 11!5U1
c ,

U f~ i f 11,j f !5U1
c , ~2.21!

U f~ i f 11,j f 11!5U1
c .

The direct simulation of two fluid flow is often limited
by computing cost and machine memory, especially in
3D case. Three issues have been of utmost importanc
order to improve performance: The accuracy, the stabi
and the efficiency. The entire code has been parallelized:
the Origin2000 with 16 parallel processors, the efficiency
our code is more than 80%.

III. NUMERICAL STUDIES OF CRITICAL CAPILLARY
NUMBER

In the simple shear flow illustrated in Fig. 1, the dynam
ics of the drop is essentially determined by two compet
forces: the viscous shear stressmmġ of the matrix liquid
which causes the drop deformation and the character
Laplace pressures/a which resists the deformation. Th
capillary number Ca5mmġa/s, defined as the ratio betwee

TABLE I. Taylor deformation parameterD for steady-state drop forl51;
Stokes flow.A, B andC represent the computational domains 23131, 2
3132 and 23134, respectively.

Ca 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.42

A 0.689 unsteady unsteady
B 0.119 0.181 0.244 0.309 0.372 0.469 0.585 unstea
C 0.114 0.172 0.232 0.293 0.360 0.436 0.541

TABLE II. Orientation parameter 452u of drop upon reaching steady stat
for l51; Stokes flows.A, B and C represent the computational domain
23131, 23132 and 23134, respectively.

Ca 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.42

A 33.0 unsteady unsteady
B 8.48 12.1 15.0 17.1 19.6 25.3 30.7 unstead
C 8.58 12.3 15.5 17.9 19.1 23.3 27.3
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FIG. 5. Cross-sectional slice in thex-z
plane through the center of the dro
for steady-state solution in simple
shear flow. l51, equal densities,
Stokes flow. Velocity vectors are dis
played.
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these two forces, provides a useful measure of efficienc
the shear flow to deform the drop. Another important num
is defined as the ratio of drop viscosity to matrix liquid vi
cosity l5md /mm . These two dimensionless paramete
characterize the behavior of the suspended drop, prov
the Reynolds number Re5rmġa2/mm is small. Several previ-
ous experimental, theoretical and numerical studies h
shown that whenl is less than four, there is a ‘‘critica
capillary number’’ Cac , above which the drop continues t
deform without reaching a steady shape, and this lead
disintegration. For capillary number Ca under the critic
value, a steady drop shape exists in a steady shear flow.

FIG. 6. Superposition of drop shapes obtained by one-level method~outer
line! and two-level method~inner line!. 23134 domain. Ca50.40, Re
50.0, l51, equal densities. Cross-sectional slice in thex-z plane through
the center of the drop.
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub

128.173.125.76 On: Wed,
of
r

s
ed

ve

to
l
he

critical capillary number for breakup of an isolated drop
shear flow is lowest forl roughly around 0.6,30 and the value
is just slightly less than the case forl51, where Cac
'0.41 is critical.27

In the case where the drop evolves to a steady shape,
parameters have been used to measure the deformatio
tained by the drop in its final stage. The first is the Tay
deformation parameter,D5(L2B)/(L1B), whereL andB
are the half-length and half-breadth of the drop, respectiv
The second parameter is the angleu of orientation of the
drop with the axis of shear strain~Fig. 4!. Our first goal in
this paper is to compute the critical capillary number ac
rately; i.e., for capillary number less than the critical valu

FIG. 7. Steady-state velocity field and drop shape for Ca50.40 calculated
by the two-level method. 23134 domain, Re50.0, l51, equal densities.
Cross-sectional slice in thex-z plane through the center of the drop.
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we should obtain a steady solution. By comparing our res
to the previous results in the literature, we can then judge
accuracy of the VOF method. We have studied the c
which has been most analyzed in the literature with
boundary integral method:l51. The drop is given an initia
radius a50.25 and the unperturbed shear rate is 1.0. T
external Reynolds number is then Re5reġa2/me50.0625,
and this is in the Stokes flow regime. For Ca less than
critical value, we have retrieved the same steady solutio

FIG. 8. Deformation of a viscous drop in simple shear flow. Comparison
the steady-state drop deformation parameterD for viscosity ratiol51.0,
equal densities, Stokes flow.L VOF computations;h boundary integral
computations of Rallison;3 boundary integral computations of Kwa
et al.; n boundary integral computations of Kennedyet al.; s experimen-
tal results by Rumscheidt and Mason; the solid line represents
asymptotic results by Cox for small deformation~cf. Fig. 11 of Ref. 28!.

FIG. 9. Deformation of a viscous drop in simple shear flow. Comparison
the steady-state drop orientation angleu measured in degree for viscosit
l51.0, equal densities, Stokes flow.L VOF computations;h boundary
integral computations of Rallison;3 boundary integral computations o
Kwak et al.; n boundary integral computations of Kennedyet al.; s ex-
perimental results by Rumscheidt and Mason; the solid line represent
asymptotic results by Cox for small deformation~cf. Fig. 11 of Ref. 28!.
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Numerical simulations of Stokes flows have been co
ducted for capillary numbers Ca50.10, 0.15, 0.20, 0.25
0.30, 0.35, 0.40, and 0.42. The computational domains
boxes of dimensions 23131, 23132, and 23134. The
difference in height among the boxes is used to investig
the effect of plate separation. The initial condition at tim
T50.0 is that the drop has a spherical form and the ini
velocity field is null inside the computational domain. Th
no-slip condition is imposed on the top and bottom pla
and periodic conditions in thex direction andy direction.
Constant velocities are imposed on the top and bottom pl
such that the shear rate is constant during the whole com
tation. All the computations have been done with the o
level method. The mesh sizes areDx5Dy5Dz51/32. The
parametersD andu for the steady-state solutions are show
in Tables I and II, respectively.

The first remark from these computations is that t
VOF method is accurate and we are able to predict the
rect critical capillary number. In the 23132 computational
domain, we obtained a steady solution for capillary num
Ca50.40 and the flow is unsteady for Ca50.42. This result
agrees with previous numerical results obtained with bou
ary integral methods. Figure 5 shows cross sections of

f

e

f

he

FIG. 10. Cross-sectional slice inx-z plane through the center of the drop. I
the top three figures, the viscosity ratio isl50.5 and Ca50.38, 0.40, 0.42.
In the bottom plot,l50.1, Ca50.40. The top and bottom solutions hav
achieved steady states. Equal densities, Stokes flow.
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FIG. 11. Evolution of drop shape for
Ca50.42 in domain 33132, l51,
equal densities, Re50.0.
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FIG. 12. Cross-sectional slice in thex-z plane through the center of the drop
Velocity vector fields in thex-z plane are shown during the breakup of
drop in simple shear flow for capillary number Ca50.42,l51, equal den-
sities, Re50.0.
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steady shapes in thex-z plane for Ca50.1, 0.2, 0.30, and
0.40. It is evident that the larger the capillary number, t
larger the drop deformation and rotation. We should ment
that mass conservation is essential for the accurate calc
tion of the steady parametersD andu. If a method were to
lose mass during the calculation, the effective capillary nu
ber would decrease and the method would overestimate
surface tension force. Our simulations show that our V
method has a very accurate mass conservation property
example, take the Ca50.40 case; the total VOF of the drop
2144.675 initially, and it is 2144.619 when the steady so
tion is reached. The loss of mass is 0.0026%. This leve
precision is yet to be achieved by the front-tracking and le
set methods.

Secondly, we study the influence of the distance betw
the two plates where the boundary conditions are impos
In all these calculations, the undeformed drop has radiua
50.25. When the plate separation is small (d51 or d/a
54), no steady solution was obtained for Ca50.40. The
close proximity of the two plates reduces the critical cap
lary number. On the other hand, for large plate separati
(d52, 4, or d/a58, 16!, the liquids have more space t
arrange themselves and the results show less sensitivit
the placement of the walls. The effect of Reynolds num
was also studied by investigating the Navier–Stokes flow
the previously mentioned Re50.0625. On the computationa
domain 23132, we obtained the steady parametersD
50.312 andu528.1 for Ca50.25. These values are onl
slightly larger than the values obtained from Stokes flow. W
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conclude that the unsteady Stokes flow is a good approxi
tion for low Reynolds number flow.

Our steady parameters obtained from the 23134 do-
main agree well with those of Refs. 28 and 29 which treat
case of walls out at infinity, for small capillary numbers. F
example, for Ca50.20, we obtainedD50.232, while D
50.224 in Ref. 28 andD50.236 in Ref. 29. For Ca50.25,
we obtainedD50.293, whileD50.272 in Ref. 28 andD
50.290 in Ref. 29. However, the discrepancy widens
larger capillary number. We obtainedD50.541 for
Ca50.40, in comparison toD50.50 in Ref. 28 and no
steady solution is found in Ref. 29. We believe that this
essentially due to the lack of mesh refinement. The larger
capillary number, the more the drop is stretched, and
larger the curvature at the ends of the drop. Hence, m
resolution is needed for accurate computation of the sur
tension force. To justify this idea, we have refined the r
resentation of the interface on the 23134 domain. For rea-
son of efficiency, we used the two-level method rather th
refining the entire mesh. We obtained the improved resul
D50.534 andu518.5. The significance of this is shown

FIG. 13. Reproduction of Fig. 4.3.1.a of Ref. 5 showing a typical break
Matrix viscosity 7.0 Pa.s, drop viscosity 4.3 Pa.s, interfacial tension 1
mN/m, initial drop radius 0.048 cm, shear rate 2.17/s, equal densities.
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Fig. 6, where the drop shapes obtained by the two-level
the one-level methods are superimposed; the inner lin
computed with the two-level method and the outer line w
the one-level method. The two drop shapes coincide w
except at the ends, where the curvature is large. Theref
the results obtained by the two-level method represent a
nificant improvement on those by the one-level method.

To examine more carefully the drop deformation in t
shear flow, we plot the drop shape and the velocity fields
thex-z plane, cut through the middle of the bubble, in Fig.
This provides a very nice visualization of the flow pattern
the drop in shear flow. Far away from the droplet, we see
basic simple shear flow pattern, with the flow moving towa
the left at the top and toward the right at the bottom. Near
droplet, the velocity is tangential to the interface and the fl
moves along the interface, which is consistent with the c
ditions at a free surface. The competition between the ex
nally imposed shear flow and the surface tension driven fl
produces a closed vortical motion interior to the drop.

Figures 8 and 9 show graphs ofD andu for the steady
states attained for viscosity ratiol51, along with results of
previous experimental and numerical investigations~cf. Fig.
11 of Ref. 28!. We conclude that the VOF method obtain
results comparable to the boundary integral method.

.
7

FIG. 14. Interface evolution as viewed from the side of the computatio
box 83131 during breakup for Ca50.45, Re50.125,l51, equal densi-
ties. 256364364 grid.
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We have also investigated the critical capillary numb
for different viscosity ratiosl. The top three plots in Fig. 10
show the casel50.5 and the bottom plot shows the ca
l50.1, with equal densities, and zero Reynolds number.
sequence of shapes forl50.5 are the solutions after a rela
tively long time for Ca50.38, 0.40, and 0.42. The elliptica
shape for Ca50.38 is attained as a steady-state solution. T
Taylor parameter isD50.55. The shapes for Ca50.40 and
0.42 are still evolving toward the dumbbell shape. The e
lution for Ca50.40 is extremely slow, indicating that th
capillary number is close to and above the critical value
breakup. Both Ca50.40 and 0.42 clearly display the forma
tion of the waist near the center of the drop, which sign
the initiation of breakup. Our simulations show that the cr
cal capillary number for viscosity ratiol50.5 lies between
0.38 and 0.40, which is slightly less than the one forl51.
This is in good agrement with Grace’s experimental dat30

for which the minimum critical capillary number is in th
region of l50.6, and is slightly less than that forl51.
Their data show also that at viscosity ratios much less tha
or much greater than 1, the critical capillary number
creases rapidly. We have also confirmed this. The bot
plot in Fig. 10 shows the steady-state shape forl50.1 and

FIG. 15. Interface evolution as viewed from the top of the computatio
box 83131 during breakup for Ca50.45, Re50.125,l51, equal densi-
ties. 256364364 grid.
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Ca50.40. The drop has an ellipsoidal form and the Tay
parameter isD50.44, which is much less than theD
50.54 for l51. This confirms that a much larger critica
capillary number is needed for drop breakup at this low v
cosity ratio. The velocity vector plot clearly shows that t
vortical motion inside the drop is markedly stronger than
l51 because the drop liquid is now much less viscous t
the matrix liquid.

IV. RUPTURING A DROP IN SHEAR WITH THE VOF
CODE

When the shear rate is increased past a critical value,
drop ruptures. Based upon previous works, the critical c
illary number forl51 is roughly 0.41. Indeed, our compu
tation predicts an unsteady solution for Ca50.42 in the do-
main 33132. Figure 11 shows the evolution of the dro
shape on a 96332364 mesh grid. The drop continuous t
deform and eventually breaks up. The competition betw
the externally imposed shear flow and the surface tens
driven flow is clearly evident in the figures. Initially, th
most noticeable motion is the elongation of the dro
stretched by the viscous shear stress of the external
~time T50.0, 10.0, and 20.0!. To time T530.0, we see

l

FIG. 16. Interface evolution as viewed from the top of the computatio
box 123131 during breakup for Ca50.55,l50.77, equal densities. 256
364364 grid.

TABLE III. Reynolds numbers just below break-up values for differe
capillary numbers.l51, equal densities.

Ca 0.1 0.15 0.2 0.25 0.3 0.35
Re 21.5 10.0 4.0 1.5 0.6 0.2
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FIG. 17. Diagram of drop breakup in the~Ca,Re! plane.
Circles represent evolution to steady state. Crosses
resent breakup. Dashed curve interpolates critical v
ues.l51, equal densities.
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clearly that a waist is formed near the center of the drop,
the drop continually thins. The drop is beginning to length
slowly and a visible neck is formed near the bulbous e
The subsequent scenario is described in Ref. 31; this n
will eventually lead to the ends pinching off and the rema
ing liquid thread in the middle will form some small satelli
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub

128.173.125.76 On: Wed,
d
n
.
ck
-

droplets. Moreover, the experimental work of Ref. 5 sho
that there can be a sequence of large and small drops for
after the ends break off.

To examine more carefully the breakup procedure,
have done the calculation on a 1923643128 mesh-grid. We
present the velocity field on the cross-sectional cut in thex-z
t

e

FIG. 18. Steady-state solutions forl
51, equal densities, and Ca50.3, for
increasing Reynolds numbers~a! 0.0,
~b! 0.1, ~c! 0.5, ~d! 0.6. The drop
breaks up for Reynolds numbers jus
above 0.6. Velocity vector fields are
shown for cross-sectional slices in th
x-z plane.
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plane in Fig. 12; the flow pattern is symmetrical and we ne
to show only the right half field. The precise role of th
surface tension driven flow during breakup can be exami
from this figure. At time T536.0, the result of the compet
tion between the external flow and the surface tension fo
is a vortical motion inside the bulbous end of the drop, e
cept near the neck; the surface tension force drives a
flow motion toward the bulbous end while in the waist ne
the center, the flow is much weaker. The consequence is
the neck quickly and continually narrows~the neck has the
same size as the mesh grid at this time!, while the width of
the central waist remains almost unchanged at time T538.0.
At T538.5, the drop breaks up at the neck and produce
main drop and a middle liquid thread.

For the simulation on the 1923643128 mesh-grid, we
have used a time stepDt55.031023, and the Neumann
number is 2, eight times larger than the stable time step
the corresponding explicit method. Although our scheme
unconditionally stable for the viscous terms, we did not u
larger time steps, in order to avoid an overshoot in the co
putations. This simulation required a total CPU time on
Origin 2000 processors on the order of two weeks.

As noted by Ref. 5 in his Sec. IV F 2, the largest daug
ter drop formed during breakup is always formed by the fi
elongative end pinching. Our case of Ca50.42, l51 is just
above the critical capillary number, and the two main dau
ters contain almost all the volume of the initial drop; i.e
they are each;0.5 of the initial volume. This would give an
estimate of the radii to be 0.51/350.79 of the initial drop
radius. Indeed, the maximum daughter drop radius in
numerical simulation is slightly less at the third decim
place, rounding to 0.79a, wherea denotes the initial drop
radius. In the notation of Ref. 5 where Cax5axmmg/s, ax

denotes the daughter radius,Kx5Cax /Cac50.8, and Ki

5Cai /Cac51.02. Hence, our result is in agreement with h
experimental result on maximum daughter drop size
comparison with a binary model, which is plotted in his F
4.6.2.e.

Figure 13 reproduces Fig. 4.3.1.a of Ref. 5, which is
experimental observation of elongative end pinching. T
drop is polybutadiene and the matrix liquid is a corn-syr
solution. The ratio of viscosities isl50.61 and the capillary
number is Ca50.68. The critical capillary number is state
as 0.48. This sequence of events is qualitatively similar
our results shown in Fig. 14 for the side-view and Fig. 15
the top-view forl51 and Ca50.45. The view from the top
of the computational domain provides the analogy with
experimental pictures. The production of the largest drop
the ends, followed by a small, then large, then small, dr
toward the middle of the neck, is reproduced in our com
tations. Figure 13 is described at length in Ref. 5 and
summarize it here: ‘‘As the drop stretches, it first takes on

TABLE IV. Variation of Taylor deformation parameterD with Reynolds
number.l51,Ca50.3, equal densities.

Re 0.0 0.1 0.5 0.6 0.75
D 0.372 0.3968 0.45 0.4768 break
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ellipsoid shape. At some point, time about 2.45 s’’ in Fig. 1
‘‘the drop changes from an ellipsoid shape to a ‘dumbbe
shape similar to that observed in retractive end pinching. T
drop continues to stretch. The ‘bulbs’ at the end of the d
achieve a stable diameter. The center portion of the d
continues to thin. Eventually, a bridge develops between
center portion of the drop~time about 11.95 s in Fig. 13!.
This bridge is unstable and leads to the bulb pinching off
form a new drop~time about 16.75 s in Fig. 13!. If the drop
is large enough~i.e., if the original volume is not totally used
up by the formation of the first bulb drops! the ends of the
center portion will ‘‘bulb up’’ in a process similar to retrac
tive end pinching. A bridge will form between this subs
quent bulb and the center portion of the drop and a sec
bulb drop will break off.’’ The experimental observations
breakup all ‘‘began with a breakup of the elongative e
pinching type. Subsequent end pinches and capillary w
breakups were observed only when the shear rate exce
the critical shear rate by a sufficient amount.’’

Figure 16 shows our numerical computation for visco

FIG. 19. A sequence of deformation leading to breakup of drop forl51,
equal densities, Ca50.3, and Reynolds number 0.75. Cross-sectional slice
the x-z plane through the center of the drop.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

 20 Nov 2013 20:15:43



f-
s
s.
al

281Phys. Fluids, Vol. 12, No. 2, February 2000 Numerical simulation of breakup of viscous drop in simple shear . . .

 This ar
FIG. 20. Steady-state solutions at di
ferent capillary numbers for Reynold
numbers just below break-up value
l51, equal densities. Cross-section
slice in thex-z plane through the cen-
ter of the drop.
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ity ratio l50.77 and Ca50.55, with equal densities. Thes
parameters are closer to those of Fig. 13; the dynamics
again similar to that of Fig. 15 forl51, Ca50.45. The drop
stretches from spheroidal to ellipsoidal then to the dumb
shape, the ends pinch off, producing the largest daug
drops, followed by instabilities of the central portion, pr
ducing small and large drops. Note that Fig. 16 even ag
with the experimental picture in Fig. 13 in the production
the primary large drop followed by a small drop, then a lar
drop, then a small drop, then two large drops toward
center of the neck.

V. EFFECT OF THE REYNOLDS NUMBER

In this section, we focus on the casel51, as the Rey-
nolds number is increased. Our computational domain
box of dimensions 23132, with a mesh of 64332364. As
we saw before, the placement of the walls has a minor ef
and the mesh is sufficient to produce quantitatively accu
results. For zero Reynolds number, the casel51 and equal
densities has a critical capillary number of 0.41. For capill
numbers below this value, Table III shows that breakup
induced when the Reynolds number is increased past a
cal value. The critical Reynolds number is small for Ca clo
ticle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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to 0.4, but increases rapidly as Ca decreases. This tren
shown in Fig. 17, where the horizontal axis represents
capillary numbers up to 0.4, and the vertical axis is the R
nolds number. Computations were performed at a numbe
points on this plot. The circles represent our numerical c
culations which yield steady-state solutions, and the cros
yield breakup. The dashed curve represents critical value

At each capillary number, the increase in Reynolds nu
ber deforms the drop from ellipsoidal to elongated. This
illustrated for Ca50.3 in Fig. 18. In comparison with the
velocity fields for Stokes flow shown in Fig. 5, the increa
in Re leads to a markedly stronger velocity field in the dr
region. For example, Fig. 18~d! shows the strong vortica
motion inside the drop just below the critical Reynolds nu
ber. Table IV shows the accompanying increase in the T
lor deformation parameterD for the steady-state solution, a
the Reynolds number is increased.

Figure 19 shows the evolution of the drop towa
breakup for Ca50.3 at Re50.75. The shapes here are ana
gous to the sequence shown in Fig. 11 for the case of e
viscosities, since the critical Reynolds number is still low

Figure 20 shows the steady-state solutions for capill
numbers 0.1, 0.15, 0.2, and 0.25 just below the critical R
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nolds numbers. At each capillary number, the spherical d
evolves to a steady solution up to roughly the value show
this figure. This figure shows that increasing the Reyno
number leads to two effects. First, the symmetry across
mid-plane of the steady state is lost, and it loses its ellips
dal shape. For the lower capillary numbers, the drop is m
vertically inclined than in the case of the higher capilla
numbers. Secondly, the flowfield inside the drop devel
more than one vortex. Two vortices are clearly visible
Ca50.1, Re520, and Ca50.15, Re510. The lower the cap-
illary number, the stronger the interfacial tension whi
keeps the drop together, and the higher the Reynolds num
that is required to break up the drop. At the higher Reyno
numbers, the velocity fields show the distinct developmen
more complicated dynamics in the drop region.

VI. CONCLUSION

A VOF method has been used to investigate the de
mation and breakup of a drop in simple shear flow. T
critical capillary number for breakup, the Taylor deformati
parameterD, and angle of orientation, have been check
against previous works, including the experimental work
Ref. 30 for viscosity ratios different from one. For low ca
illary numbers where drop breakup does not occur in Sto
flow, we have induced breakup with an increased Reyno
number. The main advantage of our method is its mass c
servation property, so that no rescaling of the mass is nee
during the calculation. Another advantage of the VO
method lies in its ability to compute flows with changes
topology. We have investigated the breakup of a drop
supercritical capillary numbers and examined the end pin
ing mechanism. The capability of the VOF method to stu
the drop dynamics beyond the steady state is confirmed
comparisons on the details of the daughter drops with
experimental data of Ref. 5.
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