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Numerical simulation of breakup of a viscous drop in simple shear flow
through a volume-of-fluid method

Jie Li, Yuriko Y. Renardy,® and Michael Renardy
Department of Mathematics and ICAM, 460 McBryde Hall, Virginia Tech, Blacksburg, Virginia 24061-0123

(Received 10 March 1999; accepted 28 October 1999

A spherical drop, placed in a second liquid of the same density, is subjected to shearing between
parallel plates. The subsequent flow is investigated numerically with a volume-of(fi@dF)

method. The scheme incorporates a semi-implicit Stokes solver to enable computations at low
Reynolds number. Our simulations compare well with previous theoretical, numerical, and
experimental results. For capillary numbers greater than the critical value, the drop deforms to a
dumbbell shape and daughter drops detach via an end-pinching mechanism. The number of daughter
drops increases with the capillary number. The breakup can also be initiated by increasing the
Reynolds number. €000 American Institute of Physid$1070-663(000)02002-X]

I. INTRODUCTION where an average shear rate is defipedU*/d*, the vis-
cosity ratio N\=puq/um, the Reynolds number Re
The study of dynamics of a drop in shear flow is of = pm¥a um, the dimensionless plate separatibad*/a, di-
fundamental importance in dispersion science, and hagensionless spatial periodicitiag=\*/a and)\yz)\;,‘/a.
evoked great interest, most notably since the experiments of | the study of drop dynamics in shear flow, one of the
G. I. Taylor? The reader is referred to two review articts  greatest difficulties is that the domain of interest contains an
for references on this subject. More recently, experimentajjnknown free boundary, namely the interface. The interface
observations of the sheared breakup have been recorded fves from one location to another, and may undergo severe

Ref. 5: A strong shear is applied to a single drop, whichgeformations including breakup. The interface plays a major
elongates and undergoes end pinching via a process which i§je in defining the system and it must be determined as part

termed “elongative end pinching” as opposed to “retractive of the solution. To investigate this problem numerically, the
end pinching,” studied in Ref. 6. These processes, whichyimary step is to choose an interface tracking method.

yield daughter drops, are paradigms oj_tgeoretlcal Investiga-  There are many interface tracking methddisyich as the
tions ugto emulsification and mixing!~® Computational moving grid method, the front tracking method, the level set
studies” have elucidated regimes where the drop deforms t9nethod and the volume-of-fluid method, hereinafter called
the point of breaking, but results on the motion past breakupne VOF method. Each of these methods has its own advan-
are limited. Further numerical exploration on the stages ifages and disadvantages. In the past, all numerical studies of
the formation of daughter drops under shear are reported ig \;iscous drop in shear flow have been performed with the
this paper. The simulations are conducted as threes, ngary integral method, combined with a front tracking
dimensional initial value problems, with the volume-of-fluid . ~thod An advantage of the front tracking method is the use

1,12
schemeé. of marker particles to track the interface explicitly; the infor-

The experimental work of Ref. 5 focuses on a visCoUSyation regarding location and curvature of the interface is
drop suspended in a second immiscible liqéile matrix o jicitly available during the whole calculation process.
liquid) in a cylindrical Couette device. The difference in den-rperefore, each boundary condition can be applied directly
sity between the two liquids is a minor effect, and the flow is 4 accurately. This generally reduces by a considerable
sufficiently slow, so that centrifugal effects in the cylindrical 4, 5unt the resolution required to maintain accuracy. As a
device are not important. A theoretical r_nodel for this _is Sim'consequence, boundary integral methods have been applied
ply three-dimensional Couette flow with zero gravity, asgccessfully to the problem of drop deformation in shear
shown in F!g. 1. The liquid drop' ha_s an undefqrmeq radius  gq,y, However, the implementation of boundary integral
and V|scc')5|t'y,uq, 'and the matrlx I|gU|d has viscosifiy. methods poses a major obstacle, because it is very difficult to
The matrix liquid is undergoing a simple shear flow between,,qje merging and folding interfaces. This requires re-
two parallel plates, placed a distand® apart. The undis-  ,yering the interface points and can result in a significant

turbed velocity field is1=yzi, wherey is the imposed shear |,4ica| programming and computational overhead. The VOF

rate. Additional parameters for our numerical simulations ar¢,othod. on the other hand provides a simple way of treating
the interfacial tensiowr, and the spatial periodicities; and the topological changes of the interface, as well as ease of

.. o . o
Ay in thex andy dwecuorws, respectively. There are six di- yaneralization to the three-dimensional case. The latter two
mensionless parameters: A capillary number@d /o, issues are key issues in the simulation of drop breakup in

simple shear flow. The VOF method was first introduced by
aElectronic mail: renardyy@math.vt.edu DeBar* in 1974, followed by significant advance from
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42 upper plate speed U method are given. In Sec. Ill, we study the deformation of a
—_— viscous drop for subcritical capillary number, where the drop
> is stretched to an approximately ellipsoidal shape. The de-
tails of the shape and the values of the critical capillary num-
ber, computed by our method for various viscosity ratios of
nx, Y the drop to matrix liquids, agree quantitatively with results in
the literature. The main advantage of our method is that it
0 A X conserves mass, and no rescaling of the mass is needed dur-
ing the calculation. A loss of mass would otherwise cause an
';'G' L ';'°Wdizzzg‘:sﬂc\;i-tgheefi‘;$Ei‘:i‘eag\i”2ndd°$ai”rfssi‘zgig F’epr:gic Noverestimation of the interfacial tension force. This accuracy
tsei):r:lltrilonyisl*. Upper wall rgoves with vélocityta**y,b,O). F')I'he Iov{ér wall is especially important for the ComPUtatlon of th_ls eVO"?“O”'
is at rest. Drop radius ia, and drop viscosity igq . The matrix viscosity if ~ Where each stage depends sensitively on the interfacial ten-
o - sion force. In Sec. IV, the breakup of a viscous drop is in-
vestigated. Figure 13 shows an experimental observation of
Ref. 5 for two fluids of different viscosities, and our numeri-
Youngs’ work® eight years later. Recent works include Refs.cal simulation of Fig. 16 captures the main features. Initially,
16-109. the elongative end-pinching mechanism produces the largest
Our numerical study differs from previous works in the daughter drops, followed by the production of a small drop,
following points. The velocity and pressure are used aghen a large drop, then a small drop, then two large drops,
primitive variables and the incompressibility constraint istoward the center of the bridge. Section V is an investigation
satisfied on the fluids by a projection method. The boundargf inertial effects. The dynamics of the drop breakup for
integral method incorporates a simple shear flow out to inStokes flow is replicated at low Reynolds numbers, and the
finity. We examine the limitations of this assumption by addition of a small amount of inertia leads to small changes.
changing the plate separation, from placing the plates closgowever, an increase in Reynolds number, which is equiva-
to the drop and then farther away. We can also take intdent to making the liquids less viscous, leads to more com-
account the inertia term and consider higher Reynolds numplicated flow patterns. Finally, a conclusion is given in Sec.
ber flow, and therefore, investigate the approximation of lowVI.
Reynolds number motion by Stokes flow. Previous numeri-
cal works, on the other hand, are quasi-steady Stokes flows:
Given the drop shape at each time step, the boundary integrﬁl NUMERICAL METHOD
method is used to solve for a steady velocity field through am\. The equations of motion
iteration. Our numerical method is designed to solve initial The flow is composed of two immiscible liquids of dif-

value problems, and a Ste‘?dy solution would be re.a.mhefierent densities and viscosities. The placement of the two
eventually. However, for capillary numbers close to C”tlcal’fluids is represented by a concentration functdn

this evolution takes a longer time and becomes computation-
ally expensive. From the theoretical point of view, our code

could be converted to a steady code by neglecting the time- C(x)= o
dependent acceleration term. However, the details in our pro- 0 fluid 2
jection method are not easily converted, and the numericathe average values of density and viscosity are interpolated
resolution does not become cheaper. We, therefore, compagg the following formulas

the past Stokes flow results against low Reynolds number

matrix viscosity tm

1 fluid 1
(2.1

flow am_j against unsteady Stokes flow, where the inertial  ,=Cp,+(1-C)p,, (2.2
convective term has been neglected.
The VOF method conserves mass accurately, and this is pw=Cus+(1—C)pu,. 2.3

essential for calculating the steady solution at low capillary ] _ _
numbers because the final shapes are obviously sensitive {§!¢ concentration functio© is governed by a transport
the drop volume. However, questions have been raised ofduation
the accuracy of calculation for the surface tension féfce.
The goal of this work is, therefore, twofold. On the one hand, dC _

. : . . _ —+u-VC=0, (2.9
we investigate the physics of the deformation of a viscous  dt

dr.op- by simple shear by the VOF method. On the other hanqlvhereu is the velocity of the flow. The fluids are incom-
this is a prototype problem to test the accuracy of the VOFpreSSibIe
method, through the comparison with existing results from
the boundary integral approach. A satisfactory comparison i

: : : A V-u=0, (2.5
will be shown in subsequent sections, thus justifying the use _ _
of the VOF method to explore the dynamics of a drop in theand governed by the Navier—Stokes equations
breakup regime, which is difficult to treat with the boundary
integral method. The rest of this paper is organized as fol-

lows. In Sec. Il, the governing equations and the numerical

Ju
p E+u-Vu>=—Vp+V-,uS+F, (2.6)
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lations have been implemented in this work. The first is the
continuous surface force formulation of Ref. 24, in which
fs=okng, andF,=f,VC. The second is the formulation of
Ref. 21, in which Fg&=V-T=0dgskng and T=[(1l—ng

Wijk-12

g1 - ®ng)ods], which leads to a conservative scheme for the
1) Vi . .
SC Gig1/2k momentum equation. We have compared the results obtained
from these two formulations. The difference is very small,
L7 Uit roughly 1% for the simulation of a drop settling to a steady
v solution on the 6464 mesh. We have a preference for the
FIG. 2. Location of variables in a MAC mesh cell. second formulation because we only need to estimate the

first derivatives ofn.

wherep is the densityu the viscosity p the pressureSthe 2 The projection method

strain rate tensor . . -
The simultaneous solution of the continuity and momen-

1/ou oy tum _equz_ition_s is computationally e_xpe_nsive. An effici_ent ap-
SJ:E(&_XH—K)’ proximation is prowded_ by a prOJect_lon meth%f’qwhlch _

[ i proceeds as follows. Given the physical quantities at time
and F the source term for the momentum equatiénin-  leveln, the first step is to calculate an intermediate velocity
cludes gravity and the interfacial tension force. The interfau* which satisfies
cial tension force is~s= okngds, whereo is the interfacial

tension,« is the mean curvature antg is the normal to the u*—u” n 1
- ’ =—u".Vu"+ —(V-(uS+F)". (2.7
interface. At p ®

u* is not, in general, divergence-free. We then cortgcby

the pressure term
Our numerical method is composed of three parts: A
second-order VOF method to track the interface, a projection y"*1—y* Vp
method to solve the Navier—Stokes equations on the MAC = Ay ~— P (2.8
grid (Fig. 2), and finally, a continuum method for modeling ) o
the interfacial tensioh®721-23The 2D (two-dimensiongl ~ Whereu™ = at time leveln+1 satisfies
version is explained in detail in Ref. 11, and the axisymmet-

ric version in Ref. 12. The generalization to the three- v-urti=0. (2.9

dimensional version is straightforward and we sketch it hereThe key idea of this projection method is to substitute Eq.
(2.8) into Eqg. (2.9), to obtain a Poisson equation for the

B. Temporal discretization and projection method

n+1

1. The volume fraction field

pressure
In order to successfully represent and track the interface,
we must answer three questiori$) How do we represent Vp V-u*
the interface on a finite mesh2) How will the interface (7 T At (2.10

evolve in time? and3) how should we apply boundary con- ) . L . .
ditions on the interface? At the discrete level, the concentra-—rhe solution of this equation Is the mast fur-ne-consu.mm_g
tion functionC is represented by the volume fraction of one part ,Of the Navier—Stokes solver and an efficient solutu_)n IS
fluid, say fluid 1. This is also called the VOF function. When crucial for the performance of the whole method. Potentially,
a cell is filled by fluid 1, VOF=1, and when a cell does not the multigrid method is the most efficient method. The basic
contain any of this fluid, VOEO. The interface lies in the idea of the multigrid methdd IS tq comblne two comple-
cells with the VOF between 0 and 1. It is well known that thementgry procedures: One basic iterative method to' reduce
VOF method conserves mass while still maintaining a sharﬁhe hlg_h-frequency error, and one coarse grid correction step
representation of the interface. One of the most importanrt0 eliminate the low-frequency error. We choose a two-color

ingredients is the accurate computation of the curvature OdﬁaussBSmdel |tehrat|ve_ T;lathOd gecr?us? : breliaks t?e depeln-
the interface from the volume fraction field. This difficulty d€NCc€ between the variables and, therefore, allows for paral-

provides a test of accuracy for our implementation of theIeI|zat|on of the scheme. We use a Garlerkin method to pro-

boundary conditions posed at the interface. vide a good coarse grid correction.

Given an interface, we can calculate a unique volume ) ) S
fraction field. On the other hand, given a volume fraction3- Three-dimensional semi-implicit scheme
field, the reconstruction of the interface, together with an  The above description completes the characterization of
accurate orientation and local curvature, poses a problenour numerical method. However, one weakness is that it is
This affects the approximation of the boundary conditions aan explicit method, and not suitable for simulations of low
the interface. The interfacial tension condition at the inter-Reynolds number flows or Stokes flows. For an explicit
face cannot be applied directly, but rather as a body forcenethod, the time stefsit should be less than the viscous time
over the cells which contain the interface. Two such formu—scale,TM=ph2/,u, whereh denotes the mesh size. There-
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fore, simulations of low Reynolds number flows or Stokes
flows are subject to strict stability limitations and are expen- ~ — 7 =
sive. In order to overcome this difficulty, we have presented

Li, Renardy, and Renardy

a semi-implicit scheme for the two-dimensional case in Ref. 1

11 and proved that this scheme is unconditionally stable. It is

more difficult to prove the stability of the three-dimensional

(3D) scheme. The stability analysis can be carried out agand similarly for the v, w components.
follows. The 3D semi-implicit scheme for thecomponent

is

u*_un l * 1 (9 n, ,* n,,n
nax( u" x)+FW(M uy +uivy
+— "wh 2.1
r " ), (2.11
Letu,v,w

~explax+ipy+iyz) and let u=1, p=1 for simplicity.
Then

u*_un
At 5
. —2a°—B°—vy 0 0 u* 0 —aB —avy un
v Atv _ 0 —a?—2p%—y 0 v+l —ag 0 =Byl v,
* n
vE—yn 0 0 —a?— 22y w —ay —By 0 w
At
(2.12
which reduces to
1+ At(2a%+ B2+ 9?) 0 0 u*
0 1+ At(a?+2B%+ v?) 0 v*
0 0 1+ At(a?+ B2+2y2) ) \W*
1 —aBAt —ayAt un
=| —aBAt 1 —ByAt || v" 213
—ayAt —ByAt 1 wh
|
The eigenvalues of the left matrix are+NAt(2a?+ 8%  in terms of which the three roots are
+92), 1+At(a®+2B%+ %) and 1+At(a?+ B%+297). )
The eigenvalues of the right matrix are solutions of the fol- ,, — _2\/6005(_ -,
lowing cubic equation 3
1-N  —aBAt —ayAt o+m a
@B @y = 2\/6C0< , (2.17
def —aBAt  1-\  —ByAt]|=o. (2.14 3
—ayAt —pByAt 1-A\ S(9+277 a
. . —-2yQco -=.
Let »=1—\. The above equation can be written as 3

—(a?B%+ a?y?+ B2y At?— 202 B2 y?At3=0.
(2.15
For the cubic equation
7*+an’+bn+c=0,

(2.16

we first compute

_a 2-3b 1
3 =—(a2B2+a 2+ B2y At
2a%—9ab—27c
R= 2 _ azﬁzyzms_

However,

| 7124%<(12VQ|)2<4(a?B%+ a?y?+ B2y At
<(a?+ B+ y?)2At?,

It is then easy to see the absolute values of the three eigen-
values of the right matrix are less than those of the left ma-
trix. In summary, the above semi-implicit scheme is first-
order accurate in time and unconditionally stable. The
stability of this scheme is crucial for the simulation of low
Reynolds number flow and Stokes flow.

C. Spatial discretization

SinceQ3=R?, the cubic equation has three real roots. These

are found by computing

0=arccosR/ @),

An Eulerian mesh of rectangular cells is used. The mo-
mentum equations are finite differenced on a locally variable,
staggered mesh. As Fig. 2 shows, theomponent of veloc-
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4 4 4 TABLE |. Taylor deformation parametdd for steady-state drop for=1;
' ‘ ' Stokes flow.4, B andC represent the computational domaing 2x 1, 2
e ¢ 4w o e o c X1X2 and 21X 4, respectively.
— u
COARSE GRID }
CELL — —fP—1— -— | — Ca 0.0 015 020 025 030 035 040 0.42
e o dv o Hu o ¥ A 0.689 unsteady unsteady
A 1 B 0119 0.181 0.244 0309 0.372 0469 0.585 unsteady
i i | ¥y C 0114 0172 0.232 0293 0.360 0436 0.541
FINEGRID —+» ®© —1+» e —1» e e —» T
CELL
Lyt Lt gt L o=C . o
. d where the superscripts f denote coarse and fine grid val-
= 1T T s T ues. Thev-velocities can be prolongated by equivalent rela-
—f— ? T I 1 tions. To recover the concentration function on the coarse
grid, the restriction procedure is simply made by averaging
FIG. 3. Coarse and fine mesh grid. nearby values; that is

CS(ic,jc)= 3(C'(if,jf )+ C(if +1,jf )+ C'(if ,jf
ity Ui_(1/2)k, they component of velocity; ;_x and ) )
the z c(C)r’r1)pJ>onent of velocityw; | (112 are ce]nt((are)d at the +1)+CI(if + 1jf +1)). (2.20
right face, front face and top face of the cell, respectively,This two-level method refines only the interface tracking on
whereas the pressurp; ; \ is located at the center. This is the finer grid and keeps the resolution of the velocity field on
the so-called MAC method. In our previous work, the con-the coarse grid. This is a cheap way to improve accuracy, but
centration function was defined on the same mesh grid as the should be used with caution because the velogky.
velocity and the pressure. This is not obligatory. Indeed, |OV\(2]_9)] interpo|ated from the coarse gr|d iS no |0nger
Reynolds number flow is characterized by slow change ofiivergence-free on the fine grid. This may violate the mass
velocity in space and in time. On the other hand, the flowconservation. A divergence-free interpolation can be ob-
behavior is dominated by the interface evolution. Thereforetained through the following lower order formulas:
in order to achieve accurate representation of the interface, e e G
more concentration values are needed. Based on this obser- Y (if.if)=U1,
vation, we define the concentration function on a computa- U'(if,jf+1)=U¢,
tional grid which is twice as fine as the grid for the velocity
and pressuréFig. 3). An adaptive mesh would be superior, Uf(if+1,jf)=Ug, (2.2)
but our two-level method is easily built upon our previous ‘- , c
work and presents a compromise between the simplicity and U'(if+1jf+1)=U;.

the efficiency. To insert our previous routines into the two-  The direct simulation of two fluid flow is often limited
level-mesh grid method, the only work we need to do is topy computing cost and machine memory, especially in the
implement a prolongation procedure, which extrapolates thgD case. Three issues have been of utmost importance in
velocities from the coarse grid to the fine grid and a restricorder to improve performance: The accuracy, the stability
tion procedure, which transfers the concentration value fronand the efficiency. The entire code has been parallelized: On
the fine grid to the coarse grid. The prolongation relations arg¢nhe Origin2000 with 16 parallel processors, the efficiency of
derived by a bilinear interpolation. For each coarse gridour code is more than 80%.

node, four(eight fine grid values are derived for the 2D case

(3D caseg. For theu-velocity in the 2D case, leti¢,jc) and |1l NUMERICAL STUDIES OF CRITICAL CAPILLARY

(if,jf ) denote coarse and fine mesh indices, respectivelNUMBER

Thenif=2(ic)—1,jf=2(jc)~1 and In the simple shear flow illustrated in Fig. 1, the dynam-

Uf(if,jf )= 3(3US+UY), ics of the drop is essentially determined by two competing
forces: the viscous shear stregs,y of the matrix liquid

UT(if,jf+1)= 2(US+3U5%), (2.18  which causes the drop deformation and the characteristic
Laplace pressurer/a which resists the deformation. The

U'(if+1,f )= 5(3U§+US+3US+UY), capillary number Ca u,yal o, defined as the ratio between

UTIf+1,jf+1)= 5(US+3US+US+3UY), (219 o _
TABLE II. Orientation parameter 450 of drop upon reaching steady state,
for A=1; Stokes flows.A, B andC represent the computational domains
L-B 2X1X1, 2X1X2 and 2<1X4, respectively.

D=——
L+B 9 . .
a Ca 010 015 020 0.25 030 0.35 0.40 0.42
33.0

A unsteady unsteady
.z B 848 121 150 17.1 196 25.3 30.7 unsteady
¢ 858 123 155 179 19.1 233 27.3

FIG. 4. Scalar measures of deformation and orientation.
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05 : : : 05 :
035 1 165 035 1 165
FIG. 5. Cross-sectional slice in tixez
(a) Ca=0.10 (b) Ca=0.20 plane through the center of the drop
for steady-state solution in simple
shear flow. A=1, equal densities,
15 15

Stokes flow. Velocity vectors are dis-
played.

05 T T T 0.5 T
0.35 1 1.65 0.35 1 1.65

(c) Ca=0.30 (d) Ca=0.40

these two forces, provides a useful measure of efficiency ofritical capillary number for breakup of an isolated drop in
the shear flow to deform the drop. Another important numbeshear flow is lowest fok roughly around 0.8° and the value
is defined as the ratio of drop viscosity to matrix liquid vis- is just slightly less than the case far=1, where Ca
cosity A\=puq/um. These two dimensionless parameters~0.41 is critical®’
characterize the behavior of the suspended drop, provided Inthe case where the drop evolves to a steady shape, two
the Reynolds number Rep,ya?/ uny, is small. Several previ- parameters have been used to measure the deformation at-
ous experimental, theoretical and numerical studies hav&ined by the drop in its final stage. The first is the Taylor
shown that whem\ is less than four, there is a “critical deformation parameteD =(L—B)/(L+B), whereL andB
capillary number” Ca, above which the drop continues to are the half-length and half-breadth of the drop, respectively.
deform without reaching a steady shape, and this leads tbhe second parameter is the andglef orientation of the
disintegration. For capillary number Ca under the criticaldrop with the axis of shear straiffrig. 4). Our first goal in
value, a steady drop shape exists in a steady shear flow. Thieis paper is to compute the critical capillary number accu-
rately; i.e., for capillary number less than the critical value,

25 T
1 2.5

D e B e

1 . 5 T 000 BB D DRI IITDIDD DD DD 003
0 1 2 2RI IR 22DDITIFFIIIIIIIIIIIFII I DI IIIIIDDIID2DID22D 2>

0 1 2

FIG. 6. Superposition of drop shapes obtained by one-level methaer

line) and two-level methodinner ling. 2X1X4 domain. C&0.40, Re FIG. 7. Steady-state velocity field and drop shape fo=Qa0 calculated
=0.0, \=1, equal densities. Cross-sectional slice in xfeplane through by the two-level method. 2 1X4 domain, Re=0.0, A =1, equal densities.
the center of the drop. Cross-sectional slice in thez plane through the center of the drop.
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0.8 T T T T T LA L B R
0.5F o ]
i .o _
L A« J
L X 0 4
<

0.4 8 -
L {0 J
D | o ]

8

ox

2
0.2F I
- g -
- < -
00kl 1 [ [ I Livinn iy
0.00 0.10 0.20 0.30 0.40 0.50

Ca

FIG. 8. Deformation of a viscous drop in simple shear flow. Comparison of
the steady-state drop deformation param@efor viscosity ratioh=1.0,
equal densities, Stokes flowe VOF computations{] boundary integral
computations of Rallison;x boundary integral computations of Kwak
et al; A boundary integral computations of Kenneelyal; O experimen-

tal results by Rumscheidt and Mason; the solid line represents the
asymptotic results by Cox for small deformatief. Fig. 11 of Ref. 28.

we should obtain a steady solution. By comparing our results
to the previous results in the literature, we can then judge the
accuracy of the VOF method. We have studied the case
which has been most analyzed in the literature with the
boundary integral method:=1. The drop is given an initial

radiusa=0.25 and the unperturbed shear rate is 1.0. Th

external Reynolds number is then Rg.ya%/u,=0.0625,

%IG. 10. Cross-sectional slice ¥z plane through the center of the drop. In

the top three figures, the viscosity ratioNs=0.5 and Ca 0.38, 0.40, 0.42.

and this is in the Stokes flow regime. For Ca less than thén the bottom plota =0.1, Ca=0.40. The top and bottom solutions have
critical value, we have retrieved the same steady solution. achieved steady states. Equal densities, Stokes flow.

Numerical simulations of Stokes flows have been con-
ducted for capillary numbers G&.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40, and 0.42. The computational domains are
boxes of dimensions 21X 1, 2X1X2, and 2x1X4. The
difference in height among the boxes is used to investigate
the effect of plate separation. The initial condition at time
T=0.0 is that the drop has a spherical form and the initial
velocity field is null inside the computational domain. The
no-slip condition is imposed on the top and bottom plates
and periodic conditions in th& direction andy direction.
Constant velocities are imposed on the top and bottom plates
such that the shear rate is constant during the whole compu-
tation. All the computations have been done with the one-
level method. The mesh sizes ax@=Ay=Az=1/32. The
parameter® and 6 for the steady-state solutions are shown
in Tables | and Il, respectively.

The first remark from these computations is that the

FIG. 9. Deformation of a viscous drop in simple shear flow. Comparison of VOF m_ethOd iS_ accurate and we are able to prediCt_ the cor-
the steady-state drop orientation angleneasured in degree for viscosity rect critical capillary number. In theX21X 2 computational

A=1.0, equal densities, Stokes flow. VOF computations{Z] boundary
integral computations of Rallisonx boundary integral computations of

Kwak et al; A boundary integral computations of Kenneetyal; O ex-

domain, we obtained a steady solution for capillary number
Ca=0.40 and the flow is unsteady for €8.42. This result

perimental results by Rumscheidt and Mason; the solid line represents tddrees with previous numerical results obtained with bound-

asymptotic results by Cox for small deformatief. Fig. 11 of Ref. 28.

ary integral methods. Figure 5 shows cross sections of the
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T= 1350

T=38.0

FIG. 11. Evolution of drop shape for
Ca=0.42 in domain X1x2, A=1,
equal densities, Re0.0.

T=45.0

T=54.0

steady shapes in thez plane for Ce=0.1, 0.2, 0.30, and
0.40. It is evident that the larger the capillary number, the
larger the drop deformation and rotation. We should mention
that mass conservation is essential for the accurate calcula-
tion of the steady parameteBs and 6. If a method were to
lose mass during the calculation, the effective capillary num-
ber would decrease and the method would overestimate the
surface tension force. Our simulations show that our VOF
method has a very accurate mass conservation property. For
example, take the Ga0.40 case; the total VOF of the drop is
2144.675 initially, and it is 2144.619 when the steady solu-
tion is reached. The loss of mass is 0.0026%. This level of
precision is yet to be achieved by the front-tracking and level
set methods.

Secondly, we study the influence of the distance between
the two plates where the boundary conditions are imposed.
In all these calculations, the undeformed drop has radius
=0.25. When the plate separation is small=1 or d/a
=4), no steady solution was obtained for €&40. The
close proximity of the two plates reduces the critical capil-
lary number. On the other hand, for large plate separations
(d=2, 4, ord/a=8, 16, the liquids have more space to
arrange themselves and the results show less sensitivity to
the placement of the walls. The effect of Reynolds number

A L, was also studied by investigating the Navier—Stokes flow at
the previously mentioned Re0.0625. On the computational
FIG. 1_2. Cross-s'ectior_]al slice in tkez plane throughthe center of the drop. domain 2<1x2, we obtained the steady parametd®s
Velocity vector fields in thex-z plane are shown during the breakup of a
drop in simple shear flow for capillary number €8.42,A=1, equal den- =0.312 and#=28.1 for Ca=0.25. These values are only
sities, Re=0.0. slightly larger than the values obtained from Stokes flow. We

T=36.0

T=38.0

T=38.5

T=39.0
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FIG. 14. Interface evolution as viewed from the side of the computational
box 8X1X1 during breakup for Ca0.45, Re=0.125,A=1, equal densi-
ties. 256 64X 64 grid.

FIG. 13. Reproduction of Fig. 4.3.1.a of Ref. 5 showing a typical breakup.
Matrix viscosity 7.0 Pa.s, drop viscosity 4.3 Pa.s, interfacial tension 10.7F

mN/m, initial drop radius 0.048 cm, shear rate 2.17/s, equal densities. ig. 6, where the drOp shapes obtained by the two-level and

the one-level methods are superimposed; the inner line is

computed with the two-level method and the outer line with
conclude that the unsteady Stokes flow is a good approximdahe one-level method. The two drop shapes coincide well
tion for low Reynolds number flow. except at the ends, where the curvature is large. Therefore,

Our steady parameters obtained from the 2<4 do-  the results obtained by the two-level method represent a sig-

main agree well with those of Refs. 28 and 29 which treat thenificant improvement on those by the one-level method.
case of walls out at infinity, for small capillary numbers. For To examine more carefully the drop deformation in the
example, for C&0.20, we obtainedD =0.232, while D shear flow, we plot the drop shape and the velocity fields in
=0.224 in Ref. 28 and =0.236 in Ref. 29. For Ca0.25, thex-zplane, cut through the middle of the bubble, in Fig. 7.
we obtainedD =0.293, whileD=0.272 in Ref. 28 and This provides a very nice visualization of the flow pattern of
=0.290 in Ref. 29. However, the discrepancy widens forthe drop in shear flow. Far away from the droplet, we see the
larger capillary number. We obtained=0.541 for basic simple shear flow pattern, with the flow moving toward
Ca=0.40, in comparison td=0.50 in Ref. 28 and no the left at the top and toward the right at the bottom. Near the
steady solution is found in Ref. 29. We believe that this isdroplet, the velocity is tangential to the interface and the flow
essentially due to the lack of mesh refinement. The larger theoves along the interface, which is consistent with the con-
capillary number, the more the drop is stretched, and thelitions at a free surface. The competition between the exter-
larger the curvature at the ends of the drop. Hence, moreally imposed shear flow and the surface tension driven flow
resolution is needed for accurate computation of the surfacproduces a closed vortical motion interior to the drop.
tension force. To justify this idea, we have refined the rep-  Figures 8 and 9 show graphs Df and @ for the steady
resentation of the interface on th&x2 X4 domain. For rea- states attained for viscosity ratio=1, along with results of
son of efficiency, we used the two-level method rather thamprevious experimental and numerical investigati¢efs Fig.
refining the entire mesh. We obtained the improved result oll1 of Ref. 28. We conclude that the VOF method obtains
D=0.534 andd=18.5. The significance of this is shown in results comparable to the boundary integral method.
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® - o ® - © FIG. 16. Interface evolution as viewed from the top of the computational

T=70 box 12x1X 1 during breakup for Ca0.55,A=0.77, equal densities. 256
X 64X 64 grid.

Tog |® ° ® -~e—e e - @& Ca=0.40. The drop has an ellipsoidal form and the Taylor

parameter isD=0.44, which is much less than thB

FIG. 15. Interface evolution as viewed from the top of the computational= 0-54 for A=1. This confirms that a much larger critical

box 8x1x 1 during breakup for Ca0.45, Re=0.125,A=1, equal densi-  capillary number is needed for drop breakup at this low vis-

ties. 256<64x 64 grid. cosity ratio. The velocity vector plot clearly shows that the
vortical motion inside the drop is markedly stronger than for
N=1 because the drop liquid is now much less viscous than

We have also investigated the critical capillary numberthe matrix liquid.

for different viscosity ratios\.. The top three plots in Fig. 10

show the case.=0.5 and the bottom plot shows the case|v. RUPTURING A DROP IN SHEAR WITH THE VOF

A =0.1, with equal densities, and zero Reynolds number. Th€ODE

sequence of shapes fr=0.5 are the solutions after a rela- When the shear rate is increased past a critical value, the

tively long time for Ca=0.38, 0.40, and 0.42. The elliptical drop rubtures. Based Upon previous works. the critical an-
shape for Ca0.38 is attained as a steady-state solution. The, P rup ) pon p ' P

Taylor parameter i® =0.55. The shapes for G#.40 and |IIa_ry numb_er fork=1 is roughly (.)'41' Indeed, our compu
. . tation predicts an unsteady solution for€@&42 in the do-
0.42 are still evolving toward the dumbbell shape. The evo-_ . . .
. . S . “main 3X1X2. Figure 11 shows the evolution of the drop
lution for Ca=0.40 is extremely slow, indicating that this . .
. . - shape on a 9832x 64 mesh grid. The drop continuous to
capillary number is close to and above the critical value fordeform and eventually breaks up. The competition between
breakup. Both C&0.40 and 0.42 clearly display the forma- Y P. P

tion of the waist near the center of the drop, which signalsthe externally imposed shear flow and the surface tension

the initiation of breakup. Our simulations show that the criti-dnven f'°.W IS clearly'ewd.ent inthe f'gufes- Initially, the
) . . . ; most noticeable motion is the elongation of the drop,
cal capillary number for viscosity ratin= 0.5 lies between .
o stretched by the viscous shear stress of the external flow
0.38 and 0.40, which is slightly less than the one Xer 1. . - . -
S . ; . (time T=0.0, 10.0, and 20)0 To time T=30.0, we see
This is in good agrement with Grace’s experimental data,
for which the minimum critical capillary number is in the
region of A\=0.6, and is slightly less than that far=1.  TABLE Ill. Reynolds numbers just below break-up values for different
Their data show also that at viscosity ratios much less than Eapillary numbersh =1, equal densities.
or much grgater than 1, the crmca! caplllar.y number in- 01 015 02 005 03 035
creases rapidly. We have also confirmed this. The bottom g, 215 10.0 4.0 15 0.6 0.2
plot in Fig. 10 shows the steady-state shapeNer0.1 and
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clearly that a waist is formed near the center of the drop, androplets. Moreover, the experimental work of Ref. 5 shows
the drop continually thins. The drop is beginning to lengthenthat there can be a sequence of large and small drops formed
slowly and a visible neck is formed near the bulbous endafter the ends break off.

The subsequent scenario is described in Ref. 31; this neck To examine more carefully the breakup procedure, we
will eventually lead to the ends pinching off and the remain-have done the calculation on a 2984x 128 mesh-grid. We

ing liquid thread in the middle will form some small satellite present the velocity field on the cross-sectional cut inxtze

035 1 165 035 1 165
FIG. 18. Steady-state solutions far

=1, equal densities, and €®.3, for
(a) RC = 00 (b) RC = 01 increasing Reynolds numbeta) 0.0,

(b) 0.1, (c) 0.5, (d) 0.6. The drop

breaks up for Reynolds numbers just

1.54 15 above 0.6. Velocity vector fields are
shown for cross-sectional slices in the
x-z plane.

0.35 1 1.65 0.35 1 1.65

(c)Re=0.5 (d)Re=0.6
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TABLE 1V. Variation of Taylor deformation paramet& with Reynolds 1.5
number.\=1,Ca=0.3, equal densities.

Re 0.0 0.1 0.5 0.6 0.75
D 0.372 0.3968 0.45 0.4768 break

plane in Fig. 12; the flow pattern is symmetrical and we need
to show only the right half field. The precise role of the
surface tension driven flow during breakup can be examined
from this figure. At time =36.0, the result of the competi-
tion between the external flow and the surface tension force
is a vortical motion inside the bulbous end of the drop, ex-
cept near the neck; the surface tension force drives a fast
flow motion toward the bulbous end while in the waist near
the center, the flow is much weaker. The consequence is that
the neck quickly and continually narrowhe neck has the
same size as the mesh grid at this timehile the width of

the central waist remains almost unchanged at tim&8.0.

At T=38.5, the drop breaks up at the neck and produces a
main drop and a middle liquid thread. 05 ‘

For the simulation on the 19264x 128 mesh-grid, we 0 1 2
have used a time stept=5.0x10"3, and the Neumann
number is 2, eight times larger than the stable time step for
the corresponding explicit method. Although our scheme is
unconditionally stable for the viscous terms, we did not use
larger time steps, in order to avoid an overshoot in the com-
putations. This simulation required a total CPU time on ten
Origin 2000 processors on the order of two weeks.

As noted by Ref. 5 in his Sec. IV F 2, the largest daugh-
ter drop formed during breakup is always formed by the first
elongative end pinching. Our case of €@&42,\=1 is just
above the critical capillary number, and the two main daugh- 05
ters contain almost all the volume of the initial drop; i.e., 0 !
they are each-0.5 of the initial volume. This would give an g 19. A sequence of deformation leading to breakup of dropfetl,
estimate of the radii to be 0“8=0.79 of the initial drop  equal densities, Ga0.3, and Reynolds number 0.75. Cross-sectional slice in
radius. Indeed, the maximum daughter drop radius in théhex-z plane through the center of the drop.
numerical simulation is slightly less at the third decimal
place, rounding to 0.79 wherea denotes the initial drop
radius. In the notation of Ref. 5 where Gaa,u,v/o, a,  ellipsoid shape. At some point, time about 2.45 s” in Fig. 13,
denotes the daughter radiuk,,=Ca /Ca,=0.8, andK; “the drop changes from an ellipsoid shape to a ‘dumbbell’
=Cgq/Cqa=1.02. Hence, our result is in agreement with hisshape similar to that observed in retractive end pinching. The
experimental result on maximum daughter drop size andirop continues to stretch. The ‘bulbs’ at the end of the drop
comparison with a binary model, which is plotted in his Fig. achieve a stable diameter. The center portion of the drop
4.6.2.e. continues to thin. Eventually, a bridge develops between the

Figure 13 reproduces Fig. 4.3.1.a of Ref. 5, which is ancenter portion of the droftime about 11.95 s in Fig. 13
experimental observation of elongative end pinching. TheThis bridge is unstable and leads to the bulb pinching off to
drop is polybutadiene and the matrix liquid is a corn-syrupform a new droptime about 16.75 s in Fig. 13If the drop
solution. The ratio of viscosities is=0.61 and the capillary is large enougfii.e., if the original volume is not totally used
number is C&0.68. The critical capillary number is stated up by the formation of the first bulb dropthe ends of the
as 0.48. This sequence of events is qualitatively similar taenter portion will “bulb up” in a process similar to retrac-
our results shown in Fig. 14 for the side-view and Fig. 15 fortive end pinching. A bridge will form between this subse-
the top-view forn =1 and Ca=0.45. The view from the top quent bulb and the center portion of the drop and a second
of the computational domain provides the analogy with thebulb drop will break off.” The experimental observations of
experimental pictures. The production of the largest drops atreakup all “began with a breakup of the elongative end
the ends, followed by a small, then large, then small, droppinching type. Subsequent end pinches and capillary wave
toward the middle of the neck, is reproduced in our compu-breakups were observed only when the shear rate exceeded
tations. Figure 13 is described at length in Ref. 5 and wehe critical shear rate by a sufficient amount.”
summarize it here: “As the drop stretches, it first takes on an  Figure 16 shows our numerical computation for viscos-

2
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15 L = = L5 TSoT = SSS

FIG. 20. Steady-state solutions at dif-
ferent capillary numbers for Reynolds
numbers just below break-up values.
N=1, equal densities. Cross-sectional
slice in thex-z plane through the cen-
ter of the drop.

Ca=0.2 Re=4 Ca=0.25 Re=1.5

ity ratio A=0.77 and Ca0.55, with equal densities. These t0 0.4, but increases rapidly as Ca decreases. This trend is
parameters are closer to those of Fig. 13; the dynamics a®hown in Fig. 17, where the horizontal axis represents the
again similar to that of Fig. 15 for=1, Ca=0.45. The drop ~ capillary numbers up to 0.4, and the vertical axis is the Rey-
stretches from spheroidal to ellipsoidal then to the dumbbelnolds number. Computations were performed at a number of
shape, the ends pinch off, producing the largest daughtepoints on this plot. The circles represent our numerical cal-
drops, followed by instabilities of the central portion, pro- culations which yield steady-state solutions, and the crosses
ducing small and large drops. Note that Fig. 16 even agreegeld breakup. The dashed curve represents critical values.
with the experimental picture in Fig. 13 in the production of At each capillary number, the increase in Reynolds num-
the primary large drop followed by a small drop, then a largeber deforms the drop from ellipsoidal to elongated. This is
drop, then a small drop, then two large drops toward thellustrated for Ca=0.3 in Fig. 18. In comparison with the

center of the neck. velocity fields for Stokes flow shown in Fig. 5, the increase
in Re leads to a markedly stronger velocity field in the drop
V. EFFECT OF THE REYNOLDS NUMBER region. For example, Fig. 18 shows the strong vortical

In this section, we focus on the cake=1, as the Rey- motion inside the drop just below the critical Reynolds num-

nolds number is increased. Our computational domain is &€T- Table IV shows the accompanying increase in the Tay-
box of dimensions X 1 2, with a mesh of 64 32x64. As lor deformation parametd for the steady-state solution, as
we saw before, the placement of the walls has a minor effedhe Reynolds number is increased.

and the mesh is sufficient to produce quantitatively accurate Figure 19 shows the evolution of the drop toward
results. For zero Reynolds number, the casel and equal breakup for C&0.3 at Re=0.75. The shapes here are analo-
densities has a critical capillary number of 0.41. For capillarygous to the sequence shown in Fig. 11 for the case of equal
numbers below this value, Table lll shows that breakup isviscosities, since the critical Reynolds number is still low.
induced when the Reynolds number is increased past a criti- Figure 20 shows the steady-state solutions for capillary
cal value. The critical Reynolds number is small for Ca closenumbers 0.1, 0.15, 0.2, and 0.25 just below the critical Rey-
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