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A flow structure based triple-product correlation model developed by Nagano and Tagawa �J. Fluid
Mech. 215, 639 �1990�� has been expanded to three-dimensional turbulent flows. Three-
dimensional turbulent boundary layer data obtained away from the vortex in a wing-body junction
flow are analyzed to calculate the contributions from eight velocity octants to the stresses and
higher-order products. The analysis showed that the sweep and ejection modes dominate the flow
physics of some shear stresses and some triple products, while the interaction modes are negligible
away from the wall. These experimental observations are used together with the extended
Nagano-Tagawa mathematical model to obtain relations among the triple products in
three-dimensional turbulent boundary layers that can simplify the turbulent diffusion modeling used
in Reynolds-averaged Navier-Stokes equations. Results show that û3, û2v̂, and v̂3 triple product

correlations can be modeled if an appropriate turbulence model is described for the ûv̂2 triple
product correlation, and that û2ŵ v̂2ŵ triple products correlations can be modeled if an appropriate

turbulence model is described for the ûv̂ŵ triple product correlation. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2172650�
I. INTRODUCTION

The Reynolds-averaged Navier-Stokes equations require
modeling of the turbulence diffusion and hence the triple
products, among other terms. Many turbulence diffusion
models used in computational fluid dynamics �CFD� codes,
such as the models developed by Daly-Harlow,1

Hanjalic-Launder,2 Mellor-Herring,3 and Lumley,4 can be
found in the literature. These turbulence diffusion models are
the currently used models in turbulence closure as discussed
by Launder and Sandham.5 The models use the shear
stresses, the gradient of the shear stresses, the turbulent ki-
netic energy dissipation rate, and the turbulent kinetic energy
values to express the triple products. Experimental testing of
these models, such as given by Schwarz and Bradshaw6 for a
three-dimensional turbulent boundary layer �3DTBL� and by
Lemay et al.7 in a manipulated 2DTBL, show that some of
these models �Daly-Harlow and Mellor-Herring� are in good
agreement only above y+=150. These models require the
turbulent-kinetic energy dissipation rate term as input, which
results in large errors between the prediction and the data
�Ölçmen and Simpson8�. The turbulence diffusion term can
be expressed as �TDij =−��uiujul� /�xl�, where “u” denotes
the fluctuating velocity component, “x” denotes the coordi-
nate axis, i=1,2 ,3 is the subscript denoting different coor-
dinate axes, l=1,2 ,3 is the dummy subscript, and the over-
bar denotes Reynolds averaging. The tensor summation rule

is required to use this equation.

1070-6631/2006/18�2�/025106/17/$23.00 18, 02510
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The main motivation behind the current work was to
gain more insights into the structure of the triple products
and to obtain equations among the triple products that can
simplify the turbulent diffusion modeling used in Reynolds-
averaged Navier-Stokes equations. An analysis based on the
work by Nagano and Tagawa9,10 has been applied to data
obtained at seven stations in a wing-body junction flow �Fig.
1� to investigate extending their analysis to three-
dimensional �3D� flows.

In Sec. II, a brief description of the flow field is given.
Mean velocity and normal stress profiles are presented. Con-
tributions to the second- and third-order velocity products
from a conditional averaging technique �octant analysis� us-
ing the signs of the velocity fluctuations as the discriminator
are described next. Discussion on extending Nagano and
Tagawa’s model to three-dimensional boundary layers is
given in Sec. III. Section IV describes the relations found
between the triple products using the model together with the
octant analysis results.

II. DESCRIPTION OF THE FLOW

The measurements used in this study were obtained in a
wing/body junction flow in 1995 at Virginia Tech in the AOE
Boundary Layer Wind Tunnel. The tunnel has an 8 m long
test section with a 0.91 m wide by 0.25 m high rectangular
cross section. The nominal free-stream air speed was

27.5 m/s and the free-stream turbulence intensity of the tun-

© 2006 American Institute of Physics6-1
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nel was less than 0.5%. The wing used was a 3:2 elliptical
nose, NACA 0020 tailed wing profile with maximum thick-
ness of 7.17 cm, a chord length of 30.5 cm, and a height of
23.2 cm �Fig. 1�.

In a wing-body junction flow, the approach wall bound-
ary layer separates from the wall and rolls toward the wing/
wall junction to generate a vortical structure near the nose of
the wing. This vortical structure wraps itself around the wing
to generate a horseshoe vortex, which with the pressure gra-
dient generated by the wing results in a highly three-
dimensional flow field. Velocity measurements within the
3DTBLs developing on the floor of the tunnel were made
using a three-simultaneous-component laser-Doppler
velocimeter11,12 that has a spherical measurement volume of
30 �m. In the study, six Reynolds stresses, ten triple prod-
ucts, and fifteen quadruple products were measured �Ölçmen
and Simpson11,12� at seven stations, which were located out-
side the horseshoe vortex, and at each station data were ob-
tained at 30 logarithmically spaced points by traversing the
probe perpendicular to the wall. The approach boundary
layer Reynolds number based on momentum thickness at
0.75 chord upstream of the wing was Re�=5940. Table I
gives the important characteristics of the flow field studied.
Table II gives the uncertainties in the measured quantities.

The flow field around this particular wing is extremely
well documented; detailed references for the flow data used
in this study and data with different approach boundary layer
Reynolds numbers are discussed in papers by Ölçmen and
Simpson,11–15 Simpson,16,17 and references therein. All the

TABLE I. Laser-Doppler velocimeter locations and flow parameters. Press
Ue=Velocity magnitude at the layer edge. �=y where U /Ue=0.995=bound
=�0

��1−�U2+W2 /Ue�dy=magnitude displacement thickness, �3=�0
��1−U /U

Stations
X

�in�
Z

�in�
Uref

�m/s�
Ue

�m/s�
�FS

�deg�
�w

�deg�
u

�m

1 −3.50 −1.45 27.5 24.9 −2.64 −11.5 0.86

2 −2.29 −1.75 27.5 24.8 −4.81 −24.0 0.86

3 −1.33 −2.04 27.5 25.3 −8.63 −33.7 0.95

4 −0.47 −2.58 27.5 27.3 −9.45 −30.6 1.11

5 0.26 −2.94 27.5 29.5 −7.71 −19.7 1.15

6 1.19 −3.30 27.5 30.5 −5.09 −7.17 1.16

7 2.17 −3.53 27.5 31.0 −2.71 −3.50 1.20

FIG. 1. Schematic figure of the wing-body junction. The dots show the
measurement locations. Full arrows in wall-stress direction. Empty arrows
in free-stream direction.
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Reynolds-averaged data used in this paper, including up to
second-order products, the surface pressure measurements,
and surface oil-flow visualizations, are presented by Ölçmen
et al.12,14 A brief description of the mean flow field and the
Reynolds stress distribution is given here to aid in the dis-
cussion of the Nagano-Tagawa model.

In this paper, the data are used as represented in wall-
stress coordinates where the x axis is along the wall-shear-
stress direction on the tunnel wall pointing downstream and
the y axis is perpendicular to the wall.

A. Mean flow field description

The U /u� profiles at all stations follow each other
closely up to y+=9 �Fig. 2�. Above this height, station 1, 2,
and 3 values closely follow each other up to y+=100. These
are the stations where three-dimensionality of the flow starts
to develop. The U /u� profiles overlap each other with a
semilogarithmic variation in the y+=30–150 range, suggest-
ing a similarity relation. At downstream stations, there is no
similarity. Starting at station 4, the profiles become fuller and
the semilogarithmic regions of the profiles shift to higher
locations in the profiles.

Due to the definition of the wall-stress coordinates, the
W /u� profiles are close to each other very near the wall with
a magnitude of zero �Fig. 2�. At the first three stations, W /u�

monotonically increases from the wall to the layer edge since
the flow in the entire layer turns in one direction. Between
stations 3 and 4, the lateral pressure gradient in wall-stress
coordinates changes sign. At station 4, the W /u� values are
close to zero up to y+=40. Above this y location, values
monotonically increase. At stations further downstream, the
effect of the sign change of the lateral pressure gradient is
felt most near the wall. This results in negative W /u� values.
The magnitude of the absolute maximum progressively in-
creases downstream and the maximum points in the profiles
shift upward in the layers. The Reynolds-averaged Navier-
Stokes equations show that the mean flow is immediately
affected by the mean pressure gradients. The pressure force
is most effective on the near-wall flow where the momentum
of the flow is lowest. The lateral pressure gradient in wall
coordinates increases in magnitude proceeding downstream

oefficient gradients are calculated from the measured pressure distribution.
ayer thickness, �1=�0

��1−U /Ue�dy=streamwise displacement thickness, �2

Uedy=streamwise momentum thickness.

v
�m2/s�
x1E05

��Cp

�x �
WC

�1/m�
��Cp

�z �
WC

�1/m�
�

�mm�
�1

�mm�
�2

�mm�
�3

�mm�

1.65 0.9614 1.562 39.2 7.14 6.90 4.89

1.65 −0.75 2.898 40.2 9.14 7.54 6.30

1.65 −5.263 2.041 39.3 9.61 6.86 6.84

1.65 −6.264 −1.35 39 7.45 5.53 5.68

1.67 −5.797 −3.036 39.6 5.95 5.37 4.66

1.68 −3.999 −5.573 39.2 5.30 5.24 4.13

1.68 0.58 −6.695 38.8 5.24 5.20 4.10
ure c
ary l

e�U /

�

/s�

4

5

7
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of station 4 up to station 7, and thus the effect of the pressure
gradient is felt in a larger y range near the wall.

B. Normal stresses

The u2 /u�
2 normal stress profiles steeply increase from

the wall to their peak at y+=15 to 20 and then decrease up to
y+=60 to 450 at different stations �Fig. 3�. The maximum in
the profiles decreases up to station 4 due to adverse axial
pressure gradient effects, and then increases back to station 1

TABLE II. Uncertainties �±� in measured quantities with 20:1 odds.

U /u� 0.075 u2v / �u2��v2�1/2

V /u� 0.026 u2w / �u2��w2�1/2

W /u� 0.05 v2w / �v2��w2�1/2

u2 /u�
2 0.08 uv2 / �u2�1/2�v2�

v2 /u�
2 0.029 uw2 / �u2�1/2�w2�

w2 /u�
2 0.037 vw2 / �v2�1/2�w2�

−uv / �u2v2�1/2 0.023 uvw / �u2�1/2�v2�1/2�w2�1/2

−uw / �u2w2�1/2 0.021 u3 / �u2�3/2

−vw / �v2w2�1/2 0.018 v3 / �v2�3/2

w3 / �w2�3/2

FIG. 2. U and W components of the velocity presented in wall-stress

coordinates.
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values downstream due to the accelerating flow. However,
above y+=100, the values decrease monotonically down-
stream of station 1 up to station 7. The decrease at station 7
is approximately 60% of the station 1 value. This suggests
that there are two zones in the flow where u2 is distinctly
different: �1� below y+=100, which is highly affected by the
pressure gradients and wall proximity, and �2� above y+

=100, where the flow relaxes with more pronounced 3D
effects.

Profiles of v2 /u�
2 monotonically increase to a maximum

between y+=300 and 400 and then decrease toward the
freestream �Fig. 3�. Downstream of station 1 up to station 5,
the maximum value decreases. The station 6 maximum is
higher than the maxima at stations 5 and 7.

The w2 /u�
2 profiles reach maxima at lower y+ locations

than the v2 /u�
2 stress profiles �Fig. 3�. Values at station 2 and

station 3 are higher with respect to station 1 values. Proceed-
ing downstream up to station 7, the values decrease.

C. Second- and triple-order product correlations

1. Definitions of the octants

A conditional averaging technique was employed to cal-
culate the Reynolds-averaged contributions from fluctuating
velocity products to the overall Reynolds-averaged velocity
product. Fluctuating velocity components with the specified
combination of signs were used to calculate the contributions
from each octant. The octants are defined using the signs of
the fluctuating velocity components and are given in Table
III. The octants resulting in positive uv value are named the
interaction octants �octants 1, 3, 5, and 7�, while the other
octants are named the sweep-ejection octants.

2. Second- and triple-order product correlations

Second- and third-order products are discussed as non-
dimensionalized with the respective powers of the normal
stresses. Figure 4 shows the nondimensional second-order

0.020 u4 / �u2�2 0.048

0.012 u3v / �u2�3/2�v2�1/2 0.139

0.011 u3w / �u2�3/2�w2�1/2 0.078

0.015 u2v2 / �u2��v2� 0.039

0.009 u2vw / �u2��v2�1/2�w2�1/2 0.22

0.012 u2w2 / �u2��w2� 0.034

0.006 uv3 / �u2�1/2�v2�3/2 0.073

0.024 uv2w / �u2�1/2�v2��w2�1/2 0.023

0.052 uvw2 / �u2�1/2�v2�1/2�w2� 0.023

0.022 uw3 / �u2�1/2�w2�3/2 0.020

v4 / �v2�2 0.084

v3w / �v2�3/2�w2�1/2 0.052

v2w2 / �v2��w2� 0.023

vw3 / �v2�1/2�w2�3/2 0.058

w4 / �w2�2 0.065
product, the sum of the contributions from the interaction
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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octants, and the sum of the contributions from the sweep-
ejection octants obtained at station 5. Figure 5 shows similar
plots for the triple product correlations. In this section, a
qualitative comparison between the variations shown for sta-
tion 5 and the other stations is given.

For the uv / �u2v2�1/2 second-order correlation, the
sweep-ejection motion and the interaction motion contribu-
tions shown in Fig. 4 for station 5 represent the variations at
every station. Although the contributions from the interaction
motions are about 1 /3 of the contributions from the sweep-
ejection motion contributions, the contributions are not
negligible.

At stations 1 through 3, the uw / �u2w2�1/2 correlation val-
ues become positive due to the fluctuating velocity field lag-
ging behind the mean flow in readjusting its direction due to
the lateral pressure gradients. While the mean flow mono-

FIG. 3. The u2 /u�
2, v2 /u�

2, w2 /u�
2 normal stress component in wall-stress

coordinates. The uncertainties are on the order of the symbol size.
tonically turns in one direction, the fluctuating velocity field
cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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is less affected by the pressure gradients and persists in the
free-stream direction resulting in �“w” fluctuations. In a
similar fashion at stations 4 and downstream stations, the uw
values become negative since the lateral pressure gradient
sign change occurs between stations 3 and 4, and the near
wall mean flow field starts turning toward the wall while the
turbulence field persists in a direction closer to the free-
stream flow direction. Above y+=100, the uw values are
positive �Fig. 4�. The interaction motion contributions for
this correlation become less in magnitude with values close
to zero with increased three-dimensionality of the flow.

At every station, interaction motion contributions to the
vw / �v2w2�1/2 correlation are effectively the same as pre-
sented for station 5 in Fig. 4, and are close to zero. Similar
arguments made for the uw kinematic shear stress apply to
the vw stress. The vw and the uw kinematic stresses are zero
in 2DTBL. The lagging of the turbulence behind the mean
flow results in positive values near the wall for stations 4 and
downstream stations, while the values are less than zero
throughout the layers for stations 1 through 3.

The u2v / �u2��v2�1/2 correlation peaks around y+=30
�Fig. 5� and the peak value gradually increases proceeding
from station 1 to 7, from about 0.075 to 0.25. The profile
shape at every station stays effectively the same. Interaction
octant contributions to the triple product value at different
stations are effectively the same as shown for station 5 in
Fig. 5.

u2w / �u2��w2�1/2 varies at every station similar to the
variation of the quantity shown in Fig. 5 at station 5, except
the changes observed below y+=30. At stations 1 through 3,
the negative peak value observed at y+=7 at station 5 does
not occur. Values stay positive and reduce monotonically to-
ward the layer edge. At stations 4, 6, and 7, the negative peak
values observed at y+=7 are −0.02, −0.3, and −0.2. Near
wall variation indicates that large “u” fluctuations occur to-
gether with intermittent large negative “w” fluctuations.

The v2w / �v2��w2�1/2 interaction octant contributions, as
shown for station 5 in Fig. 5, are close to zero and similar
variations are also observed at other stations. At stations 6
and 7 the triple product profiles show negative peaks at y+

=15, with values −0.15 and −0.2. However, the variations
are similar to each other above y+=30 at all stations.

2 2 1/2 2

TABLE III. Definition of the octants and the signs of the fluctuating velocity
components in different octants.

Octant/Signs u� v� w�

1 interaction � � �

2 ejection � � �

3 interaction � � �

4 sweep � � �

5 interaction � � �

6 ejection � � �

7 interaction � � �

8 sweep � � �
Interaction octant contributions for the uv / �u � �v �
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

0 Nov 2013 20:11:42



025106-5 Octant analysis based structural relations Phys. Fluids 18, 025106 �2006�

 This arti
correlation are similar at every station with the values
observed at station 5. At every station, the near wall
peak observed at y+=8 is between 0.3 and 0.4. However,

FIG. 4. Nondimensional second-order products and contributions from int
station 5. Solid line shows the nondimensional second-order product. Dash
shows contributions from interaction modes.
the negative peak values are observed only at stations
cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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5 and downstream stations. The negative peak values ob-
served at y+=40 are about −0.6 for station 6 and about −0.25
for station 7. Above y+=200, the profiles vary in a similar

on and sweep/ejection octants for six second-order products presented for
ne shows contributions from sweep/ejection octants modes. Dot-dash line
eracti
ed li
fashion.
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Interaction octant contributions for the uw2 / �u2�1/2�w2�
correlation are similar at every station to the values observed
at station 5. Sweep-ejection contributions also show varia-
tions similar to the station 5 data with near wall values of

+

FIG. 5. Nondimensional triple products and contributions from interaction an
shows the nondimensional triple product. Dashed line shows contribution
interaction modes.
about 0.25 at y =7 for all the stations except at station 5,
cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub

128.173.125.76 On: Wed, 2
where the value increases to 0.35, and at station 6, where it
increases to 0.3.

Interaction octant contributions to the vw2 / �v2�1/2�w2�
correlation are close to zero above y+=100 at all stations.

eep/ejection octants for ten triple products presented for station 5. Solid line
m sweep/ejection octant modes. Dot-dash line shows contributions from
d sw
s fro
The variations are qualitatively the same for all stations as
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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observed at station 5. The contributions from the sweep-
ejection octant contributions mirror each other with cumula-
tive values close to but larger than zero at all stations. This
motion indicates that “v” fluctuations occurring in the direc-
tion perpendicular to the floor occur both with 	 “w” fluc-

FIG. 5.
tuations without preference.
cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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Interaction motion contribution shown for
uvw / �u2�1/2�v2�1/2�w2�1/2 in Fig. 5 also represents the varia-
tions at all the stations with values close to zero. The contri-
butions from the sweep-ejection motions become significant
for stations 3 and downstream stations. The positive peak

+

tinued�.
�Con
around y =10 is about 0.15 at station 6 and is about 0.2 at
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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station 7. The negative peak observed at around y+=50 de-
velops proceeding downstream of station 3. The peak values
are about −0.04 at station 4, about −0.08 at station 6, and
about −0.04 at station 7. For stations 1 through 3, the near
wall values are less than zero.

Interaction motion contributions to the u3 / �u2�3/2 corre-
lation are effectively the same at all stations. At stations
downstream of station 4, while a peak positive value is ob-
served below y+=10, a negative peak starts forming and
gradually the magnitude increases proceeding downstream.
The peak values observed are about −0.05 at station 4 and
about −0.3 at stations 5, 6, and 7. The negative peak forma-
tion affects the profiles in the 20
y+
200 range. Sweep-
ejection motions are the dominant motions for this quantity.

For all the stations, sweep-ejection and the interaction
motions contribute equally to the v3 / �v2�3/2 correlation be-
low y+=30. Above y+=30, the sweep-ejection motions are
the dominant motions in the flow. The station 5 profile effec-
tively represents the variations for all the other stations.

For the w3 / �w2�3/2 correlation, the interaction and the
sweep-ejection motion contributions are effectively the same
throughout the layers at all stations. Except at stations 5, 6,
and 7, the sweep-ejection contributions form a negative peak
around y+=10. The correlation values at y+=10 is about
−0.25 for station 4 and about −0.7 for stations 5, 6, and 7.
While at stations 1 through 3 the correlation values gradually
increase in the y+=10–500 range, at the downstream stations
the values reduce overall in the layers resulting in negative
correlation values at station 7.

III. EXTENSION OF NAGANO-TAGAWA „REFS. 9 AND
10… MODEL FOR THREE-DIMENSIONAL FLOWS

As mentioned before, the main motivation behind the
current work was to gain more insights into the structure of
the triple products and to obtain equations among the triple
products that can simplify the turbulent diffusion modeling
used in Reynolds-averaged Navier-Stokes equations by ex-
tending the Nagano-Tagawa model to three-dimensional
flows. The Nagano-Tagawa model is based on a non-
Gaussian three-variable joint probability distribution ex-
pressed as an infinite series truncated at a chosen order. Us-
ing this probability distribution, Nagano and Tagawa first
define equations for the individual quadrant contributions to
each second- and third-order product in 2D flows as a linear
function of various Reynolds-averaged second-, third-, and
fourth-order products without using any experimental data in
the derivation. Next, they obtain relations among the triple
velocity correlations or among the velocity/temperature
triple product correlations using the quadrant contribution
equations and using experimental observations such as the
sum of the interaction quadrant contributions to a triple prod-
uct is zero. In this work, we first expand the Nagano-Tagawa
model to three-dimensional flows and then use the model to
express relations among the triple products in 3D flows

based on experimental observations.
cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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A. Extended model description

The statistical model developed by Nagano and
Tagawa9,10 for a 2DTBL with a passive scalar field describes
a non-Gaussian three-dimensional joint probability density
function using the velocity and temperature fluctuations. In
the present work, we apply and extend their model to define
a joint probability function �p.d.f.� using only the velocity
field and use the p.d.f. to find relations between the triple
velocity products using an octant analysis within a three-
dimensional flow field.

The p.d.f. derived here is an algebraic equation for a
three-dimensional joint probability density function as a
function of the second-, third-, and fourth-order Reynolds-
averaged velocity products, without requiring prior knowl-
edge of the experimental values of the velocity products.
Further use of the p.d.f., as described in the present section,
gives algebraic equations for the fractional contributions
from each of the eight octants to each of the second- and
third-order velocity products. The octant contributions them-
selves are also expressed in terms of the second-, third-, and
fourth-order velocity products without requiring the prior
knowledge of the experimental values of the velocity prod-
ucts. These equations are later used together with experimen-
tal observations to define algebraic equations between the
Reynolds-averaged triple products. For example, an experi-
mental observation that can be made by studying the experi-
mental data is that the sum of the interaction octant contri-
butions for most of the triple-order products and the shear
stresses are separately close to zero throughout the profiles at
every station �Fig. 5�.

B. Extended model derivation

The steps in the model development include �a� describ-
ing a characteristic function, which is the Fourier transform
of the p.d.f that is being defined, �b� finding relations be-
tween the characteristic function and the fluctuating velocity
products, �c� truncating the characteristic function such that
the relations between the characteristic function and the ve-
locity products include only up to fourth-order velocity prod-
ucts, and inverse Fourier transforming the characteristic
function to obtain the p.d.f., and �d� expressing algebraic
equations for the octant contributions for each of the second-
order and the third-order products using the defined p.d.f.

The model uses the correlation coefficients rather than
the actual value of the products. All of the velocity products
were nondimensionalized with the respective powers of the
normal stresses, u2, v2, w2 �e.g., u2v was divided by �u2�v2�,
and is shown as û2v̂=u2v / �u2�v2��. Following their deriva-
tion and using the same notation, the extension of their
model to three-dimensional flows can be described as
follows:

(A) The Fourier transform of the joint p.d.f. �P�û , v̂ , ŵ��

can be written as
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���,
,�� = �
−�

� �
−�

� �
−�

�

P�û, v̂,ŵ�

�exp�i�û� + v̂
 + ŵ���dûdv̂dŵ , �1�

and one can obtain the three-dimensional joint p.d.f. by in-
verse transformation of the characteristic function, ��� ,
 ,��,
if a proper function is defined for the characteristic function.
The function � was described by Nagano and Tagawa9 in
terms of the cumulant kpqr, such that it would satisfy the
following equation:

iKkpqr = � �K ln ���,
,��
�� p�
q��r �

�=0,
=0,�=0
, �2�

where K= p+q+r, and � ,
 ,� are the dummy variables. Inte-
gration of Eq. �2� led Nagano and Tagawa to the equation

���,
,�� = exp	 

p,q,r=0

�
iK

p!q!r!
kpqr�

p
q�r� . �3�

Thus, this equation is the characteristic function ��� ,
 ,��
chosen �Nagano and Tagawa9� to be used in Eq. �1�.

(B) On the other hand, the Reynolds-averaged velocity
corelations mpqr can be expressed using the following
relation:
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mpqr = ûpv̂qŵr = �
−�

� �
−�

� �
−�

�

ûpv̂qŵrP�û, v̂,ŵ�dûdv̂dŵ .

�4�

The following equation holds between the function, �, given
in Eq. �1� and the mpqr, independent of Eqs. �2� and �3�,

� �K���,
,��
�� p�
q��r �

�=
=�=0
= iKmpqr. �5�

Integration of Eq. �5� leads to the function, �, expressed in
terms of the mpqr

���,
,�� = 

p,q,r=0

�
iK

p!q!r!
mpqr�

p
q�r. �6�

Using the expressions for the � obtained in terms of mpqr

�Eq. �6�� and the kpqr �Eq. �3��, one can calculate the follow-
ing relations between mpqr and kpqr using up to fourth-order
products. Although higher than fourth-order products could
be used in the expressions, using terms including the fourth-
and lower-order terms seems to be adequate in describing the
probability density functions which are not Gaussian but
those do not deviate largely from a Gaussian distribution
�Nagano and Tagawa9�. Therefore the K= p+q+r �4 values

are used here:
m001 = 0; m010 = 0, m100 = 0; m002 = 1; m020 = 1; m200 = 1; m000 = 1, k000 = 0 for K = 0;

mpqr = kpqr for 1 � K � 3;

k004 = − 3 + m004; k013 = − 3m011 + m013;

k022 = − 1 − 2m011
2 + m022; k031 = − 3m011 + m031; k040 = − 3 + m040; k103 = − 3m101 + m103;

k112 = − 2m011m101 − m110 + m112; k121 = − m101 − 2m011m110 + m121; k130 = − 3m110 + m130;

k202 = − 2m101
2 − m200 + m202; k211 = − 2m101m110 − m011m200 + m211;

k220 = − 2m110
2 − m200 + m220; k301 = − 3m101m200 + m301; k310 = − 3m110m200 + m310; k400 = − 3 + m400.
(C) On the other hand, the � equation expressed in terms
of kpqr �Eq. �3�� can be further written as

���,
,�� = exp�−
1

2
��2 + 
2 + �2�
 


p,q,r=0

�

Cpqri
K� p
q�r.

�7�

This form of the � equation simplifies the inverse Fou-
rier transform process required in calculation of the p.d.f.
Taking the inverse Fourier transform of Eq. �7� results in the
desired probability density function,
P�û, v̂,ŵ� =
1

�2��3�
−�

� �
−�

� �
−�

�

���,
,��

��exp�− i�û� + v̂
 + ŵ���d�d
d��

=
1

�2��3/2 

p,q,r=0

�

CpqrHp�û�Hq�v̂�Hr�ŵ�

��exp�−
1

2
�û2 + v̂2 + ŵ2�
� , �8�
where
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Hk��� = �− 1�k exp	1

2
�2� dk

d�k exp	−
1

2
�2� , �9�

which is a one-dimensional Hermite polynomial.
Equations relating the kpqr and Cpqr can be expressed

using the � equation written in terms of kpqr �Eq. �3�� and
expanding it into series including the third-order terms in the
expansion exp�x�=1+x+x2 /2!+x3 /3!, and equating the
B3,4 = 6.
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terms from the � equation written in terms of Cpqr �Eq. �7��.
The Cpqr related to kpqr can be expressed in terms of the mpqr,
which are the nondimensional Reynolds-averaged velocity
products including the fourth-order terms. Again, following
the reasoning by Nagano and Tagawa9 the terms including
the fourth-order terms have been retained here and higher-
order terms have been neglected. The process results in the
following relations:
C000 = 1, C001 = 0, C002 = 0, C003 = 1
6 ŵ3, C004 = 1

24�ŵ4 − 3� ,

C010 = 0, C011 = v̂ŵ, C012 = 1
2 v̂ŵ2, C013 = 1

6 �v̂ŵ3 − 3v̂w� �, C020 = 0, C021 = 1
2 v̂2ŵ, C022 = 1

4 �v̂2ŵ2 − 1� ,

C030 = 1
6 v̂3, C031 = 1

6 �v̂3ŵ − 3v̂ŵ�, C040 = 1
24�v̂4 − 3� ,

C100 = 0, C101 = ûŵ, C102 = 1
2 ûŵ2, C103 = 1

6 �ûŵ3 − 3ûŵ�, C110 = ûv̂, C111 = ûv̂ŵ, C112 = 1
2 �ûv̂ŵ2 − ûv̂� , �10�

C120 = 1
2 ûv̂2, C121 = 1

2 �ûv̂2ŵ − ûŵ�, C130 = 1
6 �ûv̂3 − 3ûv̂�, C200 = 0, C201 = 1

2 û2ŵ, C202 = 1
4 �û2ŵ2 − 1� ,

C210 = 1
2 û2v̂, C211 = 1

2 �û2v̂ŵ − v̂ŵ�, C220 = 1
4 �û2v̂2 − 1�, C300 = 1

6 �û3�, C301 = 1
6 �û3ŵ − 3ûŵ� ,

C310 = 1
6 �û3v̂ − 3ûv̂�, C400 = 1

24�û4 − 3� .

(D) Using the probability function given by Eq. �8�, the fractional contributions from each octant to the mpqr= ûpv̂qŵr can
now be calculated using

�ûlv̂mŵn�i = �u,i
l �v,i

m �w,i
n ��

0

� ��
0

� 	�
0

�

ûlv̂mŵnP��u,iû�v,iv̂�w,iŵ�dŵdv̂dû�
� , �11�

where �u,i= �1,−1,−1,1 ,1 ,−1 ,−1,1�; �v,i= �1,1 ,−1 ,−1,1 ,1 ,−1 ,−1�; �w,i= �1,1 ,1 ,1 ,−1 ,−1,−1,−1�. Carrying out the inte-
grals in Eq. �11� and retaining the terms including the fourth-order terms results in the following equation, which describes the
fraction contributions to the �ûlv̂mŵn� from separate octants:

�ûlv̂mŵn�i =
1

�2��3/2 

p,q,r=0

K�4

�u,i
l+p�v,i

m+q�w,i
n+rCpqrBl,pBm,qBn,r, �12�

where

Bj,k = �
0

�

� jHk���exp	−
1

2
�2�d� . �13�

The following terms were calculated using Eq. �13�:

B0,0 =��

2
, B0,1 = 1, B0,2 = 0, B0,3 = − 1, B0,4 = 0, B1,0 = 1, B1,1 =��

2
, B1,2 = 1, B1,3 = 0, B1,4 = − 1,

B2,0 =��

2
, B2,1 = 2, B2,2 = �2�, B2,3 = 2, B2,4 = 0, B3,0 = 2, B3,1 = 3��

2
B3,2 = 6, B3,3 = 6��

2
,
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The derived equations differ from the equations given by
Nagano and Tagawa since the integrations in Eq. �11� have
different limits resulting in different constants for Eq. �12�.
Equation �12� as derived is coordinate-system-independent.

C. Extended model verification

The Nagano-Tagawa method, which was extended to
three-dimensional flows, shows that the octant contributions
to both the second- and third-order products are functions of
the second-, third-, and fourth-order products in general. For
example, the following two equations obtained using Eq.
�12� show the contributions from octant-1 to the �ûv̂�
second-order correlation and to the �û2v̂� triple-order corre-
lation expressed using the Nagano-Tagawa analysis

�ûv̂�1 =
1

4�
�1 −

v̂ŵ3

6
−

v̂4

12
−

ûŵ3

6
+

ûv̂2ŵ

2
+

û2v̂2

4
−

û4

24

+
�

2
ûv̂ +

1
�2�

�−
w̄̂3

3
+ v̂2ŵ + �ûv̂ŵ +

�

2
ûv̂2

+ û2ŵ +
�

2
û2v̂�
 , �14�

�û2v̂�1 =
1

4�
� ŵ3

3
+

v̂2ŵ

2
+ 2ûv̂ŵ + ûv̂2 + û2ŵ +

�

2
û2v̂

+
û3

3

 +

1
�8�

�5

8
+

v̂ŵ

2
+ ûv̂ −

v̂ŵ3

6
−

v̂4

24
+ û2v̂ŵ

+
û2v̂2

2
+

û3v̂
3

 +

1

�2��3/2�ûŵ −
ûŵ3

3
+ ûv̂2ŵ

+
û3ŵ

3

 . �15�

The next step in extending Nagano and Tagawa’s analy-
sis is examination of the contributions from different octants
to see if the derived equations represent the data. Figures 6
and 7 show the comparison between the model equations and
the experimental data. The model values used in the plots
were calculated by inputting the third- and fourth-order prod-
uct correlation experimental data to the right-hand side of the
equations, such as Eq. �14� or Eq. �15�, and calculating the
octant contributions as the left-hand side of the equations at
every point in the profiles. Figure 6 shows a good agreement
between the experimental and the modeled contributions to
each of the second-order products and the eight octants for
station five. Figure 7 also shows a good agreement between
the model and the experimental data for each of the triple
product correlations and the eight octants for station five.
While only station five is shown, the other stations show
good agreement with the model also.

IV. RESULTS AND DISCUSSION: STRUCTURAL
MODELS FOR THIRD-ORDER PRODUCTS

The octant contribution equations expressed for the

triple product correlation terms using the Nagano-Tagawa
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extended model were next used to express relations between
the triple product correlations based on experimental obser-
vations. An experimental observation that can be made by
studying the experimental data is that the sum of the inter-
action octant contributions for most of the triple-order prod-
ucts is separately close to zero throughout the profiles at
every station �Fig. 5�. In this study, a set of relations was
obtained by summing the equations for the interaction oc-
tants of each of the triple product correlations separately and
equating each sum to zero. Therefore, for each triple product
correlation, the first, third, fifth, and seventh octant equations
were added to each other and then equated to zero to obtain
a relation. Ten such relations were obtained, one from each
triple product correlation. Figure 5 also indicates the ap-
proximations made in writing such equations since the ex-
perimental data show that the interaction octant contributions
are not exactly zero but close to it. Based on Fig. 5, it was
also determined that for the ûŵ2, v̂ŵ2, and ŵ3, triple product
correlation interaction octant contributions were not close to
zero. Thus, it was observed that seven of those relations
yielded good agreement with measured data. The seven rela-
tions were found from the equations for the triple product
correlations, û2v̂, û2ŵ, û3, ûv̂2, ûv̂ŵ, v̂2ŵ, and v̂3, and these
relations are listed below in the order of the triple product
correlation model equations used to obtain them:

ûv̂2 +
�

2
û2v̂ +

1

3
û3 = 0, �16�

�

4
û2ŵ + ûv̂ŵ = 0, �17�

û2v̂ −
1

9
v̂3 +

�

6
û3 = 0, �18�

v̂3 + 3û2v̂ +
3�

2
ûv̂2 = 0, �19�

v̂2ŵ + û2ŵ + �ûv̂ŵ = 0, �20�

�

4
v̂2ŵ + ûv̂ŵ = 0, �21�

�v̂3 − 2
3 û3 + 6ûv̂2 = 0. �22�

These seven equations, which contain seven triple prod-
uct correlations, could not be solved to find relations among
the correlations since the equations form a homogeneous set
of equations without unique solutions. Additional relations
were derived by using algebraic manipulations of the above
relations to express each of the triple-product correlations as
a function of only one other triple-product correlation, or to
express each triple-product correlation as a function of other
triple-product correlations. Such as, û2v̂=−0.683 û3 equation
that can be obtained from Eqs. �16�, �18�, and �19�, − 4

3 v̂3

+ �
2 û3− 3

2�ûv̂2=0 that can be obtained by eliminating the û2v̂
using Eqs. �18� and �19�, and û3=−3�ûv̂2+ �

2 û2v̂� that can be

obtained from Eq. �16�. Seventy-nine such equations were
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expressed and tested against the data at seven stations. These
equations were used to compute the model triple-product
correlation values �the left-hand side of the equations� by
inputting the required triple-product correlations from the ex-

FIG. 6. Nondimensional second-order products, Nagano-Tagawa model pr
products presented for station 5. Symbols show experimental data, octants 1
octant contribution predictions using model.
perimental data to the right-hand side of the equations. Next
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the experimental value for the left-hand side term and the
computed value were compared to each other.

To determine the model relations describing the data
best, root-mean-square �rms� of the differences between the

ions for each octant, contributions from each octant for six second-order
ugh 8, �, �, �, �, �, �, �, �. Solid lines following the symbols show
edict
thro
model predictions and the data was calculated for each rela-
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tion using all the data of stations 1 through 7. The rms metric
was next used to determine the relations best representing
each of the seven triple-product-correlation data throughout
the layers. Relations resulting in the least rms values were
considered as the best relations. The best relations describing
the variation of the triple product correlations for different y+

ranges within the boundary layers were also determined from

FIG. 7. Nondimensional triple products, Nagano-Tagawa model predictions
for station 5. Symbols show experimental data, octants 1 through 8, �, �,

predictions using model.
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this analysis. The best working relations throughout the lay-
ers and at different regions within the layers are given in
Table IV. Table V gives the normalized average rms value
multiplied by 100 for the relations given in Table IV. The
rms values calculated for each relation at each station were
first normalized with the maximum value of the triple prod-
uct at each station, next these seven rms values were aver-

ach octant, contributions from each octant for ten triple products presented
, �, �, �, �. Solid lines following the symbols show octant contribution
for e
�, �
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aged to calculate the rms value reported for that relation. The
values listed would serve the purpose of defining the percent-
age difference that might be expected in using the modeled
equations.

Figure 8 shows the best working relations in different
regions of the layers and the best working relation through-

FIG. 7.
out the layer for each of the seven triple-product correlations
cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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for stations 2, 5, and 7 in comparison with the experimental
data. The figure shows that both the relations that work best
in different regions in the layers and the relations those work
best on the average agree well with the data, with the specific
region relation results being closer to the data. The plots also
show that the model predictions and the data agree well

tinued�.
throughout the layers for all the triple-product correlations
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

0 Nov 2013 20:11:42



025106-15 Octant analysis based structural relations Phys. Fluids 18, 025106 �2006�

 This arti
above y+.20, except for the v̂2ŵ and the ûv̂ŵ triple-product
correlations for which the model predictions and the data
agree better above y+.100 and y+.300, respectively. The per-
centage rms errors listed in Table V indicate that the models
may result in large errors for all the triple products near the
wall below y+.30, at locations where the interaction octant
contributions are not close to zero, and especially for the v̂3,
û2ŵ, v̂2ŵ triple-product correlations. The rms errors decrease
further away from the wall indicating the better agreement
between the relations and the data.

The overall agreement between the relations and the data
indicates that the relations expressed may be used to reduce
the number of triple products in the modeling efforts of the
turbulent diffusion. The relations given in Table IV may be
used for this purpose. If a turbulence model equation for the
ûv̂2 term could be written, this could be used to model the û3,
û2v̂, and v̂3 using the relations given in Table IV. Thus one
turbulence model written for the ûv̂2 could be used to model
the additional three triple-product correlations. Additionally,
if a turbulence model could be written for the ûv̂ŵ, this could
be used to obtain a model for the û2ŵ and these equations
together could be used to obtain a model for the v̂2ŵ. Thus
the diffusion modeling efforts for the triple products could be
substantially reduced. Additionally the redundant equations
for the ûv̂2 and the ûv̂ŵ in Table IV could be used as guiding
equations to write the turbulence model equations for these
correlations.

The relations obtained indicate that the triple-product
terms, u2v, uv2, v3, which appear in the turbulence diffusion
equations for the u2, uv, and the v2 with the gradients normal

TABLE IV. Best working relations describing the variations of the triple
profiles at all stations. Best working relations in different regions of the lay

Triple-product
correlation/ranges Average y+

û2v̂ û2v̂=−0.923*ûv̂2 û2v̂=−0.923*û

ûv̂2 ûv̂2=− 2
3� �v̂3+3û2v̂� ûv̂2=− 2

3� �v̂3+

û3 û3=2.11*ûv̂2 û3=2.11*ûv̂2

v̂3 v̂3=−1.463*ûv̂2 v̂3=−1.463*ûv̂

û2ŵ û2ŵ=− 4
� �ûv̂ŵ� û2ŵ=−1.869*u

v̂2ŵ v̂2ŵ=0.6812*û2ŵ v̂2ŵ=− 4
� �ûv̂ŵ

ûv̂ŵ ûv̂ŵ=− 1
� �v̂2ŵ+ û2ŵ� ûv̂ŵ=−0.535*

TABLE V. Normalized root-mean-square errors multiplied by 100 calculate
regions of the layers. Average denotes the best working relation throughout

Triple-product
correlation/ranges Average

û2v̂ 14.4

ûv̂2 14.2

û3 13.7

v̂3 22.5

û2ŵ 33.8

v̂2ŵ 59.2

ûv̂ŵ 16.6
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to the wall are strongly related to each other even in this
complex 3D flow. Another observation made from the rela-
tions is that one single relation was observed to hold for the
ûv̂2 at every region of the layers indicating a strong relation
among the triple-product correlations. The equations involv-
ing uw2, vw2, and the w3 triple products are not presented
here since the interaction octant contributions to these triple
products were not close to zero especially in regions y+

�150.
The analysis discussed up to this point was also repeated

in the local flow-angle coordinate system in which the x axis
was aligned in the direction of the mean flow parallel to the
wall at each point of the profiles, while the y axis was per-
pendicular to the tunnel wall. Therefore, a new coordinate
system was defined at each point of the profiles. It was
shown by Ha and Simpson18 that in such a coordinate system
the coherency of the axial velocity fluctuations is the highest,
suggesting that coherent structures convected along the local
flow-angle direction could result in interaction octant contri-
butions closer to zero in the local flow-angle coordinates
than in the wall-stress coordinates, especially near the wall.
The results obtained in that coordinate system were observed
to follow the results presented in wall-stress coordinates very
closely without appreciable differences.

Although the relations developed here were tested in a
single flow field, it is believed that the analysis would apply
to any 3D boundary layer type flows. The flow field studied
includes regions where the flow turns away in one direction
to become a strongly skewed 3D flow and regions down-
stream where the flow turns in the opposite direction result-

ct correlations. Average denotes the best working relation throughout the
re also shown in the table.

30
y+
300 y+�300

û2v̂=−1.084*ûv̂2 û2v̂=−0.5145*û3

ûv̂2=− 2
3� �v̂3+3û2v̂� ûv̂2=− 2

3� �v̂3+3û2v̂�
û3=1.35*ûv̂2 û3=−1.945*û2v̂

v̂3=−1.463*ûv̂2 v̂3=1.474*û2v̂

û2ŵ=− 4
� �ûv̂ŵ� û2ŵ=−1.869*ûv̂ŵ

v̂2ŵ=0.681*û2ŵ v̂2ŵ=0.681*û2ŵ

ûv̂ŵ=− 1
� �v̂2ŵ+ û2ŵ� ûv̂ŵ=− 1

� �v̂2ŵ+ û2ŵ�

uding all the seven stations for the equations given in Table IV in different
rofiles at all stations.
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�

v̂2ŵ
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 This arti
ing in large lateral shear stresses and mean velocity gradients
within the layers, encompassing phenomena that occur in
most complex 3D flows.

FIG. 8. Comparison between the predictions of models given in Table IV an
5, and 7 are shown by �, �, � respectively. Thin lines show the model p
relations working best in different regions of the layers.
A similar analysis made in the search of relations be
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tween the triple products using the octant contribution equa-
tions for the second-order products and using the assump-
tions that the sum of the interaction octant contributions is

experimental data for stations 2, 5, and 7. Experimental data for stations 2,
tions for the best working relation on the average. Dashed lines show the
d the
redic
zero did not give any good relations that we could report,
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 This arti
although the experimental data show that the sum of the
interaction octants for the uv and the vw stresses are nearly
zero �Fig. 4�.

V. CONCLUSIONS

The structural turbulence model for triple products de-
veloped by Nagano and Tagawa for two-dimensional flows is
expanded to include three-dimensional flows. Algebraic
model equations developed to express contributions from
each of the octants to the triple products were first shown to
successfully represent the octant contributions calculated us-
ing the experimental data. These model equations were fur-
ther used together with experimental observations to express
seven relations among the triple products. Experimental data
analysis showed that for each of the seven triple products,
the contributions from the interaction octants �octants, 1, 3,
5, 7� are much smaller in magnitude than the sweep/ejection
octant contributions. The seven relations obtained by equat-
ing the sum of the model equations describing the contribu-
tions from the interaction octants to zero resulted in a homo-
geneous set of equations without unique solutions. Further
equations were derived using these seven equations and a
rigorous analysis was made to determine the best working
relations that describe the triple products and thus relations
among the triple products within different regions of layers
as well as within the whole layers.

The analysis showed that a strong relation exists be-
tween the ûv̂2, v̂3, and û2v̂ triple-product correlations that
hold in every region throughout the layers. Additional rela-
tions were expressed among the triple products that hold in
different regions of the layers. These relations showed that
the turbulent diffusion modeling can be substantially reduced
by use of such relations expressed in Table IV. These rela-
tions show that û3, û2v̂, and v̂3 triple products can be mod-
eled if an appropriate turbulence model is described for the
ûv̂2 triple product, and that û2ŵ v̂2ŵ triple products can be
modeled if an appropriate turbulence model is described for
the ûv̂ŵ triple product. However, these relations were ex-
pressed using a single flow field generated by a wing-body

junction, and further testing of these relations would allow

cle is copyrighted as indicated in the abstract. Reuse of AIP content is sub
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further determination of the validity of these equations once
additional three-dimensional flow data are available in the
literature.
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