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Effect of inertia on drop breakup under shear
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S.E., University of Minnesota, Minneapolis, Minnesota 55455-0132

(Received 23 May 2000; accepted 6 October 2000

A spherical drop, placed in a second liquid of the same density and viscosity, is subjected to shear
between parallel walls. The subsequent flow is investigated numerically with a volume-of-fluid
continuous-surface-force algorithm. Inertially driven breakup is examined. The critical Reynolds
numbers are examined for capillary numbers in the range where the drop does not break up in
Stokes flow. It is found that the effect of inertia is to rotate the drop toward the vertical direction,
with a mechanism analogous to aerodynamic lift, and the drop then experiences higher shear, which
pulls the drop apart horizontally. The balance of inertial stress with capillary stress shows that the
critical Reynolds number scales inversely proportional to the capillary number, and this is confirmed
with full numerical simulations. Drops exhibit self-similar damped oscillations towards equilibrium
analogous to a one-dimensional mass-spring system. The stationary drop configurations near critical
conditions approach an inviscid limit, independent of the microphysical flow- and fluid-parameters.
© 2001 American Institute of PhysicgDOI: 10.1063/1.1331321

I. INTRODUCTION edly stronger velocity field in the drop region. For example,
steady solutions show strong vortical motions inside the drop
The goal of this article is to examine the effect of inertiajust below the critical Reyno]ds number. This is accompa-
on the idealized problem of an isolated drop subjected tgied by an increase in the Taylor deformation paramBter
simple shear in a matrix liquid. The undeformed radiug,is = for the steady-state solutions, as the Reynolds number is in-
the plate separation &, and the computational box has pe- creased. There are three trends for the overall effect of iner-
riodic boundary conditions in _the horizontal directions. Thetja. First, inertia rotates the drop, so that at higher Reynolds
undisturbed velocity field isi= yzi, wherey is the imposed numbers, the steady states are more aligned toward the ver-
shear rate. There are seven dimensionless parameters: tieal than in Stokes flow and therefore the drop experiences
viscosity ratio of the drop to matrix liquids= uq/uny, the  greater shear. Second, in Stokes flow, the flow inside the
capillary number Ca ,um'ya/g, the Reynolds number Re drop consists of a single vortical swirl, whereas inertia in-
=Pm-732/,um, the dimensionless plate separatiofa, and duces a second vortical swirl evident i.n the_plots for Rey-
dimensionless spatial periodicities in tkeandy directions.  Nolds numbers 10 and 20. The two vortices sit at the top and

In order to examine trends, we focus on the casel, which ~ Pottom ends of the drop. Third, the length of the drop in
is the viscosity ratio that has received the most attention irft€ady states just below breakup shortens as inertia increases,
the literaturet—® and the symmetry across the mid-plane of the steady state,

It is known that for Stokes flow, capillary numbers in the €vident in Stokes flow, is lost. These trends raise two open
range 0 to 0.43 yield steady states with egg-shaped drops. dwestlons:.what is the mechanism for breakup unqier inertia,
the other hand, the addition of sufficient inertia inducesdd what is the large Reynolds number asymptotics for the

breakup for these capillary numbers. In Ref. 7, Sec. V. jcritical curve? These issues are addressed in this article.

concerned with inertially driven breakuypf. their Figs. 17—

20). The_ critical Reyn(_alds number is small for Ca close.to“_ LARGE REYNOLDS NUMBER BEHAVIOR

0.4, but increases rapidly as Ca decreases. At each capillary

number, the increase in Reynolds number deforms the drop In Stokes flow, the primary parameter is the capillary

from ellipsoidal to elongated. In comparison with the veloc-number, which is a measure of the viscous force causing

ity fields for Stokes flow, the increase in Re leads to a markdeformation relative to interfacial tension force which keeps
the drop together. An order of magnitude estimate of

“Electronic mail: renardyy@math vt.edu breakup conditions is derived with a balance of the viscous

PElectronic mail: cristini@cems.umn.edu stress and capillary stresg,y~ o/a, which yields Ca-1.
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FIG. 1. Log-log plot of Re vs Ca\
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FIG. 2. Velocity vector plots for the
cross-section through the center of the
drop in thex-z plane. Left to right, top
to bottom:t=0.9, 2.4, 4, 7.5, 20, 22.5
s. Re=60, Ca=0.054.
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FIG. 3. Velocity vector plot for the cross-section through the center of the
drop in thex-z plane, just before breakup. R&00, Ca=0.042. 12& 64
X128 mesh, X0.5X1 domain.a=0.125. The drop elongates and rotates
to a high angle.

For large Reynolds numbers, the Reynolds stress is of order

p|v|?~ py?a?. This is balanced by capillary stresses of order
ol/a. The critical condition is, upon division by the viscous

stressuy,

Re~1/Ca. (2.2

This is illustrated in the numerical results of Fig. 1. At the
points represented on this figure, a full simulation of the
initial value problem, together with the Navier—Stokes equa-
tions and the continuous surface force formuldtidhwith

our code SURFER + was conducted. The log—log plot of - :
critical conditions shows that for larger Reynolds numbers, 02 03 04 05 06 07 0B
the critical conditions follow the line of slope 1. (C)

The computations were performed on the domain 1

- . : FIG. 5. Velocity vector plot for the cross-section through the center of the
X0.5x1, with a 64<32x 64 mesh, and initial drop radius drop in the x-z plane, just below criticality.(a) Re=1, Ca=0.27, L/a

a=0.125, timesteps I(?'y‘l, unless otherwise indicated. =1.8, =25 deg.(b) Re=10, Ca=0.15,L/a=1.9, =23°. (c) Re=60, Ca
All results in this article concern viscosity ratio=1 and  =0.053,L/a=1.52, §=53°.
equal densities.

I1Il. MECHANISM FOR INERTIALLY DRIVEN BREAKUP
A. Lift and counter-lift

Figure 2 shows a typical sequence of events to inertially
driven breakup. These velocity vector plots show that as the
drop is pulled apart by the base flow, vortical swirls develop
at the two ends, with little going on in the neck region. The
difference with Stokes flow is the upward tilt, induced by an
effect analogous to flying in inviscid flow. When inertia is
important, we may invoke Bernoulli’s equation, which states
that pressur@-+ p|v|?/2 is a constant along each streamline.
In the matrix liquid, therefore, the large velocities near the
tips induce negative pressures there relative to the pressure
elsewhere. The resulting suction leads to further tilting of the
e drop. This is an aerodynamic lift on one end, together with a
/ counter-lift at the other end. The drop is then exposed to ever

larger shear with further tilting, which allows the base shear
FIG. 4. Three-dimensional picture just after breakup a=B®, Ca=0.07. flow to pull away the ends. This scenario is similar for higher
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Reynolds numbers. The bending up of the end of the drop i§on from critical capillary numbers. The large Reynolds
reminiscent of the formation of 2D fingers when surface tennumber result is approximately an inviscid limit, in which
sion is added in simulations of inviscid Kelvin—Helmholtz the time-dependent momentum equation is a balance
instability 12

With increase in the capillary number, the stretching in-  y + (u.Vu)~ _V(E '
duced by viscous shear becomes stronger. As in Stokes flow,
this leads to longer necks before breakup. A higher Re casgnd the stress balance across the fluid interface is
is shown in Fig. 3 at Re 100, Ca=0.042 in. The difference
with Stokes flow is again the high angle of tilt. Figure 4 is a
three-dimensional plot after breakup for -R&0, Ca=0.07.

(3.9

[

o

~K. (3.2

There are lower order viscous terms. This yields a family of
_ _ o solutions p=p/c, p=pl/c, and oc=c/c. In the numerical
F|gure 5 shows _the cross—seqt!ona_ll_ velocity f|f—3|ds forsimulations, we fix théyz 1,a=0.125 andu=1, while the
long-time solutions just below criticalities. Pldg) is a _near-critical inertiap and interfacial tensiomr vary by the
stead){ stqte spluno@vectors are plotted at fewer grid points; ¢4me factors; hence in the asymptotic regime, Ca.Rer
the grid size is the same for all plptsPlot (c) undergoes  ~ ~ o . .
. - : . L : =plo, and the problem is identical for each near-critical Re.
slight oscillations in the length-wise direction as it ap- . ; . .
) ) Figure 7 shows the temporal evolution of the dimension-
proaches steady state. The diagnostics are the half-léngth .
. ; L less half-length./a and angle of tiltd. Close to Stokes flow,
half-breadthB, and angled with the x-axis. Inertia increases . :
the drop simply elongates to steady state, and retractions

from @ o (.C)’ and tilts t_he drqp. A.t low Reynolds numbers, when they occur are mild. For the larger Reynolds numbers
ther_e Is a single vortex n the Interior. AS the Reynolds MMihere is an initial lengthening followed by a marked retrac-
ber increases, the vortical motion inside the drop begins t%on with a final length which is much shorter than at low
separate into two vortices. This is evident by=Ri®. The '

PR ; . Reynolds numbers, and the angle of tilt is higher.
angle of tilting increases, the drop is subjected to stronger At larger Reynolds numbers, the drop initially wobbles

shear and the two vortical swirls inside the drop becomemost noticeably across the narrower girth. In the transition to
more evident. At Re60, there are four vortical swirls. At y girtn.

higher Reynolds numbers, the competition between the lif teady state, the drop can appear to neck, then relax back,

: hen repeat, with the oscillations decaying. Assuming that
exerted on the drop versus pulling by the shear leads tg " . .

. X : Close to the critical state drop evolution can be described by
shortening for long-time solutions.

. . . a one-dimensional modéin analogy with recent finding3
Figure 6 shows results for near-critical capillary UM | der Stokes flow conditiomsthis motion is reminiscent of
bers. The plots demonstrate that for large Reynolds number.

the length and angle of inclination approach constants. Thgﬁe mass-spring system described by
scatter of the data is explained by the variation in the devia- mx'(t)+cx'(t)+ ox(t)=0, (3.3

B. Inertia-induced wobbling
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wherex(t) denotes displacement from equilibriu@.g., the

50

60

usec=6mua for the Stokes drag on a sphere. In our simu-

girth B/a), mrepresents inertia is the viscous friction, and  |ations, we have used the shear rate 1, so that Eq(3.3
o is the interfacial tension or restoring force. Stokes flowgpart from factors translates to Re.£4t)+Cax’(t)

corresponds to an overdamped system. A large Reynolds x(t)~0. This yields a period of oscillations proportional to
number corresponds to an underdamped system where thre.Ca'/2

solution oscillates more intensely. For an order-of-magnitude  Figure 8 shows the evolution of the half-breadiha.
estimate, we sah= p(4/3)7a’ for the mass of the drop, and The curves for situations close to critical along the
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08 =
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0.4l | FIG. 8. Evolution of the half-breadth
’ B/a, showing the initial oscillations
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t =0.061; Re=60, Ca=0.053; and Re
=80, Ca=0.041 lie close togethetb)
077 0.6 (-.-.) Re=100, Ca=0.032.(c) Re=50,
Ca=0.03. The lower figures are mag-
0.76 0.59} nifications of the first maxima and the
second minima with respective values
0.75 058t of Re.
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asymptotic line in Fig. 1 lie close together betwegi for

0.06 0.065

and 4a, respectively. At Re60, Ca=0.05 (critical Ca

Re=50 and(b) for Re=100, because they approach the in- 0 053), the computational box in the direction, trans-
viscid limit discussed for Eq3.1). The curve(c) is placed as  ygrse to the shear flow, was doubled and found to yield neg-
an example of a situation with half the capillary number|igipje differences forl/a,B/a, ¢ and velocity vector plots.
compared with the critical value. The figure shows that thesecong, the computational box in tkelirection was length-
period of oscillation is the same for the near-critical curvesgneq to examine interactions with neighboring drops. It was

for which Re.Ca is constant. Moreover, the difference in the
period for the near-critical curves aii¢) at Ca=0.03 can be
explained by the proportionality tgRe.Ca, by noting that
the restoring force changes by a factor 2, and, therefore, we
predict that the Re50, Ca=0.061 curve would have the
longer period by factok/2.

Our mass-spring model predicts solutions to have a de-
cay rate proportional te- 1/Re. For the asymptotic large-Re
regime, this decay rate is proportional to Ca. We verify this
by determining the decay rate from the first two maxima and
minima in Fig. 8. Letxy, denote the difference in height
between the first maximum and first minimum, and xet
denote the difference between the second maximum and sec-
ond minimum. The difference ihbetween the two maxima
is At, a value similar to the separation of the minima. The
decay rate is then proportional teln(xy/x;)/At. These are
plotted in Fig. 9 against the capillary number, and indeed lie
on a line.

At Re=60, Fig. 10 shows a sequence of cross-sectional
velocity fields at times just before the waist squeezes and
distends. In(a), the drop is close to its initial stage. One
vortex develops as the drop begins its initial lengthening, and
the waist begins to squeeze. The velocities clearly point in-
wards at the waist just beforB/a hits its first minimum.
Figure 1@b) shows the velocities pointing outwards at the
waist, during the process of expansion. Two vortices have
developed, one at each end of the drop where the shear is
greatest. There is also one large vortical swirl enveloping
these. The drop undergoes lift at the right end, and counter-
lift at the left. Figure 10c) shows the velocities pointing
inwards at the waist just beforB/a reaches the second
squeeze. The oscillations which follow are less intense, as
evident in Fig. 8. The evolution thereafter proceeds along a
climb in L/a as shown in Fig. 7. Wheh/a begins its down-
hill journey, the drop surges its angle to tilt toward the ver-
tical.

Three issues will be discussed next with respect to the
numerical accuracy: the effect of spatial periodicity, distanc
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to t_he_V\_’a”_S, and spatial gnd _temporal refinements. Spatigkst maximum inB/a; and (c) 4, before the second squeeze =@, Ca
periodicity in thex andy directions were chosen to bea8 =0.053 just below criticality.
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