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When a drop is sheared in a matrix liquid, the largest daughter drops are produced by elongative end
pinching. The daughter drop size is found to scale with the critical drop size that would occur under
the same flow conditions and fluid properties. Daughter drop volumes saturate to just below 60% of
the critical volume as the mother drop size increases. For large Reynolds number, the daughter drop
radius scales with the % case power of the capillary number when the Reynolds number is fixed.

© 2001 American Institute of Physic§DOI: 10.1063/1.1384469

I. INTRODUCTION the computational boxt XL, XL, has periodic boundary
conditions in the horizontal directions.
We envision a laboratory experiment in which a spheri-  In addition to the capillary number, we also have the

cal drop is suspended in a matrix liquid of the same viscosityReynolds number Repya?/u. We define Rg=ReD?a?)
and density and shearéd The velocity field, in the absence for the daughter drop of radius. In the laboratory experi-
of the drop, isu=yzi, wherey is the imposed shear rate. ment that we envision, just the initial drop size is varied. The
The fluid properties and flow strength are chosen fixed, whilgarameters are then related by Re&/€®, where K
the drop size is varied. For Stokes flow, drop deformation is= pa?/(uy) is a constant. Figure 1 illustrates this parabola
characterized by the capillary number€aya/o, wherex  (dashedl in the Re vs Ca plane, together with the critical
is the viscosity,a is the initial radius of the drop, anatis  curve (solid) determined in Ref. 6. The intersection of these
interfacial tension. We denote by Cthe critical capillary curves occurs at Ga The circles on the parabola represent
number, above which the drop breaks up; the correspondingalues for the mother drop. Figure 2 shows snapshots of the
critical radius is denoted,. The maximum stable drop size first daughter drops pinching off from those mother drops.
is attained at Ga Above the critical capillary number, the For barely supercritical capillary numbers, the drop breaks
drop elongates, bulbs form at the ends, and these produce thgter only a modest elongation; two daughter drops of about
largest daughter drops. It is known that the daughters thehalf the mother’s volume and a short neck result from the
stabilize in the flow, and hence their raBiimust be, at most, breakup event. At larger capillary numbers, the drop be-
the critical radius. Their capillary number ga(D/a)Ca,  comes highly elongated, and the neck has a larger volume. In
whereD is the daughter drop radius, satisfies this case, the neck undergoes subsequent breakups, leading
to the formation of several satellites.

Ca<Cag.. (1.7
Just above the critical capillary number, the daughter droplsl' DAUGHTER DROP SIZE
are roughly 50% of the original volume (4/8%°. If the For the experiment in Fig. 2, the daughter drop capillary
mother drop radius is increased to drive the capillary numbenumber approaches 0.128sterisks in Fig. Ll The critical
farther above Gg then it is shown in Ref. 5 for Stokes flow capillary number from Fig. 1 lies between 0.154 and 0.155.
that the volume of the daughter drops becomes insensitive tohus, the daughter volume quickly saturates to 59% of the
the mother drop size. It saturates at a value roughly equal toritical volume for larger capillary numbers, with ga
73% of the critical volume (4/3)a§, corresponding to =0.84Ca.
Cg~0.9Ca. How do these features change at nonzero Figure 3 gives critical conditions and data on daughter
Reynolds numbers, for which the breakup is due to inertia, adrops. At the points represented Byand O, a full simula-
well as to the competition between interfacial tension andion of the initial value problem was conducted with our
shear stress? In this paper, we address the answer to tliede SURFER++. At the (Re, Ca values given by+, the
guestion. simulation resulted in breakup, and the Reynolds number and

A full numerical simulation of the initial value problem, capillary number for the daughter drop&Re,, Cay), are
for nonzero Reynolds number, is conducted with a VOF-CShplotted as asterisks. At the points given by o, the drop did not
schemé % The performance of our codsuRFER++ is  break up. Additional datasets for daughter drops, computed
documented in Refs. 11-13. The plate separatidn, jsand  with mother drops farther above critical conditions, are also
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included in this figure. The line at large Reynolds number50% and 60% of the critical volume. These daughter drops
represents the inviscid limftThe dashed line represents the are therefore smaller than those reported for Stokes flow in
parabola Re:K-Cé& from Fig. 1. Ref. 5.

The offset between the critical curve and that for the
daughter drop data is log €alog Ca, measured along this
parabola, which in Fig. 3 becomes a line parallel to the
dashed line. By marking this difference, and projecting it|||. LARGE REYNOLDS NUMBER SCALING
onto they axis, we find the offset to vary between 0.08 and
0.1, yielding daughter drop volumes of between roughly  Figure 4 illustrates higher Reynolds numbers, and the
manner in which daughter drop data scale with the critical
drop volume. The mother drop data are givendan (a) and
daughter drop data by asterisks; these cluster to a single
point as the capillary number of the mother drop increases.
In (b), we display the ratio of volumes for the daughter drop
to critical versus mother drop to critical. The daughter vol-
umes quickly saturate to approximately 57% of the critical
volume.

For large Reynolds numbers, the Reynolds stress is of
orderp|v|?~ py?a?. This is balanced by capillary stresses of
order o/a. The critical condition is, upon division by the
viscous stresg.y, Re~1/Ca® In fact, the ratio of inertial to
capillary forces is the Weber number W&e Ca. The invis-
cid limit law is approximately We Re Ca=3.3. When the
daughter drops are in this asymptotic range, we have
Re, -Ca,=Re Ca.(D%a®), which yields CaD®=const
when the flow Reynolds number and the initial radius are
fixed. Figure 5 demonstrates this scaling for the daughter
drop radii at Re=50. The scaling is also verified for Fig. 4,
which represents variation of Re and Ca along the parabola
of fixed physical parameters.

Our computational results are given for plate separation
L,=8a, spatial periodicity.,=4a, L, chosen appropriately
large, the mesm\x=Ay=Az=a/8, y=1, a=0.125, and

time steps 10%y~1, unless otherwise indicated. Conver-

FIG. 2. Pinch-off of daughter drops is shown for the mother drop taa gem_;e tests for the datﬂghter dl’Op Size were Cond_UCted by
in Fig. 1. (@ Re=10, Ca=0.16, t=19.5s. (b Re=12, Ca=0.1753,t  Varying the mesh, the time ste_p, and the computational do-
=18s.(c) Re=15, Ca=0.196,t=18.6 s. main. These are documented in Table |I.
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FIG. 3. Alog-log plot of Re vs Cay =1, equal den-
sities. +, drop breakup(, steady-state solution. Aster-
isks denote the daughter drop jRes Cg, for mother
drops above critical. The solid line represents- Gz
=const, and the dashed line is Re?€aonst.
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FIG. 4. (a) The solid line represents the critical curve in
the Re-Ca plane. The dashed line represents-iRe
-.Céd, K=13007, for an experiment with fluid proper-

ties and flow strength fixed, while the radius of the
mother drop varies. Circles represent mother drop data.
Asterisks denote daughter drop déRs,, Ca,); these

T cluster to a saturated vala4, 0.05). (b) The ratio of
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volumes of (mother drop/(critical drop, V,/V., vs
(daughter drop(critical drop, Vp/V., with critical
conditions at C&0.062. Daughter drop volumes
quickly saturate to roughly 57% of the critical volume.
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IV. CONCLUSIONS

Our focus in this study is the production of the first
daughter drops, under simple shear for finite Reynolds num-
ber. The liquids have equal viscosity and density. The rel-
evant microphysical parameters are the Reynolds number
and capillary number. Direct numerical simulation is used to
determine that the size of the daughter drops saturates, as the
capillary number is increased, to under 60% of the critical
size; this is smaller than the 73% reported for Stokes flow.
Our simulations have been tested for convergence with re-
spect to spatial and temporal refinements, and with respect to
changes in the size of the computational box. In order to
avoid interactions with neighbors in the periodic array of
drops, the computational box must be chosen sufficiently
large. The level of accuracy in the predicted volumes re-
ported in this paper is within 1% for lower Re and Ca and
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TABLE |. Results of numerical simulations faidaughter drop radigs CTS990059N, and No. CTS990063N, and utilized the NCSA
(mother drop radidysvs mesh and computational box. The first row for each SGI Origin 2000. We are grateful to the Interdisciplinary
case is cell siz?A\x=Ay=Az=a/8,a=0.125.(a) Re=10, Ca=0.16. The . . - -
refinements in space a)r/1d time show that the spatial mesh and time step usgoenter for Applled_ Mathematics for the_ use Qf their Origin
in row 1 produce converged results. Convergence with respect to the con2000. We thank Michael Renardy for discussions, Stephane
putational box size for row 1 is established to 1%).Re= 10, Ca=0.25.(c) Zaleski for the use ofsurrer and Jie Li for help with
Re=83.25, Ca=0.08. The most refined case used 36 h with 32 processorsyrreRt: +. Acknowledgment is made to the donors of The

on Origin 2000. Petroleum Research Fund, administered by the ACS, for par-
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