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Leapfrogging is a periodic solution of the four-vortex problem with two positive
and two negative point vortices all of the same absolute circulation arranged as
co-axial vortex pairs. The set of co-axial motions can be parameterized by the
ratio 0 < α < 1 of vortex pair sizes at the time when one pair passes through
the other. Leapfrogging occurs for α > σ 2, where σ = √

2 − 1 is the silver ra-
tio. The motion is known in full analytical detail since the 1877 thesis of Gröbli
and a well known 1894 paper by Love. Acheson [“Instability of vortex leapfrog-
ging,” Eur. J. Phys. 21, 269–273 (2000)] determined by numerical experiments
that leapfrogging is linearly unstable for σ 2 < α < 0.382, but apparently sta-
ble for larger α. Here we derive a linear system of equations governing small
perturbations of the leapfrogging motion. We show that symmetry-breaking per-
turbations are essentially governed by a 2D linear system with time-periodic co-
efficients and perform a Floquet analysis. We find transition from linearly unsta-
ble to stable leapfrogging at α = φ2 ≈ 0.381966, where φ = 1

2 (
√

5 − 1) is the
golden ratio. Acheson also suggested that there was a sharp transition between a
“disintegration” instability mode, where two pairs fly off to infinity, and a “walk-
about” mode, where the vortices depart from leapfrogging but still remain within
a finite distance of one another. We show numerically that this transition is more
gradual, a result that we relate to earlier investigations of chaotic scattering of
vortex pairs [L. Tophøj and H. Aref, “Chaotic scattering of two identical point
vortex pairs revisited,” Phys. Fluids 20, 093605 (2008)]. Both leapfrogging and
“walkabout” motions can appear as intermediate states in chaotic scattering at the
same values of linear impulse and energy. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4774333]

I. INTRODUCTION

The possibility that two vortex rings with a common axis can “leapfrog” was already mentioned
by Helmholtz in his original paper on vortex dynamics.1 He wrote (in Tait’s translation): “We can
now see generally how two ring-formed vortex-filaments having the same axis would mutually affect
each other. . . the foremost widens and travels more slowly, the pursuer shrinks and travels faster,
till finally, if their velocities are not too different, it overtakes the first and penetrates it. Then the
same game goes on in the opposite order, so that the rings pass through each other alternately.” Pipe
smokers skilled in blowing smoke rings will often blow two rings in succession demonstrating the

a)Electronic mail: laustemil@gmail.com.
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phenomenon. A more precise and often-cited flow visualization experiment was performed many
years ago.2 A mathematical discussion of the dynamics of thin-filament vortex rings with symmetry
can be found in Ref. 3.

Here we are interested in the two-dimensional counterpart, where two co-axial vortex pairs
leapfrog one another, in the special case when the four vortices all have the same absolute circu-
lation. The analytical solution of this periodic motion, when the vortices are represented as point
vortices, was derived by Gröbli,4 and subsequently by Love,5 more than a century ago. Gröbli
and Love both found that leapfrogging was possible only if the size ratio of the two pairs at the
moment one slips through the other is not too large. To quote from Love’s paper:5 “. . . the mo-
tion is periodic, if, at the instant when one pair passes through the other, the ratio of the breadths
of the pairs is less than 3 + 2

√
2. When the ratio has this precise value the smaller pair shoots

ahead of the larger and widens, while the larger contracts, so that each is ultimately of the same
breadth . . . , and the distance between them is ultimately infinite. When the ratio in question is
greater than 3 + 2

√
2, the smaller shoots ahead and widens, and the latter falls behind and con-

tracts. . . When the ratio is less than 3 + 2
√

2, the motion of the two pairs is similar to the motion
described by Helmholtz for two rings on the same axis, and it is probable that there is for this
case also a critical condition in which the rings, after one has passed through the other, ultimately
separate to an infinite distance, and attain equal diameters.” We note that 3 + 2

√
2 ≈ 5.82843 and

that (3 + 2
√

2)−1 = 3 − 2
√

2 ≈ 0.171573. Here 3 − 2
√

2 = σ 2, where σ = √
2 − 1 is called the

silver ratio.
In 2000 Acheson published a short paper6 in which he reported on numerical simulations where

the classical leapfrogging solution had been slightly perturbed, in essence by rotating one of the
pairs so that it no longer was symmetric with respect to the centerline of the other. Acheson then
found that the leapfrogging motion is unstable and that it breaks down through one of two different
modes of instability. He worked in terms of the size ratio α of the smaller pair to the larger at
the moment of slip-through. The classical solutions4, 5 show that leapfrogging requires α > σ 2

≈ 0.172. For α = 0.220, Acheson reproduced the classical solution numerically. Perturbing one
of the vortex positions by one part in 106, Acheson observed the leapfrogging to cease after a few
periods and the four-vortex system disintegrated into two pairs that propagated off to infinity. (See
Fig. 1(a) for a similar calculation at α = 0.25.) For α = 0.310, and a larger perturbation, a different
mode of instability was observed, that Acheson termed the “walkabout” instability. Here one vortex
leaves its partner, crosses the centerline, and joins with the other pair in a complicated bounded
motion while the entire system continues to move forward. This would then resolve itself back into
a leapfrogging motion. Later another “walkabout” event might take place, and so on. (See Fig. 1(b)
for a similar calculation at α = 0.305.) Acheson described his observations in these words: “What
appears to happen is that two like-signed vortices occasionally get so close that they revolve rapidly

(b)

(a)

FIG. 1. Instability calculations of leapfrogging similar to those reported by Acheson.6 Two different perturbations are
shown. Vertical lines indicate the initial positions. (a) A “disintegration” instability for α = 0.25 perturbed by ξ−
= η+ = −10−6. (b) A “walkabout” instability for α = 0.30 perturbed by ξ− = 0, η+ = 10−5 (see text for precise
definitions).
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around one another, and the combination of the two is then strong enough to sweep one of the
other, oppositely-signed, vortices out of its usual path. The three then go off together on a roughly
circular excursion, before meeting up again with the fourth, which has been continuing on a more
or less straight path in the meantime. ‘Walkabout’ episodes of this kind take place on seemingly
unpredictable sides of the original symmetry axis and at seemingly irregular intervals.” In fact, these
irregular “walkabout” motions and the sensitive dependence of the directions in which the two pairs
propagate in the pair-disintegration mode are both manifestations of this four-vortex problem being
chaotic. Acheson6 found numerically that there was a transition at the pair-size ratio α ≈ 0.29, with
disintegration instability occurring for smaller α and “walkabout” instability occurring for α closer
to 1. He also found that the “walkabout” instability had a finite range in α and ceased for α > 0.382.
In physical terms6 this is “because vortices of like sign are close enough to ‘stick together’ and avoid
disruption by a vortex of opposite sign.”

In 2008 the present authors explored scattering experiments in which two identical vor-
tex pairs were sent towards one another and the resulting motion was traced.7 We found,
among other things, that the intermediate bound states of all four vortices, before they even-
tually disintegrated into two independent pairs, could contain segments of leapfrogging and
also segments that look like Acheson’s “walkabout” instability. See Fig. 7 in Ref. 7 and also
Fig. 6 later in the present paper. Unfortunately, we were unaware of Acheson’s paper6 at
the time.

Acheson’s results6 and our results7 strongly suggest that the classical leapfrogging solution
is an unstable periodic motion of the four-vortex system over part of its parameter range. This
statement is amenable to more detailed analysis. Since we are considering a periodic solution,
we are led to Floquet theory.8, 9 The paper is thus laid out as follows: In Sec. II we state the
governing equations of motion and establish our notation. The four-vortex system is Hamiltonian.
We introduce a new set of canonical variables for it, initially due to Eckhardt and Aref.10 These
variables reduce the four-degree-of-freedom problem to a two-degree-of-freedom problem and
an auxiliary problem that can subsequently be solved. This canonical reduction is particularly
important because it allows us to construct perturbations that conserve the total linear impulse of the
system.

In Sec. III we summarize those details of the analytical solution for leapfrogging that we
need in the following stability analysis. In Sec. IV we write out the linear stability analysis of the
canonically reduced system. Although one could have expected this to lead to four coupled ordinary
differential equations (ODEs), it turns out that these decouple into two independent systems of
two ODEs. These two systems are very similar. In Sec. V we give a brief exposition of Floquet
analysis with an eye to its application to our problem in Sec. VI. We evaluate the Floquet exponents
numerically. We find that there is indeed a transition from linear instability to stability at a value
α = α2 ≈ 0.38197. Deeper analysis reveals that α2 = φ2, where φ = 1

2 (
√

5 − 1) is the golden
ratio.

On the other hand, linear analysis does not shed light on Acheson’s empirically found value of
α1 ≈ 0.29 where there seems to be a change-over from “disintegration” to “walkabout” instability.
By precision numerical computations we show that the transition is gradual rather than sharp, in the
sense that the instability modes are not confined to either side of the transition. Indeed, we give an
example where one leapfrogging motion can suffer either “walkabout” or “disintegration” instability
when perturbed in different directions. We conclude that the transition around α = 0.29 is not a
simple, sharp transition in the same sense that the (linear) instability-to-stability transition at α2 is. In
Sec. VII we consider the limit α → 1 in detail. In this limit we may analytically evaluate everything
in the Floquet stability analysis.

Finally, Sec. VIII contains our conclusions.

II. EQUATIONS OF MOTION

We represent the vortices as points in the complex plane, with z+
1 and z+

2 the two positive
vortices of circulation �, z−

1 and z−
2 the two negative of circulation −�. Overbars denote complex
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conjugation. The equations of motion of our point vortex system are

dz+
1

dt
= �

2π i

( 1

z+
1 − z+

2

− 1

z+
1 − z−

1

− 1

z+
1 − z−

2

)
,

dz+
2

dt
= �

2π i

( 1

z+
2 − z+

1

− 1

z+
2 − z−

1

− 1

z+
2 − z−

2

)
,

dz−
1

dt
= �

2π i

( 1

z−
1 − z+

1

+ 1

z−
1 − z+

2

− 1

z−
1 − z−

2

)
,

dz−
2

dt
= �

2π i

( 1

z−
2 − z+

1

+ 1

z−
2 − z+

2

− 1

z−
2 − z−

1

)
,

(1)

As with all point vortex problems this system is Hamiltonian.
We change to another set of variables by a canonical transformation due to Eckhardt and Aref:10

ζ0 = 1
2�(z+

1 + z+
2 − z−

1 − z−
2 ),

ζ̂0 = 1
2 (z+

1 + z+
2 + z−

1 + z−
2 ),

ζ+ = 1
2 (z+

1 − z+
2 + z−

1 − z−
2 ),

ζ− = 1
2�(z+

1 − z+
2 − z−

1 + z−
2 ).

(2a)

It is also useful to have the inverse transformation,

z+
1 = 1

2 [ζ̂0 + ζ+ + (ζ0 + ζ−)/�],

z−
1 = 1

2 [ζ̂0 + ζ+ − (ζ0 + ζ−)/�],

z+
2 = 1

2 [ζ̂0 − ζ+ + (ζ0 − ζ−)/�],

z−
2 = 1

2 [ζ̂0 − ζ+ − (ζ0 − ζ−)/�].

(2b)

If we think of the configuration as consisting of two vortex pairs, (z+
1 , z−

1 ) and (z+
2 , z−

2 ), the intra-pair
separations are d1 = z+

1 − z−
1 and d2 = z+

2 − z−
2 . The vector connecting vortex pair centers, from

pair (z+
2 , z−

2 ) to pair (z+
1 , z−

1 ), is ζ+. The difference between the intra-pair separations, multiplied by
�, is ζ− = 1

2�(d1 − d2). The quantity ζ0 = 1
2�(d1 + d2) is half the linear impulse of the system and

is thus a constant of the motion. A sketch of the coordinates is shown in Fig. 2.
The variables ζ 0 and ζ̂0 are conjugate in the sense that Re ζ 0 and Im ζ̂0 are canonically conjugate,

as are Re ζ̂0 and Im ζ 0. Similarly, ζ± are conjugate variables. In particular, since ζ 0 is an integral
of the motion, ζ̂0 is a cyclic variable that does not appear in the Hamiltonian H. Geometrically
ζ̂0 is twice the centroid of the vortex positions. This point may be shifted by a translation of the
coordinates which, since the vortex circulations sum to 0, does not change the value of the linear
impulse, ζ 0, a property that we shall use in what follows. Since only relative positions of the vortices
enter the equations of motion, it is intuitively clear that it should be possible to find a subset of
equations that do not contain ζ̂0. The canonical transformation in Eqs. (2a) and (2b) achieves this
formally.

d1
d1d2

d2

z+
1

z−1

z+
2

z−2

ζ+
ζ−

FIG. 2. Positive vortices are at z+
1 , z+

2 in the complex plane, negative vortices at z−
1 , z−

2 . Also shown are ζ±, Eqs. (2a).
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Note that a configuration that has the real axis as a symmetry axis, such as the leapfrogging
motions, i.e., for which z−

1 = z+
1 , z−

2 = z+
2 , must have ζ+ real and ζ− imaginary. Also note that if

we had paired up the vortices as (z+
2 , z−

1 ) and (z+
1 , z−

2 ), we would, in essence, have interchanged the
definitions of ζ± (except for a factor of �). Hence, the equations of motion written in terms of ζ±
must display this symmetry.

The canonical transformation implies that the equations for ζ+ and ζ− form a closed two-
degree-of-freedom dynamical system, in which the constant ζ 0 enters as a parameter. According to
Eq. (3.14) of Ref. 10, the Hamiltonian of this reduced system is

H = − �2

2π
log

∣∣∣∣ 1

ζ 2
0 − ζ 2+

− 1

ζ 2
0 − ζ 2−

∣∣∣∣. (3)

The resulting equations of motion are

dζ+
dt

= �2

iπ
ζ−

(
1

ζ 2− − ζ 2+
+ 1

ζ 2
0 − ζ 2−

)
,

dζ−
dt

= �2

iπ
ζ+

(
1

ζ 2+ − ζ 2−
+ 1

ζ 2
0 − ζ 2+

)

and also,

dζ̂0

dt
= �2

iπ
ζ0

(
1

ζ 2+ − ζ 2
0

+ 1

ζ 2− − ζ 2
0

)
.

The case ζ 0 = 0 is integrable10 but not of particular interest for the present considerations.
Assuming ζ 0 �= 0, we scale ζ± and ζ̂0 by −iζ 0, but again call the scaled variables ζ± and ζ̂0. This
scaling guarantees that if the vortices initially are placed on the y-axis, so that the leapfrogging motion
would propagate along the x-axis, then ζ± and ζ̂0 are proportional to their scaled counterparts with a
real coefficient of proportionality. We now obtain a common pre-factor �2/π |ζ 0|2 on the right-hand
sides of the preceding equations of motion. We may choose units of length and time such that this
common pre-factor is 1. The re-scaled equations of motion are then simply

dζ+
dt

= iζ−

(
1

ζ 2+ − ζ 2−
+ 1

1 + ζ 2−

)
, (4a)

dζ−
dt

= iζ+

(
1

ζ 2− − ζ 2+
+ 1

1 + ζ 2+

)
, (4b)

dζ̂0

dt
= 1

1 + ζ 2+
+ 1

1 + ζ 2−
. (4c)

These may be derived from the re-scaled Hamiltonian, cf. (3),

H = − 1
2 log

∣∣∣∣ 1

1 + ζ 2+
− 1

1 + ζ 2−

∣∣∣∣. (5)

The simplest way to verify that (4a) and (4b) are indeed in canonical form with H as the Hamiltonian
is to consider the analytic continuation of H, viz.,

H = − 1
2 log

(
1

1 + ζ 2+
− 1

1 + ζ 2−

)
. (6a)

It is then easy to see that Eqs. (4a) and (4b) are simply

dζ+
dt

= i
∂H
∂ζ−

,
dζ−
dt

= i
∂H
∂ζ+

. (6b)
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Using the analyticity of H, and that H = ReH, we arrive at the standard Hamiltonian formulation
of Eqs. (4a) and (4b).

III. LEAPFROGGING SOLUTIONS

We consider leapfrogging motions along the real axis, where the vortices are originally aligned
on the y-axis. For such motions ζ 0 is imaginary and, according to (2a), ζ+ is real and ζ− imaginary
both before and after rescaling. In Eqs. (4a) and (4b) we set

ζ+(t) = X (t), ζ−(t) = iY (t), (7a)

with X(t) and Y(t) real. In terms of these quantities Eqs. (4a) and (4b) become

dX

dt
= − Y (1 + X2)

(X2 + Y 2)(1 − Y 2)
,

dY

dt
= X (1 − Y 2)

(X2 + Y 2)(1 + X2)
.

(7b)

The vortices in both pairs have the real axis as a common axis of symmetry. This discrete symmetry
(to flipping about the real axis and reversing the circulations) is preserved throughout the motion.

At the initial instant we have ζ− = 1
2�(d1 − d2), ζ0 = 1

2�(d1 + d2), where d1,2 are both imagi-
nary. In terms of the initial values X(0) = X0 and Y(0) = Y0

X0 = 0, Y0 = 1 − α

1 + α
, (8)

where α = d2/d1 is the (real) pair separation ratio at t = 0.
Equations (7b) are nonlinear but integrable by virtue of the existence of an integral of motion,

the Hamiltonian, given by (5) specialized to (7a), or

H = − 1
2 log

( 1

1 − Y 2
− 1

1 + X2

)
. (9a)

The integral takes the form

(1 + X2)(1 − Y 2)

X2 + Y 2
= h = e2H , (9b)

which may also be written

(X2 + h + 1)(Y 2 + h − 1) = h2. (9c)

The connection between α and h is given by

4α

(1 − α)2
= h. (9d)

It is easy to verify that

Ẋ = ∂ H

∂Y
, Ẏ = −∂ H

∂ X
. (9e)

We note that the equations of motion (7b) can be written

dX

dt
= − hY

(1 − Y 2)2
,

dY

dt
= h X

(1 + X2)2
. (7b′)

Level curves of H, Eq. (9a), are plotted in Fig. 3. (An equivalent figure also appears in Love’s
paper5 at the end of Sec. 4.) Close to (X, Y) = (0, 0) these curves are circles X2 + Y2 ≈ h−1. This
limit corresponds to h → ∞ or α → 1. We explore it further in Sec. VII.

In order for a curve (9b) to be closed, we must be able to solve (9b) for X when Y = 0. This
implies h > 1, and all the level curves (9b) for 1 < h < ∞ are closed and lead to leapfrogging
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FIG. 3. Level curves of the Hamiltonian (9a).

motions. The lower limit h = 1 corresponds via (9d) to α = α0 = 3 − 2
√

2. The range in α to be
explored, and to which we restrict attention, is then

3 − 2
√

2 < α < 1. (10)

The determination of the lower limit of this range, α0 = σ 2, is a key result of the classical analyses.4, 5

See also Appendix B of Ref. 10 for a development of this material in a notation more similar to that
used here.

The period Tlf of the leapfrogging motion is given by Love5 in terms of elliptic integrals. In the
present notation, and using the re-scaled time scale occurring in (7b), we have

Tl f = 26 α2

(1 − α)2

[
E(k2)

(6α − α2 − 1)
− K (k2)

(1 + α)2

]
, (11)

where k2 ≡ −24α(1 + α)2(1 − α)−4, and K and E are the complete elliptic integrals of the first and
second kind, respectively.

IV. LINEAR STABILITY THEORY

Within the framework of Eqs. (4a) and (4b) we now consider perturbations to the periodic motion
described in Sec. III of the form

ζ+(t) = X (t) + ε[ξ+(t) + iη+(t)],

ζ−(t) = iY (t) + ε[ξ−(t) + iη−(t)],
(12)

where ε is small and determines the size of the perturbation. All the functions X, Y, ξ±, and η±
appearing here are real.

The most transparent way to derive the linearized perturbation equations is to start from
Eqs. (6b) and expand to linear order. This gives

ξ̇+ − iη̇+ =

i
∂2H
∂ζ 2−

(ξ− + iη−) + i
∂2H

∂ζ+∂ζ−
(ξ+ + iη+),

ξ̇− − iη̇− =

i
∂2H
∂ζ 2+

(ξ+ + iη+) + i
∂2H

∂ζ−∂ζ+
(ξ− + iη−).

(13a)

The derivatives of H for the base solution, ζ+ = X, ζ− = iY, are

∂2H
∂ζ 2−

= −∂2 H

∂Y 2
= −HY Y ,

∂2H
∂ζ 2+

= ∂2 H

∂ X2
= HX X ,

∂2H
∂ζ−∂ζ+

= −i
∂2 H

∂ X∂Y
= −i HXY .

(13b)
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The components of the Hessian of H,

W =
[

HX X HXY
HY X HY Y

]
, (13c)

are, of course, all real. Explicitly,

HXY = HY X = 2XY

(X2 + Y 2)2
(14a)

and

HX X = F(iY, X ), HY Y = −F(X, iY ), (14b)

where

F(Z1, Z2) = (1 + Z2
1)(3Z4

2 − Z2
1 Z2

2 + Z2
1 + Z2

2)

(1 + Z2
2)2(Z2

1 − Z2
2)2

. (14c)

Separating (13a) into real and imaginary parts, we now see that the perturbations decouple into two
independent systems of equations for two variables each,

d

dt

[
ξ+
η−

]
=

[
HXY HY Y

−HX X −HXY

][
ξ+
η−

]
, (15a)

d

dt

[
ξ−
η+

]
=

[
HXY −HX X

HY Y −HXY

][
ξ−
η+

]
. (15b)

We note that the coefficient matrix appearing in the second of these is[
HXY −HX X

HY Y −HXY

]
= WE,

where

E =
[

0 −1

1 0

]
. (16)

We note for later use that E2 = −1.
The coefficient matrix appearing in Eq. (15a) is the transpose,[

HXY HY Y

−HX X −HXY

]
= (WE)T = ETW = −EW.

The perturbation equations may thus be written in the form

d

dt

[
ξ+
η−

]
= −EW

[
ξ+
η−

]
,

d

dt

[
ξ−
η+

]
= WE

[
ξ−
η+

]
, (17)

where W is the Hessian (13c) and E is given by (16). The following explicit form is also important

d

dt

[
ξ+
η−

]
= AT

[
ξ+
η−

]
,

d

dt

[
ξ−
η+

]
= A

[
ξ−
η+

]
, (18a)

where

A = g(X, Y )

[
XY f (iY, X )

f (X, iY ) −XY

]
, (18b)
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with (cf. (14a))

g(X, Y ) = 2

(X2 + Y 2)2
(18c)

and (cf. (14c))

f (Z1, Z2) = − 1
2 (Z2

1 − Z2
2)2 F(Z1, Z2). (18d)

Since g(X, Y) > 0 it may be absorbed into a rescaling of time via dτ = g(X, Y)dt.
Formally the equations for (ξ+, η−) and (ξ−, η+) appear to be quite similar. There is, how-

ever, an important difference in terms of the physics between the two types of perturbations: The
(ξ+, η−) perturbations preserve the discrete symmetry of the leapfrogging motion since ζ+ remains
real and ζ− imaginary. In other words, infinitesimal perturbations of this kind must lead from one
leapfrogging motion to another. The (ξ−, η+) perturbations break the discrete symmetry. Hence, it
is among these perturbations that we are to seek potential instabilities of leapfrogging motion.

By construction all perturbations (ξ+, η−) and (ξ−, η+) conserve the linear impulse ζ 0. The
change in the analytic continuation of the Hamiltonian, H in Eq. (6a), for a general perturbation (12)
is

δH =HX (ξ+ + iη+) − iHY (ξ− + iη−) =
HXξ+ + HY η− + i(HXη+ − HY ξ−).

This is pure imaginary for perturbations with ξ+ = η− = 0 which shows that to leading order there is
no change in the real part of H, in other words no change in H, Eq. (5), for a (ξ−, η+)-perturbation.
The (ξ+, η−) perturbations will in general change H, the one exception being a perturbation along
(HY, −HX), i.e., along (Ẋ , Ẏ ). As we shall see, such perturbations are, in fact, solutions of the
linearized equations (15a).

Turning to the angular impulse, we have

I = �(|z+
1 |2 + |z+

2 |2 − |z−
1 |2 − |z−

2 |2)

= 2Re (ζ̂0ζ0 + ζ+ζ−),

according to Eq. (3.15) of Ref. 10. After rescaling this becomes I = 2Im(ζ̂0) + 2Re (ζ+ζ−). The
change in I to first order in a perturbation of the form (12) is

δ I = 2Im(δζ̂0) + 2Re [−iY (ξ+ + iη+) + X (ξ− − iη−)]

= 2Im(δζ̂0) + 2(Xξ− + Yη+).

Thus, (ξ+, η−)-perturbations automatically preserve I. For (ξ−, η+)-perturbations we may preserve
I if we agree to move the origin of coordinates, i.e., shift δζ̂0, such that δI = 0 for the perturbed initial
state. This is possible since ζ̂0 is simply twice the geometrical centroid of the four points where the
vortices are located. Such a shift of the origin of coordinates has no effect on the value of the linear
impulse or the Hamiltonian, and the value of ζ̂0 does not enter into the dynamical equations for ζ±.
Perturbations (ξ−, η+) along ( − Y, X) preserve I without need for shifting the origin of coordinates.

In summary, then, the perturbations (ξ−, η+) may be considered to take place at fixed values of
the integrals of motion H and I. The perturbations (ξ+, η−) have a one-dimensional subspace that
does not conserve H.

V. FLOQUET ANALYSIS

Exploring the solutions to a system such as (17) leads us directly to Floquet theory.8 Due to
the periodic time dependence of the coefficient matrix, the behavior of solutions is not immediately
given by the local behavior of the solutions but rather by these solutions integrated over a period of
the periodic motion. In effect, Floquet theory exploits the properties of the return map of the linear
system integrated over a period of the motion whose stability is the object of study. We outline the
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basics of the theory in order to establish our notation and emphasize what we need in the present
case. The theory is treated in several places in the literature, e.g., Ref. 9.

We are dealing with a general system of ODEs of the form

ξ̇ = Aξ , (19)

where ξ is a two-component vector and A a 2 × 2 matrix that is periodic in time. We shall apply the
theory to both the (ξ+, η−)- and (ξ−, η+)-perturbations of Sec. IV.

Construct a so-called fundamental matrix, �, by placing in the first column the solution
ξ = (ξ, η) to (19) with initial condition (1, 0). In the second column place the solution with initial
condition (0, 1). The 2 × 2 matrix, � then satisfies the equation of evolution

�̇ = A�. (20)

If A were constant in time, the solution would be easy enough,

�(t) = eAt�(0).

If A has eigenvalues μ1,2 with corresponding eigenvectors v(1,2), we have

Av(1,2) = μ1,2v
(1,2), eAtv(1,2) = eμ1,2tv(1,2).

Hence, expanding ξ (0) along v(1,2), we obtain solution components that vary as eμ1,2t . If μ1,2 is pure
imaginary, this leads to oscillatory evolution and thus spectral stability. On the other hand, if either
of μ1,2 has a positive real part, we obtain unstable exponential growth of the perturbation.

For a time-periodic coefficient matrix we must proceed a bit differently: We exploit the period-
icity of A with some period, T, to argue that if �(t) is a solution of (20), then �(t + T) will also be a
solution. Next, since the space of solution vectors is two-dimensional, the columns of �(t + T) may
be expressed as linear combinations of the columns of �(t). In other words, there exists a matrix, M,
called the monodromy matrix, such that

�(t + T ) = �(t)M. (21a)

With the two independent solutions we have chosen, we have �(0) = 1, the 2 × 2 unit matrix.
Hence,

M = �(T ), �(t + T ) = �(t)�(T ). (21b)

If we wish to find the solution �̂(t) starting from general initial conditions �̂(0) = C, we have
only to set �̂(t) = �(t)C. Then,

˙̂� = �̇C = A�C = A�̂,

so �̂ satisfies the ODE, and by construction �̂(0) = C.
A word of caution is necessary if �(t) becomes degenerate. Indeed, the term “fundamental

matrix” is usually reserved for the case when �(t) is non-degenerate. If the columns of �(t) become
proportional, we must supplement the first column vector by a perpendicular vector to have a basis
in the 2D space. The general theory is then somewhat modified. We continue with the assumption
that �(t) is non-degenerate for 0 ≤ t ≤ T and return to the degenerate case as necessary.

Let v(±) be the eigenvectors of M corresponding to eigenvalues ρ±, respectively, i.e., Mv(±)

= ρ±v(±). It is important to emphasize that ρ± and v(±) are time independent quantities. Important
properties of ρ± follow from the identity

d

dt
det � = TrA det �. (22)

This is, essentially, the relation for change of area in the 2D “flow” (20) and is, in any event, not
difficult to verify. In our case the coefficient matrix A is either WE or its transpose. Both have
vanishing trace, so the right-hand side of (22) vanishes, and det � is invariant in time. Since det �(0)
= 1, we have det M = det �(T) = 1 and thus ρ+ρ− = 1. Furthermore, in our case the vectors and
matrices are all real. In particular, the matrix M is real and its eigenvalues are thus either both real

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 20 Nov 2013 20:03:58



014107-11 L. Tophøj and H. Aref Phys. Fluids 25, 014107 (2013)

(in which case they have the form ρ± = ρ±1 for some real ρ), or they are complex conjugates (in
which case they have the form ρ± = e±iϕ for some angle ϕ).

Now consider the time-dependent vectors

ξ (±)(t) = �(t)v(±). (23)

We have

ξ̇
(±) = �̇v(±) = A�v(±) = Aξ (±),

so the ξ (±)(t) are solutions to the ODEs (19). They have the initial values ξ (±)(0) = v(±). We see that

ξ (±)(t + T ) = �(t + T )v(±) =
�(t)Mv(±) = ρ±�(t)v(±) = ρ±ξ (±)(t).

(24)

Thus, over a period of the coefficient matrix A the solutions ξ (±) are multiplied by ρ±, respectively.
The general solution to the functional relation (24) is

ξ (±)(τ ) = ρ
τ/T
± �±(τ ), (25)

where the arbitrary function �±(τ ) is periodic with period T and satisfies �±(0) = v(±). A direct
proof that �±(τ ) is periodic follows:

�±(τ + T ) = ρ
−(τ+T )/T
± ξ (±)(τ + T ) =

ρ
−(τ+T )/T
± ρ±ξ (±)(τ ) = ρ

−τ/T
± ξ (±)(τ ) = �±(τ ).

The quantities ρ± are called the Floquet multipliers. One often sets ρ± = eμ±T , even though
the μ± are defined only up to multiples of 2π i/T. The μ± are called the Floquet exponents.

If ρ± are reciprocal real numbers, we have found a solution to (19) that grows exponentially.
The underlying periodic motion from which these equations arose as linear perturbations is then
unstable. If ρ± are complex conjugates of modulus 1, the motion is linearly stable. A general initial
condition may be decomposed along v(±),

ξ (0) = a+v(+) + a−v(−)

and so will evolve according to

ξ (τ ) = a+ξ (+)(τ ) + a−ξ (−)(τ ) =
a+ρ

τ/T
+ �(+)(τ ) + a−ρ

τ/T
− �(−)(τ ).

VI. FLOQUET ANALYSIS APPLIED TO THE EQUATIONS OF SEC. IV

We now adapt the general theory to our perturbation equations for the leapfrogging motion.
First, concerning the period, T, of the coefficient matrices, −EW and WE in Eqs. (17), we see that
this must be half the period of the leapfrogging motion Tlf, (11). We start at X = 0 and some finite
value of Y. During an entire cycle of the leapfrogging motion X and Y vary through positive and
negative values. However, all the quantities HXX, HXY, HYY appearing in the coefficient matrices of
the stability problem are even functions of X and Y. Hence, the period of the matrices is half the
leapfrogging period.

Let us first consider the (ξ+, η−) equations even though these are not of primary interest to
the stability of leapfrogging. There is one obvious solution to these equations: If we differentiate
Eqs. (9e) once more with respect to time, we get

Ẍ = HY X Ẋ + HY Y Ẏ , Ÿ = −HX X Ẋ − HXY Ẏ .

Written in matrix form, these equations show that (ξ+, η−) = (Ẋ , Ẏ ) solve Eq. (15a).
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The initial conditions (8) for leapfrogging imply

Ẋ (0) = −1

hY 3
0

, Ẏ (0) = 0. (26)

This follows from (7b) or (7b′) and (9b) when the values from (8) are substituted. It is also clear
from Fig. 3 that Ẏ (0) vanishes and that Ẋ (0) is negative: The leapfrogging motion starts at a point
on the positive Y-axis of Fig. 3 as given by Eqs. (8). Since the level curves all have horizontal
tangents on this axis, a (ξ+, η−)-perturbation of the initial condition that has only an X-component
will simply move the phase point a bit forward or backward along the chosen trajectory, i.e., lead to
a leapfrogging motion with the same value of the Hamiltonian. At time T the perturbation (Ẋ , Ẏ )
will have evolved into (Ẋ (T ), Ẏ (T )) = (−Ẋ (0), 0). In other words, the (ξ+, η−)-perturbation that at
t = 0 is (1, 0) must, by linearity, have evolved into (−1, 0) at time t = T. This gives the first column
of the monodromy matrix M.

Next, from the determinant of the monodromy matrix being +1 we know that the lower
diagonal element must also be −1. Hence, we have the form of the monodromy matrix for the (ξ+,
η−) equations,

M =
[

−1 A

0 −1

]
. (27)

To find the number A, we proceed as follows. We consider a perturbation with initial condition (ξ+,
η−) = (0, 1) of a state with initial condition (X, Y) = (0, Y0). This effectively takes us to another
leapfrogging motion with initial condition (X, Y) = (0, Y0 + ε). Now, the leapfrogging period has
increased by an amount dTlf = ε∂Tlf/∂Y0, which can be computed from (8) and (11). So after a time T
= Tlf/2, the perturbed system will be a time dTlf/2 behind reaching its own half-period. To first order
in ε, the system will have evolved to (X, Y ) = (−dTl f Ẋ (T )/2,−Y0 − ε). Since the perturbation
governed by (15a) must evolve in agreement with this result to linear order in ε, we will have
(ξ+, η−) = (−dTl f Ẋ (T )/2,−1) at time T. Now, Ẋ (T ) = −Ẋ (0), so

A = 1

2

∂Tl f

∂Y0
Ẋ (0), (28)

with A < 0. The result (27) and (28) shows that leapfrogging is always stable to (ξ+, η−) perturbations,
as we have already argued. Also, it has been useful in checking our numerical procedure for evaluating
the monodromy matrix.

It is straightforward to compute the Floquet exponents for the leapfrogging motion numerically.
We have done so as a function of the parameter α in the initial condition (8). The classical leapfrogging
solution is required. This solution is given in terms of elliptic functions4, 5 that would, in any event,
require numerical evaluation. It is therefore easier operationally, and just as accurate, to simply
solve the ODEs (7b) numerically along with the stability equations (17) such that X(t) and Y(t) are
available at each step. We have used the Runge-Kutta 45 solver in the software package MATLAB R©

for this purpose.
For the (ξ+, η−)-equations the numerical calculations simply verify the result in (27) and (28).

The Floquet analysis calculation for the (ξ−, η+)-equations is more interesting. The results have
been collected in Fig. 4 which shows both μ+T and μ+ as functions of α. The relevant interval is
α0 < α < 1. In this interval α0 = σ 2 ≈ 0.172 marks the onset of leapfrogging. Since T → ∞ as
α → α0, we have plotted both μ+ and μ+T in Fig. 4 as functions of α. We see that for a range of
α, from the onset of leapfrogging to α = α2 ≈ 0.382, we have a real, positive Floquet exponent
corresponding to instability. The Floquet exponent μ+ vanishes at α = α0 and at α = α2. Beyond
α = α2 the Floquet exponents become pure imaginary. The positive imaginary part, Im μ+T, has
been plotted in Fig. 4. Again, since T → 0 for α → 1, we have also plotted Im μ+. Figure 5 shows
a magnification of the region close to α = α2. The vertical line is at α2 = 0.38197. . . , which we
determine analytically in the sequel. This value agrees to three decimal places with the value found
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|μ
+
|T

α

5

0 1α0 α1 α2

FIG. 4. Floquet exponents as a function of α shown for α0 < α ≤ α2. See the text for these values of α. The dashed curve
shows 2|μ+|, the thick grey curve shows T/3, cf. (11), and the solid curve shows |μ+|T. Note that μ+ is purely real for
α < α2 and purely imaginary for α2 < α < 1, indicating that the monodromy matrix has complex conjugate eigenvalues of
unit modulus in the latter range.

by Acheson6 using direct numerical experiments. It also agrees to all decimal places with the value
of φ2, where φ is the golden ratio. The numerical result motivates the analytical argument that the
zero Floquet exponent, in fact, occurs for α = φ2 given below.

The Floquet exponent plot in Fig. 4 shows an inflection point, at α = α1 ≈ 0.29, approximately
the point where Acheson6 noticed a transition from the “walkabout” to the disintegration mode of
instability by numerical experiments. However, it is optimistic to expect a linearized analysis to
detect a crossover between two modes of finite-amplitude instability. Furthermore, our numerical
investigation shows that the transition from “walkabout” to disintegration mode is not sharp in the
same sense as the transition at α = α2. Figure 6 shows an orbit of two vortex pairs scattering off each
other through an intermediate stage of leapfrogging motion. This is similar to scattering processes
discussed in Ref. 7. The orbit realised in Fig. 6 was realised by integrating both forward and backward
in time from a perturbed leapfrogging state with α = 0.25. The two directions are equivalent, in
the sense that moving backwards in time from a state perturbed by (ξ−, η+) corresponds to moving
forward from a different perturbation (ξ−, −η+). This shows that one single leapfrogging state can
be pushed into either the “walkabout” or the “disintegration” instability mode by different small
perturbations. We conclude that the transition is a gradual one, where one tends to see disintegration
instability for α1 < α < 0.26 and “walkabout” instability for 0.26 < α < α2.

We proceed to give a tentative argument as to the exact value of the α2 marking the transition
to instability. Consider a set of trajectories of the form, cf. (25),

ξ (τ, α) = eμ(α)τ�(τ, α),

0.38195 0.38200
0

0.004

0.008

μ

α2

FIG. 5. Detail of the Floquet exponent μ+ around α = α2 = φ2. For α < α2, where μ+ is imaginary, we show μ+/i.
The dashed line at α = 0.382 shows Acheson’s numerically determined value for the crossover from unstable to stable
leapfrogging.6 The text provides further discussion.
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FIG. 6. Scattering of two identical vortex pairs showing intermediate states consisting of leapfrogging and “walkabout”
motions. The vertical bar marks the starting leapfrogging configuration, α = 0.25, (ξ−, η+) = (−1, 1) × 10−5, from which
time is integrated forwards and backwards. The computation has been checked by reverse integration, and the variation of
the integrals of motion is of negligible order (10−12).

as a one-parameter family of curves in R2 by the parameter α. μ is one of the Floquet exponents,
and � is periodic. We boldly assume the function ξα , where subscript denotes differentiation, exists,
in which case

ξα = τμαξ + eμτ�. (29)

Now, it is clear that μ(α) undergoes a sharp transition at α = α2, with distinct limiting values of
the derivative μα on either side of the transition point. From Fig. 4, we see that μα diverges, so we
expect ξα , (29), to change dramatically at the transition point. If we differentiate (19) with respect
to α, we obtain

ξ̇α = Aαξ + Aξα. (30)

This dynamical system is identical to the one governing the evolution of ξ , except for the forcing
term Aαξ .

We are thus naturally led to examine the behavior of the matrix Aα . In particular the determinant
|Aα| will be of interest. We note that |Aα| is a smooth function of time and periodic with period T.
It has two distinct regimes for α0 < α < 1, with the transition taking place for a particular value of
α, say α = α′

2. For α < α′
2, |Aα| changes sign twice during one period. For α′

2 < α, |Aα| is positive
throughout the period. So α′

2 marks a distinct change in the character of the forcing term in (30). The
crossover takes place at the time corresponding to X = 0, so we can determine α′

2 by differentiating
the matrix, [

XY f (iY, X )

f (X, iY ) −XY

]
,

cf. (18b), with respect to Y at X = 0 (which is equivalent to differentiating with respect to Y0, and so
with respect to α), we find after a brief calculation

∂

∂Y

[
XY f (iY, X )

f (X, iY ) −XY

]
X=0

=
[

0 Y0(1−5Y 2
0 )

(1−Y 2
0 )3

Y0(1 − 2Y 2
0 ) 0

]
.

Thus, in order for Aα to have a null vector we find the necessary condition

(1 − 2Y 2
0 )(1 − 5Y 2

0 ) = 0.

In other words,

Y0 = 1√
2

or Y0 = 1√
5
. (31)

These translate into the values α = α0 = σ 2 and α = α′
2 = φ2, respectively.
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The latter corresponds to a high precision to the transition point located by numerical methods,
cf. Figs. 4 and 5. It seems the change in the forcing term, i.e., in |Aα| is somehow critical in
determining the transition to instability, and the range α′

2 < α with |Aα| � 0 corresponds to linearly
stable leapfrogging. We thus speculate that α2 = α′

2.

VII. THE α → 1 LIMIT

When α → 1 the two positive and the two negative vortices are close and orbit one another in
bound states, effectively producing a vortex pair with strengths ±2�. In this limit X2 and Y2 are 
1.
Thus Eqs. (7b) reduce to

dX

dt
= − Y

X2 + Y 2
,

dY

dt
= X

X2 + Y 2
. (32)

One consequence of Eqs. (32) is that X2 + Y2 is a constant. From its initial value (8), and to leading
order in 1 − α,

X2 + Y 2 = 1
4 (1 − α)2 = 1

h
.

From the definition of g(X, Y), Eq. (18c), we then have dτ = 2h2dt. In this limit t and re-scaled time,
τ , are proportional. The solution to Eqs. (32) that satisfies the initial conditions (8) is

X (t) = − sin(ht)√
h

, Y (t) = cos(ht)√
h

. (33)

In the system matrix (18b) we now get

XY = − sin(2ht)

2h
. (34a)

Also, to lowest order in 1 − α, we find

f (X, iY ) = f (X, iY ) ≈ − 1
2 (X2 − Y 2) = cos(2ht)

2h
. (34b)

Thus, Eq. (15b) read

d

dt

[
ξ−
η+

]
= ω

[
− sin(2ωt) cos(2ωt)

cos(2ωt) sin(2ωt)

][
ξ−
η+

]
. (35)

This matrix has periodicity T = π /ω in t. Unfortunately, the α → 1 limit corresponds to a special case
of the general theory in Sec. V where the monodromy matrix is degenerate. The single eigenvalue
has only a one-dimensional eigenspace.

One can obtain the general solution of (35) in several ways. For example, one may note that the
two vectors

ξ (1)(t) =
[

cos(ωt)

sin(ωt)

]
, ξ (2)(t) =

[
− sin(ωt)

cos(ωt)

]
, (36a)

satisfy

dξ (1)

dt
= ωξ (2),

dξ (2)

dt
= −ωξ (1). (36b)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.173.125.76 On: Wed, 20 Nov 2013 20:03:58



014107-16 L. Tophøj and H. Aref Phys. Fluids 25, 014107 (2013)

Further, if the matrix on the right-hand side of (35), without the factor ω, is designated Â, then

Âξ (1) = ξ (2), Âξ (2) = ξ (1). (36c)

If we posit that a vector, ξ (t), solves (35), and if we expand it in terms of ξ (1,2) as

ξ (t) = a(t)ξ (1)(t) + b(t)ξ (2)(t),

with time-dependent coefficient a(t) and b(t), we find the conditions

da

dt
= −2ωb,

db

dt
= 0.

This shows that such a decomposition requires b to be a constant, b = C1, and a(t) = −2ωC1t + C2,
where C2 is a second constant. In particular, a and b cannot both be constants, but there must be a
secular term in the expansion.

The general solution is[
ξ−
η+

]
= (C2 − 2C1ωt)

[
cos ωt

sin ωt

]
+ C1

[
− sin ωt

cos ωt

]
, (37a)

with constants C1 and C2 chosen to match initial conditions. The initial conditions ξ− = 1, η+ = 0
correspond to C1 = 0, C2 = 1, the initial conditions ξ− = 0, η+ = 1 to C1 = 1, C2 = 0. At t = T
= π /ω these have evolved to (−1, 0) and (2π , −1), respectively. Thus,

M = �(T ) =
[

−1 2π

0 −1

]
. (37b)

The eigenvalue ρ = −1 has a one-dimensional eigenspace. The secular term in (37a) reflects this
degeneracy of the monodromy matrix.

VIII. CONCLUSIONS

The stability of leapfrogging motion has been investigated using Floquet theory. By studying
the Floquet exponents of the linearized perturbation equations, we have confirmed the numerical
results of Acheson.6 Furthermore, we have argued analytically that the transition to instability
occurs when the pair size ratio is exactly α = φ2, the square of the golden ratio, in agreement
with numerical results. The linear analysis does not explain the transition between the “walkabout”
and “disintegration” instability modes identified by Acheson,6 but our numerical calculations has
revealed that the transition is gradual rather than sharp, with both modes accessible by perturbation
of a single leapfrogging motion. An example was given of leapfrogging occurring as an intermediate
state in the chaotic scattering of vortex pairs.7 We mention that the advection of particles by the
periodic flow due to leapfrogging is chaotic. This has been explored by Péntek et al.11
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Ges. Zür. 22, 37–81, 129–165 (1877).

5 A. E. H. Love, “On the motion of paired vortices with a common axis,” Proc. London Math. Soc. 25, 185–194 (1893).
6 D. J. Acheson, “Instability of vortex leapfrogging,” Eur. J. Phys. 21, 269–273 (2000).
7 L. Tophøj and H. Aref, “Chaotic scattering of two identical point vortex pairs revisited,” Phys. Fluids 20, 093605 (2008).
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