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SuperDARN data simulation, processing, access, and use in analysis of
midlatitude convection

Alvaro John Ribeiro

ABSTRACT

Super Dual Auroral Radar Network (SuperDARN) data is a powerful tool for space science
research. Traditionally this data has been processed using a routine with known limitations.
A large issue preventing the development and implementation of new processing algorithms
was the lack of a realistic test dataset. We have implemented a robust data simulator based
on physical principles which is presented in Chapter 2. The simulator is able to generate
SuperDARN data with realistic statistical fluctuations and known input Doppler velocity
and spectral width. Using the simulator to generate a test data set, we was able to test new
algorithms for processing SuperDARN data. The algorithms which were tested included
the traditional method (FITACF), a new approach using the bisection method (FITEX2),
and the Levenberg-Marquardt algorithm for nonlinear curve fitting (LMFIT). FITACF is
found to have problems when processing data with high (> 1 km/s) Doppler velocity, and
is outperformed by both FITEX2 and LMFIT. LMFIT is found to produce slightly better
fitting results than FITEX2, and is thus my recommendation to be the standard SuperDARN
data fitting algorithm.

The construction of the new midlatitude SuperDARN chain has revealed that nighttime,
quiet-time plasma irregularities with low Doppler velocity and spectral width are a very
common (> 50% of nights) occurrence. Following on previous work, we have conducted
a study of nighttime midlatitude convection using SuperDARN data. First, the data are
processed into convection patterns, and the results are presented. The drifts are mainly
zonal and westward throughout the night. The plasma drifts also display significant seasonal
variability. Additionally, a large latitudinal gradient is observed in the zonal velocity during
the winter months. This is attributed to processes in the conjugate hemisphere, and possible
causes are discussed.

During my graduate studies, we have been part of the development of a software package for
enabling and accelerating space science research known as DaViTpy. This software package
is completely free and open source. It allows access to several different space science datasets
through a single simple interface, without having to write any code for reading data files.
It also incorporates several space science models in a single install. The software package
represents a paradigm shift in the space science community, and is presented in Appendix
A.

The authors thank the National Science Foundation for support under grants ATM-0849031
and ATM-0946900.
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Chapter 1

Introduction

The research which will be presented in this dissertation follows three distinct tracks. The

second and third chapters discuss some technical work involving simulation and processing

of radar data. The fourth chapter discusses a more scientific topic of midlatitude ionospheric

convection patterns derived from SuperDARN data. The fifth chapter describes a software

package which was developed during my PhD program, which encompasses space science

data and model access/integration and visualization. These three topics all bear on the

application of SuperDARN radar data to space science research but are somewhat distinct

and will be dealt with in separate sections in this Introduction.

1



AJ Ribeiro Chapter 1. Introduction 2

1.1 The Ionosphere

1.1.1 Basic structure and composition

The earth’s ionosphere is a layer of weakly ionized plasma starting at about 60 km altitude

which envelops the entire planet [Rishbeth and Garriott , 1969; Kelley , 2009; Schunk and

Nagy , 2009]. Because it is comprised of charged particles, electric and magnetic effects must

be considered in addition to neutral fluid dynamics in order to analyze it. To first order, the

ionosphere is horizontally stratified due to gravity. As shown in Figure 1.1, the ionosphere is

best organized by plasma density. The ionosphere is generally divided into D (60-90 km), E

(90-130 km), and F (above 130 km) regions because each region has distinct characteristics.

In the D region, charged particle motions are dominated by collisions with neutral particles.

In the E region, ions collide frequently with neutrals, but electrons motions are mostly

determined by electromagnetic forces. Because of this, currents can flow in the E region.

The F region is generally divided into F1 and F2 regions. At these altitudes, charged

particle motions are mostly electromagnetically driven. In Chapter 4 we will specifically be

discussing F region dynamics and thus will focus on the F region in this Introduction. In

the presence of an electric field, E, and a magnetic field, B, plasma at F region altitudes

and higher drifts at a velocity, v, such that v = E×B/B2

Figure 1.2 shows the atomic and molecular composition of the ionosphere with altitude.

The main source of ionization responsible for creating the ionosphere is photoionization by

incoming solar photons which maximizes at local noon [Rishbeth and Garriott , 1969; Kelley ,

2009; Schunk and Nagy , 2009]. Another source of ionization, particularly at auroral latitudes,

is corpuscular ionization by precipitating charged particles or magnetospheric origin. The
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Figure 1.1: A vertical profile of the ionosphere. From Kelley [2009]

effects of this process can be seen in Figure 1.3, which shows the spatial distribution of

auroral emission and a latitudinal slice of electron density measurements. The auroral oval

exists because of charged particles precipitating into the atmosphere. These particles then

can then ionize neutrals, and this effect can be seen in the the electron density inset in

Figure 1.3.

Ion production and loss in the ionosphere can be modeled using Chapman Theory [Chapman,

1931; Rishbeth and Garriott , 1969]. Chapman Theory assumes that (I) a beam of monochro-

matic radiation is incident on (II) a plane, horizontally stratified neutral atmosphere which
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Figure 1.2: Nighttime atomic and molecular composition of the atmospheric temperature
(left) and ionospheric plasma density (right) with altitude. The data re from mass spec-
trometer measurements above White Sands, New Mexico (32◦ N, 106◦ W) From Kelley
[2009]

(III) consists of a single neutral species. The result of Chapman Theory is the Chapman

Production Function:

q(z, χ) =
ηI∞
eH

exp[1 − z − e−zsecχ] (1.1)

where q is the production rate, η is the ionization efficiency, I∞ is the solar flux at the top

of the ionosphere, H is scale height, z is reduced height, and χ is solar zenith angle. A plot

of the normalized Chapman Production Function as a function of reduced height is shown

in Figure 1.4. The E and F1 regions are well approximated as Chapman layers. This is

because photoionization is the main production mechanism, and transport processes are not

important in these regions. Conversely, in the F2 region, transport is an important process,

and thus it is not well approximated as a Chapman layer.

In addition to production, ionization must also be lost, or else the neutral atmosphere would

eventually disappear. A major loss process is dissociative recombination, which can be
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Figure 1.3: An image of the auroral oval taken by the Dynamics Explorer 1 (DE1) satellite.
Inset is a plot of a latitudinal slice of electron density measurements gathered from an
incoherent scatter radar. Note the correlation between where auroral emission is strongest
and where electron density is greatest. From Kelley [2009]

described with the equation:

e− +XY + → X + Y (1.2)

where X and Y are arbitrary constituent atoms or molecules [Kelley , 2009; Schunk and

Nagy , 2009; Rishbeth and Garriott , 1969]. In dissociative recombination, a free electron

recombines with a molecular ion to produce two neutrals. Another type of recombination is
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Figure 1.4: A plot of the normalized Chapman Production Function as a function of
reduced height. From Rishbeth and Garriott [1969].

radiative recombination, which can be described by

e− +X+ → X + hν (1.3)

where hν is a photon, h is Planck’s constant, and ν is the frequency of the photon. In

radiative recombination, an electron recombines with an ion to create a neutral, and the

emission of a photon conserves energy and momentum. Transport of plasma into and out of

a volume can also change local ion density. Transport can be described by the divergence

term in the continuity equation. Putting together production, loss, and transport, we arrive

at the continuity equation

dn

dt
= P − L−∇ · (nv). (1.4)

where dn
dt

is the rate of change of plasma density in a volume, P is the production term, L is

the loss term, n is the plasma density, and v is vertical ion velocity.
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Production, loss, and transport are responsible for the formation of the different ionospheric

regions. The distinct layers form because different processes have differing effectiveness at

varying altitudes [Schunk and Nagy , 2009]. In the E region, photochemistry is dominant,

and the principal ions are molecular. In the F1 region, photochemistry again dominates,

but the prevalent ion is O+. In the F2 region, there is a transition from photochemistry to

transport (diffusion) dominance. Above the F region peak, transport processes dominate

over photochemistry.

1.1.2 The F Region

The F region is the layer of the ionosphere above about 130 km altitude where the magnetic

field dominates charged particle motions [Rishbeth and Garriott , 1969; Schunk and Nagy ,

2009; Kelley , 2009]. The F region is typically split into the F1 and F2 regions. Photochem-

istry is dominant in the F1 region, and thus it is well modeled as a Chapman layer. The

F2 density peak is also the peak density for the entire ionosphere. Transport processes are

important in the F2 region, where vertical transport allows plasma to flow from the iono-

sphere into the plasmasphere during the day, and from the plasmasphere into the ionosphere

at night, to help maintain density.

1.1.3 The Midlatitude Ionosphere

The midlatitude ionosphere is a transition region between the auroral region which has

mainly vertical field lines and the equatorial region which has mainly horizontal field lines

[Rishbeth and Garriott , 1969; Schunk and Nagy , 2009; Kelley , 2009]. At midlatitudes, the

earth’s magnetic field makes an angle of around 45◦ with the terrestrial surface (dip angle),
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and thus, the combined effects of electric fields, neutral winds, gravity, and pressure gradients

are more complicated when analyzing plasma dynamics in the region.

During the day, photochemistry dominates the plasma profile in the E and F regions [Rish-

beth and Garriott , 1969; Schunk and Nagy , 2009; Kelley , 2009]. The plasma density begins

to increase in the E region, and reaches a peak in the F region at about 300 km. This is due

to a combination of production, loss, and transport processes. In the inner magnetosphere,

the closed magnetic field lines which have footpoints in the midlatitude ionosphere act as a

reservoir for dense plasma, and this is called the plasmasphere. The plasmasphere is bounded

by the plasmapause, which is indicated by a sharp decrease in plasma density with altitude.

This can be seen at Re = 4 in Figure 1.5, which shows the average equatorial electron density

profile. The plasmapause separates the region where flux tubes approximately corotate with

the earth from the auroral region which has convection driven by magnetospheric sources.

Figure 1.5: Average plasmasphere equatorial electron density profile versus altitude. From
Kelley [2009], after Angerami and Carpenter [1966].

Ionospheric plasma at midlatitudes must, to first order, corotate with the earth [Kelley ,
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2009]. If the plasma did not corotate, there would be a neutral wind, UR in the nonrotating

plasma frame. This wind would drive an electric current, J = σ · (UR × B), where

σ is the conductivity. This current is not divergence free because conductivity varies with

altitude, and thus an electric field would build up until the current vanished, which happens

when the plasma E × B drifts at the same velocity as the rotation speed of the earth.

Of particular interest in the context of this dissertation are the electric field-driven plasma

flows in the earth-fixed reference frame, because these flows are measured by ground-based

radars such as SuperDARN. SuperDARN in fact measures plasma flows that are due to non-

corotation. Kelley [2009] compares these flows to neutral winds in atmospheric weather,

because they are also measured in the rotating frame. The main driver of these plasma

flows at midlatitudes is the dynamo action of the neutral wind. The basic idea behind

dynamo theory is as follows: (I) neutral winds drive currents in regions with appreciable

conductivity which (II) are not divergence-free because of spatial variability in conductivity.

(III) Electrostatic fields are set up to modify the flow of current, which, (IV) map along

magnetic field lines due to their high parallel conductivity [Rishbeth and Garriott , 1969].

Large scale electric fields map along magnetic field lines with little attenuation [Kelley ,

2009].

1.2 Radar

1.2.1 Background

The word radar is an acronym for Radio Detection And Ranging. Thus, at its most basic,

a radar is a system whose purpose is to detect and locate ”targets” [Skolnik , 2001]. The
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nature of the target varies depending on the application, but some typical examples include

aircraft, cars, and weather. In the case of this dissertation, the targets are ionospheric

plasma irregularities in the E and F regions of the ionosphere. What exactly these are will

be discussed later in the chapter.

A radar works by transmitting a signal from an antenna and then listening for a reflected

return signal [Skolnik , 2001]. Typically, the signal which is transmitted is a pulse of elec-

tromagnetic radiation. This process is illustrated in Figure 1.6. Assuming the speed of

propagation is the speed of light, c, one can then time the delay between transmission and

reception, and determine the range to the target as:

R =
cTr

2
(1.5)

where Tr is the time delay between transmission and reception, and the factor of two takes

account of travel to the target and back. One cannot gather much information from a single

radar pulse, such as whether a target is moving or not, and thus sequential pulses are emitted

at some time interval, Tp. In this case, the maximum unambiguous range is:

Run =
cTp

2
. (1.6)

Besides ranging targets, many radars are also capable of determining the Doppler velocity

of targets. When the electromagnetic wave emitted by the radar is incident on a moving

target, that target imparts a Doppler shift on the frequency of the reflected signal. This

occurs because the reflected waveform is either compressed (motion towards the radar) or

spread out (motion away from the radar) by a moving target. Doppler frequency, fd is
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Figure 1.6: A simple illustration of how a radar works. From Skolnik [2001]

defined as:

fd =
2vr
λ

(1.7)

where vr is the radial velocity of the target, and λ is the transmit wavelength.

As was noted previously, for a radar to have a large maximum unambiguous range, it must

also have a long inter-pulse period. This is because a reflected sample from the maximum

range or the radar must be given time to return to the antenna before the next pulse is sent

out. However, in order to measure large Doppler velocities, it must have a short inter-pulse

period. Specifically, samples must be recorded at twice the maximum Doppler frequency,

known as the Nyquist frequency. The reason for this is illustrated in Figure 1.7. In this

figure, the top curve represents the received Doppler signal. The oversampling line shows

that the signal can be easily recovered if sampling is performed at more than twice the

Doppler frequency. The Nyquist frequency plot shows the minimum sampling frequency

which is required to recover the original signal. The undersampling plot shows a regime in

which sampling is performed too slowly to recover the original signal.

Note that if a radar is made to detect targets at large ranges from the radar, traveling at
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Td

Oversampling

Nyquist Frequency

Undersampling

Doppler signal

Figure 1.7: An illustration which demonstrates the complexity of sampling a Doppler signal.
The top curve shows the signal itself. The second line shows an example of oversampling
where the returned signal is easily recovered. the second line plot shows sampling at the
Nyquist frequency, which is the minimum frequency required for recovering the signal. The
third line plot illustrates sampling at a frequency which is much less than the Doppler
frequency, and the signal cannot be recovered.

large Doppler velocities, there are mutually exclusive requirements imposed on the inter-

pulse separation. This is precisely the case with SuperDARN radars. In order to solve this

problem, the radars use what is known as a multi-pulse sequence. Multi-pulse sequences will
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be discussed in the next section as well as in Chapters 2 and 3.

1.2.2 SuperDARN Radars

The Super Dual Auroral Radar Network (SuperDARN) is an international network of high-

frequency (HF, 8-20 MHz) radars which monitor plasma convection at E and F region

heights [Greenwald et al., 1985; Chisham et al., 2007]. The radars operate at HF in order

to take advantage of refraction in the ionosphere to gain access to backscatter from iono-

spheric irregularities and maximize the range of the radars. Refraction occurs because there

is a gradient in electron density, and thus refractive index, in the ionosphere. This is illus-

trated in Figure 1.8. Note how some rays (gray lines) are capable of being refracted from

the ionosphere, to the terrestrial surface, and back to the ionosphere. Returns from the

earth’s surface are called “ground scatter”, and returns from the ionosphere are referred to

as “ionospheric scatter”. SuperDARN antennas are arranged in of phased arrays which can

be electronically steered in 16-24 look directions (beams) separated by 3.24◦ of azimuth and

obtain backscatter from 75-100 range gates along each beam with a separation of 45 km.

SuperDARN receivers utilize both an in-phase (I), and quadrature (Q) component. That is,

a received signal is split into two signals, and one of them is phase shifted by 90 degrees.In

order to resolve targets at large distances unambiguously, one requires a long inter-pulse

period so that the signal from a target at the maximum desired distance has returned before

the next pulse is transmitted. In order to resolve velocities of up to 2 km/s at a range of up

to 4000 km (which impose mutually exclusive restrictions on the inter-pulse separation, Tp)

the radars utilize multi-pulse sequences (e.g., Figure 3.2). By combining returns from the

same range gate from different pulses, one can generate an autocorrelation function (ACF),

as seen in Figure 1.9. The phase shift between lags of the ACF is used to solve for the
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Figure 1.8: A ray-tracing plot for the Blackstone, VA radar. The gray lines represent the
radar rays. The ionosphere is color-coded by electron density, according to the International
Reference Ionosphere (IRI) Model. The pink lines represent the earth’s magnetic field, and
the black sections represent the locations where the rays are approximately orthogonal to
the magnetic field (the condition for backscatter from ionospheric irregularities). Note how
the radar utilizes refraction to increase the maximum range of the radar. Figure courtesy of
Sebastien de Larquier.

Doppler velocity of the target according to (1.8).

VD =
λ

4π

δφ

δτ
(1.8)

In this equation, λ is the radar wavelength, and δφ
δτ

is the phase shift between lags of the

ACF. The decay of signal amplitude with time is used to solve the spectral width as shown

in (1.9).

W =
λ

2πtd
(1.9)

In this equation, λ is the radar wavelength, and td is the e-folding time of the amplitude of

the ACF. More information about SuperDARN data sampling and processing can be found

in Chapters 2 and 3 as well as Sterne [2010].

The primary backscatter targets of SuperDARN radars are ionospheric plasma irregularities

in the E and F regions of the ionosphere. These ionospheric irregularities are structures in
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Figure 1.9: An example of a SuperDARN ACF. The data are from beam 10, range gate
18 of the east array of the Fort Hays, Kansas radar, from 17 March 2013 at 10 UT.

ionospheric plasma density which are amplified by instability processes [Fejer and Kelley ,

1980; Keskinen and Ossakow , 1983; Tsunoda, 1988]. They can range in spatial scale from

centimeters up to kilometers. An important factor in the growth or damping of irregularities

are electric fields. At high latitudes, the dominant F region instability process is thought to

be the Gradient Drift Instability, which occurs when an electric field acts on a plasma with a

gradient in plasma density [Baker et al., 1986; Hosokawa et al., 2001]. At midlatitudes, it has

been suggested that a possible instability process is the Temperature Gradient Instability

(TGI), which occurs when there are opposing temperature and density gradients within a

plasma [Hudson and Kelley , 1976; Greenwald et al., 2006].

1.3 Software Development

Appendix A focuses on the development of a software package for space science research,

and so it is appropriate here to give some background on how this came about. SuperDARN

has historically used a centralized single programmer model for software development. Effec-

tively, this meant one person was responsible for writing/maintaining all of the code, fixing

bugs, providing documentation and support, etc. Additionally, when a bug got fixed, users

were required to wait for a major release (once or twice a year) to actually get the fix.
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Much of the analysis and most of the visualization of SuperDARN data has traditionally

been done using the Interactive Data Language (IDL1), which is closed source and has an

expensive license. As SuperDARN continued to grow, the single programmer model and the

use of non-free software became increasingly problematic and cumbersome.

In 2012, it was decided to try and remedy the situation by developing a new software library,

called DaViTpy (Data Visualization Toolkit-Python. Throughout the project the freedoms

outlined in the Free Software Definition2 have been adopted. These freedoms are as follows:

0 The freedom to run the program for any purpose.

1 The freedom to study how the program works, and change it to make it do what you wish.

2 The freedom to redistribute copies so you can help your neighbor.

3 The freedom to improve the program, and release your improvements (and modified ver-

sions in general) to the public, so that the whole community benefits.

Essentially, the goal has been to start a software project which would ultimately become a

community-developed, open source (100% free) software environment for SuperDARN (and

space science in general) data access and analysis. In addition, a primary aim is to streamline

and simplify data access and make bug-fixes and updates an almost immediate process. This

topic is discussed in depth in Appendix A.

1http://www.exelisvis.com/ProductsServices/IDL.aspx
2http://www.gnu.org/philosophy/free-sw.html
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1.4 Dissertation Organization

SuperDARN is a powerful tool for space science research. Since 2004, there have been over

500 publications using SuperDARN data. On its own, it provides a continuous global picture

of ionospheric plasma convection. The measurements can be used to derive convection pat-

terns and solve for cross polar cap potential, as seen in Figure 1.10. It is also a valuable tool

in collaboration with other measurements. SuperDARN data is readily used with satellite

data, such as DMSP data as seen in Figure 1.10. In this figure, the black traces show DMSP

drift meter measurements, and the colored dots show electron energy flux. Additionally,

SuperDARN data can be combined with measurements from other radar systems. For ex-

ample, Greenwald et al. [2006] used midlatitude SuperDARN measurements in conjunction

with incoherent scatter radar data to examine instability processes.

At its most fundamental level, the SuperDARN data product begins with fitting the ACFs

which are calculated from receiver voltages in order to solve for Doppler velocity and spectral

width. This is a crucial step which makes all of the space science research which is done

with SuperDARN possible. This fitting has traditionally been done with a routine called

FITACF, which was developed over 20 years ago, at a time when computer speed and storage

presented a serious issue. This algorithm has remained in use since its inception, despite

having known shortcomings (discussed in Chapter 3). One of the reasons for this was the

lack of a reliable, realistic test dataset for comparing different processing algorithms. We

have developed a realistic SuperDARN data simulator, based on physical principles, which

is able to generate a realistic, reliable test data set with known Doppler velocity and spectral

width parameters. The data simulator is discussed in a paper which was published in Radio

Science in 2013, and is presented here in manuscript form as Chapter 2.
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Figure 1.10: A SuperDARN convection map showing fitted convection contours. The
vectors shows fitted two-dimensional plasma flows. The blacks traces shows DMSP drift
meter data. the colored dots show DMSP electron energy flux measurements.

The development and implementation of new data processing algorithms coupled with the

generation of a test data set allowed for the comprehensive testing of new ACF fitting

algorithms. We found that the shortcomings of FITACF could indeed be overcome using

new processing routines, and the results were presented in a paper which was published in

Radio Science in 2013. This paper is presented in this dissertation as Chapter 3.
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The SuperDARN midlatitude radar chain was originally constructed in order to provide

coverage of the expanded auroral oval during storm times. However, soon after construction,

it was noted that low velocity quiet time plasma irregularities were quite frequent. Some

early studies of these irregularities include Greenwald et al. [2006] and Baker et al. [2007].

A problem with these irregularities was that their low Doppler velocity and spectral width

made them difficult to distinguish from ground backscatter in an automated way. Ribeiro

et al. [2011] developed an automated algorithm which could reliably identify these ionospheric

events in a reliable way. Following this, Ribeiro et al. [2012] performed a study in which they

discussed the occurrence characteristics of these F region plasma irregularities. de Larquier

et al. [2013] followed with a study of the spatial distribution of the irregularities. Building

on this previous work, we present a study of convection patterns derived from the drift

characteristics of these plasma irregularities. This work is described in a manuscript which

is currently under preparation to be submitted to the Journal or Geophysical Research in

late 2013, and is presented in this dissertation as Chapter 4.

As the technological world has progressed in the information age, the space science com-

munity has been slow to adapt and adopt new technologies. Instead of accelerating and

facilitating scientific research and collaboration, the current data sharing paradigm can hin-

der and stifle it. Too often, data is difficult to get. Sometimes, a researcher must contact

an individual PI to get data. Other times data is housed on a remote server, with little

documentation of what the files contain. Yet other times, data may be accessible through a

web interface, but gathering large quantities of data can be a hassle. The graduate students

an the VT SuperDARN Lab envisioned a software package which would allow for painless

access to diverse scientific datasets. From this idea grew a software package known as the

DaViTpy. In addition to data access tools, several models have been integrated into the

package, and visualization software has been implemented. The software package has gotten
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contributions from several different people, but the vast majority of the coding work to this

point has been done by Sebastien de Larquier and myself. We are currently preparing a

manuscript describing DaViTpy, and it is presented here as Appendix A.
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Abstract

The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars for monitoring

plasma flows in the high and mid latitude E and F regions of the ionosphere. The targets

of SuperDARN radars are plasma irregularities which can flow up to several kilometers

per second and can be detected out to ranges of several thousand kilometers. We have

developed a simulator which is able to model SuperDARN data realistically. The simulation

system is composed of four separate parts: model scatterers, model collective properties, a

model radar, and post-processing. Importantly, the simulator is designed using the collective

scatter approach which accurately captures the expected statistical fluctuations of the radar

echoes. The output of the program can represent either receiver voltages or autocorrelation

functions (ACFs) in standard SuperDARN file formats. The simulator is useful for testing

and implementation of SuperDARN data processing software and for investigation of how

radar data and performance change when the nature of the irregularities or radar operation

varies. The companion paper demonstrates the application of simulated data to evaluate the

performance of different ACF fitting algorithms. The data simulator is applicable to other

ionospheric radar systems.
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2.1 Introduction

The Super Dual Auroral Radar Network (SuperDARN) is an international network of HF

(8-20 MHz) radars monitoring plasma dynamics at middle to high latitudes in both the

northern and southern hemispheres [Greenwald et al., 1985; Chisham et al., 2007]. The radars

coherently detect via Bragg scattering decameter-scale irregularities in the plasma density

distribution in the E and F regions of the ionosphere. A conventional SuperDARN radar

has 16 look directions, or beams, separated by 3.24◦ in azimuth. Each beam sounding counts

75-100 range gates. The spatial extent of the range gates is determined by the radar sample

separation, and is typically 45 km, although other values such as 15 or 30 km are common.

The radars use a multipulse sequence in order to simultaneously satisfy requirements of the

maximum range of values for target Doppler velocity and range. [Greenwald et al., 1985;

Hanuise et al., 1993; Baker et al., 1995; Barthes et al., 1998; Ponomarenko and Waters ,

2006]. Plasma irregularities are routinely detected at ranges of hundreds to several thousand

kilometers and have speeds of hundreds of meters per second. An autocorrelation function

(ACF), from which parameters such as Doppler velocity are determined, is calculated for

each range gate using the instant receiver samples (voltages). The dwell (integration) time

on a particular beam, tint, is typically 3-7 seconds. An overall transmit/receive time for

a single pulse sequence is typically 100 ms so that in a single integration period 30-70

pulse sequences are integrated. For each range gate, the arrival time of returns from each

pulse in the sequence is calculated and receiver samples from pulse pairs are multiplied in

order to generate the complex ACF values at the time lag set by the delay between the

pulses. These products are averaged over the integration time to produce an average ACF.

Besides increasing the signal-to-noise ratio (SNR) by suppressing noise fluctuations, the

averaging also lowers the interference from undesired ranges (cross-range interference, CRI,
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for more detail see Ponomarenko and Waters [2006]). Analytical functions are fitted to the

variation in ACF power and phase with lag time to estimate Doppler velocity, spectral width,

and backscatter power. The performance of different methods for performing this fitting is

considered in the companion paper, [Ribeiro et al., 2013a].

In order to assess fitting algorithms quantitatively, it is desirable to be able to perform the

fitting on modeled radar data with tunable input parameters and realistic statistical char-

acteristics. There have been several attempts to design such a simulator for SuperDARN

applications [André et al., 1999; Ponomarenko et al., 2008]. The latest effort by Ponomarenko

et al. [2008] was based on the collective scatter approach and considered a single range gate

with a combination of ionospheric scatter, ground scatter, and external noise components.

This work represents a further development of the collective scatter approach. The improved

model includes multiple range gates, accounts for CRI and pulse-overlap interference (which

results from blanking the receiver during transmission) and generates output either as aver-

aged ACFs or instant receiver voltages. It also contains physical justification and detailed

description of the basic radar simulator which were only briefly mentioned in Ponomarenko

et al. [2008]. The simulator is coded in the C programming language and has been thor-

oughly tested. While it is designed to analyze SuperDARN-specific fitting algorithms, as

described in the companion paper Ribeiro et al. [2013a], the software can also be adapted to

simulate operation of other types of backscatter radars.

2.2 Physical Justification for the Backscatter Model

In testing radar data processing software, it is crucial to be able to simulate the test dataset

realistically. With respect to SuperDARN applications, this amounts to simulating iono-
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spheric backscatter signals (ACFs). It is easy to generate an ideal ACF with pre-determined

magnitude (SNR, or “power”), phase variation (Doppler shift), and decorrelation time (spec-

tral width). However, this sort of modeling does not provide objective information on the

measurement errors which are mostly determined by (i) external noise and (ii) statistical fluc-

tuations of the signal itself. While modeling of the external noise/interference is relatively

straightforward, a realistic description of the signal’s statistics requires special attention. A

simple way to “randomize” an ideal ACF is to add a “noise” ACF component that can be

generated from “white” or “colored” noise, but that approach lacks clear physical justifi-

cation. For a more adequate description of the statistical variability of the radar echoes,

one has to adopt a realistic model of the scatterers, i.e., electron density irregularities. On

average, the ionospheric irregularities are relatively weak 〈δN2
e /N

2
e 〉 << 1 where Ne is the

electron density and δ represents a perturbation, so that most of the wave power penetrates

through the plasma with only a small portion scattered back to the receiver. The average

backscatter field at the reception point can then be adequately described by the single-

scatter approximation (e.g., Rytov et al. [1988]), where each point of the scattering volume

represents a discrete source of an elementary field

A(r, t) = |A(r, t)|ejφ(r,t) (2.1)

where j =
√
−1, amplitude is proportional to the magnitude of the local electron density

fluctuations, |A(r, t)| ∝ δNe(r, t), and phase is defined by φ(r, t) = −(ωt + k · r), where ω

and k are the angular frequency and wave vector associated with the radar signal and r is

the total path followed by the ray. The resulting field at the radar location then results

from summation of the individual fields generated by the sources confined to the effective

scattering volume (range gate). Statistical properties of the scattered field arise from the
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spatio-temporal variability of the individual fields, A(r, t), which are discussed in the follow-

ing sections.

2.3 Implementation of the simulator

Operation of the simulator can be divided into four basic components (i) individual scatterer,

(ii) collective properties, (iii) radar operation, (iv) post-processing.

2.3.1 Individual Scatterer Model

The fundamental elements of the simulator are the model scatterers. For this application,

a scatterer is a point in space which reflects the radar signal. The behavior of scatterers

is based on the model proposed by Moorcroft [2004]. Each scatterer, i, has a random time

of appearance within a designated integration period that begins at time tappi. For testing

purposes, we also introduce an option to designate a finite scatterer lifetime, tlifei . This

parameter is consistent with experimental observations from Ponomarenko et al. [2007].

This results in “boxcar” scatterers with constant amplitude, i.e.,

|Amax(t)| =











1 if (tappi ≤ t < tappi + tlifei)

0 if (t < tappi, t > tappi + tlifei)
(2.2)

The lifetime distribution of the scatterers can be set to either constant or exponential, i.e.,

tlifei = tc in the former case and tlifei = |tc∗ln(x)| (where x is a uniformly distributed random

variable between 0 and 1) in the latter case. In the future, it would be easy to introduce
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other models for the lifetime distribution of scatterers. The user inputs the constant tc and

chooses the distribution. Table 2.1 lists all of the user inputs to the simulator. Note that if tc

is set to a large value compared to the duration of an integration period, the scatterers will

effectively have infinite lifetimes. The last step in initializing the model scatterers is to give

each one a noise-like random velocity in the line-of-sight direction drawn from a Gaussian

distribution, designated as vgi. Note that this velocity is distinct from the bulk drift velocity,

which will be discussed in the following section. In reality, there is little evidence for these

velocity fluctuations, but we have included them in the model for completeness [Villain et al.,

1996]. The standard deviation of the distribution of the random velocity fluctuations, σvg is

set by the user and can be assigned separately to each range gate. If the user sets this value

to 0, random velocity fluctuations will not exist in the model.

2.3.2 Collective Behavior Model

The next step in the simulation is to integrate individual scatterers into a collective behav-

ior model which determines statistical characteristics of the radar returns produced by the

scatterers confined to a range gate. For this application, we consider a collection of a large

number (n = 2000) of elementary scatterers within a single range gate with linear dimen-

sion ∆r. The number of scatterers was chosen as a trade-off between model validity and

computing time. Each scatterer is assigned an initial position in two-dimensional space at a

range ri from the radar, which is selected randomly within the parent range gate such that

rg ≤ ri ≤ rg + ∆r where rg is the distance to the front edge range gate. We also assume

that backscatter comes from the far zone, ∆r/r << 1, so that we can neglect the difference

in the geometrical decay factor for scatterers within a single range gate.

We also use the collective behavior model to deal with characteristics which are common to
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Table 2.1: List of user inputs to the simulator

Scalars
Name Description
freq radar frequency
noise flg flag to indicate if noise is included
noise lev white noise level
Navg number of ACFs to integrate
Nrang number of range gates
lagfr distance to first range gate in samples
life dist flag indicating lifetime distribution of scatterers
smsep sample separation
Npul number of pulses in pulse sequence
mpinc smallest interpulse separation
cri f lg flag indicating whether to include CRI

Arrays
Name Description Number of Elements

Scatterer Properties
tc disappearance time constant Nrang

σvg std. dev. of Gaussian velocity fluctuations Nrang

Collective Properties
td irregularity decay time Nrang

tg irregularity growth time Nrang

vd line-of-sight velocity Nrang

General
amp0 amplitude factor of ACFs Nrang

qflg flag indicating if a range gate contains backscatter Nrang

pulse t pulse table Npul
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all scatterers within a range gate. In general, the electron density fluctuations associated

with ionospheric plasma irregularities are characterized by amplitude decay due to some

kind of dissipation process, e.g., plasma diffusion. In our simulator, this is modeled through

a combination of exponential growth and decay times, tg and td, respectively. It is worth

noting that these two parameters are unrelated to the ”boxcar” lifetime property discussed

previously. This results in a reflected signal amplitude from the ith scatterer in a range gate

at time t of

Ai(t) = |Amax(t)|(1− e−(t−tappi )/tg ) ∗ e−(t−tappi )/td (2.3)

where the |Amax(t)| forces the amplitude to 0 outside of the scatterer lifetime, consistent

with (2.2).

Another characteristic which is shared by all scatterers within a common range gate is a

collective Doppler velocity, vd. The total line-of-sight (LOS) velocity of a scatterer can then

be expressed as vi = vd + vgi. Assuming that the Doppler shift ωdi of the echo from a

single scatterer is fully determined by the LOS velocity, this can be expressed as ωdi = 2kvi

where k = 2π/λ and λ is the radar transmit wavelength. In this case, the frequency of

the elementary field reflected by the ith scatterer is ω = ω0 + ωdi where ω0 is the radar

transmission frequency. The phase of the returned signal depends both on time and range

to the target as well as the velocity of the target and can be expressed as

φi(t, ri) = −2k((vd + vgi)t + ri0) (2.4)

where the factor of two represents the fact that the radar signal propagates from the radar
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to the target and back.

As a result of (2.3) and (2.4), we can calculate the backscattered field at the radar location

produced by a single scatterer at time t as

Si(t) = |Ai(t)|ejφi(t,ri) (2.5)

where |Ai(t)| is described by a combination of (2.2) and (2.3), and φi(t, ri) is described by

(2.4). Thus, assuming 2000 scatterers within a range gate, we can calculate the backscattered

field from a single range gate r at the radar location at time t as

Vr(t) =
2000
∑

i=1

Si(t). (2.6)

Note that Si and Vr are complex.

2.4 Model Radar Operation

2.4.1 Setup

Once the model ionosphere has been created, it is sampled by the model radar. As described

previously, SuperDARN radars employ a multipulse sequence, and therefore the simulator

does as well. The pulse sequence is defined by the user and passed to the simulator. An

example of a SuperDARN pulse sequence, katscan, is shown in Figure 2 of the companion
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paper. In theory any sequence can be used; in the current implementation, three stan-

dard SuperDARN pulse sequences are automatically available, normalscan, katscan, and

tauscan. The sampling is done by calculating the returns at discrete sample times using

(2.6). This process begins at t0 ≈ 1 s, which allows for scatterer appearance and decay

to reach a steady-state condition. Sampling of returns from a particular pulse begins at

t = t0 + tpul + tfrang, where t is the time of the current sample, tpul is the time of the pulse,

and tfrang is the time it takes for the signal to travel to the location of the first range gate

(distance to first range gate, in samples, is set by the user). Subsequent samples from this

pulse are calculated by incrementing by a single range gate (equivalent to incrementing t

by the sample separation, smsep) Nrang times. The user is responsible for passing an array,

qflg in Table 2.1, of size Nrang (number of range gates) to the simulator which contains flags

to indicate which range gates contain backscatter. In reality, all of the simulated range gates

contain scatterers, but only those with a qflg of 1 will be sampled, rendering the scatterers

in range gates with a qflg of 0 invisible. The radar returns are sampled as voltages in the

receiver. The radars operate with I (in-phase) and Q (quadrature) channels, meaning that

the returns (as well as the voltage levels in (2.6)) consist of real and imaginary parts in

quadrature.

2.4.2 Sampling

For each pulse, a single sample is collected from each range gate, resulting in a series of

measurements Vr(k) where the index r is associated with the rth range gate and the index k

indicates a sample associated with the kth pulse. The data sampling is performed continu-

ously at the rate determined by the spatial resolution (typically 45 km). Therefore, from the

kth pulse, the received voltage due to backscattered signal from a range gate r is sampled
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at a time of r ∗ smsep + tfrang after the pulse is emitted. In order to simplify sampling

in the simulator, for a pulse sequence with Npul pulses, Npul separate voltage sequences of

length Nrang are calculated, one for the returns from each pulse. The voltage sequences from

different pulses are then superposed with the proper time offset in order to generate the

final set of voltage samples, with only a single voltage for each sample time within the pulse

sequence.

Note that with this manner of sampling, cross-range interference (CRI) is present in the

radar samples. That is, if a pulse p2 occurs before the last sample associated with a previous

pulse p1, there is an ambiguity about whether subsequent returns are from p1 or p2. In actual

radar operation, this effect is dealt with by averaging the returns from a number of pulse

sequences so that the incoherent contribution from interfering range gates decreases at a rate

of ∝ 1/
√

Navg where Navg is the user-specified number of pulse sequences in the integration

period. The user does however have the option to eliminate CRI from the simulated data,

which is done by integrating range gates individually, which is equivalent to turning off the

scatterers in all but one of the range gates.

2.4.3 ACF Calculation

The next step is to calculate ACFs for each range gate from the samples recorded for the

pulse sequence. An ACF consists of a series of complex samples at discrete integer lag times,

each with a real part Re and an imaginary part Im. The lag times are multiples of the

smallest spacing between two consecutive pulses in the multipulse sequence, mpinc, which

is an integer multiple of smsep. The lag times are due to all possible differences, tj − ti

where i, j = 1, 2, ...Npul. The value of the ACF R from the pth pulse sequence at a particular

integer lag l is calculated as
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Rp(l) = Vp(t)V
∗

p (t+ τ) (2.7)

where the asterisk indicates a complex conjugate, τ = l∗mpinc, and l is the integer lag num-

ber of the ACF sample. The process of calculating voltage returns and ACFs is performed

Navg times. Once this process is complete, the ACFs from the individual pulse sequences

are averaged (integrated) in order to produce a single ACF for each range gate. Specifically,

the final ACF sample at lag l can be calculated as

R(l) =

Navg
∑

p=1

Rp(l)/Navg. (2.8)

2.5 Post-Processing

In order to make the simulated data more useable, some post-processing is performed.

2.5.1 Amplitude Normalization

Lag zero power, P (0), is the power level of an ACF at lag zero. It is calculated according to

P (0) =
√

Re{R(0)}2 + Im{R(0)}2. (2.9)

Because of the manner in which the simulator operates, the P (0) of all of the range gates

will fluctuate around some arbitrary value, which has no particular meaning. Therefore, all
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of the ACFs are normalized to an average P (0) of 1 (arbitrary units) to allow for scaling

to a user-defined value (amp0) and introduction of scaled noise into the signal. In order to

do this, the average P (0) of all of the range gates which contain backscatter, excluding any

range gates which could contain CRI in lag zero, are calculated. The ACFs of all of the range

gates which contain backscatter are then normalized by this value, resulting in all range gates

containing scatter having an average P (0) of 1. The ACFs can then be scaled in order to

produce ACFs with average amplitudes of any value desired. Currently, the simulator also

includes an option to force the signal to decay as a function of 1/r2, where r is range from

the radar. The reason for this is that in real-life situations, signal amplitude decays with

range, and 1/r2 is a plausible dependence. This is the only step in the simulation where real

propagation conditions can be considered. This decay is implemented after normalization

and scaling.

2.5.2 Introduction of Noise

The user of the simulator is able to set an option to model external noise by adding white

noise ACFs to the simulated signal. If this option is set, then a second set of ACFs are

calculated in the same fashion as before, where the scatterers have zero velocity, zero growth

time, infinite lifetime, and a decorrelation time much less than mpinc. This causes the

returned signal to correlate only with itself, resulting in ACFs of δ-correlated white noise.

These ACFs are scaled by a value provided by the user to produce the desired SNR. The

noise level is set relative to the magnitude of the signal ACFs. These noise ACFs are then

added to the post-processed signal ACFs, which is the final product returned to the user.

Note that the noise level is relative to the signal level at range gate 0, so if the user selects

to have power decay with range, SNR will subsequently also decay with range.
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Alternatively, the user can choose to have the raw voltage samples returned instead of the

calculated ACFs. This mimics actual radar operation in that data can be stored as (i)

averaged ACFs in RAWACF files or (ii) as voltages at the sampling times in IQDAT files,

both of which are standard SuperDARN file formats. With option (ii), the averaged ACFs

can be obtained in post-processing but there is a considerable storage requirement (one day

of radar IQDAT data requires ≈1.5 GB of storage).

2.6 Results

The simulator has been designed to produce realistic data including statistical fluctuations.

A real SuperDARN ACF from the Fort Hays East, Kansas radar recorded on 2 April 2012

at 05:30 UT using the katscan pulse sequence and Navg = 21 is shown in Figure 2.1a. In

this case, the sample separation is 300 µs, corresponding to a range separation of 45 km,

and a basic lag time of 1500 µs The fitted parameters for this data are as follows: td = 55

ms, vLOS = 365 m/s, and SNR = 9 dB. An example of an ACF that has been generated

with the simulator is shown in Figure 2.1b. This ACF was generated with the katscan pulse

sequence, Navg = 21, td = 50 ms, vLOS = 350 m/s, R(0) = 10000 and SNR = 9 dB. It is

apparent from this figure that realistic statistical fluctuations are present in the simulated

ACFs as the two ACFs display similar properties in terms of both phase progression and

amplitude decay. Note that lags are missing in the ACF derived from the data (indicated

by diamonds) owing to bad samples from pulse-overlap interference and CRI.

In order to test whether the statistical fluctuations present in simulated ACFs are at correct

levels, ACF power and phase fluctuations were examined. A total of 1000 ACFs were simu-

lated with td = 5 ms, vLOS = 350 m/s, Navg = 50. The effects of Gaussian velocity spread,



AJ Ribeiro Chapter 2. Simulator 36

Figure 2.1: (a) A measured SuperDARN ACF from the Fort Hays East, Kansas radar
recorded on 2 April 2012 at 05:30 UT using the katscan pulse sequence and Navg = 21. The
fitted parameters for this data are as follows: td = 55 ms, vLOS = 365 m/s, and SNR = 9
dB. The x-axis represents lag time in increments of mpinc, and the y-axis represents ACF
signal level. Note that lags which have been flagged as bad by the processing are plotted
as open symbols. (b) An example of a simulated ACF. This ACF was generated with the
katscan pulse sequence, Navg = 21, td = 50 ms, vLOS = 350 m/s, R(0) = 10000 and SNR =
9 dB. Note the similarity between the two panels.

scatterer disappearance, irregularity growth, CRI, and white noise were set to be negligible

in this simulation. These parameters can be ignored because they do not affect the statistical

fluctuation level. Figure 2.2 shows a histogram of ACF lag power which shows that the sim-

ulator accurately reproduces the statistical power fluctuations. The x-axis shows ACF lag

time and the y-axis shows normalized ACF power, calculated using (2.9). The color coding

indicates the number of simulated ACFs with lags in a power bin, and the diamonds rep-
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resent the mean values. The solid curve represents the ideal ACF power curve, the vertical

dash-dot line represents the decorrelation time td, and the horizontal dash-dot line represents

the e-folding power. The fact that the diamonds follow the ideal curve very closely for t < td

indicates that the simulator is behaving as expected. The horizontal dashed line represents

the statistical fluctuation level, σ = P (0)/
√

Navg . This fluctuation level is the magnitude

of the expected value of the fluctuation of the ACF power level [Ponomarenko and Waters ,

2006]. Thus, as ACF power approaches zero in later lags, the expectation is that statistical

fluctuations become the dominant source of power. The fact that the diamonds are very close

to σ for the later lags indicates that statistical fluctuations are being reproduced properly.

Figure 2.3 shows a similar plot to Figure 2.2 for the phase variation. The data are taken

from 1000 ACFs simulated with Navg = 50, td = 30 ms, and vd = 350 m/s. The color coding

is for number of ACF lags in a particular lag-phase bin. The solid line shows an idealized

lag phase progression for vLOS = 350 m/s. It is evident that the simulated ACFs show a

phase progression that is consistent with what one would expect for the simulated Doppler

velocity. It is also apparent that as lag time increases, the variability in the phase also

increases. This is expected, and occurs because ACF amplitude decays with time while the

statistical fluctuation level remains constant, meaning that statistical fluctuations become

more prominent in the ACF.

2.7 Conclusions

We have developed a robust, physically-based SuperDARN data simulator which is able to

model radar returns from ionospheric irregularities. Statistical fluctuations are well-modeled

by the simulator. This simulator can be used to generate realistic data for the purpose of
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Figure 2.2: Histogram of ACF lag powers for 1000 simulated ACFs. The simulator was
run with Navg = 50, td = 5 ms (spectral width of ≈800 m/s), vd = 350 m/s. An unphysical
spectral width is used here in order to show the performance of the simulator when ACF
power goes to the statistical fluctuation level. The color coding represents the number of
ACFs with a lag power in a particular bin. The diamonds show the mean ACF lag powers
at each individual lag. The solid curve represents an ideal power decay for an ACF with a
decorrelation time of 5 ms. The vertical dash-dot line shows the decorrelation time of the
simulated ACF, and the horizontal dash-dot line shows the e-folding power of an ideal ACF.
The horizontal dashed line shows the statistical fluctuation level for an ACF with a lag zero
power of unity and a Navg of 50.

testing the processing of radar returns into higher-order products under controlled conditions.

In the companion paper, the simulator is used to compare several methods of processing

radar returns for Doppler velocity and spectral width. The simulator can be adapted to test
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Figure 2.3: Histogram of ACF lag phases for 1000 simulated ACFs. The simulator was
run with Navg = 50, td = .03 s (spectral width of 132 m/s), vd = 350 m/s. The color coding
represents the number of ACFs with a lag phase in a particular bin. The solid line represents
the ideal phase progression for a Doppler velocity of 350 m/s

processing algorithms for other types of pulsed ionospheric radars.
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Abstract

The Super Dual Auroral Radar Network (SuperDARN) is a worldwide chain of HF radars

which monitor plasma dynamics in the ionosphere. Autocorrelation functions are routinely

calculated from the radar returns and applied to estimate Doppler velocity, spectral width,

and backscatter power. This fitting has traditionally been performed by a routine called

FITACF. This routine initiates a fitting by selecting a subset of valid phase measurements

and then empirically adjusting for 2π phase ambiguities. The slope of the phase variation

with lag time then provides Doppler velocity. Doppler spectral width is found by an inde-

pendent fitting of the decay of power to an assumed exponential or Gaussian function. In

this paper, we use simulated data to assess the performance of FITACF, as well as two other

newer fitting techniques, named FITEX2 and LMFIT. The key new feature of FITEX2 is

that phase models are compared in a least-squares fitting sense with the actual data phases

to determine the best fit, eliminating some ambiguities which are present in FITACF. The

key new feature of LMFIT is that the complex ACF itself is fit, and Doppler velocity, spec-

tral width, and backscatter power are solved simultaneously. We discuss some of the issues

that negatively impact FITACF, and find that of the algorithms tested, LMFIT provides

the best overall performance in fitting the SuperDARN ACFs. The techniques and the data

simulator are applicable to other radar systems that utilize multipulse sequences to make

simultaneous range and velocity determinations under aliasing conditions.
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3.1 Introduction

The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars which mon-

itor ionospheric plasma convection in the northern and southern hemispheres by detecting

backscatter from ionospheric plasma irregularities [Greenwald et al., 1985; Chisham et al.,

2007]. A typical SuperDARN radar has 16 look directions (“beams”) separated by 3.24◦

in azimuth, with 75-100 range gates along each beam separated by 45 km. The dwell time

on any particular beam is typically 3-7 seconds (integration period) which results in a 1-2

minute azimuthal scan. Examples of field of view plots of a single scan are shown in Fig-

ure 3.1. Panel (a) shows SNR (“backscattered power”), panel (b) shows Doppler velocity,

and panel (c) shows Doppler spectral width. These data are fairly representative in display-

ing a range of echo types including (i) an extended region of low velocity ground scatter

at greater ranges on the more westward beams, (ii) meteor wind scatter at the very near

ranges, (iii) a high-velocity ionospheric scatter feature on the middle beams, and (iv) spotty

noise/interference elsewhere but especially on the more northward beams.

The nature of the primary targets detected by SuperDARN radars introduces certain com-

plications. The principal dilemma arises because the radar was designed to detect targets

with Doppler velocities of up to 2 km/s out to a range of 4500 km. These conditions impose

mutually exclusive requirements on the nominal pulse repetition frequency (PRF). To avoid

ambiguities in range we require a long inter-pulse period (PRF ≤ 33.3 Hz) while to avoid

ambiguities in Doppler velocity we must have a shirt inter-pulse period (PRF ≥ 320 Hz).

Some techniques which have been used to solve this problem are complementary codes, alter-

nating codes [Lehtinen, 1986], and aperiodic sequences [Uppala and Sahr , 1994]. In order to

resolve this dilemma, the radars employ multipulse sequences to simultaneously determine



AJ Ribeiro Chapter 3. ACF Fitting 43

a b c

Figure 3.1: Examples of SuperDARN radar field of view plots. The data were collected
with the Fort Hays West radar on 10 September 2011 over the interval 04:30-04:31 UT. The
radar, located at 38.86◦ north, -99.39◦ west, was scanning across 22 beam directions, with
range gates beginning at 180 km. The data were solved using FITEX2 as described in the
text. The panels show (a) backscatter power, (b) Doppler velocity, (c) Doppler spectral
width.

the range and Doppler velocity of targets [Farley , 1972; Greenwald et al., 1985; Hanuise

et al., 1993; Baker et al., 1995; Barthes et al., 1998; Ponomarenko and Waters , 2006]. This

means that instead of transmitting solitary pulses that are separated by a fixed time de-

termined by the PRF, the radars periodically emit sequences of pulses that are separated

unevenly in time by integer multipliers of an “elementary lag time” τ0 = 1.5 − 2.4 ms.

By sampling the returns from a fixed range for each pulse of the sequence using a coherent

receiver, all products of the complex autocorrelation function (ACF), Rk = V (t)V ∗(t+kτ0),

where V is the receiver voltage sample and k is the lag number, can be calculated from 0

to nτ0, where n is the number of lags, with occasional misses at certain lags. An ACF is

calculated for each range gate from the returns from each multipulse sequence. Averaging

the returns over multiple sequence transmissions partially suppresses the contributions from

pulses that encounter other scattering regions at the same sampling times (cross-range in-

terference, CRI, a type of clutter) [Baker et al., 1995]. This averaging occurs within what

is called an integration period. An example of a standard SuperDARN multipulse sequence
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is shown in Figure 3.2. One observes that with this eight pulse sequence, all but two of the

lags can be computed up to a lag of 24.

Figure 3.2: An illustration of a standard SuperDARN pulse sequence, called katscan. The
raised bars represent transmit pulses, and the numbers represent lag time from the first pulse
until transmission. The pulse duration is 300 µs, and the basic lag time is typically either
1500 or 2400 µs. Samples are recorded in between transmit pulses and after the last pulse.
(Figure courtesy of K. A. McWilliams)

An integration period is typically 3-7 seconds in length. The total number of multipulse

sequences transmitted during an integration varies between about 15 and 60. The ACFs

calculated from all the sequences are then integrated in order to minimize interference and

increase gain. The integrated ACFs are fit to model functions in order to resolve Doppler ve-

locity (v), spectral width (w), and backscatter power (signal-to-noise ratio, SNR) as functions

of range. Figure 3.3a shows an ACF from the Fort Hays West radar taken from the period of
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Figure 3.1. The ACF consists of a real part (red curve), Re{R}, and an imaginary part (blue

curve), Im{R}, in quadrature. Note that the real part has a maximum at lag zero, and the

imaginary part has a value of zero at lag zero. The Doppler shift imposed on the frequency

of the returned signal is manifested as a systematic variation of phase with lag. The phase

φ at lag τ is calculated as φ(τ) = arctan(Im{R(τ)}/Re{R(τ)}). Figure 3.3b illustrates the

variation of phase with lag for the ACF of Figure 3.3a. The maximum Doppler frequency

shift, fdmax, that can be resolved is related to the basic lag time, τ0, by fdmax = 1/(2τ0).

Typically, this value is ≈ 300 Hz, corresponding to a maximum Doppler velocity of ≈ 4000

m/s. The lag power P at lag τ is calculated as P (τ) = |R(τ)|. The SNR is found using

the fitted signal level at lag zero, R0, of the ACF. The spectral width is obtained as a decay

of the amplitude of the ACF with lag, i.e., a decrease in P (τ) with τ . Figure 3.3c shows the

lag powers for the ACF of Figure 3.3a. A detailed discussion of the physical significance of

spectral width in terms of signal composition is given by Ponomarenko and Waters [2006].

In order to actually calculate v, w, and SNR from the radar data, fits must be performed to

the lag phases and powers of the ACFs.

FITACF is the name of the traditional routine used to process SuperDARN ACFs. While

it has performed reasonably well since the inception of SuperDARN, its performance has

rarely been tested, mainly because of the absence of a realistic data simulator accounting for

both regular and random components of the backscatter echoes. Some other algorithms have

been developed over the last few years that attempt to improve data quality, but to compare

their performance to that of FITACF objectively, again one needs to have a controlled set of

inputs such as can be provided by a comprehensive data simulator. An appropriate simulator

has recently been developed by Ribeiro et al. [2013b] based on the collective scatter model

initially conceived by Ponomarenko et al. [2008].
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Figure 3.3: (a) A SuperDARN ACF from the Fort Hays West radar in Kansas. The data
were collected on 10 September 2011 at 04:30 UT from beam 7 and range gate 27. The real
part of the ACF is plotted in red and the imaginary part is plotted in blue. The ACF values
at individual lags are plotted as discrete points. Any lags that have been identified as bad
are plotted as open shapes. (b) The lag phases in radians for the ACF in (a). (c) The lag
powers for the ACF in (a).
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In this paper, we examine three different ways of extracting Doppler velocity, spectral width,

and SNR from SuperDARN ACFs. We first analyze the conventional FITACF package, in

use for almost thirty years. The second method is FITEX2, which is an iteration on a routine

called FITEX, which was developed in order to fit a specific multipulse sequence. Finally,

we test so-called LMFIT, which uses the Levenberg-Marquardt algorithm [Levenberg , 1944;

Marquardt , 1963] to fit the complex ACF in a single procedure. The aim of this analysis is

to compare the performances of the three routines and determine which is the most reliable

at extracting Doppler velocity and spectral width from SuperDARN ACFs.

3.2 Description of Fitting Methods

3.2.1 Common Routines

Some procedures are common to all three ACF fitting routines. This includes subroutines

which determine so-called “bad” lags, which are not suitable for use in the fitting process.

A lag is flagged as bad in initial processing if it is (i) contaminated by CRI, or, (ii) affected

by transmitter pulse overlap (a pulse was being transmitted when a sample should have

been recorded). All three fitting methods use the same such subroutines in initial processing

and therefore have the same lags flagged as bad. A “good” lag is one which is not bad,

and a minimum of four good lags must be present for fitting to occur. In Figure 3.3a,

lags that have been identified as bad in initial processing are plotted as open circles and

diamonds. Additionally, all three routines use the same algorithms to find a noise power

level, N , for each integration period, which is done by calculating the average P (0) of the

10 lowest power ACFs on a given beam sounding. The three routines will not have the same
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exact noise figure, however, because FITACF does some calculations with integers, whereas

FITEX2 and LMFIT use double precision numbers for all calculations.

3.2.2 FITACF

FITACF is the traditional method used for fitting SuperDARN ACFs. The version used

in this paper is distributed with the SuperDARN Radar Software Toolkit 3 1 (RST3). In

addition to the three common routines discussed previously, another bad lag routine is also

invoked by FITACF at the stage of fitting the ACF. This routine identifies additional lags as

bad depending on some empirical criteria for a single Doppler component (e.g. monotonous

power decay with increasing lags) [Ponomarenko and Waters , 2006]. This routine is not

used in the other two fitting routines because of recommendations made by P. Ponomarenko

and C. Waters at the 2006 SuperDARN meeting held at Chincoteague, Virginia. However,

in FITEX2 and LMFIT, any lags with power values less than the statistical fluctuation level

(σP = P (0)/
√

Navg , where Navg is the number of integrated pulse sequences) are assigned

a very low weight, so as to be effectively excluded from the fitting, in accordance with the

same recommendations. Lags flagged as bad by this checking are indicated by open triangles

in plots of the type shown in Figure 3.3.

To resolve all three major information parameters, v, w, and SNR, FITACF applies two

separate fitting procedures. The Doppler velocity is determined from the variation of phase

with lag, i.e.,

v =
λ

4π

∂φ

∂τ
, (3.1)

1http://superdarn.jhuapl.edu/software/index.html
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where λ is the radar wavelength. A linear least-squares fit is performed to determine δφ/δτ .

In determining the phase slope it is important to account for the 2π uncertainty in the phase

shift variation with τ . With FITACF, an initial estimate of the number of 2π phase cycles

across the full extent of lag time is made using the phases of the first four lags. Subsequent

lags are fit by advancing one lag at a time and considering whether to unfold a 2π phase

variation and then fitting the phase slope over the augmented set of lags. The fact that

FITACF must make an initial guess will be an important issue later in this discussion.

A completed FITACF phase-fit for the data shown in Figure 3.3 is shown in Figure 3.4a. The

phases corresponding to the data are plotted in purple, while the fitted solution is plotted

as a green dash-dot line. The solid circles and open diamonds represent the “good” and

“bad” lags, respectively. The Doppler velocity is calculated from the slope of the best-fit

line. Note that even though the data and fit are shown as a sawtooth pattern, the fitting is

actually performed as a straight line that extends over multiple 2π ranges. In this case, the

line-of-sight Doppler velocity calculated from the slope of the best-fit line is v = -916 m/s,

where the minus signifies motion away from the radar.

In order to resolve Doppler spectral width and power, a model is fitted to |R(τ)|. For the

entirety of this paper, we will assume that the ACF amplitude decays exponentially, i.e.,

|R(τ)| = R0e
−τ/td where td is a decay time constant [Ponomarenko et al., 2007]. For the

actual calculation of parameters, a second linear least-squares fit is performed to the natural

logarithm of the |R(τ)| of the ACF.

The resulting y-intercept of the fitted model represents the fitted lag zero power, R0, which

is then used to calculate SNR in dB,
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Figure 3.4: FITACF results for the data in Figure 3.3. (a) The phase fit used to resolve
Doppler velocity. The actual lag phases are plotted in purple and the fit is plotted in green.
(b) Log power fit used to resolve power (SNR) and spectral width. The actual lag powers
are plotted in red, and the fit is plotted in green.

SNR = 10 log10(R0/N). (3.2)

The slope of the linear log-power fit is used to calculate the exponential decay time of the

signal, which in turn is used to find the spectral width of the ACF, which is determined as
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the width of a model spectrum at a half-power level and for the exponential model can be

expressed as

w =
λ

2πtd
. (3.3)

A completed log-power fit is shown in Figure 3.4b. The lag powers are presented as red

symbols, while the best fit line is plotted in green. For this particular ACF, the FITACF

analysis gives w = 72 m/s and an SNR = 20 dB.

3.2.3 FITEX2

FITEX2 represents an iteration on an earlier routine called FITEX. FITEX was originally

developed as a new method to fit velocity data from a particular pulse sequence, known as

tauscan, which is described in Greenwald et al. [2008]. Similar to FITACF, a weighted linear

least-squares fit to the log of the ACF lag powers is used to resolve SNR and spectral width.

However, the phase fitting differs significantly. Instead of the linear phase fit, 120 phase

variation models spanning the 180◦ range at 1.5◦ intervals are calculated and compared

to the phases of the actual data. The number of models used is a trade-off between the

computational burden of doing the comparison, which increases with the number of models,

and the resolution of the velocity determination. These pre-determined models are then

fitted to the actual sawtooth pattern (e.g. Figure 3.3a) without the need for an initial guess

on the number of 2π cycles across the ACF lag range. Once this comparison is complete, the

model that produces the lowest root-mean-squared (RMS) error is chosen to be the best fit.

If this best fit produces an RMS error more than three standard deviations below the mean

error across all models, it is determined that the fit is valid (“good”), and v is calculated
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from the model. The major disadvantage of FITEX is that it only provides ≈ 25 m/s velocity

resolution because of the discrete steps in the phase slopes of the 120 models. The result of

the model comparison with the data in Figure 3.3 is shown in Figure 3.5.

Figure 3.5: FITEX2 model comparison results for the ACF in Figure 3.3. The orange circle
represents the lowest error model. The horizontal dashed line represents the error threshold
for a good model fit (3 standard deviations below the mean model error). The model velocity
which produces the lowest error is -914 m/s.

The subsequent version, FITEX2 was developed to solve Doppler velocity to arbitrary res-

olution. For improvement of Doppler velocity resolution, the best model phase fit from

FITEX is used as an initial guess for the bisection method algorithm described in Press

et al. [1992]. This provides arbitrary velocity resolution, while only increasing processing

time by the equivalent of 5-10 model comparisons. For the data in Figure 3.3, FITEX2

returns v = -916 m/s, W = 73 m/s, and SNR = 20 dB, which are essentially the same as

determined by FITACF. The FITEX criteria for a good fit are also used in FITEX2.
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3.2.4 LMFIT

In contrast to FITACF and FITEX2, which apply two separate fitting procedures for the

ACF phase and power, this routine performs a single model fit to a complex ACF consisting

of real and imaginary parts, so that v, w and SNR are resolved simultaneously. Specifically,

R0, Doppler frequency, and decay time constant are adjusted to fit a model to the empirical

data. Previously, Ponomarenko et al. [2008] used this method to fit ACFs in the special case

of “mixed scatter,” which occurs when a single range gate contains backscatter from two

distinct targets, which are usually ionospheric plasma irregularities and the terrestrial surface

(ground scatter). It should be noted that in this paper we are only testing the ability of

LMFIT to fit single-component scatter. The name LMFIT is given to this approach because

it utilizes the Levenberg-Marquardt non-linear fitting method [Levenberg , 1944; Marquardt ,

1963; Press et al., 1992]

In order to apply LMFIT, the ACF must be expressed as a single function. We choose to use a

modified version of an exponentially decaying harmonic function described by Ponomarenko

et al. [2008], i.e.,

R(τ) = R0e
−τ/tdej2πτfd (3.4)

where j =
√
−1, and fd = 1

2π
∂φ
∂τ

is Doppler frequency. In this equation, the first exponential

describes the decay of the signal amplitude, while the second (complex) exponential describes

the phase variation of the signal. Doppler velocity, spectral width, and SNR (in dB) can

then be calculated using Equations (3.5), (3.3), and (3.2), respectively.
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vd = λfd/2 (3.5)

For implementation of the Levenberg-Marquardt algorithm, the free C library MPFIT is used

[Markwardt , 2009]. This requires that initial guesses be provided on the three parameters

before the fitting starts. For this purpose, we used the Doppler velocity and spectral width

results from FITEX in order to provide initial guesses of fd and td. The decay time parameter

is limited to between .001 and 1000 s, which correspond to spectral widths of about 4000 and

.004 m/s, respectively. Values measured by SuperDARN radars typically range from zero to

hundreds of meters per second. The initial guess for R0 is set to the value of the real part of

the ACF at lag zero. A good fit status is returned from LMFIT if (i) the model comparison

yields a result with an error that is three standard deviations below the mean model error

(as in FITEX2); (ii) MPFIT returns a non-error status; and, (iii) R0 is greater than 150%

of the ACF error on the fit. ACF error is a measure of how far an ideal ACF generated

from the fitted parameters deviates from the ACF being fitted. The result of using LMFIT

on the ACF from Figure 3.3 is shown in Figure 3.6. LMFIT returns a Doppler velocity of

-917 m/s, a spectral width of 77 m/s, and an SNR of 20 dB.

3.3 Test Data

For thorough testing of all three fitting routines, we used artificial ACFs generated by a

simulator described in detail by Ribeiro et al. [2013b]. The simulator allows us to set desired

values for v, td (w) and SNR. Importantly, the simulator utilizes the collective scatter ap-

proach allowing for realistic simulation of the statistical variability of the backscatter echoes

by setting the appropriate number of averaged pulse sequences.
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Figure 3.6: LMFIT results for the ACF in Figure 3.3. The red and blue circles represent
the actual ACF, whereas the orange and blue lines represent the fitted ACF calculated from
the outputs of the LMFIT algorithm.

In order to cover a range of v and w, we simulate data over a two-dimensional grid of values

with fixed decay time and Doppler velocity at the nodes. We used the 8-pulse sequence

katscan (Figure 3.2) with basic lag of τ0 = 1.5 ms, radar frequency f0 = 12 MHz and

Navg = 35. The simulated data contains Doppler velocity values from 50 to 1950 m/s in

100 m/s steps, and decay time values from .01 to .1 s in .01 s steps. SNR is fixed at a

maximum of 25 dB. The effects of irregularity growth, particle precipitation, and velocity

spread are set to be negligible in the simulation parameters. There are 500 samples for

each combination of decay time and Doppler velocity, resulting in a total of 100000 ACFs.

Note that decay time is referred to here instead of spectral width because it is the more

fundamental value and does not have a linear relation with spectral width. Conversely,

Doppler velocity is used even though Doppler frequency is the more fundamental value,

because it does have a linear relationship with frequency. In the remainder of this paper,

decay time and Doppler velocity will be the values used to address error. Lag zero power error

will not be examined because although much information is potentially available from the
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backscattered power measurement, these data are little used and we simplify our presentation

here by not examining the error on the lag zero power estimate.

In order to simulate a realistic range profile of the backscatter echoes, each integration

period contains a band of 10 range gates containing scatter separated by 45 km. The SNR

decreases with range R as 1/R2 to account plausibly for the geometrical decay of the radar

transmission. This coefficient of 1/R2 is appropriate for ionospheric beam filling, as opposed

to hard target backscatter which would decay as 1/R4. Here R = (n + 1)× 45 km, where

n = 0− 9 is the range gate number.

3.4 Results

For the comparison, all 100000 simulated ACFs are fed into the three fitting routines, and

the results are stored. Three specific types of error are examined specifically for this exercise,

and these will be explained later on in the paper. For all three types, error will be calculated

in terms of the deviations from the inputs to the simulator. Regardless of type, error values

are only retained for the specific routines which return a good fit.

First, Doppler velocity estimate error is analyzed in a root-mean-squared (RMS) error fashion

to review the typical error magnitude, i.e.

σv =
√

〈(v − v0)2〉 (3.6)

where v is the fitted velocity, v0 is the velocity input to the simulator, and the brackets

indicate averaging over all of the valid fitted values. Second, presence of a regular bias/offset
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is analyzed in terms of mean (signed) deviation,

∆v = 〈v − v0〉 (3.7)

Finally, normalized RMS errors are examined for fitted decay times. The errors are calculated

in a similar fashion to the velocity errors, except that they are normalized by the original

input (to the simulator) decay time quantity, i.e.

σt =
√

〈[(td − td0)]2〉/td0 (3.8)

where σt is the error on the decay time estimate, td is the fitted decay time and td0 is the

decay time input to the simulator. True decay time errors are not discussed in this paper

because none of the fitting routines exhibit a bias in the calculation of decay time.

3.4.1 Velocity Errors

The velocity errors are most important because they a have direct influence on the main

SuperDARN product, high-latitude plasma circulation and electric field maps which are

based on the Doppler velocity estimates [Ruohoniemi and Baker , 1998]. Because of this,

velocity error should be the primary consideration in determining which fitting method

provides the best performance.



AJ Ribeiro Chapter 3. ACF Fitting 58

RMS

Figure 3.7 presents σv (Equation (3.6)) for three values of input td0 = 0.01, 0.03, and 0.10 s

which correspond to W ≈ 398, 133, and 39 m/s, respectively. The first feature that stands

out is that FITACF performs extremely poorly for higher (> 1 km/s) Doppler velocities.

Another feature that is apparent is that FITEX2 and LMFIT have some pronounced errors

with bad fits at td0 = .01 s, i.e., for very wide spectra. These bad fits occur in the same

velocity bins because FITEX processing is used to obtain an initial velocity for LMFIT. In

general, LMFIT outperforms the other methods for td0 < .03 (W > 133 m/s) and all

three fitting routines stabilize above this level. Figure 3.7 also illustrates that with longer

decay time (decreasing spectral width), the error in velocity estimates generally decreases

for all three methods.

Bias

Another aspect of the velocity estimation that must be examined is whether any of the

three fitting routines have a statistical high or low bias, i.e., a chronic under- or over-

estimation of velocity. To illustrate this, in Figure 3.8 we show mean velocity deviation, ∆v

(Equation (3.7)). Again, three different simulated decay times are pictured, 0.01, 0.03, and

0.1 s. It is immediately apparent that FITEX2 and LMFIT have no apparent bias, while

FITACF consistently produces velocities with the wrong sign for |v| ≥ 1000 m/s. This bias

begins when the simulated velocity is high enough to cause problems with the initial guess

of the number of 2π phase cycles. This effect will be discussed later in this paper.
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/[        ]

Figure 3.7: RMS velocity estimate errors for the three fitting routines for three different
decay times, .01, .03, and .10 s, which correspond to spectral widths of 398, 133, and 39
m/s, respectively. The x-axis shows simulated velocity. The y-axis represents RMS errors.
The red, purple, and green lines represent FITACF, FITEX2, and LMFIT, respectively.

3.4.2 Decay Time (Spectral Width) Errors

Spectral width is the second most scientifically important parameter that is returned from

these fitting routines, as it is typically used in conjunction with Doppler velocity to classify

backscatter as ionospheric or ground [Blanchard et al., 2009]. It has also been used as a
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/[        ]

Figure 3.8: True velocity estimate errors for the three fitting routines for three different
decay times organized by simulated velocity. The true error is calculated as fitted velocity
minus simulated velocity. The display format is the same as in Figure 3.7.

proxy to estimate the location of the open-closed magnetic field line boundary at auroral

latitudes [Chisham et al., 2007].

As was mentioned previously, spectral width error is examined in terms of decay time,

because this is the more fundamental parameter in (3.4). Also, only the RMS error is

considered, because none of the three routines exhibit a bias in terms of average true error.
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RMS

The results of this comparison can be seen in Figure 3.9, which shows σt (Equation (3.8))

for all three fitting routines. We found that, in contrast to σv, the absolute values of RMS

decay time errors are approximately proportional to the input td0 value, so we show errors

normalized by the respective simulated decay time, td0. Panels are shown for v0 = 50, 1050,

and 1950 m/s. It is apparent that simulated velocity does not have a strong effect on the

quality of the decay time estimates. In general, LMFIT provides better decay time estimates

than FITACF, and is also noticeably better than FITEX2 for td < 0.3 s. None of the three

routines, however, exhibit very poor performance.

3.4.3 Calculation Efficiency

Another factor which must be considered is which fitting routine is more stable and produces

a larger percentage of valid fits. After all, a routine might be able to estimate all parameters

perfectly, but if it can only fit one out of every ten ACFs which contain backscatter, it is

essentially useless. In order to test this, again all three routines were run on the file with

the 100000 simulated ACFs. FITACF produced 99714 good fits, while FITEX2 and LMFIT

both produced 99703 good fits. The fact that LMFIT and FITEX2 have the same number of

fits is a direct result of LMFIT using a FITEX style process for obtaining an initial velocity

guess. Regardless of this, all three routines produce a similar number of good fits.
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Figure 3.9: RMS decay time estimate errors for the three fitting routines for three different
simulated Doppler velocities. The display format is the same as in Figure 3.7.

3.5 Discussion

The major finding of this work is that FITACF velocity fitting is inferior to the other two

routines at velocities in excess of 1 km/s. The root of this problem lies in the fact that an

initial guess for 2π phase cycles is made. FITACF uses lags 1-4 to make an initial guess

on the number of 2π phase jumps to be expected across the entire lag time extent of the



AJ Ribeiro Chapter 3. ACF Fitting 63

ACF. When the velocity magnitude exceeds 1 km/s, the first 2π “flip” occurs within these

four lags so that missing one or two lags can lead to a wrong initial guess. This effect is

illustrated in Figure 3.10, which represents phases of two ACFs simulated with the input

velocity v = 1750 m/s. In the top panel only lag one is bad so that FITACF performs

an accurate fit and perfectly reproduces the simulated velocity value. In the bottom panel

both lags one and two are bad so that the use of the remaining lags three and four produce

wrong guesses on both the magnitude (generally lower in magnitude) and the sign of the

phase slope. Ultimately, this leads to a bad velocity estimate of -383 m/s. As we mentioned

before, FITEX2 and LMFIT do not use the four-lag guess procedure so they are not affected

by this artifact.

Another noticeable effect is that the magnitude of the σv generally decreases with increasing

td0. This is true of all three fitting routines, and occurs because the velocity fitting is

sensitive to decay time. As lag power decreases, the statistical fluctuation level σP remains

constant, and makes up a larger portion of the signal level in the ACF, which causes increased

uncertainty in the phase fit. This calculation is illustrated in Equation (3.9). Thus, as td

decreases, the number of lags with lower power increases, resulting in higher uncertainty in

the phase fit.

φ (τ) = tan−1 Im {R (τ)} ± σRe

Re {R (τ)} ± σIm
(3.9)

The third significant finding is that, except in the case of FITACF at high velocities, σv is

independent of the velocity itself. The reason for this is that, while the statistical errors

for ACF power depend on power itself, i.e. σP = R0/
√
Navg, ACF phase is an arbitrary

parameter so its fluctuations cannot depend on the phase magnitude. In fact, they are
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Figure 3.10: An example of a Bad FITACF velocity fit. (a) shows a good phase fit of a
simulated ACF with a velocity of 1750 m/s. (b) shows a bad phase fit of a simulated ACF
with a velocity of 1750 m/s.

also determined by the ACF power (more specifically, correlation coefficient) at a given lag

[Bendat and Piersol , 1986]. Therefore, theoretically one would not expect to observe velocity

magnitude effects on statistical fluctuations of any estimated parameters, including td.
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Conversely, σt is fairly constant across all tested values of td0. The proportionality of non-

normalized decay time errors, σd, to td0 can be illustrated using the propagation of ACF

power errors onto decay time. In estimating td, we are looking for a point on the time

lag axis which corresponds to the e-fold decay of ACF power. The propagation of errors

method gives us a respective decay time uncertainty, σd = σP

∣

∣

∂td
∂R

∣

∣. We are interested in the

decay time error at τ = td. With changing td the power uncertainty, σP , remains essentially

constant but the derivative term (inverted slope of P (τ) at τ = td) increases or decreases

proportionally so that σd ∝ td. Detailed theoretical analysis of statistical fluctuations lies

beyond the scope of this manuscript, but we plan to address it in a future paper.

Table 1 presents a summary of the performance characteristics of all three fitting routines.

Note that some of the errors presented here have been normalized by the simulated param-

eters. For example, a normalized decay time error is calculated as |t0 − t|/t0. Mean and

median errors are shown for velocity and decay time. In both median and mean comparisons,

LMFIT has the lowest errors for all fitted parameters. Although several of the results are

very close the results are unanimous. The sole weakness of LMFIT is a longer run time.

Future work could focus on developing a new method of providing LMFIT with an initial

velocity guess in order to sever the tie to FITEX, possibly eliminating the bad fits seen in

the top panel of Figure 3.7.

3.6 Summary and Conclusions

After examination of the error characteristics and effectiveness at extracting estimates from

ACFs, we conclude that LMFIT is the fitting routine which generally performs best in es-

timating ionospheric parameters on the basis of SuperDARN radar measurements. The
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conventional routine FITACF performs very well at |v| ≤ 1000 m/s, but at higher velocities

eventual data contamination at the shortest lags causes it to produce systematically poor

estimates. In sum, LMFIT significantly outperforms FITACF and slightly outperforms FI-

TEX2. Finally, we note that the findings and routines reported here are applicable to other

multipulse radar systems that have been designed to overcome the range ambiguity/velocity

aliasing dilemma.
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Abstract

Expansion of the Super Dual Auroral Radar network to midlatitudes has provided new

opportunities to study the large-scale dynamics of midlatitude ionospheric electric fields. The

radars run continuously and cover a large field of view, meaning that ionospheric dynamics

can be analyzed over a larger area than previously possible. We have taken two years of quiet-

time, nightside radar data from the six North American midlatitude SuperDARN radars and

generated average convection patterns. The electric fields responsible for the plasma drifts

are likely generated by the F region dynamo. We find that in general, the zonal flows are

much larger than the meridional flows and plasma drifts are primarily westward throughout

the night. The measurements presented here are in good agreement with previous studies

and empirical models which used data from ISRs. A new result is the identification of a

large latitudinal gradient in the winter zonal flows. Large electron densities in the southern

hemisphere suggest that this gradient is likely due to conjugate effects, and we discuss a

possible mechanism for generation of this feature involving the F region dynamo.
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4.1 Introduction

4.1.1 Background Theory

To first order, midlatitude plasma must corotate with the earth [Mozer , 1973; Kelley , 2009].

This can be shown as follows. Consider a rotating earth with a rotating neutral atmosphere,

and a nonrotating ionosphere. In the nonrotating frame, the neutral wind due to rotation,

UR, drives a current J = σ · (UR × B) where σ is ionospheric conductivity, which varies

with altitude and B is the magnetic field. Due to variation in conductivity, the current J

is not divergence-free and a polarization electric field builds up in the nonrotating frame in

the conducting region of the ionosphere. This electric field continues to build up until the

induced electric field is canceled, such that J = σ · (ER + UR × B) = 0. Note that the

current disappears when the plasma E × B drift velocity is equal to the rotation velocity

of the earth. When we transform back into the rotating frame, we find that E = 0. This

means that the electric field in the nonrotating frame causes the ionosphere to corotate with

the earth. The neutral atmosphere does not perfectly corotate with the earth, however, as

there are variations in neutral winds. This causes midlatitude plasma to deviate from perfect

corotation. The existence of midlatitude plasma drifts in the rotating frame thus indicates

that electric fields must also be present.

Quiet-time midlatitude F region electric fields have long been thought to be caused by the

dynamo action of the neutral winds [Rishbeth, 1971; Richmond et al., 1976; Fejer , 1991;

Buonsanto et al., 1993]. The mechanism behind the generation of dynamo electric fields

is not dramatically different from the mechanism which drives corotation. The basic idea

behind dynamo theory is described in Rishbeth and Garriott [1969]. When a wind, U, blows
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across the geomagnetic field, it drives a current equal to

J = σ · (U×B) (4.1)

where σ is the tensor conductivity. This current does not necessarily satisfy the condition

∇ · J = 0, which causes charge to accumulate in regions where this condition is not sat-

isfied. This causes an electrostatic polarization field which makes the current nondivergent.

Additionally, charge will accumulate at the top and bottom of the conducting layer because

the current cannot flow into a region of low conductivity. This induces an electric field which

forces the current flow to be horizontal.

Because the current is horizontal we can now use the layer conductivity, σ′, and the total

electric field, Et, to describe the current:

j = σ
′ · Et = σ

′ · (U×B−∇Φ) (4.2)

where −∇Φ is the electrostatic polarization field, Ep. This polarization electric field is

typically on the order of a few millivolts per meter. An additional simplification can be

made if one assumes that U and B are independent of height through the conducting region.

This allows for the use of height integrated conductivity, Σ′, such that

J = Σ′ · (U×B−Ep). (4.3)

In steady state, with a fully formed polarization electric field, the polarization field cancels

the field due to the wind, such that Ep = −U×B and J = 0. In this case, the plasma and

the neutrals drift together in the directions perpendicular to the magnetic field [Burnside
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et al., 1983]

The dynamo effect which has been described can occur in either the E or F regions of

the ionosphere. During the day, any Ep which is set up in the F region is thought to be

neutralized by current flow between the F and the more highly conducting E region. The

midlatitude plasma drifts which will be discussed in this paper occur mainly at night. At

night time, the upper thermospheric winds are relatively large and the E region conductivities

are small. Because of this, the dominant night time driver of convection is generally thought

to be the F region dynamo.

Large values of parallel conductivity allow large-scale electrostatic fields to map between the

hemispheres [Burnside et al., 1983; Fejer , 1993; Buonsanto et al., 1993]. Since dynamo pro-

cesses can be occurring simultaneously in conjugate hemispheres, the polarization fields can

be mapped between hemispheres. The hemisphere with the larger conductivity determines

the dominant electric field and hence the local electric field in the conjugate hemisphere.

Burnside et al. [1983] found that drift velocities observed by the Arecibo ISR were well ex-

plained by dynamo theory, provided that electrostatic fields from the conjugate hemisphere

were considered.

4.1.2 Previous Work

Historically, studies of midlatitude convection have been done using data from incoherent

scatter radars (ISRs), and specifically, the Millstone Hill ISR. Two such studies are Richmond

et al. [1980] and Buonsanto et al. [1993]. Richmond et al. [1980] presented quiet time drift

observations from four ISRs and derived a global empirical model, but we will focus on their

results from Millstone Hill, and specifically the nighttime zonal drifts.
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Richmond et al. [1980] used Millstone Hill measurements centered on 57◦ magnetic latitude.

In all seasons (winter, summer, equinox), they found westward plasma drifts throughout

the night. In the winter, the eastward velocities peaked at about -50 m/s around midnight

MLT and approached 0 m/s towards dusk and dawn. In summer, they also found westward

plasma drifts throughout the night but varying between about -20 and -50 m/s eastward

with MLT. At equinox, they again found westward plasma drifts throughout the night, with

the velocities peaking at about -35 m/s at midnight and approaching 0 m/s towards dusk

and dawn.

Buonsanto et al. [1993] performed a similar study to Richmond et al. [1980], again using

Millstone Hill ISR measurements and found similar results for the zonal plasma drifts. Buon-

santo et al. [1993] showed a diurnal variation in the meridional plasma drifts. In general,

they found northward drifts from about 0-12 LT, maximizing at about 20 m/s, southward

drifts of about 10 m/s from 12-20 LT, and small positive drifts from 20-24 LT, regardless of

season. Buonsanto et al. [1993] also found some solar cycle dependencies in the drift pat-

terns for all three seasons. They explained the differences in zonal drifts between summer

and winter as a result of variations in the dynamo electric fields in the local and conjugate

hemispheres. In winter, the conjugate points to the Millstone Hill nighttime measurements

are sunlit for a large portion of the night, meaning that the southern hemisphere has the

dominant conductivity.

In this study, we aim to derive and analyze statistical midlatitude convection patterns cov-

ering a larger latitudinal swath than was possible previously. ISRs only provide spatial

coverage within a few hundred kilometers range from the radar. As a result, previous stud-

ies using ISRs average their measurements and show plasma velocities for only a single point

at the center of the field of view. Conversely, SuperDARN radars can make measurements
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over thousands of kilometers from the radar, allowing the measurements to be analyzed over

a span of latitudes. In addition, ISRs are typically only run for short, intermittent periods,

meaning that the statistical patterns in these previous studies were derived using a rela-

tively small number of measurements. The power requirements of SuperDARN radars are

such that they run continuously and large quantities of data are generated in relatively short

times.

Baker et al. [2007] presented a study of midlatitude convection patterns using midlatitude

SuperDARN data. These results disagreed with previous studies performed using Millstone

Hill ISR data because of ground scatter contamination of SuperDARN data. Ribeiro et al.

[2011] developed a classification algorithm which solved the ground scatter problem. In this

paper, we present new convection patterns derived from two years (2011-2012) of midlatitude

radar data from six different radars processed using the algorithm of Ribeiro et al. [2011]. We

compare our derived patterns with those previously reported in Richmond et al. [1980] and

Buonsanto et al. [1993]. Additionally, we compare the patterns to and empirical convection

model presented by Richmond et al. [1980]. We will see that the convection patterns derived

using SuperDARN are in good agreement with previous studies and empirical models.

4.1.3 Dataset

The Super Dual Auroral Radar Network (SuperDARN) is an international chain of phased-

array HF radars which monitor plasma dynamics in the E and F regions of the ionosphere

[Greenwald et al., 1985; Chisham et al., 2007]. During normal operation, the radars scan

across 16-24 azimuthal look directions (beams) separated by 3.24◦, and have 75-100 range

gates, separated by 45 km. The targets for SuperDARN radars are decameter scale plasma

irregularities, which are density structures caused by plasma instability processes [Fejer and
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Kelley , 1980; Keskinen and Ossakow , 1983; Tsunoda, 1988]. In the F region, the plasma

irregularities drift at the E × B velocity [Ruohoniemi and Baker , 1998].

SuperDARN radars have historically been built at ≈60◦ latitude in order to maximize cover-

age of the auroral oval. With the construction of the radar at Wallops Island, Virginia, USA,

SuperDARN F region coverage expanded to latitudes as low as 50◦ magnetic latitude. This

was prompted by the need to improve coverage of the expanded auroral oval during storm

periods [Baker et al., 2007]. Soon after its construction, an unexpected type of nightside F

region irregularity was observed frequently, and was first reported by Greenwald et al. [2006].

These radar echoes were observed on most geomagnetically quiet nights, exhibited Doppler

velocities and spectral widths typically in the tens of meters per second, and were thought

to be backscatter from F region irregularities.

Because of the low Doppler velocity and spectral width of the backscatter from these irreg-

ularities, they proved difficult to distinguish from ground echoes in an automated manner.

Ground echoes occur when the radar signal experiences enough refraction in the ionosphere

to bend it back down to the ground, where the signal reflects back to the radar. Ribeiro et al.

[2011] demonstrated a new classification algorithm for identifying this type of low velocity

ionospheric backscatter. Subsequently, a statistical study was performed by Ribeiro et al.

[2012] which confirmed that this type of backscatter was observed only on the nightside and

demonstrated that the irregularities were both subauroral and equatorward of the ionospheric

projection of the plasmapause. Using ray-tracing analysis, de Larquier et al. [2013] was then

able to show that the irregularities responsible for this subauroral ionospheric scatter do in

fact reside in the F region.

We have processed data collected from the North American midlatitude SuperDARN radars

in 2011-2012 with the classification algorithm of Ribeiro et al. [2011], and selected for only
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low-velocity events as was done in Ribeiro et al. [2012]. The fields of views of the radars are

shown in Figure 4.1. Selecting for only low velocity events serves to filter out data which could

be auroral in nature. Furthermore, we have selected for periods with Kp < 3, and only used

data from magnetic latitudes between 52◦ and 58◦. The lower boundary was chosen because

it is approximately the lowest latitude at which the radars generate F region measurements,

and the upper boundary was chosen to be below the usual equatorward boundary of the

auroral zone during quiet-time [Ribeiro et al., 2012].

Figure 4.1: Fields of views of the six North American midlatitude radars used in this study.
From west to east, the radars are: Christmas Valley West, Christmas Valley East (Oregon),
Fort Hays West, Fort Hays East (Kansas), Blackstone, and Wallops Island (Virginia).
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4.2 Convection Mapping

In order to generate average convection patterns from SuperDARN data, some processing is

done on the Doppler velocity data. Data are binned into magnetic latitude-magnetic local

time (MLT) grid, similar to what was done by Ruohoniemi and Baker [1998]. This grid

can be seen in Figure 4.2. The grid cells are 1◦ latitude by whatever MLT span makes

the cell closest to a square while allowing for an integer number of cells to span 24 hours

in MLT at that latitude. Over the course of the night, the plasma drift within a cell is

viewed over a range of radar look directions. Because of this, within each grid cell, Doppler

measurements are binned by azimuth in 10◦ increments. The azimuth bins are shown as an

inset in Figure 4.2.

The convection mapping starts by binning data from a single radar in magnetic latitude,

MLT, and azimuth. The velocity data is averaged over ten minute (UT) intervals, that is,

ten minutes of data from a single radar is binned, and the median vector in each azimuth

bin within each grid cell is chosen to be the velocity for that ten minute time interval. This

is done for each individual radar for each day during the 2011-2012 time period.

Once this processing step is done, the data from all radars is combined into a single master

grid. This grid contains all of the ten minute averaged vectors from all six North American

radars from the two year time interval. Next, the median velocity within each azimuth bin

within each master grid cell is chosen to be the typical line-of-sight velocity at that magnetic

latitude, MLT, and azimuth. Because the radar line-of-sight (LOS) velocity is the projection

of a two-dimensional flow vector onto the radar beam azimuth, there is a cosine variation

of velocity with azimuth. Therefore, to solve for the average two-dimensional flow vector in

each grid cell, a cosine function is fit to the variation of line-of-sight velocity with azimuth
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Figure 4.2: A view of the grid used for convection mapping. The size of the grid cells is
1◦ in magnetic latitude by the magnetic local time span which makes the cell closest to a
square. Inset is an expanded view of the 10◦ azimuth bins within each grid cell.

in each cell using the non-linear least squares fitting routine in the Numpy Python library

[Dubois et al., 1996; Ascher et al., 1999]. An example of such a fit is shown in Figure 4.3

with Doppler velocity on the y-axis and azimuth in degrees shown on the x-axis. The typical

velocity value within each azimuth bin is plotted as a circle, with the size of the circle

proportional to 1/
√
n where n is the number of measurements within each azimuth bin. The

fit is weighted by a factor of 1/
√
n so that the most reliable medians are given preference.

The best fit line is plotted as a gold curve, and the resulting two-dimensional velocity is

plotted as a red star.
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Figure 4.3: An example of fitting a cosine to the typical line-of-sight velocities in each
azimuth bin within a single grid cell. The median Doppler velocities at each azimuth are
plotted as black circles, and the size of the circle is proportional to the square root of the
number of measurements within each bin. The fit is weighted by this factor, so the larger
circles are fit more closely than the small ones. The best-fit cosine is shown in gold, and the
resulting flow vector is plotted as a red star. Here, the result of the fit is a two-dimensional
vector with a velocity magnitude of 55.8 m/s and an azimuth of 281.9.

4.3 Results

The resulting convection patterns, separated by season (winter: November-February; sum-

mer: May-August; equinox: March-April, September-October), are shown in Figures 4.4a, b,

c. These maps are centered on 0 MLT. Figures 4.5a, b, c show the number of measurements

in each grid cell. It is worth noting that there is significant variation between seasons. In

general, the highest velocities occur in winter and the lowest in summer. For all seasons,

the flow is predominantly westward throughout the night, which indicates a predominantly
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northward electric field. The zonal flows are typically on the order of 20-40 m/s, while the

meridional flows are on the order of 10 m/s. Near the dawn and dusk boundaries, the patterns

begin to exhibit erratic behavior. As shown in Figure 4.5 this is probably due to decreasing

statistical significance of measurements, rather than to actual physical phenomena.

In Figures 4.6 and 4.7, the velocities are plotted again but as lines with a single color-coded

line for each 1◦ latitude interval. This format provides an easy way of comparing the mag-

nitudes of the flows as a function of latitude. Zonal velocities (positive eastward) are shown

in Figure 4.6, and meridional velocities (positive northward) are shown in Figure 4.7. It can

be seen that in all three seasons, meridional velocities are generally small when compared to

the zonal velocities.

It is apparent from Figures 4.6 and 4.7 that the dominant flow throughout the night is west-

ward, which implies a northward electric field. We can then use the solved zonal components

of the convection velocities and the relationships E = − v ×B and Φ = −
∫

E · dl in

order to calculate the potential drop and average electric field across the 52◦-58◦ latitudinal

interval at different MLT sectors. The results are shown in Figure 4.8. In this figure, we

have used a magnetic field z-component value of 40 µT . We have calculated a single average

value of the meridional electric field assuming that the distance between lines of magnetic

longitude is 111 km. Although these calculations are somewhat crude, they can give us an

idea of the magnitude of the electric fields seen across this interval of magnetic latitude. We

can see that, as would be expected from the drift velocities, the largest fields are seen in

winter, the next highest in equinox, and the smallest in summer. In winter, the maximum

is seen at midnight at 2 mV/m. In equinox, again the maximum is seen at midnight, and

the average electric field value is about 1.2 mV/m. In summer, the largest electric fields are

seen pre-midnight, and has a maximum value of about 1 mV/m.



AJ Ribeiro Chapter 4. Midlatitude Convection 80

0

9

17

26

34

43

51

60

a

b

c

V
e
lo

c
it

y
 [

m
/s

]

Velocities, Winter, Kp < 3

Velocities, Summer, Kp < 3

Velocities, Equinox, Kp < 3

18 6

80

60

0

618

18 6

0

0

80

80

60

60

Figure 4.4: Panels a, b, and c show the convection patterns which were calculated for
winter, summer, and equinox, respectively. Note that the patterns get a bit erratic for all
seasons on the dawn and dusk fringes, which is probably due to a lack of measurements, and
not due to actual physical processes.
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Figure 4.6: Fitted zonal velocities by latitude (positive eastward). The top row shows the
results for winter, the middle row shows the results for summer, and the bottom row shows
the results for equinox. Note that the plots are centered on midnight MLT.

4.4 Discussion

4.4.1 Data Comparison

It is worthwhile to compare the results presented here with the previous studies. The zonal

velocities shown in Figures 4.6 and 4.7 are in very good agreement with those calculated using
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Figure 4.7: Fitted meridional velocities by latitude (positive northward). The top row
shows the results for winter, the middle row shows the results for summer, and the bottom
row shows the results for equinox. Note that the plots are centered on midnight MLT.

the Millstone Hill ISR reported in Richmond et al. [1980] and Buonsanto et al. [1993]. The

zonal flows reported by Richmond et al. [1980] are plotted as individual points in Figure 4.9.

The top panel shows winter, the middle panel shows summer, and the bottom panel shows

equinox. The zonal flows reported by Buonsanto et al. [1993] are shown in Figure 4.10.

The meridional velocities are also in good agreement with those calculated using data from
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Figure 4.8: Average northward electric fields observed by the SuperDARN radars through-
out the night. Assuming a magnetic field z-component of 40 µT and 111 km separation
between lines of magnetic longitude, the total potential drop is calculated for one-hour MLT
steps, and then the average electric field is found by dividing my the distance. Winter is
plotted in blue, summer in green, and equinox in red.

Millstone Hill in Buonsanto et al. [1993], which are shown in Figure 4.11. Note, that the

meridional velocities cannot be compared with the results presented in Richmond et al. [1980]

because in that paper, upward/poleward drifts were shown instead of just poleward.

4.4.2 Empirical Model Comparison

Previous studies have derived empirical midlatitude convection patterns from Millstone Hill

data (e.g. Richmond et al. [1980]; Wand [1981]). We will make comparisons between the

northward electric field in this paper, as shown in Figure 4.8, and the empirical model

reported by Richmond et al. [1980], as shown by the solid lines in Figure 4.9. The right side

axis shows approximate electric field values, as seen in Wand [1981]. In winter, Richmond

et al. [1980] found a maximum electric field of about 1.5 mV/m around midnight, with a
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Figure 4.9: Zonal plasma drifts and calculated empirical model drifts reported in Rich-
mond et al. [1980]. The individual scatter points represent measured drift velocities, while
the smooth curve indicates the velocity predicted by the empirical model. The data used
were from the Millstone Hill ISR, centered on 57◦ magnetic latitude. The right axis shows
approximate electric field values, from Wand [1981]. Figure from Richmond et al. [1980].
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Millstone Hill Zonal Velocities

[Buonsanto et al., 1993]

Figure 4.10: Zonal plasma drifts reported in Buonsanto et al. [1993]. The upward triangles
represent data from solar maximum, and the downward triangles represent data from solar
minimum. The data used were from the Millstone Hill ISR, centered on 57◦ magnetic latitude.
Figure from Buonsanto et al. [1993].

value of about 1 mV/m at 1800 LT, and crossing 0 mV/m at about 0600 LT. Although the

maximum found here is larger than that found by Richmond et al. [1980] by about 0.5 mV,

the rest of the results are consistent.
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Figure 4.11: Meridional plasma drifts reported in Buonsanto et al. [1993]. The upward
triangles represent data from solar maximum, and the downward triangles represent data
from solar minimum. The data used were from the Millstone Hill ISR, centered on 57◦

magnetic latitude. Figure from Buonsanto et al. [1993].

In summer, Richmond et al. [1980] predicts a fairly steady electric field throughout the night

at around 1 mV/m. This is in good agreement with our observations. During equinox,

Richmond et al. [1980] predicts an electric field of about .75 mV/m at 1800 LT, 1 mV/m at
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midnight, and slightly less than 1 mV/m at 0600 LT. Again, this is fairly consistent with

our observations.

In general, the empirical model of Richmond et al. [1980] agrees very well with our ob-

servations. Possible causes for any discrepancies are (1) Millstone Hill observes a much

smaller latitudinal range than the SuperDARN midlatitude radars, and (2) does not run

continuously. Additionally, it is possible that some of the SuperDARN data here has some

ground-scatter contamination. In the future, the results presented in this paper can be used

to improve empirical models of midlatitude F region dynamics. The results presented here

could also be used to improve wind models and thus improve theoretical models, (e.g. Roble

et al. [1988]; Richmond et al. [1992]).

4.4.3 Conjugacy Effects

In Figure 4.6 during winter, there is a large latitudinal gradient in the zonal velocity from

about 1800 MLT until just after midnight MLT. We argue that the situation across the

terminator in the southern hemisphere is controlling the latitudinal variation in the zonal

electric fields seen in the northern hemisphere. As was mentioned earlier, because of the

large conductivity of magnetic field lines, conditions in the conjugate hemisphere are impor-

tant for midlatitude dynamics [Burnside et al., 1983; Fejer , 1993; Buonsanto et al., 1993].

In Figure 4.12, we show the conjugate footpoints of the range-beam cells from the North

American SuperDARN radars between 52 and 58 degrees magnetic latitude plotted as black

dots. These conjugate footpoints have been determined using the Tsyganenko T96 model

[Tsyganenko, 1995]. We also show the terminator for four different times, 0100, 0400, 0700,

and 1000 UT, which correspond approximately to 1800, 2100, 0000, and 0300 LT over the

middle of North America. We can see that the conjugate points to much of the collective
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field of view of the North American radars is sunlit throughout much of the night, which we

would expect would lead to higher conductivities in the southern hemisphere.
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Figure 4.12: A plot of the conjugate of coverage region in winter. The range beam cells
of the North American midlatitude SuperDARN radars are plotted as black dots. The four
plots are for 0100, 0400, 0700, and 1000 UT, which correspond to approximately 1800, 2100,
0000, and 0300 LT over North America. Note that for much of this period, the coverage
region straddles the terminator.

We can see that the region of observations straddles the terminator throughout the night with

the peak alignment occurring at 7 UT which corresponds to approximately midnight over

central North America. Naively, one might expect a nonlinear increase in plasma density in
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the vicinity of the terminator, which could lead to the latitudinal gradient which is observed

in the winter panel of Figure 4.6. This is illustrated in Figure 4.13. The red line in the line

plot on the right shows the nonlinear Pedersen conductivity profile which we would expect

to arise from the nonlinear increase in assumed plasma density. The steps in the dynamo

process are as follows:

1. A uniform zonal neutral wind (Uz) blows westward in the vicinity of the terminator.

2. The wind drives a current, J = σ · (U × B). Because of the gradient in Pedersen

conductivity, this current is not uniform, leading to the three different current values,

J1,J2,J3.

3. This current is not divergence free, and charge builds up in places where the divergence

does not equal zero. If we assume that the wind velocity and magnetic field do not

vary with height throughout the conducting region, we can say that ∇ · J ∝ dσp/dΛ.

4. The charge accumulation causes polarization electric fields to develop, and because the

divergence of the current varies with latitude (blue line in the line plot on the right),

so too do the polarization electric fields, E1,E2,E3.

5. The polarization electric fields drive zonal plasma drifts Vz1, Vz2, Vz3 whose magnitudes

vary with latitude due to the latitudinal variation in the polarization electric fields.

Note, that the larger velocities are observed at higher latitudes, which is precisely what

we observe in the winter panel of Figure 4.6.

In order to test the viability of our hypothesis, we have examined electron density as predicted

by IRI [Bilitza, 2001]. Figure 4.14 shows IRI electron densities along the 100◦ west meridian

at approximately midnight over North America for the northern and southern hemisphere
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Figure 4.13: A cartoon illustrating a possible mechanism responsible for the latitudinal
gradient observed in the winter zonal flows. In (1), a uniform wind blows in the vicinity
of the terminator. This wind generates currents, Ji, in the U × B direction. Variability
in conductivity (sigma in the line plot) causes the current to not be divergence free, which
causes charge accumulation. This charge accumulation generated polarization electric fields,
which in turn drive E×B plasma drifts. These plasma drifts vary with latitude because the
divergence of J varies with latitude, due to the nonlinearity of the conductivity profile.

F regions. Additionally, the terminator at 300 km altitude in the southern hemisphere is

plotted as a vertical black line. It can be seen that F region densities are much higher

in the southern hemisphere than in the north. Burnside et al. [1983] states that when the

polarization electric field due to the dynamo effect has reached steady state, the zonal plasma

drift is determined by the equation

Vz =
ΣNUzN + ΣSUzS

ΣN + ΣS
(4.4)

where Σ is height-integrated Pedersen conductivity and the z subscript indicates zonal veloc-

ity. Following this, we argue that any polarization electric fields generated by the southern
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hemisphere F region dynamo should dominate those generated by the northern hemisphere

F region dynamo.
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Figure 4.14: Electron densities according the the IRI model [Bilitza, 2001] along the 100◦

west meridian. The blue line shows the F region peak density in the southern hemisphere,
and the green line shows the F region peak density in the northern hemisphere. The latitude
of the terminator in the southern hemisphere is plotted as a vertical black line.

This IRI profile of southern hemisphere F region density opposes the mechanism which

we propose could cause the latitudinal gradient in winter zonal velocities. First, electron

densities are actually larger in the dark region than in the sunlit region. Additionally,

the trend in electron density is linear rather than nonlinear. This could be the reality of



AJ Ribeiro Chapter 4. Midlatitude Convection 93

the situation, as the points conjugate to the North American radar fields of view lie over

the Weddell Sea Anomaly, which is a region of enhanced electron density at night during

southern hemisphere summer (northern winter) [de Larquier et al., 2011; Milan et al., 2013].

This profile could also be inaccurate due to a deficiency in IRI over the southern pole due

to a lack of electron density measurements. The reality of the situation is that the physics

are much more complex than what is shown in Figure 4.13, and should be studied further

in future work.

4.5 Conclusions

We have presented, two-dimensional nightside quiet-time midlatitude subauroral convection

patterns generated using SuperDARN data across the 52◦-58◦ latitudinal interval. We have

found that the flows are predominantly westward throughout the night. The fields associated

with these flows show a significant seasonal variation, and they are largest in winter, smallest

in summer, and in between during equinox. The results presented here are generally in

good agreement with observations from the Millstone Hill ISR, and with empirical models

generated using those results.

The broad consensus with previous empirical data that the flows should be westward through-

out the night, with a maximum around midnight suggests that the electric fields responsible

for the flows observed by the North American midlatitude SuperDARN radars are in fact

driven by the F region dynamo. Furthermore, we argue that due to the much larger F region

conductivity in the southern hemisphere than in the northern hemisphere, conjugacy effects

are likely responsible for the large latitudinal gradient seen in the zonal flows in winter.
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Chapter 5

Discussions/Conclusions/Future Work

Here we discuss the significance of my findings and discuss directions for future research. We

review here each of the research themes in the order in which they were presented.

5.1 A realistic radar data simulator for the Super Dual

Auroral Radar Network

The data simulator presented in Chapter 2 represents a powerful tool which can be used

to perform several functions and the results revealed several interesting facts. First, the

simulator is able to generate ACFs with the expected shape and is able to capture the

inherent statistical fluctuations which are present in real data. This lends credence to the

backscatter model which was used as the basis for the simulator [Moorcroft , 2004].

I applied the data simulator to test SuperDARN data processing algorithms, but there are

95
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a number of other topics which could be addressed in the future using the simulator. One

such study, now in process at the University of Saskatchewan, is concerned with the inherent

variability in Doppler velocity within SuperDARN measurements due to the random nature

of the targets. Another study which is underway is looking at the effect of cross range

interference (CRI) on SuperDARN data. CRI occurs when there is range ambiguity in the

pulse returns. Other work which could be performed would be to test the implementation

of new pulse sequences and examining the effect of different geophysical processes on ACF

shape, e.g. irregularity decay versus Doppler spectrum spread.

In addition, several further advances could be made to increase the realism of the simulator.

One such advance would be to implement a more realistic model of the irregularities. The

goal of the work presented here was to generate a simulator which was able to generate

realistic radar data using a simple physical model. We were not, however, concerned with

the detailed physics of plasma irregularities in the ionosphere. As theoretical research into

instability processes progresses, particularly at midlatitudes (e.g., Greenwald et al. [2006]),

parameters pertaining to specific types of irregularities and instabilities could be used in

the simulator. This would allow for the modeling of radar returns from different types of

plasma irregularities, providing insight into the viability of different instability mechanisms

for generating the plasma irregularities and explaining the observations.

A more realistic ionosphere could be used in the model. In its current implementation,

the simulator assumes ideal backscatter from identical scatterers in all range gates equally.

This is unrealistic because, in reality, magnetic aspect conditions play an important role in

determining whether the radar receives backscatter from a particular range gate. Specifically,

the radar rays need to be nearly perpendicular to the background magnetic field to generate

backscatter from magnetic field aligned plasma irregularities. This could be incorporated
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using HF ray-tracing analysis. For example de Larquier et al. [2013] presented ray tracing

results using SuperDARN radars and the IRI model [Bilitza, 2001]. By combining this type

of ray-tracing model with the simulator, aspect conditions could be accurately accounted

for.

Finally, the simulator has general utility beyond the specific work of SuperDARN. That is,

a similar type of simulator could be used to model backscatter for different types of radars.

The specific details of the implementation would have to change, but the fundamentals could

be essentially the same. Specifically, the concepts of generating scatterers and sampling them

in a realistic fashion would stay the same, but the scatterer model and radar implementation

would have to be customized to the application. One broad category in which this might be

an attractive endeavor would be to advance the ability to distinguish between radar “targets”

(desired backscatter) and “clutter” (unwanted backscatter). If one is able to accurately model

returns from both targets and clutter, it would then be possible to generate large quantities

of data which could be used to both train and test different classification methods (e.g.,

support vector machines, artificial neural networks, etc.).

5.2 A comparison of SuperDARN ACF fitting meth-

ods

The analysis of ACF fitting methods presented in Chapter 3 is important not just for the

SuperDARN community, but also for the space science community as a whole. In this

manuscript, three different algorithms for extracting ionospheric parameters (Doppler veloc-

ity, and spectral width) were tested. It was found that there was a substantial weakness in

the traditional fitting method, FITACF, which has been in use for over 20 years. This flaw
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had been known about for some time and highlighted for specific extreme cases, but the

current work is the first to definitively quantify the statistical significance of the problem.

In recent years, two viable alternatives to FITACF have been introduced but there has been

vigorous debate within the SuperDARN community regarding the pros and cons of embrac-

ing a new approach after so many years using FITACF. Although this flaw only affects data

which meet the conditions of large Doppler velocity and several bad lags within the first few

ACF lags, it results in extremely large errors in Doppler velocity measurements. FITACF

was also shown to, on average, underestimate Doppler velocities because of this issue. Both

of these new methods, FITEX2 and LMFIT, were tested, and both provided a significant

improvement over FITACF. Specifically, LMFIT was shown to outperform FITEX2 for data

with large spectral widths. Thus is is my recommendation that LMFIT be used as the

standard SuperDARN data processing algorithm.

The improvement of SuperDARN Doppler velocity estimates is a significant result for the

space science community at large. Doppler velocity is the most widely used SuperDARN data

product, and since 1994, over 500 scientific papers have been published using SuperDARN

data. Improving Doppler velocity estimates has the effect of improving the science done with

SuperDARN.

Extraction of Doppler velocity from SuperDARN ACFs represents the first step in producing

the convection patterns for which SuperDARN is well known. A byproduct of the convection

map solution is a cross polar cap potential estimate. SuperDARN velocity measurements

have been found by many studies to be generally smaller in magnitude than those measured

by other instruments, e.g. DMSP [Drayton et al., 2005; Gillies et al., 2009; Xu et al.,

2008]. Although the effect of refractive index certainly plays a role in this discrepancy, the

underestimation of Doppler velocities by FITACF may also be a contributing factor. Moving
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to a new algorithm for fitting SuperDARN data with no bias in estimating magnitudes could

help to partially resolve this issue.

Finally, the improvement of SuperDARN Doppler velocity estimates has the effect of improv-

ing the convection maps as well as the cross polar cap potential estimates. These factors

together combine to improve the quality of science which can be done using SuperDARN.

5.3 Nightside quiet time midlatitude ionospheric plasma

convection measured by the North American mid-

latitude SuperDARN radars

The work presented in Chapter 4 built on the work done in my Master’s thesis. The anal-

ysis of nightside quiet time ionospheric plasma convection represents a significant scientific

advance and provides a view of statistical midlatitude convection patterns over an interval

of 52◦-57◦ magnetic latitude. Previous work by Baker et al. [2007] presented a preliminary

analysis of quiet time midlatitude convection but the results were inconsistent with previ-

ous studies. The data here cover two years (2011-2012) and were obtained from six North

American midlatitude radars. Convection was found to be primarily westward throughout

the night, with typical zonal drift velocity magnitudes in the 20-50 m/s range. Traditionally,

the F region ionospheric dynamo is cited as being the dominant driver of the subauroral

quiet-time electric fields observed by SuperDARN radars. The findings presented here are

broadly consistent with previous studies based on data obtained by ISRs (e.g., Richmond

et al. [1980]; Buonsanto et al. [1993]).
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The findings we presented do, however, display some new features not present in the ISR

studies. First, in the meridional flows, there is a prominent poleward (equatorward) drift

post-midnight in the winter (summer) measurements. Conversely, there is an equatorward

(poleward) drift pre-midnight in the winter (summer) measurements. We also identify a

latitudinal gradient in zonal velocity in the winter months, with stronger flows being observed

at higher latitudes. During these months, the region in the southern hemisphere conjugate

to the area over which the measurements were made is both sunlit and within the Weddell

Sea Anomaly. This results in the southern hemisphere having a larger F region density than

the northern hemisphere according to IRI. From this, we infer that the conjugate region in

the southern hemisphere has a larger Pedersen conductivity than the Northern hemisphere

and any electric fields generated there by dynamo processes map to the northern hemisphere

and dominate the local fields. Thus, we conclude that conditions in the southern hemisphere

are the likely cause of the large latitudinal gradient observed in zonal velocities during winter

in the northern hemisphere.

Next, we speculated about a mechanism which could explain the observed latitudinal gra-

dient. The F region currents generated by the neutral winds do not necessarily satisfy the

divergence free condition and a nonzero divergence leads to charge buildup and polarization

electric fields. Assuming that the neutral wind and magnetic field are uniform through the

conducting region, the divergence of the current should be proportional to the spatial deriva-

tive of the Pedersen conductivity. Assuming a uniform zonal neutral wind and a nonlinear

increase in conductivity in the vicinity of the terminator, the divergence of the current would

be larger at higher latitudes, leading to a latitudinal gradient in the polarization electric field,

and thus a latitudinal gradient in the observed velocity in the same sense as that which we

presented, i.e. stronger flows at higher latitudes. In the future, examination of simultaneous

measurements of southern hemisphere neutral winds, electron densities, and plasma drifts



AJ Ribeiro Chapter 5. Discussions/Conclusions 101

could confirm or refute the validity of this hypothesis.
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Abstract

We present a community driven space science software package called DaViTpy. It is an open-

source, Python-based module providing access to multiple data sources, multiple models and

the accompanying visualization and manipulation tools relevant to each. It is still under

active development to include more data, improve some aspects of user experience and add

more visualization and analysis options. We encourage anyone interested to participate in

the development and testing of future versions.
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A.1 Introduction

Science marches forward by combining theoretical and experimental insights into repro-

ducible and/or demonstrable concepts. Since the early days of punch-cards, computers have

increasingly contributed to the scientific method. Not only have computer programs simpli-

fied complex calculations, they have opened the doors to much larger scale endeavors, from

multi-scale coupled physical models to multi-instrument space-borne experiments.

As a subset of this adventure, space science is intensely data driven. To understand the

ionosphere, magnetosphere and interplanetary environment, data are used to validate com-

plex physics-based models, to build empirical models, and to drive new discoveries. Most

published space science results during the past 20 or 30 years have relied on some form of

computer program to record, visualize, analyze and synthesize data into meaningful insights.

Some of the software developed in this process and used in published results is propagated

to the community, but most never spreads further than a handful of computers in a single

institution. In addition, many space science researchers lean heavily on proprietary software

which requires an expensive license. New developments make it possible to do research and

create publication-quality visualizations with free software

Due to the incremental nature of science in general, this process is demonstrably ineffi-

cient. However, it can be easily improved, without having to rely on unproven cutting edge

technologies, by simply adopting some of the well tested practices of software engineering.

Interestingly, one of the fundamental aspects of such practices is also key to all scientific

results, reproducibility. By sharing and combining code built by experts in each domain, it

is possible to build robust foundations to enable further discoveries.



AJ Ribeiro Appendix A. DaViTpy 105

Scientific software tools, like scientific results, should be free and open to all, easily acces-

sible, with a transparent history. Experts should contribute their knowledge and skills to

the codebase, and the community should be responsible for its maintenance and validation.

Code should be generously documented and flexible, with revision and enhancement inte-

grated in existing software rather than published as independent packages. All these criteria

are fundamental, and easily enabled by existing tools and processes, such as open-source and

free-software practices like distributed version control. The astronomy community has un-

derstood the value of such an effort, and has released multiple community developed software

packages which continue to grow (e.g., Hanisch and Jacoby [2001]; Robitaille et al. [2013]. In

space science, institutions have brought together modeling efforts, and to some extent data

warehouses, but community driven software tools are very rare.

In the past year, at Virginia Tech, we have been working with members of the international

SuperDARN community to develop a new Data Visualization Toolkit (DaViTpy) for the

space sciences. It leverages the power of the Python programming language and robust

numerical packages such as Numpy [Oliphant , 2006] and SciPy [Jones et al., 2001]. While

it started as a SuperDARN toolkit, its mission has been extended to more general space

science applications. It includes modules to access data from multiple instruments (e.g.,

SuperDARN, POES, OMNI) and multiple geomagnetic indices (e.g., Kp, AE, Dst). It also

includes several fundamental models (e.g., IRI, MSIS, HWM) kept in their original FOR-

TRAN or C native language, but wrapped in Python to enable their use with data and

other models. Finally, access to data and models would not mean as much without the vi-

sualization tools included in DaViTpy. The development is version-controlled using git and

GitHub, providing a framework for clear history, contribution and feedback tracking.

The goal of this paper is to present an overview of the different aspects of DaViTpy and
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demonstrate the potential benefits of such projects for the space sciences. In the following

sections, we provide a description of data access (Section A.3), model integration (Section

A.4) and visualization tools (Section A.5) included in DaViTpy. For each type of tool,

we demonstrate use cases and discuss the potential benefits and caveats of our approach.

Finally, we provide an overview of the development approach (Section A.2), a key component

of DaViTpy and its potential future.

A.2 Development approach

The most essential aspect of DaViTpy’s development is that it is developed by space sci-

entists for the space science community. Every component is the product of conscientious

development, peer testing and thorough documentation. It is to remain free and open-source

at all times, with clear acknowledgement of all its contributors.

To enable these requirements, we rely on well-tested software engineering practices. Git

and GitHub1 are used to facilitate the distributed version control, contribution tracking

and management (a.k.a., pull requests), and bug reporting. The documentation is auto-

generated directly from inline code docstrings, then hosted online 2. Any new contribution

to the codebase is evaluated based on its technical details as much as its documentation.

This workflow is in no way innovative, it has worked successfully for many other projects.

Bug reports and pull requests are handled by the most qualified and available contributors

for each specific request. This removes the need for a single code guru stretching his time

and knowledge to their thinnest, thus increasing development pace and quality.

1http://github.com
2http://davit.ece.vt.edu/davitpy/
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A.3 Data Integration

Obtaining data is one of the first steps in doing science. Often, just obtaining the data is a

problem. Sometimes one must email a PI, specifically ask for a time period, and then wait

for it to be delivered. Other times, the data is hosted on a remote FTP server, often with no

documentation. Although in this paradigm access is easy, the scientist must decipher what

the file actually contains. Yet another paradigm which exists is requesting data through a

web form. This can be easy to use, and well documented, but there are often limits on the

amount of data which can be requested at once. This means that the form often has to be

submitted several times, which is a nuisance. In all of these cases, even after getting the data,

the scientist must then write routines to read the data, which is tedious and time-consuming,

especially since there is not a consistent file format across space science.

DaViTpy represents a paradigm shift in the way in which data is obtained. A single function

is written for access to each type of data for use by the users. Instead of going and looking

for data somewhere, the user simply executes a command, and the data is downloaded and

read into coherent, useable objects in the environment. Take, for example, reading a period

of Dst data:

gme.ind.dst.readDst(datetime(2011,1,1,0,0),eTime=datetime(2011,1,2,0,0))

Out[1]:

[Dst record FROM: 2011-01-01 00:00:00

info = These data were downloaded from WDC For Geomagnetism, Kyoto. *Please be courteous

and give credit to data providers when credit is due.*

dst = -11.0

time = 2011-01-01 00:00:00
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dataSet = Dst

,

...

Dst record FROM: 2011-01-02 00:00:00

info = These data were downloaded from WDC For Geomagnetism, Kyoto. *Please be courteous

and give credit to data providers when credit is due.*

dst = -1.0

time = 2011-01-02 00:00:00

dataSet = Dst

]

Using a single read command, we have queried the server for a day of data, located the data,

and read it into a list of Dst objects. All data access within DaViTpy is handled in this

manner.

Additionally, several of the datasets available within DaViTpy are stored in a NoSQL

database, allowing for query operations. For example, one can read all Omni data from

January of 2011 with IMF Bz values between -100 and 0 and By values between 10 and 20

with a command like so:

omniList = gme.ind.readOmni(sTime=datetime(2011,1,1,0,0),

eTime=datetime(2011,2,1,0,0),

bz=[-100,0],bye=[10,20])

Currently, the datasets which are available from the NoSQL database are SYM/ASY, AU/AL/AO/AE,

Kp, OMNI, Dst, and POES. Additionally, SuperDARN data is available, but this data is
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hosted on an FTP server. Note that even though the data is hosten on an FTP server, the

downloading, reading, and parsing of data into objects is still done in the backend, and is

no harder than reading data from the NoSQL database.

In the future, we plan to make more datasets available within DaViTpy. The beauty of the

design is that data does not have to be moved to a central location, routines simply have

to be written to automatically fetch the data from wherever it resides and parse it. Once

those routines are incorporated into DaViTpy, any user has access to it without concern for

locating and reading the data.

A.4 Model Integration

Most space science data is eventually compared to or assimilated into numerical models,

whether to directly simulate the environment (e.g., Bilitza et al. [2011]), or as support to

study other physical processes such as neutral or plasma waves. However, to the authors

knowledge, there is no software package which enables easy interfacing between data and

models. For this reason, DaViTpy includes several key models such as the International

Reference Ionosphere (IRI), International Geomagnetic Reference Field (IGRF), Horizontal

Wind Model (HWM07), Tsyganenko (T96), and more. The common approach for each model

is to leave the original code almost untouched, and design a Python wrapper using either

F2PY [Peterson, 2009] for FORTRAN-based models or the Python/C API for C/C++-based

models.

This provides a single and convenient environment for data and model exploration. For ex-

ample, one could read and plot an electron density profile from the Millstone Hill Incoherent
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Scatter Radar, and in the next line, query IRI for the same profile. In the following code, we

illustrate another example, running the Tsyganenko model to obtain conjugate locations.

lats = range(10, 80, 10) # latitudes: 10, 20, 30, 40, 50, 60, 70, 80

lons = zeros(len(lats)) # longitude: 0

rhos = 6672.*ones(len(lats)) # 300 km altitude

trace = tsyganenko.tsygTrace(lats, lons, rhos) # trace field lines and find conjugate

print trace # print results

ax = trace.plot() # plot traced field lines

In the case of the Tsyganenko model illustrated in the above code, we are working on inte-

grating more recent versions of the model, but the interface will remain the same, providing a

high level of abstraction, while preserving the possibility to dive down to the low-level FOR-

TRAN subroutines, while remaining in the Python environment. It is also worth highlighting

that this model integration approach comes at no additional cost to the model developers

while bringing great benefits to the model users.

A.5 Visualization

Data visualization is often a critical part of scientific analysis. DaViTpy does this by heav-

ily utilizing the python library Matplotlib [Hunter , 2007]. Our goal when developing the

visualization routines was to keep it as simple as possible while simultaneously remaining

incredibly flexible. We achieve this goal by modularizing all of the routines. Consider,

for example, the plot shown in Figure A.1. This figure shows data from two SuperDARN
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radars, as well as POES total energy detector data overlaid [Rodger et al., 2010]. This plot

is generated with a single command:

pydarn.plotting.fan.plotFan(datetime(2012,5,13,8,0),[’bks’,’fhw’],

overlayPoes=True),
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Figure A.1: An example of a plot generated using DaViTpy. The colored rectangles show
SuperDARN Doppler velocity, and the colored circles are POES TED measurements.

Several routines are utilized in the creation Figure A.1, hidden behind this simple line of

code. First, a single routine is called in order to draw the map. Another routine is then called

to overlay the SuperDARN data. A third routine is called to overlay the POES satellite data.
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There are several advantages to this type of design. First, a fairly generic, but nevertheless

robust, plot can be generated with a single command. Second, it provides a framework

for the incorporation of new datasets. For example, if a new satellite dataset were to be

incorporated, an overlay routine could be written, and this routine could just be woven into

the overarching single plot command. Third, it allows for a lot of flexibility when one is

developing figures for publication. When preparing these types of figures, the ability to fully

customize plots is often desirable. In the DaViTpy paradigm, the scientist would have this

ability because instead of calling a single, overarching routine with options, they could call

the background routines one by one in order to pick and choose what gets plotted and how.

Another example of SuperDARN data visualization is shown in Figure A.2. This is a Super-

DARN Range-Time Intensity (RTI) plot, which shows Doppler velocity in the top colored

panel, backscatter power in the middle panel, and spectral width in the bottom panel. This

again was generated using a single command, which makes use of several plotting subrou-

tines. In general, if a type of plot can be done very simply using the routines in matplotlib,

we have not implemented separate routines for plotting. In the future, we would like to be

able to include and visualize more datasets alongside those which are already present.

A.6 Conclusions

We have presented a community developed space science software package, and described its

main functionalities, which include:

• data access: SYM/ASY, AU/AL/AO/AE, Kp, OMNI, Dst, POES and SuperDARN

• model access: IGRF, IRI, MSIS, HWM, T96 and AACGM



AJ Ribeiro Appendix A. DaViTpy 113

Figure A.2: An example of a SuperDARN RTI plot generated using DaViTpy. The top
colored panel shows Doppler velocity, the middle panel shows backscatter power, and the
bottom panel shows spectral width.

• visualization: each data source, model and coordinate system includes an associated

set of plotting tools

While DaViTpy provides all of these very useful tools, its most important strength relies

on its development model. DaViTpy has relied on an international collaboration to develop

and test these tools. Future plans are currently being discussed to involve other institutional

software packages in this community driven development effort.

We invite members of the community to join the effort by adopting the DaViTpy package for

their own projects, reporting any issues, and whenever possible, developing new functionality.
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