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Spatial Variability Enhances Species Fitness in Stochastic Predator-Prey Interactions
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We study the influence of spatially varying reaction rates on a spatial stochastic two-species Lotka-
Volterra lattice model for predator-prey interactions using two-dimensional Monte Carlo simulations. The
effects of this quenched randomness on population densities, transient oscillations, spatial correlations,
and invasion fronts are investigated. We find that spatial variability in the predation rate results in more
localized activity patches, which in turn causes a remarkable increase in the asymptotic population
densities of both predators and prey and accelerated front propagation.
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Understanding biological diversity has been a central
issue in ecology [1-4]. In order to understand the coex-
istence of competing species, several simplified ‘“‘toy”
models for the dynamics of few interacting populations
such as the paradigmatic Lotka-Volterra predator-prey
model have been investigated. More recently, the crucial
role of spatial fluctuations and stochasticity in stabilizing
such systems has been recognized [5]. Indeed, stochastic
predator-prey models [6-8] that consistently account for
the internal reaction noise yet reduce to the classical
coupled Lotka-Volterra differential equations in the well-
mixed mean-field limit have been found to display a re-
markable wealth of intriguing features [9]: In contrast to
the regular nonlinear oscillations of the deterministic
Lotka-Volterra model which always entail a return to the
initial state, these stochastic spatial models yield long-
lived, but ultimately decaying, erratic population oscilla-
tions [10-15]. In the absence of spatial degrees of freedom,
these oscillations can be understood through a resonant
amplification mechanism for stochastic fluctuations that
drastically extends the transient period before the (finite)
system finally reaches the absorbing stationary state (pred-
ator extinction) [16]. In spatially extended systems, the
mean-field Lotka-Volterra reaction-diffusion model is
known to support traveling wave solutions [17-19]. In
corresponding stochastic spatial population models,
spreading activity fronts induce persistent correlations be-
tween the prey and predator species and further enhance
the amplitude and lifetime of local population oscillations
[9,20,21].

In our studies of different stochastic spatial model vari-
ants for competing predator-prey populations, we have
found these intriguing spatiotemporal structures and the
overall features to be remarkably generic and robust with
respect to even rather drastic changes of the detailed micro-
scopic interaction rules [20,22]. Yet to render these models
more realistic and relevant for biological systems, one
must obviously allow for different fitness of the individuals
as well as spatial variations in the rates that describe the
population kinetics. In this Letter, we address the latter
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situation by considering the reaction rates to be quenched
random variables, drawn from truncated Gaussian distri-
butions. This model can be interpreted as describing a
direct environmental influence on the species death and
reproduction rates such as, e.g., a local variability of avail-
able resources.

By means of individual-based stochastic cellular autom-
aton Monte Carlo simulations, we find that an increasing
spatial variation of the predation interaction or species
invasion rate (with fixed mean) enhances the steady-state
population densities (which we take as a measure of the
species’ fitness) of both predators and prey. In contrast,
mere variations of the predator death and prey reproduction
rates have very little effect. While a simple mean-field
averaging over varying predation rates does indeed predict
a marked stationary density increase, it also grossly over-
estimates cooperative behavior and cannot adequately de-
scribe our numerical results. In fact, we shall argue that the
principal fitness enhancement mechanism rests in the fact
that stronger disorder in the predation rate reduces the size
of the localized regions populated by both species, thus
amplifying the initial local population oscillations and
permitting a larger number of activity patches in the
asymptotic long-time limit. Thus, the fitness enhancement
of both species through spatial variability, notably in the
absence of any evolutionary adaptation processes, is a
consequence of the emerging dynamical correlations.
Remarkably, we find that quenched randomness in the
predation rates also slightly increases the speed of spread-
ing activity fronts.

We consider a stochastic Lotka-Volterra model on a
square lattice (typically with 512 X 512 sites) with peri-
odic boundary conditions. Individuals of both particle
species perform random walks through unbiased nearest-
neighbor hopping (which occurs with probability one, so in
effect all rates listed below are to be understood as relative
to the diffusivity D). We allow multiple, essentially unre-
stricted lattice site occupation for particles of either or both
species (the maximum number per site i is capped at n; =
1000). This eliminates the predator extinction transition
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present in model variants with restricted site occupation
[9,14,20]. The “predator” species is subject to spontane-
ous decay A — @ with rate u, in contrast with the “prey”
particles that may produce offspring B — 2B with rate o.
When individuals of both species meet on any lattice site, a
prey is absorbed and the predators simultaneously repro-
duce; i.e., we implement the predation interaction A +
B — 2A with rate A. Our dynamical Monte Carlo simula-
tion proceeds with random sequential updates; a
Monte Carlo step (MCS) is completed once on average
each particle in the system has been moved and had the
chance to react [23].

Spatial variability is introduced by drawing the reaction
probabilities for each lattice site from normalized Gaussian
distributions, truncated at the values 0 and 1, with fixed
mean (in most cases it = & = A = 0.5) but different stan-
dard deviations o = 0...0.9. The reaction rates therefore
constitute quenched random variables.

The time evolution of the mean predator density p (1) =
(ny;(1)), averaged over 50 Monte Carlo simulation runs
with initially randomly placed particles with densities
pa(0) = pp(0) = 1, is shown in Fig. 1(a). The absolute
value of the Fourier transform (taken over the full interval
of 500 Monte Carlo steps) of this averaged signal, |p(w)],
is displayed in Fig. 1(b). Here we have used uniform rates
m = o = 0.5, while the predation rate represents a
quenched random variable with mean A = 0.5 and stan-
dard deviation o, ranging from O to 0.9 [24]. For these
rates, the prey population density (not shown) behaves
similarly, with an overall phase shift in the transient oscil-
lations [25], and both densities reach practically identical
asymptotic density values; see also Fig. 2(a). It is evident
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FIG. 1 (color online). (a) Time evolution of the predator den-
sity p4(1), averaged over 50 Monte Carlo simulation runs on a
512 X 512 square lattice with initial densities p4(0) = pz(0) =
1, predator death rate w = 0.5, prey birth rate o = 0.5, and

mean predation rate A = 0.5, for different variances o, as
indicated. (b) Signal Fourier transform |p4(w)].

that increasing spatial variability markedly amplifies the
initial population oscillations and reduces the relaxation
time towards the steady state. Remarkably, both predator
and prey densities approach larger asymptotic values as o,
is raised. As shown in Fig. 2(a), either species gains a
remarkable fitness enhancement by ~25% in the investi-
gated o) range. We have also studied spatial variations in
the predator death rate u and the prey birth rate o, with the
other rates held uniform. In either case, we observe merely
a minute increase in the few percent range of the asymp-
totic predator and prey densities, not nearly as pronounced
as the effect of spatially varying predation rates.

The neutrally stable species coexistence fixed point of
the classical Lotka-Volterra mean-field rate equations gives
the stationary predator and prey densities as p4, = o /A and
pp = M/A. Presumably, therefore, the fitness enhance-
ment of both species stems from those regions where the
predation rate is significantly lower than the average.
Before we explore local effects in more detail, let us first
consider a global average over the truncated Gaussian
predation rate distributions of these mean-field stationary
densities. The result is depicted in Fig. 2(a) along with the
simulation data: The “‘naive’ averaging procedure indeed
yields an increase of both stationary population densities;
however, it predicts a grossly exaggerated fitness enhance-
ment owing to the fact that mean-field approximations tend
to overestimate cooperative effects [26]. We therefore
proceed to investigate the prominent role of spatial varia-
tions and predator-prey correlations in the lattice system.
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FIG. 2 (color online). Dependence on the variance o), mea-
sured for uniform rates u = o = 0.5 of (a) the asymptotic mean
population densities p4/5(f — 00), compared with the average
over the mean-field values (dashed-dotted lines, right-hand y
axis), (b) the relaxation time Ta/p towards the stationary
state, and (c) the predator or prey correlation lengths [qqma/5—
predators A: full lines, prey B: dashed lines—and the typical
species separation distance [y,: dashed-dotted line; (d) the
front speed v, Of the activity rings, obtained for u = 0.2
and o = 1.0.
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As one would expect, increasing disorder broadens the
peak associated with the transient oscillations in the asso-
ciated Fourier signal, reflecting faster relaxation towards
the asymptotic nonequilibrium stationary state. Figure 1(b)
clearly reveals the roughly threefold increase in amplitude
of the stochastic nonlinear population oscillations as o is
raised from O to 0.9. By fitting the peak envelopes to a
Lorentzian shape (which works well except in the pure
case with o, = 0), we extracted the characteristic relaxa-
tion times Tyea/p = 1/T'4/p from the full widths at half
maximum Iy /5 as a function of o,; see Fig. 2(b). Note the
reduction by a factor ~2.5 in 7,j,a/p @s 0, is increased
from 0.1 to 0.6.

The increasing amplitudes of the initial population os-
cillations suggest that the spatial variability in the preda-
tion rates tends to cluster both species closer together, thus
enhancing localized population explosions. This interpre-
tation is in fact borne out by measuring the steady-state
equal-time two-point correlation functions C,g(x) =
(NgisxNgi) — PapPp. With a, B =A, B [27]. After again
averaging the data over 50 Monte Carlo simulation runs,
we have extracted the predator and prey correlation lengths
leorra/p» Which essentially measure the spatial extent of the
population patches, as a function of o, by least-square fits
of Cya(x) and Cpp(x) to exponentials exp(—|x|/l.y) at
sufficiently large distance |x|. As depicted in Fig. 2(c), the
predator correlation length /.., decreases by ~30% from
about 3 to 2.1 lattice constants as the disorder variance
increases, while /.5 is reduced by ~45% from 2.5 to 1.4.

Similarly, we infer the typical predator-prey separation
distance /iy, from the cross-correlation function C,p(x),
which is negative at short distances but attains a maximum
with positive correlation before tending towards 0 as |x| —
oo [27]. Here we define /iy, as the location of the maximum
of C,5(x). The results as a function of the standard devia-
tion o, shown in Fig. 2(c), closely follow the behavior of
the correlation lengths, namely, rather rapidly decreasing
from ~3 lattice constants to ~1.7 as o, is reduced from
0.1 to 0.4. Thus, when the width of the distribution of the
spatially varying predation rates A becomes larger, the
ensuing correlated patches of coexisting predator-prey
populations become more localized in regions with low
values of A. Consequently, a larger number of such patches
can be accommodated in the system, whereby the long-
time population densities increase. The stabilizing effect of
spatial inhomogeneity has recently been elaborated in a
two-patch predator-prey model of diffusively coupled two-
dimensional oscillators [28].

The classical two-species Lotka-Volterra reaction-
diffusion equations, i.e., essentially the mean-field rate
equations supplemented with diffusive spreading, are
well known to support traveling wave solutions [4,17—
19], whose minimal front speed can be established by
standard mathematical tools [29-31]. Beyond the mean-
field approximation, however, already in single-species
systems the incorporation of intrinsic reaction noise in

the computation of wave front propagation velocities is a
rather difficult problem [32-36], and there are very few
results available for two-species models [35,37].

In the initial stage of our simulations, we observe radi-
ally spreading circular fronts of prey followed by predators
[24]. We have therefore set out to numerically measure the
front propagation speed of spreading rings of activity,
namely, prey invading empty regions followed by preda-
tors feeding on them, in our two-dimensional stochastic
Lotka-Volterra model. To this end, we set up as the initial
state a circular patch of B particles, one per site, of radius 5
lattice constants and 10 predators A located on the center
site of this patch. In this study, we have chosen uniform
rates u = 0.2 and o = 1.0, with a spatially varying pre-
dation rate with mean A = 0.5. After angular averaging to
obtain the radial particle concentrations, we have deter-
mined the invading front location by searching for the zero
of the first derivative of the radial prey density. A linear fit
of the data with Monte Carlo time yields the front speed
Vgront Which is then averaged over typically 50 simulation
runs. The change of propagation speed with the disorder
variance o, is plotted in Fig. 2(d). We find a small but
noticeable ~1% increase of the spreading activity front
speed as o), is raised from O to 0.7, which we interpret as
essentially a consequence of the larger amplitudes of the
more localized population fluctuations caused by the spa-
tial variability of the predation rate. Our results for spa-
tially homogeneous rates are depicted as a function of the
predation rate in Fig. 3. To avoid problems at small A
values due to prey population explosions, we chose as
the initial state a sea of unreproductive B particles (5 per
site) and 5 predators A located on the center of the grid,
with u = 0.2. The data can be fitted reasonably well with a
square-root expression that is motivated by the known

lower bound vgon > /4DA(A p — u), where p denotes
the prey carrying capacity [4,17,18]. Here 4D, = 1, p =
1000, but the dimensionless reaction probability A’p ~ A,
so indeed the fit constants ¢, and ¢ should be of order 1 but
capture fluctuation-induced renormalizations of the mean-
field parameters, and the additional offset ¢, > 0 describes
the deviation from the lower bound.
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FIG. 3. Propagation speed of radially spreading activity fronts
in the stochastic Lotka-Volterra model with uniform rates u =
0.2 and o = 0 as function of the predation rate A. The square-
root fit is inspired by the mean-field lower bound.
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In conclusion, we have employed Monte Carlo simula-
tions to investigate a stochastic two-species Lotka-Volterra
model subject to quenched disorder in the reaction rates on
a two-dimensional lattice without occupation number re-
strictions. While randomizing the prey birth and predator
death rates has little effect, spatial variability in the pre-
dation/species invasion rate A markedly enhances the
asymptotic densities for both predator and prey popula-
tions. We provide evidence that this remarkable fitness
increase is caused by disorder-induced modifications in
the emerging spatiotemporal structures: Upon increasing
the width of the random rate distribution, the typical length
scales of both the spatial predator-predator and the prey-
prey correlations is reduced. This results in more localized
patches of activity, presumably in the vicinity of regions
where the local predation rates are smaller than their mean
value. The system is thus able to accommodate a larger
number of populated regions. We also find that spatial
variability in the predation rate drastically amplifies the
initial population oscillations and markedly reduces the
time required to reach the steady-state configuration. In
contrast, the front speed of spreading activity rings from a
localized center is not very strongly affected by the dis-
order. Yet we do observe that the activity fronts accelerate
slightly upon increasing the variance of the predation rate.
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