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Anomalous Nucleation Far from Equilibrium
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We present precision Monte Carlo data and analytic arguments for an asymmetric exclusion process,
involving two species of particles driven in opposite directions on a 2� L lattice. To resolve a stark
discrepancy between earlier simulation data and an analytic conjecture, we argue that the presence of a
single macroscopic cluster is an intermediate stage of a complex nucleation process: in smaller systems,
this cluster is destabilized while larger systems form multiple clusters. Both limits lead to exponential
cluster size distributions, controlled by very different length scales.
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Introduction.—From recent studies of statistical model
systems far from thermal equilibrium, it is clear that even
their stationary states pose many new challenges. The well
established theoretical machinery for systems in thermal
equilibrium is essentially powerless in these contexts, and
our equilibrium-trained intuition often misleads us. For
example, though the specific heat of an equilibrium system
cannot be negative, the internal energy of a nonequilibrium
steady state may decrease when coupled to a thermal bath
at a higher temperature [1]. In general, nonequilibrium
steady states depend sensitively on the details of the micro-
scopic dynamics, resulting in widely diverse behavior at
the macroscopic level. So far, an overarching framework is
still lacking, but much insight has been gained by studying
simple model systems.

One such class of models is driven diffusive systems [2].
Close relatives of the asymmetric exclusion process [3],
they involve interacting diffusing particles, driven into
selected spatial directions by an external force. Models
of this kind have been invoked to describe vehicular and
pedestrian traffic [4], gel electrophoresis [5], and a wide
range of biological problems, ranging from molecular
motors [6] to protein synthesis [7]. A particularly rich
phase diagram emerges for two species of particles, driven
in opposite directions on a two-dimensional (2D) periodic
lattice [8]. Even with no interaction except excluded vol-
ume, we observe transitions from a freely flowing homo-
geneous state to a ‘‘jammed’’ state displaying a macro-
scopic cluster of particles. These transitions persist even if
neighboring particles are allowed to exchange places, with
a small rate � [9]. In contrast, an analytic solution [10] for
the same system in 1D shows that the homogeneous state
prevails always, for any � > 0 and particle density � < 1.
Exploring notions of a lower critical dimension, we studied
a quasi-1D system involving just two ‘‘lanes,’’ i.e., 2� L,
with L up to 104 [11,12]. Remarkably, for small � and half
filling, the jammed state reemerged, with the length of the
jam scaling with L. However, it was argued recently [13]
that this jam is a mere finite-size effect and should break up
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into a disordered state when L exceeds a characteristic
crossover length Lc. While the latter is not known exactly,
it might be as large as 1070 [14].

Since simulations are an essential tool in the study of
nonequilibrium steady states and should provide a fairly
accurate picture of the thermodynamic limit, such stark
discrepancies between simulation data and analytic argu-
ments are disconcerting and need to be explored further. In
this Letter, we report extensive, high precision computer
simulations, studying the full ��; �� space and a wide range
of L for this two-lane system. Defining an ‘‘s cluster’’ as s
particles of either species, connected to each other via
nearest-neighbor bonds, we focus on the normalized resi-
dence distribution, p�s�, which is the probability that a
randomly chosen particle belongs to an s cluster. For a
homogeneous state, p�s� is monotonically decreasing. In
contrast, for a jammed system it displays two distinct
peaks: one at the origin (s � 1) and another marking the
macroscopic cluster, at s0 / L [11]. If a crossover length
Lc exists, this second peak should disappear when L in-
creases beyond Lc. Expecting Lc to decrease with �, we
consider much larger �’s than in previous studies [11] and
find, indeed, that systems with � > 0:3 cross over to
monotonic distributions with increasing L. However, at
lower densities (e.g., � � 0:1) we discover the opposite
behavior: here, p�s� is monotonic at small L and develops a
second peak as L becomes larger. In order to interpret these
complex finite-size effects, we propose a new picture, in
which larger clusters compete with a homogeneous back-
ground of ‘‘travelers,’’ consisting only of isolated particles
and very small clusters. In the remainder of this Letter, we
briefly review the model, present the simulation results,
and provide the analysis that leads us to our conclusions.

The model.—In a 2� L lattice with fully periodic
boundary conditions, each site can be either empty (�)
or occupied by a single particle, which we identify as either
‘‘positive’’ (�) or ‘‘negative’’ (�). Configurations are
labeled by f�x;yg, where � takes on values 0;�1 and x 2


1; L�; y � 1; 2. The two species are ‘‘driven’’ in opposite
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directions, much like cars on a two-lane road. Starting from
an initial configuration with equal numbers of the two
species occupying a fraction, �, of the sites (i.e., N� �
N� � �L), we evolve the system by exceedingly simple
rules. In one Monte Carlo step (MCS), the following steps
are repeated 2L times: (i) a pair of two nearest-neighbor
sites (a ‘‘bond’’) is chosen at random; (ii) for bonds along
the L direction, a (��) or a (��) pair is always ex-
changed while a (��) pair is exchanged with probability
�; (iii) for transverse bonds, particle-hole pairs are always
exchanged while particle-particle pairs are exchanged with
probability �. Other moves are not allowed.

To probe the system’s behavior and the effects of finite
size, we explore a wide range of � and �, and lattices with
L � 28, 210, 212, 214, and 216 ’ 64 K. Since our main focus
is the steady state, we discard up to 2� 106 MCS before
taking measurements. Thereafter, quantities of interest are
recorded every 100 MCS, for up to 107 MCS. On a 64-bit
machine, we exploit a fast multispin coding algorithm by
encoding the state on a site for 64 different lattices (real-
izations) simultaneously. Thus, we are confident that our
statistical errors are minimal.

Simulation results.—We set the scene by presenting a
characteristic data set for the residence distribution p�s� at
� � 0:5 and � � 0:45 [Fig. 1(a)], in order to demon-
strate the crossover from bimodal to single-peaked distri-
butions with increasing L. The smallest system, L � 210,
shows a distinct peak at s0 ’ 380, while the next size, L �
212, shows only a shoulder which broadens into a well-
defined exponential, / exp
�s���; ���, with a ‘‘slope’’
��0:45; 0:5� ’ 0:25� 10�3 for the largest system. It is
remarkable that, even for such large L’s, the large s data
still depend quite sensitively on L. On the other hand, as
the inset shows, the small s part is manifestly independent
of L, a feature that persists in the whole (�; �) space. Since
we expect the crossover length Lc to decrease with �, we
consider systems with � � 0:5, keeping � fixed at 0.5.
Here, even the smallest system (L � 210) already displays
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FIG. 1. The residence distribution p�s� vs s on lattices with L
(b) � � 0:1 and � � 0:163. The inset on the left figure magnifies
from a double-peaked to a single-peaked distribution by increasing
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a monotonic distribution. In contrast, if � � 0:4, the dis-
tributions remain double-peaked for all L � 216. In fact,
for those L, the (second) peak position scales as s0 �
0:8L0:95, which one might (naı̈vely) interpret as the signa-
ture of a ‘‘macroscopic’’ cluster, unless even larger L are
investigated. To summarize, these findings are consistent
with the conjecture [13] that the presence of macroscopic
clusters is a finite-size effect. For L ! 1, we may expect
residence distributions to comprise two components: one at
small s (which we associate with the ‘‘travelers’’) and a
slow exponential decay exp
�s���; ��� (associated with
large scale ‘‘jams’’).

Surprisingly, the behavior of our model is richer than
this simple picture suggests. For smaller density and �,
there is an additional crossover in the opposite direction:
distributions are monotonic in small L systems and become
bimodal as L increases, only reverting to being monotonic
for much larger L. The first of these crossovers is illus-
trated in Fig. 1(b), which shows residence distributions for
the same four L’s but at � � 0:1 and � � 0:163. We re-
emphasize: in contrast to Fig. 1(a), here the second peak
emerges with increasing L.

Figure 1 suggests that, for any given L, it is possible to
identify two distinct regions in (�; �) space: in one of them,
located near the large �, small � corner, p�s� is monotoni-
cally decreasing in s; in the other region (small �, larger
�), p�s� is bimodal. To summarize our data, the corre-
sponding boundaries, �c��; L�, are drawn in Fig. 2 for
several L. If larger systems favor (disfavor) bimodal dis-
tributions, �c��; L� shifts up (down) with L.

Analytic arguments.—In the following, we present a
simple scenario which encompasses the full range of these
phenomena. Our discussion begins at very low densities.
A space-time plot [Fig. 3(a)] for � � 0:1, � � 0:1, and
L � 28 shows the evolution of a typical configuration.
With most of the system occupied by travelers, local
density fluctuations occasionally ‘‘nucleate’’ a single
larger cluster, containing about 24� 8 particles, which
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L.

1-2



50 10010
-6

10
-3

10
0

0 0.2 0.4 0.6 0.8 1ρ
0

0.2

0.4

0.6

0.8

1

γ

L = 256
L = 1024
L = 4096
L = 16384

200 40010
-6

10
-3

10
0

FIG. 2. Boundaries separating monotonic from bimodal distri-
butions, for various L. The insets show p�s� for � � 0:1, � �
0:3 (top left) and � � 0:1, � � 0:125 (bottom right) on a L �
212 lattice.

PRL 94, 115701 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 MARCH 2005
survives for up to 1000 MCS, then disintegrates and re-
forms elsewhere. When one of these large clusters is
present, the background density of travelers is depleted
noticeably. Reducing � lengthens the cluster lifetimes until
a single cluster persists for the whole run. In contrast, at
higher �, large clusters just blink on and off, and the
traveler component dominates.

Motivated by these observations, we describe the system
at such low densities in terms of two ‘‘components.’’ One
of these is purely uniform, consisting only of travelers at
density �. The other exhibits a single large cluster of mass
s, reducing the density of travelers in the remainder of the
system to ��s�� �2L��s�=�2L�s�. In the spirit of mean-
field theory, we neglect fluctuations in the cluster size as
well as any charge asymmetries. Since the total number of
each species is conserved, it is natural to focus on, e.g., the
current of positive particles through either lane as a func-
tion of the local densities. Of course, the current in the in-
terior of a cluster, jc�s�, should display a very different
density dependence from the current carried by the travel-
ers, jt�s�. Assuming the traveler region to be approximately
uniform, jt�s� should be well represented by its mean-field
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FIG. 3. Space-time plot at � � 0:1, � � 0:1, L � 28 (a) and
� � 0:4, � � 0:4, and L � 29 (b). The spatial (temporal) coor-
dinate runs horizontally (vertically, in units of 50 MCS). A black
dot indicates a particle in either lane.
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form [9], jt�s� � ��s�
1� ��s��=2� ��=4��2�s�. Here,
the first term reflects particle-hole exchanges, proportional
to the density of positive particles, ��s�=2, and that of
holes, 1� ��s�. The second term models the charge ex-
changes. For the current through a cluster of size s, the
exact form is known only for the one-lane model, jc�s� �
��=4�
1� b=s�O�s�2�� with b � 3=2 [13]. For the two-
lane system, we have to rely on simulations which confirm
the same form up to a slightly modified coefficient, b ’ 1:6
[13,15]. Even though the O�s�2� corrections are not taken
into account, this form appears to be sufficiently accurate
for our purposes.

Clearly, a large cluster of size s can coexist with a
uniform region only if the two currents, jc�s� and jt�s�,
are equal. If jc�s�> jt�s�, the cluster will lose particles and
shrink; for jc�s�< jt�s�, it will grow in size. This allows us
to identify both stable and unstable solutions of jc�s� �
jt�s� as functions of �, �, and L, in the physical domain
s � 1. Leaving details to a future publication [16], we just
outline the main qualitative predictions here. To begin
with, we note that jc�s� is independent of � and L while
jt�s� varies only very weakly with �. In other words, we
can plot jt�s� for a given (�; L) and then watch jc�s� shift
up or down, proportional to �. In this fashion, we can easily
identify three regimes: (i) At small � and L, and � suffi-
ciently large, no solution exists: jt�s� remains well below
jc�s�, and the system is homogeneously filled with trav-
elers. While local fluctuations occasionally generate small
clusters, these disintegrate almost immediately. The two
smallest system sizes of Fig. 1(b) belong into this regime.
(ii) As � decreases, the two curves jt�s� and jc�s� first
touch, and then two solutions emerge: an unstable one (su)
close to the origin which plays the role of a critical droplet,
and a stable one at s0 > su which sets the cluster size. If s0
is not much larger than su and fluctuations are included, we
expect to see purely uniform configurations compete with
those supporting one larger cluster, as in Fig. 3(a). For
those parameter values, we predict s0 � 24, in remarkably
good agreement with the data. Returning to Fig. 1(b), we
note that two solutions can also emerge if L increases at
fixed �, as illustrated by the L � 212 data. Analytically,
we expect s0 � 70 here. Since the two currents differ by
less than 5 up to s ’ 120, clusters of all these sizes form
quite easily, giving rise to the observed p�s�. (iii) Finally,
as � is lowered further, only the stable solution survives
and shifts to s0 �O�L�. Before this occurs, however, fluc-
tuations begin to play a much more important role: con-
sidering the L � 216 system in Fig. 1(b), our theory would
predict s0 � 1436, but the largest observed clusters remain
well below 700 particles. Monitoring typical configura-
tions, we discover that the system is attempting to nucleate
a second cluster in the traveler region, in addition to a
persistent first one.

To summarize, our simple mean-field theory describes
the ‘‘nucleation’’ of a single cluster from a uniform back-
1-3
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ground of travelers remarkably well. Naturally, once a
single cluster exists, and either � or L are increased (or
� reduced), we should expect, and do indeed observe, the
nucleation of additional clusters in the traveler region. As
this process continues, the residence distribution broadens,
and eventually crosses over to a slow exponential decay, as
in Fig. 1(a). To illustrate this, we present a space-time plot
for � � 0:4, � � 0:4, and L � 29 [Fig. 3(b)] which shows
several clusters of different sizes in each time slice.

Conclusions.—We have presented extensive simulation
data for a 2� L system with two species of particles driven
in opposite directions. Varying L, density �, and the par-
ticle exchange rate �, we monitor the cluster size (‘‘resi-
dence’’) distribution p�s�. We find two well-separated
domains in (�; �) space: one at low �, high � with mono-
tonically decreasing p�s�, and one at high �, low � with
bimodal distributions. The boundary between these do-
mains shifts with L, the general trend favoring monotonic
p�s� as L increases.

To understand the underlying physics at the crossovers,
we draw some insight from nucleation processes. For any
fixed value of �, systems are uniform for sufficiently low �
and L, and the associated residence distribution falls off
rapidly. As either � or L increases, a single large cluster is
nucleated. The residence distribution develops a distinct
shoulder and, eventually, a second peak. This transition is
well captured by a simple mean-field theory which balan-
ces the current through the cluster with that through the
uniform region. As � or L increase further, a second cluster
is nucleated, and eventually a whole population is estab-
lished. As a result, the residence distribution becomes
monotonic again, exhibiting a slow exponential decay.

With presently accessible L’s, we may only conclude
that our data for �c��; L� (cf. Fig. 3) is consistent with the
conjecture [13]. At the same time, given the absence of an
exact solution, we cannot rule out the possibility that
�c��; L� might have a nontrivial L ! 1 limit. We do
stress, however, that its nonmonotonic L dependence (at
fixed �) appears unprecedented in equilibrium nucleation
[17] or phase separation [18] processes. Whatever the
eventual conclusion, we believe that it is important to
explore finite-size effects, since these are relevant for
most applications of interest. For example, in the modeling
of protein synthesis, system sizes ranging from 1 K to 10 M
cover the typical lengths of messenger ribonucleic acid
(mRNA) molecules. In these contexts, we feel that both
crossovers may be of theoretical as well as practical
interest.
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Integrable Stochastic Many-Body Systems in Phase
Transitions and Critical Phenomena, edited by C. Domb
and J. L. Lebowitz (Academic Press, New York, 2001).

[4] O. Biham, A. A. Middleton, and D. Levine, Phys. Rev. A
46, R6124 (1992); D. Chowdhury, L. Santen, and
A. Schadschneider, Phys. Rep. 329, 199 (2000).

[5] M. Rubinstein, Phys. Rev. Lett. 59, 1946 (1987); T. A. J.
Duke, Phys. Rev. Lett. 62, 2877 (1989); U. Alon and
D. Mukamel, Phys. Rev. E 55, 1783 (1997).

[6] J. Howard, Nature (London) 389, 561 (1997); M. E. Fisher
and A. B. Kolomeisky, Proc. Natl. Acad. Sci. U.S.A. 96,
6597 (1999).

[7] L. B. Shaw, R. K. P. Zia, and K. H. Lee, Phys. Rev. E 68,
021910 (2003); J. T. MacDonald et al. in [3].

[8] B. Schmittmann, K. Hwang, and R. K. P. Zia, Europhys.
Lett. 19, 19 (1992).

[9] G. Korniss, B. Schmittmann, and R. K. P. Zia, J. Stat. Phys.
86, 721 (1997).

[10] S. Sandow and C. Godrèche (unpublished).
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