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Short distance versus long distance physics:
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We continue our investigation of the phenomenological implications of the “deformed” commutation rela-
tions [x;,p;1=iA[(1+ Bp?) &;+ B'pip;]. These commutation relations are motivated by the fact that they
lead to the minimal length uncertainty relation which appears in perturbative string theory. In this paper, we
consider the effects of the deformation on the classical orbits of particles in a central force potential. Com-
parison with observation places severe constraints on the value of the minimum length.
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[. INTRODUCTION AXx is proportional toAp and is therefore also largéR).
Note also that Eq(2) implies a lower bound foAXx:
As is well known, in the case of point particles, short
distance physics directly translates into high energy physics. Ax=h/B. 3
This is a simple consequence of the Heisenberg uncertain%

principle. In local quantum field theories, which describe the h_the _cqntelx'i of pre]:r'gurb_agve st:]ingftheo;]y, the _existence of
dynamics of point particles, the fundamental degrees of freglIS minima ength is tied to the "’!C‘ that strings cannot
robe distances shorter than the string length skal@2].

dom are revealed at high energy, or equivalently, at sho
distance. Also, there is a clear separation between ultraviol hus,
and infrared physics from the point of view of the renormal- _

ization group. iB~1s. @

In string theory, however, there is growing evidence that |, Ref. [11] we determined the eigenvalues and eigen-
the physics at short distances, in contrast with local quanturnctions of the harmonic oscillator when the position and
field theory, is not clearly separated from the physics at longnomentum obey Eq), and studied the possible constraint
distances[l—?]._ _The fundamen_tal formulation of this so- that can be placed oA by precision measurements on elec-
called UV-IR mixing, as well as its observable consequencesyons trapped in strong magnetic fields. Subsequently, in Ref.
are not understood at present. Various authors have argueg] we pointed out that Eq1) implies the finiteness of the
that some kind of UV-IR mixing is necessary to understanccosmological constant and a modification of the blackbody
the cosmological constant problef8,9] or the observable ragiation spectrum of the cosmic microwave background.
implications of short distance physics on inflationary cos-gpe important observation made in Refft1,12 was that
moIogy[lO]. ) various observable effects of the minimal length uncertainty

Motivated by these questions, we have receflly,12  (gjation are non-perturbative in the “deformation parameter”
investigated various observable consequences of the UV-II% (i.e., contain all orders if8) even thoughB appears only
mixing embodied in the “deformed” commutation relation tq |inear order in Egs(1) and (2).

[13] In this paper we continue our investigation and consider
o~ ~y the effects of the “deformation” of the canonical commuta-
[x,p]=i%(1+Bp). (D tion relations on the orbits of classical particles in a central

force potential. We find that comparison with observation

This commutation refation implements the minimal length places a strong constraint on the size of the minimum length.

uncertainty relation

% Il. THE CLASSICAL LIMIT

1
= —| —

Ax= 2 (Ap +,8Ap>, @ In D dimensions, Eq(l) is extended to the tensorial form

13

which appears in perturbative string theddy,2]. Note the (23]

UV-IR mixing manifest in Eq.(2): when the uncertainty in [X; ,fgj]ziﬁ(a”+5§25ij+,3'f)ibj)_ (5)

momentumA p is large(UV), the uncertainty in the position
If the components of the momentupp are assumed to com-
mute with each other,
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o (2B—B')+(2B+B)BP? ~ ~ . We merely point out this difficulty as a caveat and do not
[Xi.Xj]=i% ~ (PiX;— PjXi). attempt to propose any solution in the current paper. Instead,
(1+8p°) we apply Eqg.(11) to the motion of macroscopic objects and

() look for signatures of the deformation.

In the classical limit, the qguantum mechanical commuta-

tor is replaced by the Poisson bracket via IIl. MOTION IN CENTRAL FORCE POTENTIALS

For the Hamiltonian of a particle in a central force poten-

1 . . .
[ABI={AB} g Ul
p2
So the classical limits of Eq$5)—(7) read H= %+V(r), = VXX, (12
{xi.pj}=(1+pBp% &;+B'pip; . the derivatives with respect to the coordinates and momenta
are
{pi.pj}=0,
(26-8')+(2p+B) B’ oMo o 9
{xi.xj}= > (Pixj—pjx). (9
(1+8p9) Therefore, the time evolutions of the coordinates and mo-
, ! menta in this case are
We are keeping the parametegsand B’ fixed as#—0,
which in the string theory context corresponds to keeping the _ N
string momentunscale fixed while the stringgngthscale is xi=[1+(B+B)p T
taken to zero.
Note that for Eq.(8) to make sense, the Poisson bracket ) ) o1V
must possess the same properties as the quantum mechanical —[(2B=B)+(2p+B)BP7]| T 5 Lii X
commutator, namely, it must be anti-symmetric, bilinear, and
satisfy the Leibniz rules and the Jacobi identity. These re- _ 19V
guirements allow us to derive the general form of our Pois- pi= —[(l+,3p2) Xi+ B (p-Xx) p‘](? &—r), (14
son brackets for any functions of the coordinates and mo-
JF dG dF 9G —XD:
{F.Gy=| o oo = o0 o |{Xi P} L L
i IP; Pi oX; 1] (1+,8p2)
JIF G , . .
+ T K{Xi Xt (100  Thel;’s defined here are the generators of rotation:
i O
Xi,Lii } =X Oi—Xi Oyi s Lii}=pi Ski— Pj ki -
where repeated indices are summed. In particular, we find e L= 8ig =% 8 tPic-Lig} =Pi 4GP, I('(15
that the time evolutions of the coordinates and momenta are
governed by For motion in a central force potential, thg;'s are con-
served due to rotational symmetry:
) oH oH
Xi={Xi H}={x; ’pj}(g_pj"'{xi -Xj}a—xj. {L;; ,H}=0. (16)
So is
. 1o oH 1
pi=1{pi, }—_{Xiapj}a—xj- (11 , 1 p2r2—(p-x)2
L= glibi=— e e 17)
This deformed version of classical mechanics is not with- (1+8p7)

out its difficulties, the foremost being how one can construCtrna conservation of the.: 's imply that the motion of the
1]

“canonical transformations” which relate the dynamical o icie will be confined to a two-dimensional plane spanned

variables at one length scale to those at another. For the, the coordinate and momentum vectors at any point in
minimal length to be a well defined length scale, all dynami-je Therefore, without loss of generality, we can assume

cal variables at a]l length scales musF obe_y B®). As a tPat the motion is in the;x, plane and
consequence, for instance, one cannot identify the position o

a composite particle with the center of mass of its constitu- L= —Lyy=L, L;;=0 otherwise. (18

ents. In retrospect, it is not surprising that this difficulty

would exist given the UV-IR mixing nature of Eq&)—(7) Then, the motion can be described by the time dependences
from which Eqs.(9) have been derived. of the distance from the origin and the angle
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_1X2 1 ,
¢=tan X (19 a=m[1+2m([5’+,8 E-V)]
The equation of motion for is given by > \/Zm(E—V)— L2[1+2m[23(E—V)]2. (23)
r
_1d _ A The equation of motion for the angtg is
—Za(fz)—za(xixi)—TXi . .
- XgXp T XoXg
1 o7
= —[1+(B+B)P°1 Py, (20
L
=2 [1+(B+B")p?](1+Bp?)
where
Vv
+[(2/3—B’)+(2B+ﬂ’),8|02](mr—”- (24)
. LZ 1 2\2 or
prE(er)Z \/pz_ % 21)

Again, using Eq.{(22), the right-hand side can be written in
terms of conserved quantities and functiong ainly:

Since the energyg, is also conserved, we can write the mo- do

; . L
mentum squared as a function rofiia 7{[1+ 2m(B+ B Y E-V)][1+2mB(E—V)]

dt m
p?=2m[ E-V(r)]. (22 oV

+[(2B—B’)+2mﬁ(23+ﬁ’)(E—V)](mr;) :
Therefore, the right-hand side of E(RO) can be written

completely in terms of conserved quantities and functions of (25
r: From Egs.(23) and (25), we find
(2B=pB')+2mp(2B+pB")(E-V) v
1+2mB(E—-V)+ mr—
d¢ L 1+2m(B+ B’ ) (E-V) ar (
L 26)
drr2 L2[1+2mB(E—V)]?
2m(E—V)—
r2
|
In principle, this equation can be integrated to obtain ¢he 1 oV
dependence of. We will solve Eq.(26) for the harmonic 1— (mr—)
oscillator and Coulomb potentials in the following two cases. d¢ L (1/8")+2m(E—V) ar
(A) B#0, B'=0, in which Eq.(26) simplifies to —_—=— . (28)
dr 2 L2
2m(E-V)— —
oV r2
1+2mB| E-V+r—
do¢ ar
dr 2 \/ L1+ ZmB(E_v)]z' IV. THE HARMONIC OSCILLATOR POTENTIAL
2m(E—-V)— . . . . .
m( ) r2 We first consider the harmonic oscillator potential
(27)
1
V(r)= - mw?r?. (29

(B) =0, B’ #0, in which Eq.(26) simplifies to 2
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A. B#0, B'=0 case 2 .2 2 2 2y .2
. ) ) _ 1 . (I’ rmin) I'max (rmax r )rmin
For the harmonic oscillator, E¢27) can be cast into the ¢(r)= 7| arcsi 2 _ .2 \.2
form (rmax rmin) r
. (=1 = (e 1)
d¢ 1 I ma min +sina arcsv{ (mzm zma)x . (35
drz 2 rz\/(rrznax_rz)(rz_rrznin) max min

. In particular, we find
sina

! \/(rrznax_rz)(rz_rﬁ"lin) ,

(30) T _
d’(rmax)_d’(rmin):E(l'l'sma)- (36)
where which shows that the orbit will not close on itself whgh
r2max/min #0. It precesses by an angle ofr@in« per revolution. For
B<<1, the precession angle is

_ E+Bmw’LA(1+2mBE) = VE?— w?L*(1+2mBE)
B mw?(1+ BZmlw?L?)

Awg=2msina~2m(Smol). (37)

In Fig. 1, we plot the trajectory of the motion for a represen-

2r.rd rd(srt —2r2r? +r%) tative set of parameters.
_ 2 — -+ — + = + + 2 3
=r<¥ eF e“+0(e ),
) ri—rz, (ri—r§)3 B. B=0, B’'#0 case
(31) B=0. B
For the harmonic oscillator, E§28) can be cast into the
and form
E+JE?—0°L?
r%z( 5 , e=tana=pmolL. (32 d_¢:i i_ 1 (38
Mo dr2 2 |\ r? rz,—r2 V(r2 —r?)(r2—r2)
I max/min @€ the turning points whe#0 andr. are the ;nare
turning points wheng=0. When = BmwL satisfies the
condition X E+ /EZ_wZLZ
r+E D
(r2—r2)2 - Mw?
O<e<————F———, (33
Arr_(re+r2)
. . r2,=r24+r2+ . (39
it is possible to show that BT T mle?g

<F i< ma<Tl + - . .
F==Tmin=Tmax=F+ (34) Note that the turning points,. , do not depend og’. In the

Whene = BmwL exceeds the upper bound of the region Eg.limit 8’'—0, we haverz,—mo, and the equation for thg

(33), no solution exists. =B'=0 case is recovered.
Equation(30) can be integrated to yield Equation(38) can be integrated to yield
|
1 (r2=r2)r2 —(r2 —r?r?
r?)= —| arcsi —sina,sina_
¥ 2 (r>—r?)r? B

_ (rz,—ri)(rz—r%)—(rz,—rz_)(ri—rz)
><arcsw{ (rz,—rz)(ri—rz,) . (40)
|
where T
¢(r+)—¢(r,)=E(l—sincusina,). (42

tana.=r.mw/B’. (41)
Compared to thg8#0, B8’ =0 case, Eq(36), the precession
Note thata.— 0 in the limit 3’ —0. From Eq.(40), we find  is in the opposite direction: for each revolution, the angle
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FIG. 1. The trajectory of a mass in a harmonic oscillator potential withr _=5, SmwL=0.01, B8’ =0 (left), and 3=0, B8’ mwlL
=0.01 (right). The length scale is in units off { +r_)/2. The dashed line indicates the orbit whgrs 8’ =0. The motion is counter
clockwise along the trajectory starting from the aphelion on the poskiegis. 25 complete revolutions are shown. The trajectory is
precessing counter clockwise on the left, and clockwise on the right.

swept is smaller than2 by 27sina, sina_ . For 8’ <1, the
precession angle is

Awg =—2msina sina_~-27( ' 'moL). (43

In Fig. 1, we plot the trajectory of the motion for a represen-

tative set of parameters.

V. THE COULOMB POTENTIAL

Next, we consider the attractive Coulomb potential

V(r)z—g (k>0). (44)

A. B#0, B'=0 case
For bound states = —|E|, Eq. (27) takes on the form

do 18[12(”:”‘)
FIRARN T Ty T T
where
e=2m|E|B,
K k? L2
V:Eﬁi g2 2mEl (46)
and

2
. : 2rs
L= — e
max/min + re—r-

re(ro—rs)°

ri<r++r><5r+—3r+>] ,
&
+(9(83),

1+

3(r++r)2]
S=—g(r +r ) 1+{1- " 1g

2r,r_
ro+r_)?
+0(e?) |+ 32
ror_
3 7(ro+r_)? )
X 1+§ 1*T 8+0(8 ) . (47)

The exact forms ofé and r,ymin @re rather lengthy and
non-illuminating, so we will not present them he(8ee Ap-
pendix A) r .. are the turning points whef=0, and we can
see that wher8>0,

r7<rmin<rma><<r+ ) (48)

just as in the harmonic oscillator case. The condition that
=2m|E|B must satisfy for the solution to exist is

ror_ 8(1—e)*
>

(ro+r_)2 1-33—33e2+e3+(1+14e+£2)%?
(49
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Equation(45) can be integrated and the solution expressedvheree is the eccentricity of the orbit. This means that the
exactly in terms of elliptic integrals(See Appendix B. perihelion of a planet in a gravitational Coulomb potential
However, the exact expression is not particularly informativewill retard instead of advance. In Fig. 2, we plot the trajec-
so we present the solution to linear orde@nin which case tory of the motion for a representative set of parameters.
we find

(rmr:lx""rmin)2 B. B=0, B'#0 case
(15(”:[1_ R TININE For bound statesE = — |E|, Eq. (28) takes on the form
v arcsir{(r_rmin)rmax_(rmax_r)rmin d¢_ \/r+r(1+ 1 1 53
(F max— Fmin) dr 2 r r+rﬁ, ~/(l’+—l‘)(l‘—l‘_),
n (rmax+rmin) \/(rmax_r)(r_rmin) 8+O(82), where
r I max min
(50 _ kK L2
and “T2fE[~ Vg2 2mlEl
(T maxt T min) 2
DI max) = D(Mmin) = 7 1_M8+O(82) . (ro+r_)
2rmaxrmln [ o= + (54)
(51 B 1 '
— -1
Note that, in contrast to the harmonic oscillator, the preces- 2m|E|B’

sion angle is negative:
As in the harmonic oscillator case, the turning pointsdo

2
Awg~— W[MS} ——on 4mlE|B , not depend orB’. In the limit 3’ —0, we haver 5, —0, and
2T masl min 1-¢? the equation for thg8= B’ =0 case is recovered.
(52 Equation(53) can be integrated to yield

1 Fr—r_)ry—(ro—r)r_ Fe+rg)(r—r_)—(r_+rg)(ro—r
d(r)== arcsir{( )T+ (r+ 1) +cosf,cosf_ arcsir{( <+ )~ ( g )} , (55
2 (ry—r_)r (r+rg)(ry—ro)
|
where 1—-cosf, . cosh_
Awg=-2m — s
rBr . (r++r,)2 ’
tand. = VC (56) ~ 277{ 4r+r_ (2m|E|IB)
2m[E|g’
. S ) =—27| —|. (58
Note thatf..—0 in the limit 3’ —0. From Eq.(55), we find 1—e?

In Fig. 2, we plot the trajectory of the motion for a represen-
tative set of parameters.

aw
d(ri)—g(r_)= 5(1+cosa+cos¢9_)
_|,_(1zcosé.cosd_ VI. COMPARISON WITH PLANETARY ORBITS
=71 5 . (57
Using our results, we can place constraintspand 8’

from the precession of the perihelion of Mercury. According
As in the harmonic oscillator case, the precession angle if Ref.[17], the observed advance of the perihelion of Mer-
negative wheng’ is positive. ForB’'<1, the precession cury that is unexplained by Newtonian planetary perturba-
angle is tions or solar oblateness is
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B 415.2019 revolutions
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which is consistent with zero. As we can see, there is not
much room left for possible extra contributions to the pre-
cession.

From Eq. (52 and (58), the precession angle to linear
order ing andp’ is

h2(2B+p’
(59) Awﬁ-i—AwB,:—Zw{%]. (66)
This advance is usually explained by general relativity which d
predicts The existence of a minimal length requires
2GMg/c? B>0, B+pB'>0, (67)
Awgg=3m o
a(l-e9 So we can assume that
2 A 2
— 6 2mE| h Awﬁ+Awﬁ,<—2w(%ﬁ) <o. (68)
(1—e?) #2] | m?c? d
, Equation(65) places a lower bound oAwg+Awg which
_ A at 3o is
=67 —| , (60)
Aqg

where 2GM, /c? is the Schwarzschild radius of the Sun,
is the semi-major axis of the planet’s orbd,is it's eccen-
tricity, and we have defined

(1-e%) _

REAN S AT

me (61

The lengthsxy and x. are the de Broglie and Compton

—2m(1.2x10" ) rad/rev< (Awg+Awg)

wavelengths of the planet. For Mercury, the parameters are

[18]

2GMg

5 —=2.9532500& 10° m,

c

m=3.3022x10?3 kg,

I maxt I mi

a= Tm”‘ =5.790917% 10'° m,

€=0.20563069. (62

Note that the product Mg is known to much better accu-

racy than Newton'’s gravitational consta@t and the solar
massM separately. Using these parameters we find

Xy4=6.5284<10 53 m,
(63
X.=1.0653<10 % m,
and
Awgr=2m(7.98744<10°8) rad/rev. (64)
A comparison of Eqs(64) and (59) yields

Awgps— A wgr=2m(—0.0001G=0.00037 x 108 rad/rev,
(65

2
<2 @) . (69
Ag
Thus,
2
(iﬁ) <1.2x10° %, (70
e
or

h\B<(3.5x107%) x4=2.3x107% m. (72

Note that this limit is 33 orders of magnitude below the
Planck length!

VII. DISCUSSION AND CONCLUSION

In this paper we have considered the effects of the mini-
mal length uncertainty relation on the classical orbits of par-
ticles in a central force potential. Comparison with the ob-
served precession of the perihelion of Mercury places a
strong constraint on the value of the minimum length.

The minimal length uncertainty relation was implemented
through the deformed commutation relation Ef). Note
that even thougl andB’ appear to only linear order on the
right-hand side of Eq(5), our expressions for the precession
angle, Eqs(36), (42), (51), and(57), contain all orders ir8
andpg’. In that sense, our results are non-perturbative. On the
other hand, the right-hand side of E&) itself can be con-
sidered a linear approximation to a more general expression
which leads to the minimal length uncertainty relation as
discussed by Kemgfl3]. This suggests that our constraint,
Eq. (71), could be fairly robust. All other possible implemen-
tation of the minimal length uncertainty relation can be ex-
pected to lead to the same precession of the perihelion as Eg.
(5) to linear order inB andB8’, and result in the same con-
straint on the minimal length.
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FIG. 2. The trajectory of a mass in a Coulomb potential withr _=5, 2m|E|8=0.01, 8’ =0 (left), and3=0, 2m|E| B’ =0.01(right).
The length scale is in units of { +r _)/2. The dashed line indicates the orbit whes 8’ =0. The motion is counter clockwise along the
trajectory starting from the perihelion on the positivaxis. 25 complete revolutions are shown. For both cases, the trajectory is precessing
clockwise.

The analysis of this paper based on the deformed commube worthwhile to study the problem in more detail in light of
tation relations can be viewed as providing a toy model for ahe strong constraint we have obtained for the minimal
full string theoretic consideration of the implications of the length.
minimal length uncertainty relation. The natural question to We conclude by listing a few more caveats: Even though
ask is whether our constraint, E(71), applies to string our analysis is purely classical, the general formulation of
theory proper or not. This is a difficult question to answerclgs_sical systems which incorpoyate.s the classical limit of the
since the minimal length uncertainty relation is but one asMminimal length uncertainty relation is not fully understood.
pect of string theory, and it is not clear whether deformingtoW one can define the “canonical transformations” which
the quantum mechanical commutation relations is the corredglate dynamical variables at different scales while preserv-
way to implement it. Ing the Poisson pracket remains an open problem. Also, the

Looking at previous works, we note that REZ] has dis- systems we considered have only a finite number of degrees

cussed departures from general relativity as implied by strin§f freedom. It is not clear how to incorporate the effects of

N : . he classical limit of the minimal length uncertainty relation
t_heo_ry. Thes_e we_re, |mpI|ed_ both by the string theoretic mOd"to field theory. The classical limit of the minimal length un-
fication of Einstein’s equations 9]

certainty relation provides a natural generalization of the
non-commutative relation between spatial coordinates en-
o countered in non-commutative field thedfy]. What is not
R,,+ =R, a,R,+...=0, (72)  Clear is whether the usual Weyl-Wigner-Moyal technology
proo2 e [20] could apply even in our more complicated setup, thus
providing a way to analyze systems with an infinite number

. o ) of degrees of freedom.
as well as the crucial distinctions between particles and

strings: strings as extended objects do not fall freely along ACKNOWLEDGMENTS
geodesics. As fundamentally extended objéatdeast from _ . . .
the point of view of string perturbation thegrthey are sub- We would like to thank Achim Kempf, Yasushi Nakajima,

ject to tidal forces. This leads, for example, to an energy-‘]ohn Simonetti_, and Joseph Slawny for helpful discussions.
dependent deflection angle for the bending of light—in clear] NS résearch is supported in part by a grant from the U.S.
distinction to general relativity in which the deflection angle PePartment of Energy, DE~FGO05-92ER40709.

is energy independent. We have not included in our analysis
any of these effects. In particular, we have not considered
possible deviations in the background metric due to the extra

terms in Eq.(72). Though the corrections to particle trajec-  The turning points for the Coulomb potential, Eg4),
tories due to such deviations are expected to be small, it magre provided by the real solutions to

APPENDIX A: THE TURNING POINTS FOR THE
COULOMB POTENTIAL
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k 2 k\1? 1 .
2m<—|E|+— -— 1+2m,8(—|E|+— =0. 6= 7 (A=W+2iX),
r r2 r
(A1)
1
Defining o= Z(A_W_ 2iX),
K L2 (A4)
A=E, B= SmlE]” e=2m|E|B, (A2

1
I max= Z(A+W+ 2Y),
Eqg. (Al) can be cast into the form

r*—Ard+B(1—¢)%r?+2ABe(1—¢) r+A%Be?=0. 1
(A3) M min= Z(A+W_ 2Y),
Since this is a quartic equation, the solutions can be obtained
algebraically(using MATHEMATICA ) and they are where
1 4AB{B(1—¢)*+6A%(1+e
E—\/3A2—88(1—s)2+42+ {B(17e) (1*e)
\/§ Z
A3
=A+4Ae+|AA- = le?t o

2A{A’—4B(1—¢)(1+3¢)}
w

1
X= E\/_ 3A%2+8B(1—¢)%+W?+

_ 32

VB

2A? 3A%(8B-T7A?)
+ B —— e o) + ...

4B ’

2A[A’—4B(1—¢)(1+3¢)}
w

1
YEE\/BAZ—BB(l—s)Z—Wz—l-

2(A%2-2B) . A?(3A*—20A%B+30B?)
- to

A’—4B BV(A°—4B)3

82+"‘,

A’—4B

1
25[5{233(1—8)64r 18A%B%e(1+¢)(1—¢)%+ 27A%Be?

1/3

+33A%Be32\27A% + 4AZB(1+&)(1—34e +£2)— 16B%(1— &)%)

A?\3B(A°—4B 9A*
=B+(3A%2-2B) e+ #83’4 9AZ+B— ——|e2+ - . (A5)

B 2B

In the limit e —0, we recover the turning points for the=0 case:
A=A —4B
8,6* =0, M maximin =+ = 2 (A6)
APPENDIX B: THE SOLUTION TO THE COULOMB PROBLEM IN TERMS OF ELLIPTIC INTEGRALS
Integration of Eq.(45) yields

d(r)=yror_(L—g)lg+2\ror_(ro+r_)elq, (B1
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where

| _J dr | _J' dr B2
== ) Tmac DO T+ =) (1= ) (F o (T — T i)

These integrals can be expressed in terms of the Legendre-Jacobi elliptic inf2dtals

Fnd)= [ nwpse= [ 9 ®3)
S o imasiy P T Jo (1 p i) I KBSy
Define
U_(Mmax= 1) —U(r—rp
COS!#E ( max ) +( mlﬂ)' (B4)
Uf(rmax_r)"'UJr(r_rmin)
with
U.=VX?+(Y=W)?, (B5)
and
et W2+ X2 Y2 -
~2 2uU,U (B6)
whereW, X, andY are given in Eq(A5). The explicit expressions for the integrals are
o1 = ——F (. ?)
r = L 1
RN VRV
R — VoY ek
r = 1
! VU, U_ UM min= U I max
B Y U mint Ul max ( (Ui min— U _I'maw? kz)
I mad minVU + U - U T min= U - T'max " AULU gl min
1 Y 86" sinyg
+ ——————arcta _ . (B7)
VI maf mind8* VUL U_ Y Tmafmin 1—K°sirfy
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