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We present the exact solution for the full dynamics of a nonequilibrium spin chain and its dual reaction-
diffusion model, for arbitrary initial conditions. The spin chain is driven out of equilibrium by coupling
alternating spins to two thermal baths at different temperatures. In the reaction-diffusion model, this translates
into spatially alternating rates for particle creation and annihilation, and even negative “temperatures” have a
perfectly natural interpretation. Observables of interest include the magnetization, the particle density, and all
correlation functions for both models. Two generic types of time dependence are found: if both temperatures
are positive, the magnetization, density, and correlation functions decay exponentially to their steady-state
values. In contrast, if one of the temperatures is negative, damped oscillations are observed in all quantities.
They can be traced to a subtle competition of pair creation and annihilation on the two sublattices. We
comment on the limitations of mean-field theory and propose an experimental realization of our model in
certain conjugated polymers and linear chain compounds.

DOI: 10.1103/PhysRevE.71.056129 PACS nun®)er02.50-r, 75.10—b, 05.50+¢, 05.70.Ln

I. INTRODUCTION thoroughly studied on homogeneous latti€s7]. Yet they
o ] _still offer surprises and novel behaviors, when nontrivial spa-
Nonequilibrium many-body systems abound in the physiig| rates are investigated.
cal and life sciences and have recently received much atten- o model was first introduced by Racz and g8 who

tion (see, e.g.[1-3] and references therginDespite these | ocognized thatstationary two-point correlation functions
efforts, a comprehensive theoretical framework is still lack-g,¢ easily found exactly, even though spins on alternating
ing: As yet, thre is no equivalent of Gibbs ensemble theoryites are coupled tdifferenttemperatures. Schmittmann and
for nonequilibrium systems. As a consequence, in contrast t8chmiser subsequently realized th#itstationary correla-
equilibrium  statistical mechanics, macroscopic observablegyn, functions are exactly calculabe]. While this informa-
cannot be computed without explicit reference to the iM+jon js equivalent to the full stationary solution, its represen-
posed dynamics, generally described by a master equatiopyion as exp-H,) is nontrivial, involving a proliferation of
and most progress in the field is made by studying paradigp,nger.ranged multispin coupling40]. Finally, we recently
matic modelg2]. In this context,exactsolutions of simple  ohqrted the exact solution for alynamiccorrelation func-

models are scarce, but very precious, since they can Serve ggng starting from a very simple initial condition, i.e., zero

testing grounds for approximate and/or numerical SChemeﬁ]agnetization and vanishing correlatidid].

and shed light on general properties of whole classes of re- |y this article, we complete these earlier studies by dem-
lated models. Not surprisinghyontrivial solutions are al-  sirating how competing site-dependent rates may dramati-
most entirely restricted to one dlmensmﬁ_mD; see€, €.9. cally affect the dynamics by giving rise to ascillatory
[2,3]), and have focused on completely uniform lattices withyp5roach toward the nonequilibrium steady state. We use a
site-independent rates. Clearly, however, one would like _t%;enerating functional approach to obtain the complete solu-
take into account more complex situations, e.g., those Withion, ¢or ai| correlation functions with arbitrary initial condi-

spatially varying coupling constants or rates. Arguably, Ongjons \We focus specifically on the dynamical magnetization
of the simplest generalizations beyond a completely uniform, 4 the spin-spin correlations and explore their long-time

system is one with alternating rates. In the following, wepepayior. We will also consider the dynamics of domain

consider a 1D kinetic Ising chaitKISC), coupled t0 tWo 45 in the spin chain which can be mapped onto a reaction-
alternating temperatures and endowed with Glauber-like dygitsion system. Interpreting our resuits in the language of

namics. Our analysis of this model provides a full descr'p'particle annihilation and creation, negative “temperatures”

tion of its dual counterpart, namely a reaction-diffusion SYS-acquire a natural physical meaning, leading to unexpected
tem (RDS), characterized by

spatially  alternating qijiatory dynamics. From a more technical point of view,

annihilation and creation rates. Members of these tWQuq are able 'to obtain a complete solution for two nontrivial

classes—i.e., kinetic Ising and reaction-diffusion mOdels_nonequilibrium many-body systems which provides some in-

are prototypical nonequilibrium systems which have beersjgnt into the solvability of two whole classes of related

models.
The mapping to a reaction-diffusion system is of interest
*Electronic address: mmobilia@vt.edu for two reasons. On the theoretical side, the equations for
"Electronic address: schmittm@vt.edu densities and correlation functions in the RDS formirafir
*Electronic address: rkpzia@vt.edu nite hierarchywhose solution is not at all apparent until one
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TABLE |. Basic processes underlying the KIS[eft) and RDS(middle) dynamics.

Spin flip of sitej Reactions at bonds next to site Rates
+———++-and ——+——++ AD — DA and DA— AD 1/2
+—+—+++ (j even AA— DD (j even (1+ye)/2
+—+—+++ (] odd AA— @D (] odd (1+%,)/2
+++—+—+ (j even DD —AA (] even (1-7)/2
+++—+—+ (j odd @@ —AA (] odd (1=y)/2

recognizes the equivalent spin chain model. Also, from an
experimental perspective, it is well known that diffusion- w;({o}) = wj(o; — = 0y) = > 401(01 atoe), (D)
limited reactions with annihilation and creation of pairs of
particles are good models for the photogrowth properties oivhere 5= y.=tanH2J/k,To) and 1= y,=tann(23/k,T,),
excited stategsolitons/antisoliton paijsin certain conju- on even(j=2i) and odd(j=2i+1) sites. The time-dependent
gated polymers and linear chain compoujd2-14. We  probability distributionP({c},t) obeys the master equation
propose that spatially alternating creation/annihilation rates
in these systems—especially in MX chain compounds—can  4,P({g},t) = 2 [w,({a)P{a},t) - w,({ah P({a}, 1],
be generated with the help of a laser with spatially modu-
lated power output. (2)
This article is organized as follows. In the next section, _
we introduce the kinetic spin chain and its dual reaction-where the stat¢s} differs from{o} only by the spin flip of
diffusion system. Section Il presents the complete solutionr;. Our main goal in this work is to compute the time-
of the spin chain. Some technical details are relegated to twdependent distributiofP({s},t). To do so, we computall
Appendixes. In Sec. IV, we map the two-temperature spircorrelation functiongo; - -+ oy }==(,0y -~ 0; P({a},t) and
chain onto a reaction-diffusion system with alternating ratesinvoke the following relatlonshuﬁs]
whose density and correlation functions are computed. We
analyze the conditions under which damped oscillations 2'P({oh,t) = 1+ X ailon + 2 ojoi{ajoidy
characterize the approach to the steady state, and we com- i >k
pare our exact results to a simple mean-field description.
Section V is devoted to a brief discussion of the solvability + E TjOKT( ORIt - 3)
. . j>k>1
of related models, with Sec. VI reserved for our conclusions.
This expression illustrates that the knowledgeatifequal-
time correlation functions is equivalent to the complete
knowledge of the distribution functio®({c},t). Recently,
We consider two closely related nonequilibrium many-this implication was exploited for the steady stedg and for
particle systems on a one-dimensional lattiGig:a kinetic  the time-dependent situation yet restricted to a particularly
Ising spin chain (KISC) endowed with a generalized simple initial condition[11].
Glauber-like dynamics, andi) a reaction-diffusion system The spin-flip dynamics of this Ising chain can be ex-
(RDS), with spatially periodic pair annihilation and creation pressed in terms of the creation, annihilation, and diffusion
rates. For convenience, we restrict ourselves to a periodiof domain walls i.e., pairs of spins with opposite sign. For
lattice (a ring with an even number of sites and study theexample, flippingo; in the local configurationoj_,=o;
thermodynamic limit. We expect our exact results to be valid=0j,,=+1 creates two domain wallsr;_;=-o; and oj=
for the general cases of an odd number of sites and/or arbi=cj,,, located on thésonds(j—1,j) and(j,j+1). Similarly,
trary boundary conditions, apart from the usual caveats. flipping o; in the local configurationsj_;=oj=-0j,;=+1
Since the RDS follows from the spin chain via a duality has the effect of moving the domain wall on bdijd + 1) by
relationship, we focus mainly on the detailed description ofone lattice constant to the left, corresponding to domain-wall
model (i). A spin variable,o;=*1, denotes the value of the diffusion. By identifying a domain wall with a “particle A,
spin at sitej, with j=1,2,...,L, andL an even integer. our spin-flip dynamics can be recast as a reaction-diffusion
Nearest-neighbor spins interact according to the usual Isingnodel, and the two examples translate i@ — AA and
Hamiltonian: H=-JZ00j:,, WwhereJ>0(J<0) is the (an-  @A— AQ, respectively. The mapping from the KISC into its
ti)ferromagnetic exchange coupling. Our model is endowedlual RDS is described in detail in Table I.
with a nonequilibriumgeneralization of the usual Glauber  Clearly, the presence of alternating temperatigg, in
[5] dynamics: spins on even and odd sites experience differspin language translates into alternating pair annihilation and
ent temperaturesl, and T,, which implies the violation of creation rateg1+1y,,)/2 in the RDS. We can see easily that
detailed balancg8-10. To be specific, a configuration letting T, or T, vanish simply prohibits pair creation entirely
{o1,05,...,0.} evolves into a new one by random sequentialat even or odd sites. Remarkably, we can derive an addi-
spin flips: A sping; flips to —o; with rate tional, and possibly rather unexpected, benefit from this

Il. THE MODELS
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mapping: Assigningwegati_yeyalges for the tempgraturé’g Y= (Yo + Y)2. (6)
and/orT, may appear artificial in the KISC, but erfectly ] _ ] ]

naturalin the RDS: For examplél,< 0 simply corresponds For long times, these settle into their stationary valigs],
to a creation rate1-v,)/2>1/2 which is easily imple- independent of initial conditions,

mented in a simulation. In other words, the RDS version is -

physically meaningful, and readily accessible, on a much (0101 = Cyj(0) = %wk'j, (7)
wider parameter space. VYj-1%k-1
where
I1l. COMPLETE SOLUTION OF THE KINETIC o
SPIN CHAIN w=——— (8)
1+1-d?

In this section, we completely solve the dynamics of the _ - )

KISC. It was shown previousljL5] that the generating func- @ quantity that reduces to the familiar tadH,T) in the
tion, and hence the full distributioR({c?},t), of a broad class equilibrium Ising chain. The glloloroasclg1 to these values is ex-
of Ising models can be computed from two very basic ob+Ponential and monotonic, &*~*'t"3?, providedyy,> 0.
servables, namelfi) the magnetizatiomy(t)=(a;), for arbi- ~ However, fc_igt 2’5/7;0< 0, the approach is oscillatory and
trary initial condition, and(ii) a particular two-point equal- ~damped bye™t**[11]. For later reference, it is convenient
time correlation functiong; (t)=(cjo)y, the resultant from  © display the parltyogeptingsnce explicitly. Since translation
the special initial conditionsn(0)=c; (0)=0 (see Appendix ~'Nvariance ensures, () =¢5(t), we need to distinguish
A for a more detailed discussion of this statemehtere, €€ types of correlations. The simplest display, which
(O%==yOP({o},t) denotes the usual configurational av- manifestly shows the underlying symmetries, is
e_ragebln thﬁ following,b we asbslemble the necessary informa- cﬁfj(t) v 2 g
tion about these two observables. - . T _

CESJ(t) = y/a (k‘])j Te le_j(om'). (9)

0

A. The generalt-dependent magnetization M Ve
From our earlier work11], we recall that the magnetiza- Note that the last factor is of exactly the same form as in the
o U=t o e KisC ey e caatonof mtn. TGN 910 S, S e
((ji/r?\ggj 1(‘2);n( 7&]/92 Hggf;?;ﬂgﬁ%ﬂ _g)('t),&swshr:gcvrllsi&ﬁﬁly plays the role ofy=tani(2J/k,T). Before turning to the gen-
the general solution of this linear equation takes the fornf'@ Case, let us remind the reader that Egsand(9) give
my(1) =2, M; ()M (0), where the “propagatom; (t) can be the time-dependent correlations only for a system with no

written in term of modified Bessel functions of the first kind initial magnetization anq two-spin correlatios.g., a ran-
1,(t) [16], dom distribution. In particular, these forms, also used in the

next sections, should not be confused with the more general
cases considered in Appendix B.

M;(t) =€ \/g lj(at) with @ = (yeye) Y2 @)
k

If  %7%<0, the propagator becomesM;(t)
=i(=)® D2y [ Y% (|oft) [11], whereJ,(t) is a Bessel In this section, starting from our knowledge wf(t) and
function of the first kind, with damped oscillatory asymptotic ¢ (t), we compute the generating function of the KISC, fol-
behavior[16]. This translates into an oscillatory decay of the lowing [15]. By construction, this generating function allows
magnetizatior] 11]. us to findall correlation functions, subject trbitrary initial
conditions. A few additional technical details are provided in
Appendix A.

o _ The generating function is defined vili({#},t) =(II;(1

The second fundamental quantity, i.e., the equal-ime;,, 5y ~where the{7;} are standard Grassmann variables
spin-spin correlation functior,;(t), with k>j, is already 15 17, In the thermodynamic limit. — =, it simplifies to
known from[11]. For our purposes, it suffices to consider an

C. Generating function and general multispin correlations

B. A special two-point equal-time correlation function

initial condition with zero magnetization and zero initial cor- Y({np}t) = <H (1 + ng UkMk,j(t))>

relations. With the boundary conditiofrjo);=1 for j=K, j k 0

this basic correlation depends only on the distance between

the two sites and their parity(k), «(j) € {e,o} [11], X exp(jgl ﬂjlﬂjzcjz'jl(t)>' (10)

If the initial magnetization and all initial correlations vanish,
the averagé: --)q on the right-hand side of Eq10) reduces
5) to unity, and one recovers the bilinear form f#({7},t)

which we already reported ifiL1]. Equation(10) is one of
where the key results of this paper.

— 2
; — . dr _
Cyj(t) = C’kaT)'M(J)(t) = lz\"?’j Yk = J)f —€ "l j(a7),
o 0 T
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Given the generating function, all correlation functionsyiously reside on the dual lattice. Each sfitean be occupied
can be obtained by simple differentiatioi11,15: by at most one particle, described by an occupation variable
(o1, W=[a"P (g}, 01/ (95 -9 )| p=0- As @nillustra-  n; which takes the value @) if the site is emptyoccupied.
tion, we compute the equal-time spin-spin correlation func-Since a domain wall involves two neighboring spins, the

tions, fork>j, mapping from spin to particle language is nonlinear, namely,
2V m:%[l_aj_l.gj]' As_ befgre, we | seek th(? probability,
(oo = 7 = ¢ P({n},1t), to find configuration{n} at timet, andA its averages:
O n=0 the local particle densityp;j(t) =(nj);=ZynP({n},t) and
+ > (000 oM j(OM i) = M (M (0], the m—poin'E correlation  functions, (nj ---nj )
{<m EE{n}njl- . -nij({n},t). To simplify notation, we continue to

(11)  denote averages bfy), for both spins and occupation vari-
ables, even though they are controlled by different statistical

We emphasize that this is a completgigneral result valid . A : .
for any initial conditions, whether homogeneous or inhomo—We'ghts’P({U}’t) andP(in}, 1), respectively. In _each_ case, It
geneous, translationally invariant or not. The two terms inshould be perfectly clear from the context which distribution
Eqg. (11) have simple interpretations. While the second term'ssyrrﬁrfgsirg' ;Pfﬁs?gr?a(;?I(;:)Sarct)ifcloeg(rwr?:r?dfa{t(las ;??Zﬁg”;gﬁ by
reflects the decay of theitial correlations, the first provides P : : : : :
the buildup to theyfinal stationary values given aboE/e(E)q. annihilation/creation of particles with spatially alternating
Thus, we see explicitly how the stationary spin-spin Correla_rates(liyj)lz In this case, the two particles are created on

tion function becomes independent of the initial values. the (dual lattice sitesj and j+1, by flipping a spin on the

Higher-order correlations can also be evaluated but argoriginal lattice site j. Sincey, can be positiye or negative,
— - << -
rather complex for general initial conditions. For uncorre-SlJbJect only to ~I=y <1 for all j, two very distinct behav

! - -, .~ iors emerge:(i) when bothy, and vy, are positive(corre-
lated, nonmagnetized initial conditions, however, they sim-, ; e b -
plify significgntly [11]. For example, the four-p)(/)int sponding to positive “temperatures” in the spin modéie

. . : ) ) annihilation process always occurs withagger rate than the
function (oj,07,0,01,); factorizes into two-point functions, creation process, irespective of whethés even or odd(ii)
according 1o (0y,07,07,07, 1 =6}, (¢}, () =C; j, (¢, () when, e.g.,y, is negative andy, positive, the system dis-
fcj4,il(t)cj3,iz(t) for 1a=13=12= 11 [1.1]- Similar factoriza- ~ plays amild site-dependent frustratioat even siteg (i.e., j
tions hold for all correlations. Their steady-state behaviorg,ep and +1 odd, annihilation is more likely than creation,
can be compu;ed dweqtly_ from the master equaﬁ@jho_r whereas the situation is reversed on odd sitéth ] odd and
from the stationary limit of the generating function, Fe1 even. As we will see shortly, this gives rise tscilla-
Y({n},*)=exd Z-jmmcxj(*)]. Thanks to this simple iory dynar.nics Y 9
form,  the 21—p0|r_1t correlat!ons. factorize into  a Before diving into the details, some further remarks on
product of two-point correlationsoj, 0}, -7}, 0, )= physical realizations of this model are in order. When the
=(0,07,)=" {0y, 0}, )eer WhET€]on>Jon 1>+ > 5> ]y rates are uniforny,=1y,), it is well known that such an RDS
Finally, following Refs.[5,11], we can also derive the describes the dynamics of photoexcited solitons in conju-
unequaitime spin-spin correlation functions,j(t';t) de-  gated polymers or linear chain compounds. MX chain com-
scribing how a spin on sitk at timet is correlated with the  pounds,[Pt(en),][PenCl,]Y,, whereY stands for CIQ or

spin on sitej at a later timet+t’, BF, and (en) for enthylenediamine, are of particular experi-
) ) mental interesf12,13. In these compounds, photogenerated
G (t51) = 2 M (") oy, solitons are so long-lived that they can be experimentally
¢ studied. Irradiation with continuous-waveonpulsed blue
_ , / light generates soliton-antisoliton pairs which can diffuse
=2, M; (t)e, (1) + g op YoM (t
; 3GV ; k1§ﬁ< ! €1>° (1) apart or annihilate. Their static and dynamic properties are in

quantitative agreement with theoretical modelslg|. Since
X[Mig kOMy () = My, (DM, (D], (12) creation, annihilation, and hopping rates can be controlled by

As an illustration of these general results, in Appendix B welining the laser power, we believe tha.t spatially aItgrnatmg
rates such as ours will be generated if an MX chain com-

specifically compute the spin-spin correlation functions for . ; O .
P y P pin-sp pound is exposed to a spatially modulated light intensity.

general translationally invariant initial conditions. _ R S
Returning to our model, our goal in this section is first to
derive all correlation functions from our exact solution of the
IV. CONSEQUENCES FOR A REACTION-DIFFUSION KISC. We will also comment on the validity of a simple
MODEL WITH ALTERNATING RATES mean-field theory which is widely used for the homogeneous
) ) ) ) (ve=17,) cas€[18,19. Further, we show that particle hops in
In this section, our exact results will be translated into thehe RDS develop a peculiar directional preference in the
language of the corresponding reaction-diffusion model. Weteady state, even though there is no explicit bias in the rates,
first associate a sitgon the dual lattice with every bon@  boundary, or initial conditions. Finally, we illustrate how os-
—1,j) of the original chain. Since the particles of the RDS cillatory behaviors may result from a competition of the un-
are identified with domain walls in the spin chain, they ob-derlying processes.

056129-4



EXACT DYNAMICS OF A REACTION-DIFFUSION.... PHYSICAL REVIEW E 71, 056129(2005

A. Density of particles in the RDS <v.=<1, the annihilation(creatior) reaction dominates on

The observable of most immediate interest is the averaggVen(0dd sites. As a result, the stationary density is reached

density of particlesp;(t), in the RDS. Its equation of motion exponentially fast wittdamped oscillations

can be derived easily from the associated master equation, 1 Y (2dr
resulting in p)==|1-—| —eJy(an
2 lalJo 7
d
Zd—tpi(t) =2 =9 = -0 + [%-1P-1(1) + %jp5+2(D)] T sin(2|ajt - ) + |a|cog 2 oft - 7)
g 41+ | a2ty alt '

— (4 -y = ¥-00;(t)

2Ly (MG pe + ¥jaa{MNi- ] 13 For initial densities other than 1/2, as shown in Appendix
It is worthwhile noting that this equation is the first memberB, only the amplitude, or the subdominant power-law pref-
of an infinite hierarchy, connecting lower-order correlationsactor, of the expressiond6) and (17) changes. Since they
to higher-order ones. In general, such hierarchies cannot lepend on all parameters of the model, including the initial
solved directly, without recourse to crude approximationsdensity, the dynamics is manifesthpnuniversal
Here, the mapping to the spin chain develops its full power,
allowing us to compute all correlation functions for the RDS.

The mapping from spins to particles implies thatt)
ha A deeper understanding of the time-dependent spatial

E<nj>:%[1—<oj_loj>t], so that we can just turn to E€L1) to . ; . .
read off the answer. To express it fully in RDS language, Wefstrucf[ures Of ourARDS is provided by thepoint correlation
uncﬂons,(n,-l---njm)t, of such a model. These are related to

also need to translate the initial correlation8r.oy)o. h lat. ; i ¢ the dual ) hai .

For k<¢ and any t (ncluding t=0), we may tfa correaugg unctions of the dual spin chain, via

write (0kT 1= (0T 1014 10ks2" ** T-10 )= (1 = 2Ny 1) (1 <njlmnjm>t:2 <(1_Ujl'1o-jl)'...(]f_o-jm_lqjm»t’ and are
therefore exactly known. It is interesting to note that the

%ﬁ?ﬁfﬂgﬁéiln;?e»t [18,20] when we obtain, for arbitrary m-point correlation function for the RDS is a superposition
' of all 2n-point correlation functions for the spin chain, with

17

B. Two-point correlation functions of the RDS

1 1 ) n=1,2,---,m. In the following, we focus on the most di-
pi(t) = 5{1 = Cjj-1(0} — EE (1= 2njs) rectly observable correlation, namely, the two-point function.
k<t To avoid unnecessary technical complications which add
X (1 = 2Nyn) -+ (1 = 2n7) o little insight, we specifically consider a system that is ini-

tially homogeneously half-filled withA particles, without
X [Myj-1(OMg (1) = M j(OMgj1(D]. (14)  any initial correlationsp;j(0)=1/2 and(n;(0)n(0))=1/4 for

Since the “propagatorsM; ;(t) decay exponentially as ]ik Such an initial configuration corresponds, in the KISC
— o, the steady-state density is independent of initial condiPicture, to a system with initially neither magnetization nor
tions and spatially uniform, correlations. In this case, as we showed1f], the generat-
. ing function takes a rather simphkglinear form which sim-
_ _1 Y plifies the spin-spin correlations.
p() = pj() = 2(1 \’Ve%w)- (15 With this initial condition, both the spin chain and the

) o RDS are translationally invariant, modulo period 2. As a re-
In Appendix B, we explicitly evaluate Eq14) for a ge- K

: iR
neric but simple initial condition, characterized by a uniform, Sult, the two-point correlations; - (t) =(njnjy; between
uncorrelated initial distribution of particles, with density two sites] andk (with k>]) depend only on the distanée
p(0). For simplicity, we discuss only its long-time limit here, _= . - 2 ;
_ - ) . j and the parityu(k),u(j) € {e,o} of the two sites. We
for(ﬁ((\)/)v_hééz' Wefgsirr]\;e;gﬁodﬁzﬁccé:rgﬂi Cc’)ff t;)?ﬁg;g;s'is therefore need to distinguish four distinct correlation func-
YeYo— Y, R eo oe 0o .
approached exponentially fegixcept wheny,=y,=+1, see t|ons..Ck_J.(t), Ck—J(t)’ Ck—J(t)’ and Ck—J(t)' By virtue of our
Eq. (B15)], with inverse relaxation time(2-«), and a sub- Mapping to t_he KISC,.these are de;ermujed by the two- and
dominant power-law prefactdr3? four-point spin correlations as explained in Sec. lll[@om

Egs. (9) and (10)]. Exploiting translational invariance, the

1 —ra dr t—3IZe—2(l—a)t . . c.”
pt)==(1 _Y e (an) | = pl(eo) + ———. two-point correlations for the RDS, fd> j, then follow as
2 aly T 2\2ma(l-a) 1 1
(16) (n}th = Z{[l ‘Cio(t)]z - (CTjUk)tz} + Z(Uj—lo‘k)t(UjUk—l)t-
This long-time behavior is very similar to that found in the (18)
usual(y.=17,# *1) pair diffusion, annihilation, and creation ) )
processAA= @@ [4,18). Now we are ready to discuss our results. First of all, we

(i) For y,7.<0, we observe a competition between theconsiderA a special case, namely, nearest-neighbor correla-
different processes. For example, when=4,<0 and 0 tions. Ifk=j+1, Eq.(18) reduces to
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_ nAE0 00, 2
1-2c} (;r) +c () = c(1), ] even C2%(=0) = pA(0) = (Y2 - yﬁ)(ﬁ) (23
<njnj+1>t = 1- ZCio(t) + Cge(t) . I odd and
4 —v1 ’ ) ® 2
(19 Cfo(oo) = pz(oo) + ('}/g - %)(E) . (24)

Again, we should emphasize that the quantitegqt), Considering, e.g., € y,< 7. We find thatC2%«) is en-
cntt), and cy(t) which appear in this section are the spin hanced over the mean-field result whi(«) is suppressed.
correlations for a particular initial conditiofef. Eq.(9)], i Thjs can be understood easily: Singg< 1y, implies T,
contrast to the more general correlations computed in Appen= T,, energetically costly spin flips occur more frequently on

dix B . i i . co odd sitesj, creating a particle pair on the nearest-neighbor
It is interesting to note that, generical}(t) # C;t). Of dual sites(]+1,f). Clearly, these sites form afe,0) pair.

course, after a little thought this becomes less surprisingMoreover the rate for pair annihilation is lower @8,o)
since  (mnj,y; involves the — four-spin  correlation sites. Hence, particle pairs are more likely to residdemn)

(01-1010701:1)1=(0j-107.1)r. SO, if  is odd (even, both | than on(o,e) sites. This also implies thde, o) sites act as
-1 andj+1 are everfodd), leading to a contribution a5t)  net particle sources, while,e) sites function as sinkgL0].
versuscy(t), respectively. A Not surprisingly, therefore, we fin@$%(e) > C3%(). By vir-
For the general case, whé&rmandj are not nearest neigh- tue of this reasoning, it is also immediately apparent that this
bors, this difference betweel (t) andC:(t) does not per-  difference can only persist for nearest-neighbor correlations.
*J o The same argument holds fof<0< 7.
A direct consequence ¢f<(t) # C;t) is the presence of a
o 1 otz eo . Lo o peculiar directional preference in the RDS. If we consider a
Ck—i(t) = Z{[l —er () - [Ck—i(t)] P ch—j+l(t)ck—i—1(t)’ particle on sitg, we can ask for the average raaéj,(t), with
(20) which it will jump to the Ileft(i.e., to sitej — 1) versus to the
right, defined asR;(t)=3(nj(1-nj,1)—ni(1-nj_y)). Here,

sist. If k is even anoi is odd, we find

and fork odd andj even one obtains the first(secondterm is the average rate for a particle on site
1 1 j to jump to sitej +1(j—1). In our case, one might expect this
C2C (1) = ={[1 = ) 2 = [ 82 (1) 12 + =c°° . (1)cCe . (t). difference to vanish since neither bulk rates nor boundaries
i =311~ O = laq O+ A a4 impose a directional bias. Moreover, to avoid a potential bias

(21)  att=0, we start from a translationally invariant initial con-
dition with p(0)=1/2. Yet,since R;(t)« C%t)-CiUt), it is
Thanks to the simple relation between even-even and Oddnanifestly nonzero. Explicitly, we find
odd spin correlations, Eq9), the two right-hand sides are L " R
now identical. 5[1 ‘;]Cge(t), j even

. . . € .\ _ 00 Ri(t) = n (25
A similar line of Ieri\sonlng shows thdﬁ_j(t)—ck_i(t) for | %[% _ 1:|C§e(t), i odd,
arbitrary separatiofi—j. Invoking the two-spin correlations ) L
again, we may write which even persists in the steady state,
w \2 =
T Ri(o) = (a-%)(:)% 1even
Ck—J(t) - Ck—j(t) - 4{[1 Cl (t)] Ck—](t)ck—J(t) J (’)/CZ) _ ’yé)(ﬁ)zl J odd
+C (DG (D). (22)  Specifically, fory,< y., particles on an evefodd) site jump

; Inltth?NfoIfIi(:V\:mg,nV\i/g ?Itsyfusf tr;je C?qze%ueecgﬁﬁj o;utrhers reference vanishes as soomas y,. Moreover, even when
esulls. Vve Tirst consider ine steady state. 9 P8 is nonzero, it does not generate a mass current. Counting

vious analysis of the spin correlations, Ed), the stationary h f ‘ icles b tesand +1. th |
limit of the density-density correlations becomes very€netflow of particles between sitgsand) +1, the natura
definition of such a current ig7j(t)=3((1-nj)nj,;—nj(1

simple:  Provided k-j>1, we find Cf_(;f()#(l)(”):ﬂl -ni,)). Clearly, this expression reduces to a density differ-
—ci%)]?=p?(«). In other words, the two-point correlations ence which vanishes for all times provided the initial condi-
of non-nearest-neighbosites factorize into one-point func- tion is homogeneous. For inhomogeneous initial condition,
tions, independent of parity. This kind of mean-field-like be- 7j(t) exhibits nonzero transients for finite times but decays
havior is typical offree-fermionsystems[4,18]. However, ast— oo,

the nonequilibrium nature of this model still imposes its sig- Let us conclude this section with a few brief remarks
nature. Turning to the@earest-neighbocorrelations, we find about the validity of the mean-field approximation for this
that this simple factorization no longer holds—except in thesystem. We already noted that it does not predict the nearest-
special case wherg.=v,. More specifically, we find neighbor correlations correctly, except in the special case

qgreferentially to the rightleft). Of course, this directional
t
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Ye= Yor We now show that it also generically misses the sta- +(1+ 70)0?+07++1 +(1- 70)0;0;+1
tionary density. i i
We begin by recalling Eq13). Seeking a translationally - yo(g]?g]."+ gfﬂgjfﬂ) -(1-v]. (27)

invariant (modulo 2 solution with p5j(t)=pe(t), pzj+1(t)
= po(t) for all j, the mean-field approximation corresponds to  The key to the solvability of this Schrédinger equation
truncating two-point functions:(ni(t)m_;(t)) = pe(t) poft). lies in the bilinear dependence of the Hamiltonian on the
Starting from a uniform initial density(0), we find pu(t) Paqh mgt.nces. Thls is due to thg fact that .the spin-flip rates
=po(t) = pue(t), with (1) implicitly fulfill the free-fermionconstraint[3,4,18. In

© RDS language, this condition requires that the sum of the

1 _ A~y + Yo)2 particle diffusion rates equal the sum of ttiecal) annihila-
we(t) = 2ol P(O) = pml = P (O) pp]? - tion and creation rates, i.€l/2+1/2=(1+y,)/2+(1-v;)/2
p(0) = pr+ [p(0) = pple V4 ret %) with j e {e,o} in our case. If this relation is violated{ in-
N R Wy " cludes quartic terms, of the forjo; o7, 07, and the
= Pp~ Pm 0(0) = prm € ' (26) associated RDS can no longer be solved exactly. It can, of
course, be simulated, and for those cases investigated so far,
where it appears that the quartic terms are irrelevant for the long-
1 5 \W time_dynamics[é},lQJ. It is also_ worth no'Fing that the_' free-
Pom= -{1 - + - e 7o } fermion constraint is not particularly artificial: the simplest
T2 Yet Yo Yet Yo models for photogenerated solitons in MX chain compounds

satisfy it quite naturally12].

Here we decided to invoke generating function techniques
instead of diagonalizing Eq27). In our view, this is the
most convenient and systematic approach to selvaulta-

eouslyboth the KISC and RDS, for two reasons. First, the
ee-fermion approach requires various technical steps,
iftroduction of so-called pseudofermion operators and a

The stationary limit is clearlpye(«)=p, which differs from
our exact result, Eq(15), except if y.=1v,. In other words,
the remarkable accuradit8,19 of the mean-field approxi-
mation for the stationary state of the uniform systém
=v,) appears to be an “accident” due to the fact that whe
rates are uniform, the steady state is a product measure.

also note that the exact relaxation time to the steady Stat%ogoliubov—like transformation which make the general

— _ “‘\‘ _1 . - . R .
Texa&t._[.z \%73] ,m (f(l)mFC ide W'tt_]h dthe mean field treatment rather involved, especially for arbitrary initial con-
prediction, rye=[y4~(ye+ )] For such dynamic quan-  qitions(4 18], Further, the diagonalization of E(7) yields
tities, the exact and the approximate results differ for any,p|y correlation functions with asvennumber of spingsee
choice of . and y,. In particular, the mean-field theory al- gecs. |11 and IV; the calculation of correlations involving an
ways predicts an exponential decay to the steady state, COfgyg number of spins requires a dual transformation of Eq.

pletely missing the possibility of oscillatory behavior. (27) into a new stochastic Hamiltonian which must also be
V. SOLVABILITY AND RELATIONSHIP WITH FREE diagonalized20]. ,
FERMION SYSTEMS Let us also mention that damped oscillatory decay has

been observed before in certain reaction-diffusion models

The crucial ingredient for the solvability of the KISC is [3]. However, those models, and hence the physical mecha-
the quadratic spin dependence of its Glauber-like kineticsnisms leading to the oscillations, are completely different
Thanks to this simple form, the hierarchy of equations for thefrom ours. As an example, a diffusion-limited fusion model
correlation functions is closed: to solve the equations for th¢3] is defined by three processds) biased diffusion:AZ
N-spin correlation functions, one needs to know only — @A with rateD(1+7), DA— AD with rateD(1-17) (with
m-point correlations wittm=n. 0< »=<D); (i) biased fusionAA— @A with rate D(1+27),

In RDS language, the dynamics of the particles can bexa— A% with rate D(1-27); and (i) homogeneous pair
rewritten as dree fermionmodel, by defining a suitable qua- production:3@ — AA, with rateD. With this special choice
dratic (but non-Hermitiah “stochastic Hamiltonian.” Fol-  of rates, the equation of motion for the density closes and
lowing standard method§3,4,18,21, we can rewrite the pecomes solvable. In order to observe oscillatory decay of
master equation for the RDS as a formal imaginary-timéhe particle density, the initial condition must biomoge-
Schrédinger equation(d/dt)|P(t))=-H|P(t)). The Hamil-  neous For a homogeneous initial condition, the density de-
tonianH is constructed by associating the usual Pauli matricays exponentially. In contrast, the equation in our reaction-
ceso; (o7) with the creation(annihilation) of a particle at  diffusion model does not close, and the oscillatory behavior
site ], is generic: it occurs for any initial condition, inhomogeneous

. . .. or not.

-2H= AE [U]fajf+l+ oo, t 1+ ’ye)O'J? Tia

j even
- S - 4 VI. CONCLUSIONS
+ (1= v)o; 04, ~ veloy o5 + 03,07, )
To summarize, we have presented a full exact solution for
-(1-y)]+ > [af’af+l+ crl?crjil the dynamics of a nonequilibrium Ising spin chain, with ar-
j odd bitrary initial condition. The model is characterized by a gen-
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eralization of Glauber dynamics: spins on even/odd sites arBMR-0414122.

coupled to alternating temperaturd@g,andT,. We obtain all

correlation functions from a generating functional. As an il- APPENDIX A: THE DERIVATION OF THE
lustration, we have discussed the equal-time and the two- GENERATING FUNCTION

time spin-spin correlation functions. In this appendix, we provide some details for the deriva-
Identifying domain walls in the spin system with particles tjon of the generating functiofi.0), which is one of the key
on the dual lattice, the model can also be interpreted as fesults of this work. We follow Aliev's work and notation
reacthn—dlffu3|on system. Particles are created and annihfq5). Aliev established that the generating functions of a very
lated in pairs; the rates for these processes alternate frogeneral class of disordered Glauber-Ising spin chains, includ-
even to odd sites. This mapping opens up an interesting e¥ng our case, can formally be expressed in terms of two
tension of parameter space: while negative temperatures af@nctionij*k(t) and two additional quantitie‘é/fk(t), which
unphysical for th_e spin chain, the corresponding rates_araepend ina very involved fashion Mi;(t)- Below, we will
perfectly natural in the context of the RDS. By expressinggee that these quantities are closely related to physical ob-
particle-particle correlations as superpositions of SPIN-SPieryaples, namely, the magnetization and the two-point cor-

correlation functions, the RDS becomes exactly soluble. Thi$g|ations. Here. we follow Aliev by noting that the Laplace
is not entirely trivial since the BBGKY22] hierarchy for the '

+ . .

RDS isnotclosed: its solution is far from obvious unless Onetransfolrm+ ofMj) is the inverse of a. X L band matrix(s

recognizes the connection to the spin chain. +1)1-5U*. For our case, the entries of. this matrix can be
For 0< v, 7, energetically favorable spin flips always taken from the rates and read explicitly is even,

dominate over unfavorable ones, irrespective of whether the y

occur on even or odd sites. In RDS language, pair annihila17 (s+1)l- —Ui} =(s+ 1)k~ 30(521'—1,k—1+ Opj-1 k1)

tion is always more probable than pair creation. As a conse 2j-1k

quence, we find that all quantities decay exponentially to )

their steady-state values. In contrast, fggy,<O0, we ob- (1<jsL/2),

serve(damped oscillatory behavior. Its origin can be traced

to a competitionof pair creation and annihilation on even . _ Ye

versus odd sites on the original lattice: If, say<0, then (s+1)1 2U 2 . (s+ 1) 2 (82 -1+ O s 1)
pair creation dominates over annihilation on odd sites while ’

the relation is reversed on the even sites. Hence, a given (1<j<L)

initial particle density may first decrease, due to annihilation

processes, and then recover, as the available empty sites are 1

(partially) filled again by the strong creation process, and so {(s+ 1l - —Ui] =(s+1)8, - ﬁ’(gzk F &),

on, until the stationary density is reached. 2 ik 2" '
Remarkably, even in the absence of any bias in the rates,

boundary, or initial conditions, particles still “know” the dif-

ference between right and left: For, e.g,< y., particles on

even(odd sites jump preferentially to the rigliteft). Even (A1)

though this directional preference does not lead to a system-

atic particle current, it is still somewhat surprising. However,Given Egs. (Al), it is easy to evaluate the inverse of

once we recall that particles are most often creageuhihi-  [(s+1)1-(1/2)U*];,

lated on pairs of neighboring sites, with the odd site on the

1 Y, _
(s+D1- EUi} =(s+ Db 1k~ Eo(aL—l,k + 01

L.k

left (right), we recognize that the directional preference is ~e o1 [ - ASIA
simply a response to this density gradient. M = LV y S s+1-acosg:’ (A2)

Since exact solutions, especially of a full nonequilibrium
dynamics, are rare, we hope that our model can serve aswhere ¢ =[#(2n-1)]/L and ¢,=(2mn)/L, with n
testing ground for various generalizations or approximations=1,2,...,L. In the thermodynamic limitL—c, the two
The features reported here—exponential decays, damped %Jantitiesl\?lfk and |\“/|j—k coincide whence we simply have
cillations, and directional preference—should be generic for ’ ’ o
a whole class of genuine out-of-equilibrium models. More- SE = \/E 2”d_¢ gkie (A3)
over, they should be experimentally observable in MX chain K kil — ¥iJo 2m(s+1l-acosg)
compounds exposed to spatially modulated laser light.
Taking the inverse Laplace transform of E@&3), we re-
cover Eq.(4) for the propagator.
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For readers familiar with Aliev's work15], these remarks

fill in the gaps between Aliev's formal and general analysis
and the special case we are interested in here. It follows that
the generating function of our KISC admits the compact and

explicit representation of Eq10), which encodes theom-
pletedynamics of the system.

APPENDIX B: TRANSLATIONALLY INVARIANT INITIAL
CONDITIONS: THE SPIN-SPIN CORRELATION
FUNCTIONS AND THE PARTICLE DENSITY

PHYSICAL REVIEW E 71, 056129(2005

Con-1(t) = Con_1(*) +e2 [Com-1(0) = Cna(0)]

m>0

2
n+m—1)(2a’t)} + - 2 [azm(o)

m>0
- aZm(m)]{IZ(n—m)—l(zat) - |2(n+m)—1(2a’t)}-

The expressionB1) and(B2) illustrate that the time de-
pendence of the spin-spin correlation function depends non-
trivially on the initial condition, and we may therefore an-
ticipate nonuniversalbehavior. Of course, whef,=7,, the

X{l3(n-m)(2at) -

(B2)

In Sec. Il B, we have derived an exact expression, EgexpressiongB1) and (B2) coincide with those obtained by

(12), for the spin-spin correlation functions of our KISC,

valid for arbitrary initial conditions. Here, we impose a natu-

Glauber|5].
An interesting situation occurs when, say, is hegative

ral restriction, namely, translational invariance, on the initialwhile 0<y,=<1, so thata=ila|. Then, we have ,,(2i|a]t)

conditions. Thanks to the symmetry, EG1) simplifies con-
siderably, as we will show now.
As we already pointed out ifil1], for translationally in-

variant initial conditions, we only need to consider the cor-

=(=D"n(2alt)  and 1o (2ifalt) = 2i(-1)"Ipne1 (2] alt),
where J,(x) = [7(dg/ m)cogx sing—nq) is the Bessel func-
tion of the first kind[16]. Further, whemx=i|a|, the expres-
sions(B1) and(B2) become

relations between spins at two even sites, two odd sites, and

one even, one odd site. We denote these dg)?(t)
=(020020+m)tr  Con() =(02p-102¢-14m)ts  Con-1(1) =Co1_4(1)
=(02¢0204on-11={0201102¢+2nr- Of course, there is no need

to studyn< 0 cases. For the special case of zero initial mag-
netization and correlations, these correlations are already

known [11] and are given by Eq(9). Here, we seek their

form in a more general case, starting from a homogeneous

initial condition.

Let us recall fronT11] that in the translationally invariant
case, the quantities ay,(t)=(1/2)[yCon(t) +¥Cou(t)],
an-1(t)=acS,_4(t), obey the following simple equation:
(d/dtyay=-2a;+ala;_1 +a;.1], j >0 with the initial condition
ay(t)=7y and y=(v,*+7v,)/2. The equations of motion of the
KISC [11] also give the following relationships
among the correlators: c3a(t)=(y/ ve)Con(t) +[c5(0)
= (Yol Ye)C5(0) ],

The explicit expressions for the correlators follow from
Eq. (11), or by the methods of images directly
from the expressiora,(t)=a,()+e 2= -o[am(0) —an(*)]
X{lnm(2at) =l em(2at)}, wherea, (<) = ywX andn=0. From
the definitions ofa,, we immediately infer

Ye 00
“=Con(
O

—2t

ce(t) = L8 °2(t) ( 0)—c§§(0)>e-2t

- aZn(oo) + €
Yo Yo
X E [a;m(0) - a2m(°°)]{|2(n—m)(2at) - |2(n+m)(2at)}

m=0

2 [sz—l(o) C2m_l(30)]{|2(n_m)+1(2at)
Yo m>0

e—2t
2(n+m)— 1(2at)} - 27 [Vec (0) - Yocgﬁ(o)]- (B1)
Following the same steps faf,_,=c3._;, we obtain, for(n
>0),

0= 20 - (76 50 -c510) e

__ An() g2

— E [82m(0) = @gm(20)](= D™™
|7’o| |70| m=0
lale?
X{Jo(n-m (2] alt) = Ipnem (2| aft)} +
|'Yo|

X 2 [sz—l Cgr?q—l(oo)](_ yHmm

m>0
X{Jo(nemy+1(2]elt) + Ipnrm-1(2 aft)}

e_ZI 00, ee,
- g['}’eCZn(O) - VOCZn(O)]i (B3)

[o]

€50 1(1) =52y (=0) + €2 ) [€52,1(0) — €52, 1(20)](— D)™™

m>0

><{~]2(n—m)(2|a’|t )+ J2(n+m—1 (2|a|t)}

—2
1 2 [om(0) — ()] (- ™™

| |m>0

><{‘-]Z(n+m)—l(2|a|t) - JZ(n—m)—1(2|a|t)}- (B4)
In the long-time limit, these expressions exhibit a damped
oscillatory approach to the stationary state.

We now turn to the equivalent RDS. As we have seen in
Sec. IV A, the density of particles is related to the nearest-
neighbor spin correlationsci® according to p(t):%[l

c;t)]. Here, our goal is to determine the long-time behav-
ior of this density for a homogeneoubut otherwise arbi-
trary) initial concentration of particlep(0). In this respect,
the expressionfB2) and(B4) are not very practical as they
involve infinite sums of Bessel functions. At this point, for
further convenience, it is useful to introduce four auxiliary
functions defined as follow&wvith 0\ <1):
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Fin0) = 2 N e 2,010 (2at) = 1 2at)}

m>0
T dq e—2t(l—a cosq)sian
=201 +\? f — , (B5
( ) o m™1+\*-2\%cos (B5)
Fot) = 0 A2Me {1, 1(2at) = lomeq(2at)}
m>0
=2 2 " d_q —2t(1-a cosq) sin 2(,] sinq
A e 7 > ,
0 1+\"=2\“cos 3y
(B6)

G\ 1) =— 2 N2 Y= )M 2 Iy (2 at) + Jon(2]aft)}

m>0

md
=2\(1+ )\2)] —qe‘2tcos(2|a|t sinq)
0 ar

cog q
><[1+7\“+2>\2cos zJ’ (B7)

Go(\ 1) = - 2 N2M(= )M 2{Jy.1(2]@ft) = Iy_om(2]aft)}

m>0

md
= 2)\2J —qe‘Z‘sin(2|a|t sinq)
o

x[ sin 2q cosq } (B8)

1+\*+2\°cos

To establish these expressions, we have invoked the inte-
gral representation of the Bessel functi¢fé] and the prop-

PHYSICAL REVIEW E 71, 056129(2005

(B11)

p(t) = §+ (7%2 + p(0>)e-2t.

We now proceed with the analysis of the long-time behav-
ior of these expressions. Again, we first consider the case
where v,y,>0 and theny,y,<0.

When y.v,>0, the main contribution to the long-time
behavior arises from the smajlcontribution in the expres-
sion of the functiond=; andF,. Therefore, one may expand
the integrand of; andF, in Eq. (B9). It is also essential to
pay due attention to the initial condition.

(i) When 0<9:7%,<1 and O<p(0)<1
p(0) # p()], we obtain

[also

Y BT
p(t) = pl2) = 4L(1-w2>
(1+24{1-20(0)} + 2p<0)2} g 2o
pOL-p0)  Jatfmat
(B12)

(i) When 0< y,y,<1 andp(0)=0, we find

7 70) 1 e—Z(l—a)t
)= p(o)=—|1+~- = .
PO =p) [ a {a(l—&)}at}m%

(B13)
(iii) When 0< y,y,<1 with p(0)=1, we have
7 70) 1 e—Z(l—a)t
t) - =|1-—+ - — .
PO~ pl) [ a {a(l —w2>}at] a\mat
(B14)

erties of geometric series. With these functions and the help
of Eq. (14), the density of particles in the RDS model can These results show that fagy,> 0, the density generically
now be recast in compact form. Two cases emerge naturallgpproaches its stationary value @t 3% 21"t with some
as follows. nontrivial amplitude. Only if the lattice is initially com-
When y¢y,>0, pletely empty/occupied by particles is the long-time behavior
modified to «t™%e~21-)t (providedy/ o # +1).
(iv) The case wherg,=7y,=vy==1 iscritical and we can
check from Eq(B9) that one recovers the previously known
results[4,18],

p(t) = p(0) = ﬁ[a(w.t) +Fy(,)]

_ %[Flu ~2p(0),) + LFy(1 - @(0),0} :
o

(B9) (B15)

p(t) = ploo) =~ ——

2\/ﬁ'
When ¢y, <0, In this case, it is well knowr{4,18] that the density of
— particles approaches the steady state algebraically slowly
. -1/ - ; o ;
p(t)—p(oo):l[Gz(l—Zp(O),t)—lGl(w,t)] (ot 2)_. For y—l_(only pair ann|h_|lat|or)|, the stationary
2|af value is p(»)=0; in contrast, we findp(«)=1 for y=-1

1[ 5 (only pair creatioh We emphasize that for suchcitical
- —|:le((;),'[) +G,(1- 2p(0),t):| . dynamics, neither the dynamical exponent nor the amplitude
2 |a of Eq. (B15) depend on the initial condition.

When v,y,<0, it is difficult to directly analyze the long-
time behavior of the oscillating functio®,; andG,; instead,
The casey,y,=0 is special and gives rise to a purely expo-we seek upper and lower bounds fors £1. We observe
nential time dependence, that the denominator of the integrand in the expressions

(B10)
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for G, and G, can be bounded as followg1-\?)?<(1
+\*+2\2 cos 2)) <(1+\?)2. Therefore, we obtain for the
auxiliary functionsG; andG,

N €23,(2lalt)
1+7\2  2aft

A1 +2?) € 23,(2]alt)
(1-2%)%  2at

<G\ =

(B16)

< G,(A\1)

$2<

If N\=%1, one has the exact expressions

2( A )Ze-zklz(2|a|t)
1+\2 2|at

A )2e‘2t.]2(2|a|t)
1-\2 2alt
(B17)

Gi(1,) == Gy(- 1,) =€ Jp(2alt); Gx(1,t) =Gy(- 1,1)
= (€2/2|alt)3,(2]alt).

At long times and for finite n, €?J,(2|alt)
=(e7?/7|alt)cod2|alt—(7/4)(2n+1)] and therefore the
upper and lower bounds in Eq816) and(B17) display the
same time dependence. With the help of E8{L0), we thus
deduce the following.
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(i) When 0< p(0) <1 [and obviouslyp(0) # p(x)],

p(t) = p(o) = t'3’2e‘2{A CO{ZI alt+ g)

a
+B cos<2|a|t— —)} :
4

whereA andB are some amplitudes depending nontrivially
on all the parameters of the system and on the initial density.
(i) When p(0)=1, we obtain an explicit expression for
the long-time behavior of the density,
-2t -2t
e e T
t) — p(o) = —Jp(2|a|t) = —C05<2at——>.
p(t) — p( 2 o | |) va | | 4

(B19)

(i) When p(0)=0, we also have an explicit expression
for the long-time behavior of the density,
g2 e 5( 377)
t) - = - —Jy(2]|a|t) = ———=c09 2|a|t+ — |.
p(D) = p(ex) = = —-Jo(2laft) = - ———coq 2laft+

Vol

(B18)

(B20)

These results show that, fegy,<O0, the density displays
oscillations which are damped by a factofe ?, where 8
=3/2 for generic initial densitiep(0), with two exceptions:
we haveB=1/2 if the system is initially completely empty
or occupied.

Of course, following the same approach, one would be
able to compute everg-point correlation function for both
the KISC and RDS. While perfectly straightforward, these
computations become rather tedious.
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