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The ferroelectric domain and local structures of Na1/2Bi1/2TiO3-x%BaTiO3 �NBT-BT� and 0.14
at. %Mn substituted Na1/2Bi1/2TiO3-x%BaTiO3 �Mn:NBT-BT� single crystals with x=5.5 near a
morphotropic phase boundary have been investigated by transmission electron microscopy.
Increased ferroelectric ordering and enhanced in-plane octahedral tilting were observed for
Mn:NBT-BT compared with NBT-BT. Bragg-filtered lattice images revealed that the size of the
in-phase tilt domains of Mn:NBT-BT were on the order of 2 to 8 nm, with a tendency of alignment
along �110�. © 2011 American Institute of Physics. �doi:10.1063/1.3573801�

Lead-free piezoelectrics have attracted much attention
due to environmental concerns.1–3 Na1/2Bi1/2TiO3-based
�NBT� perovskite solid solutions are considered as an impor-
tant lead-free ferroelectric �FE�. The system has been shown
to have high piezoelectric properties of d33=500 pC /N. It
thus has the potential to replace the widely used Pb-based
piezoelectric ceramics.2,4

The Na1/2Bi1/2TiO3-x at. %BaTiO3 solid solution �NBT-
x%BT� is a very complex system which has a morphotropic
phase boundary or MPB for 5.5�x�6.5. The MPB is a
temperature independent boundary between rhombohedral
�R� and tetragonal �T� FE phases.5,6 Studies have shown that
NBT-based solid solution is one Pb-free FE that has a MPB.
This is beneficial for piezoelectrics that need to operate over
a wide temperature range.5 Recent piezoresponse force mi-
croscopy �PFM� studies of the domain structure of NBT-
x%BT have shown with increasing x, as the MPB is ap-
proached, that �i� the size of polar nanoregions is decreased
and their self-organization enhanced; and �ii� the formation
of proper ferroelastic domains is suppressed, and rather im-
proper ones are favored that form below the FE Curie tem-
perature to elastically accommodate the FE domains.7,8

It is known near the MPB of Pb�Mg1/3Nb2/3�
O3-x%PbTiO3 �PMN-x%PT� and Pb�Zn1/3Nb2/3�
O3-x%PbTiO3 �PZN-x%PT� crystals that high piezoelectric
properties are achieved by low symmetry monoclinic �M�
phases that structurally bridge R and T phases.9–13 However,
to date, no intermediate bridging M phases have been found
in NBT-BT; thus the mechanism of piezoelectric property
enhancement remains in question. Near the MPB of NBT-
BT, x-ray investigations have revealed the coexistence of R
and T phases, where application of E along the �001� direc-
tion induces the T phase.6,14 It is worth noting that the high-
est d33 values for NBT-BT have been reported in Mn-
modified systems, where d33 was increased to 480 pC/N from
280 pC/N by Mn. This enhancement has been attributed to
an increase in the resistivity by Mn;4 however, the effect of

Mn substitution on the local structure of NBT-BT crystals
has not yet been reported.

Here, we have studied the domain structure, octahedral
tilting, and lattice structure of NBT-x%BT and Mn:NBT-
x%BT with x=5.5 using bright field and lattice imaging, and
selected area electron diffraction �SAED�. We find the fol-
lowing with Mn substitution: �i� increased tendencies of FE
ordering and in-plane octahedral tilting; �ii� formation of
structural modulation across domain boundaries, which may
help relax elastic stress between FE domains; and �iii� an
increase in the number of in-phase oxygen tilted regions,
with a size of about 2 to 8 nm and with a tendency of align-
ment along �110�.

Single crystals of NBT-x%BT were grown by a self-flux
technique.4 Samples for transmission electron microscopy
�TEM� were prepared by mechanical polishing, followed by
a dimple grinder thinning process, and finally by argon ion
thinning. Studies were performed using a Philips EM 420
electron microscopy working at 120 kV and a FEI TITAN
300 electron microscopy operating at 200 kV, with a double-
tilt sample holder. All electron diffraction patterns were in-
dexed using pseudocubic unit cell notations.

Figures 1�a� and 1�b� show bright-field images for NBT-
x%BT and Mn:NBT-x%BT with x=5.5, respectively. Two
types of domain structures can readily be discerned. For
NBT-5.5%BT, polar nanodomains are clearly evident, as pre-
viously reported.7 The average size of these polar nan-
odomains was about 20–50 nm. Prior studies of pure NBT
single crystal have shown a polar nanodomain size of 50–
100 nm,15 thus it appears that the polar nanodomain size is
reducing with increasing x at. % BT on approaching the
MPB. Upon Mn substitution, the morphology of these do-
mains was notably changed. More highly ordered domain
structures became evident, which were aligned along �110�.
It is worth noting that similar types of domains have been
found on the tetragonal side of the MPB for PMN-x%PT,
i.e., the so-called normal micron-sized T domains.16,17 How-
ever, there are two notable differences of the domain state
between Mn:NBT-5.5%BT and the T phase of PMN-PT,
which are as follows: �i� Mn:NBT-5.5%BT displays relaxora�Electronic mail: jjyao@vt.edu.

APPLIED PHYSICS LETTERS 98, 132903 �2011�

0003-6951/2011/98�13�/132903/3/$30.00 © 2011 American Institute of Physics98, 132903-1 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.173.125.76 On: Wed, 15 Jan 2014 18:00:34

http://dx.doi.org/10.1063/1.3573801
http://dx.doi.org/10.1063/1.3573801
http://dx.doi.org/10.1063/1.3573801


FE features, not normal FE ones;4 and �ii� the stable crystal
structure in Mn:NBT-5.5%BT was R, where as that of PMN-
x%PT was T. Clearly, the development of micron-sized do-
mains in Mn:NBT-5.5%BT is due to Mn substitution. We can
ascertain this from the fact that there were no changes in
crystal structure for NBT-5.5%BT with Mn based on our
x-ray studies. Furthermore, this infers that the change in do-
main stability arise due to changes in defect distributions and
their interaction with domains. Figures 1�c� and 1�d� show
lattice images obtained near domain boundaries for NBT-
5.5%BT and Mn:NBT-5.5%BT, respectively. For NBT-
5.5%BT, planar defects along �110� twin boundaries can be
seen, as previously reported for NBT.15 However, for NBT-
5.5%BT, the lattice planes were found to be tilted with re-
spect to each other across this boundary, as illustrated by
dashed lines in the figure and by a higher resolution image
shown in the insert of the figure. This tilt clearly shows that
the lattice is elastically relaxed across the boundary. For
Mn:NBT-5.5%BT, the lattice was found to be coherent

across the boundaries, as can be seen in Fig. 1�d�, also the
inset of the figure. In this case, the lattice planes of different
regions were not found to exhibit a tilt with respect to each
other. Clearly, Mn substitution not only makes significant
changes in the polar domain structure and superlattice reflec-
tions but also to the mechanism of stress accommodation
between octahedral tilt regions.

An electron diffraction pattern for NBT-5.5%BT taken
along �001� is shown in Fig. 2�a�. Weak 1/2 �ooe� superlat-
tice reflections can be seen, as marked by arrows; where o
designates odd values of the Millers indices, and e even.
These finding are consistent with prior reports for NBT-
5.5%BT ceramics.18 It is believed that these 1/2 �ooe� reflec-
tions originate from oxygen octahedra tilts in the NBT-
5.5%BT system of limited spatial correlation.19–23 These
small tilted regions may have a local tetragonal distortion
within the average R structure. For Mn:NBT-5.5%BT, SAED
patterns taken along �001� and �110� are shown in Figs. 2�b�
and 2�c�, respectively. These patterns clearly revealed intense
1/2 �ooe� and weak 1/2 �ooo� reflections as marked by arrows
and rings, respectively. These results show that a coexistence
of in-phase 1/2 �ooe� and out-of-plane 1/2 �ooo� octahedral
tilted regions is stabilized by Mn substitution, this is indica-
tive of a mixture of R and T phases. It is noted that an
orthorhombic �O� perovskite phase can also exhibit both su-
perlattice spots simultaneously.24 For NBT, the orthorhombic
phase was only observed near 230 °C, bridging between R
and T ones.21,22 To date, no O phase in NBT-based solution
has been observed at room temperature, either by TEM or
x-ray studies. Therefore, the possibility that these superlat-
tice are due to an orthorhombic phase in Mn:NBT-BT can be
reasonably excluded. The strong intensity of the in-phase
tilts with Mn may indicate an enhanced local tetragonal dis-
tortion within the R phase, which is coincidental with a sig-
nificant enhancement of d33 with Mn.4

Lattice imaging was then performed on Mn:NBT-
5.5%BT near the edge of the specimen along the �001� zone
axis. The edge was chosen so that we could try to observe
the lattice planes in areas of the sample which had thick-
nesses on the order of the spatial coherence of the 1/2 �ooe�
octahedral tilts. Figure 3�a� shows such a lattice image and
the inset shows a fast Fourier transform �FFT�. The FFT
reveals intense 1/2 �ooe� reflections from in-phase octahedra
tilts, consistent with the SAED patterns in Fig. 2�b�. How-
ever, a FFT of similar images for NBT-5.5%BT did not re-
veal such 1/2 �ooe� reflections, consistent with a much weak

{110}

(b)Mn:NBT-BT(a)NBT-BT

100nm 100nm

(c)NBT-BT (d)Mn:NBT-BT

FIG. 1. TEM bright field images of �a� NBT-5.5%BT and �b� Mn:NBT-
5.5%BT, which reveal enhanced FE ordering for NBT-5.5%BT with Mn
substitution; lattice images taken across octahedral tilt boundaries for �c�
NBT-5.5%BT, and �d� Mn:NBT-5.5%BT, the insets show the magnified re-
gion across the boundaries.
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FIG. 2. SAED patterns for �a� NBT-5.5%BT taken along the �001� zone axis; �b� and �c� Mn:NBT-5.5%BT along �001� and �110� zone axis, respectively,
where intense 1/2 �ooe� superlattice reflections can be seen in �b� as marked by arrows.
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intensity in the SAED pattern. In Figs. 3�b�, we show the
corresponding inverse FFT image obtained by selecting
only the 1/2 �ooe� super-reflections of the FFT. It clearly
reveals a high intensity of small octahedral tilt regions of
size 2–8 nm, consistent with a prior report for NBT-BKT-BT
ceramics near the MPB.25,26 By comparing the intensity of
the 1/2 �ooe� reflections between NBT-5.5%BT and
Mn:NBT-5.5%BT, one can infer that Mn pronouncedly in-
creases the number of in-phase tilted regions.

Our results clearly show that small amount of Mn sub-
stituents favor the formation of microsized FE domains in
the R phase field, which contains a high density of 1/2 �ooe�
octahedral tilted regions that may have tetragonal distortions
of limited spatial lengths. Such local structurally inhomoge-
neous states that coexist over different length scales may
help explain the large induced strain as high as 0.6% �Ref.
27� and enhanced d33 values4 in Mn substituted NBT-
5.5%BT crystals near the MPB.
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FIG. 3. �Color online� �a� Lattice image for Mn:NBT-5.5%BT taken along
the �001� zone axis, and the inset shows power spectrum of the lattice
image, which reveals 1/2 �ooe� super-reflections; and �b� corresponding in-
verse FFT image obtained using only the 1/2 �ooe� superlattice spots.
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