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The authors report the structural, ferroelectric, and ferromagnetic properties of Pb�Fe1/2Nb1/2�O3

epitaxial thin layers grown on �001�, �110�, and �111� SrTiO3 substrates by pulsed-laser deposition;
films were of sufficient resistivity to enable high-field P-E measurements. Findings are as follows:
epitaxial strain results in �i� a dramatic increase in the spontaneous polarization Ps; �ii� a lattice
structure that is dependent on substrate orientation; �iii� a slim-loop P-E response and relaxor
ferroelectric characteristics in the dielectric constant, both of which are nearly independent of
crystallographic orientation; and �iv� a weak ferromagnetic moment, which is dependent on epitaxial
mismatch. © 2006 American Institute of Physics. �DOI: 10.1063/1.2357926�
Lead iron niobate, Pb�Fe1/2Nb1/2�O3 �PFN�, was discov-
ered by Smolenskii et al. in the 1950s.1 It is a multiferroic
transforming from a paraelectric �cubic� phase to a ferroelec-
tric �rhombohedral� one at a Curie temperature of 385 K,1,2

concurrently from a paramagnetic state to antiferromagnetic
�AFM� spin-ordered one at a Néel temperature of 143 K,3

and subsequently undergoing a secondary AFM→AFM
transition at 19 K.4,5 The room temperature lattice structure
of PFN single crystals is rhombohedral, with lattice param-
eters of ar=4.0123 Å �or 4.058 Å� and �r=89.89°.1,3,6,7 It is
a mixed B-site cation perovskite and accordingly could be
anticipated to have relaxor ferroelectric characteristics simi-
lar to Pb�Zn1/3Nb2/3�O3, such as slim-loop polarization
�P-E� characteristics8 and a polarization dynamics that scale
to a Vogel-Fulcher or stretched exponential relations.9

The dielectric, ferroelectric, and magnetic properties of
PFN bulk single crystals and ceramics have been reported.
The maximum polarization is only �10 �C/cm2,10 the P-E
response is “nonsquare” yet hysteretic, the dielectric break-
down field is low, and the weak-field dielectric loss �or tan ��
factors are quite high. These limited dielectric and ferroelec-
tric properties of bulk crystals and ceramics are believed to
reflect inferior dielectric insulation, presumptively attributed
to conductive losses via valence band hopping due to Fe+2

→Fe+3. In addition, the induced magnetization of PFN single
crystals at 80 K has been reported to be �100 emu/cm3 un-
der a magnetic field of H=105 Oe.6 Unlike a normal AFM, at
lower fields of H�2�104 Oe, the induced magnetization
was not linear with applied H; rather, the M-H response was
slim loop with a saturation magnetization of Ms
�20 emu/cm3, indicative of a weak ferromagnetism with no
remanence.

Nonepitaxial thin layers of PFN have been previously
prepared by sol-gel11,12 and pulsed-laser deposition
�PLD�.13,14 Superior ferroelectric properties were reported in
both cases, relative to bulk crystals and ceramics. Sedlar and
Sayer11 found the maximum polarization to be Pm
=24 �C/cm2 for sol-gel films, and Gao et al.13 reported a
value of Pm=22 �C/cm2 for PLD films deposited on
La0.7Sr0.3MnO3/Si�001�. However, epitaxial PFN films have
yet to be prepared and studied. The ferroelectric15 and
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ferromagnetic16 properties of epitaxial thin layers with large
stictions have been shown to be significantly altered by epi-
taxial strain. An in-plane compressive stress can result in an
increase of the out-of-plane remanent polarization; however,
biaxial tension will result in decreased out-of-plane polariza-
tion. For example, the apparent value of Ps was increased �by
approximately ten times� to 60 �C/cm2 for �001�-epitaxial
BiFeO3 �BFO� thin layers grown on SrRuO3/SrTiO3 �or
SR0/STO� electrode/substrate, relative to �001�-oriented bulk
crystals;17 also, for epitaxial BaTiO3 thin layers, Ps has been
found to be increased to 80 �C/cm2.18 Furthermore, epitax-
ial stress results in important structural and magnetic prop-
erty changes, relative to those of corresponding bulk crystals.
For example, �001�, �101�, and �111� epitaxial BFO thin lay-
ers are tetragonal �T� monoclinic A �MA�, and R,
respectively.15

Here, we report the structural, ferroelectric, and ferro-
magnetic properties of epitaxial PFN thin layers grown on
SrRuO3/SrTiO3 by PLD that were quite resistive. In order to
ensure the stoichiometric ratio of different ions, we fabri-
cated PFN targets using a single-step solid-state reaction
method. First, powders of PbO, Fe2O3, and Nb2O5 of
�99.9% purity were stoichiometrically mixed with a 5% ex-
cess of PbO and then milled, calcined at 850 °C for 3 h;
remilled, powders sieved, targets pressed, and subsequently
sintered at 920 °C for 3 h in a PbO-rich atmosphere. Epitax-
ial thin layers of PFN were then deposited on STO substrates
with �and without� a SRO buffer �electrode� layer by PLD.
The energy density of the KrF laser �Lambda 305i� was
1.2 J /cm2, and the distance between target and substrate was
6 cm. A bottom SRO electrode was first deposited on the
STO substrate at 650 °C at a growth rate 0.7 nm/min. Films
of PFN were then deposited at 630 °C at a growth rate of
10 nm/min to an average layer thickness of �200 nm. A top
gold electrode was then deposited by sputtering. The crystal
structure of the films was measured using a Philips X’pert
system equipped with a two-bounce hybrid monochromator,
an open three-circle Eulerian cradle, and a domed hot stage.
Mesh and line scans were both obtained to confirm the epi-
taxial film’s orientation and phase purity. All measurements
were referenced to the reciprocal lattice unit of a*=2� /a
=1.635 Å−1. The following properties of the films were mea-

sured using the respective measurement systems: the polar-
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ization and resistivity �Radiant Technology precision work-
station and Signatone probe station�, magnetization
�Quantum Design superconducting quantum interference de-
vice�, and morphology �Veeco DI 3100a�.

First, we measured the resistivity ��� of our PFN thin
layers. We achieved room temperature values on order of �
�109 	 cm, depending on thickness and deposition condi-
tions. The thin layers which we studied in this investigation
had thicknesses of about 200 nm and resistivities of �
�1010 	 cm, which are considerably higher than reports for
bulk crystals/ceramics and nonepitaxial thin films. Such high
insulation resistance proved effective in sustaining higher
electric fields, preventing dielectric breakdown, and allowing
investigation of polarization reversal.

FIG. 1. �Color online� XRD and AFM results of PFN thin film. �a� Line scan
over wide angles, demonstrating phase purity and good epitaxy; and �b�
AFM image demonstrating the morphology of a typical PFN film.

TABLE I. Lattice structure and lattice constant of �0

Substrate a �Å� b �Å� c �Å�

�001� STO 4.010 4.010 4.071
�110� STO 5.696 5.670 4.025
�111� STO 4.027 4.027 4.027ticle is copyrighted as indicated in the article. Reuse of AIP content is 
128.173.125.76 On: Wed, 
Next, the structure and surface morphology of the PFN
thin films were measured by x-ray diffraction �XRD� and
atomic force microscopy, respectively. XRD line scans of
PFN thin layers grown on �001�, �110�, and �111� STO sub-
strates buffered with a SRO thin layer are shown in Fig. 1�a�.
From this figure, we established that all of our thin layers
were phase-pure perovskite and also epitaxial. Mesh scans
�not shown� demonstrated good epitaxy on the substrate. The
atomic force image shown in Fig. 1�b� reveals a surface
roughness of �10 nm and an average crystallite size of
�150 nm.

We summarize how the room temperature lattice struc-
ture of PFN films depends on orientation, as given in Table I.
We found that �001� oriented films had a tetragonal �T� struc-
ture with lattice parameters of at=4.010 Å �in plane� and
ct=4.071 Å �out of plane�; that �110� oriented films had an
orthorhombic �O� structure with a doubled unit cell and lat-
tice parameters of ao=5.696 Å �in plane�, bo=5.670 Å �out
of plane�, and co=4.025 Å �in plane�; and that �111� oriented
films had a rhombohedral �R� structure with lattice param-
eters of ar=4.027 Å �out of plane� and 
=89.98°, which is
similar to that previously reported for bulk PFN single crys-
tals which is the R phase with ar=br=cr.

6 The lattice mis-
match ��� between substrate and film can be calculated as
�= ��afilm−asubstrate� /asubstrate��100%. The lattice parameter
of the STO substrate was asubstrate=3.905 Å. Using our re-
spective values for the in-plane lattice parameter of the vari-
ously oriented films, we can estimate the epitaxial lattice
mismatches as summarized in Table I: ��001�=4.26%, ��110�
=3.20%, and ��111�=3.17%. In addition, the values of full
width half maximum �FWHM� are also summarized in Table
I. It can be seen that the FHWM was larger for the �001�
films �0.16°� than for either the �110� or �111� films �0.05°–
0.06°�. The results for the eptiaxial mismatch and the peak
broadness are consistent with each other for the various ori-
entations, revealing that they are largest for the �001� film
and notably less for the �110� and �111� which are nearly
equivalent to each other.

Figure 2�a� shows the P-E response of PFN thin layers
with out-of-plane orientations of �001�, �110�, and �111�. The
maximum polarization can be seen to achieve values ap-
proaching 70 �C/cm2 under electric fields of E
�190 kV/cm, which is much larger �nine times and three
times� than that previously reported �bulk and thin layers,
respectively�. The remanent polarizations of the �001�, �110�,
and �111� oriented thin layers were 18, 17, and 13 �C/cm2,
respectively; correspondingly, the coercive fields were 16,
16, and 15 kV/mm, respectively. It is important to note that
the induced polarization under a constant field level was
nearly equivalent for all three orientations. For example,
consider E=125 kV/cm, the induced polarizations were 56,
54, and 47 �C/cm2 for �001�, �110�, and �111� oriented
films. These results clearly demonstrate that the polarization

�110�, and �111� oriented PFN thin films.

eg� Structure
FWHM

�deg� � �%�

Tetragonal 0.16 4.26
Orthorhombic 0.06 3.20
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of PFN epitaxial thin layers is nearly independent of orien-
tation. It is not anisotropic, but rather nearly isotropic: in
spite of the fact that the crystal structure and lattice param-
eters were different.

We then measured the temperature dependence of the
dielectric constant for the various oriented films, as given in
Fig. 2�b�. The value of the dielectric constant ���1000 at
300 K and ��2000 at 400 K� and its maximum �TC

�400 K� can be seen to be nearly constant for the various
orientations. This value of TC�400 K is consistent with
prior investigations of bulk crystals/ceramics,13 although the
value of � is notably smaller for the thin layers than reported
for bulk PFN. In addition, the temperature dependence of �
revealed a strongly diffuse or broadened phase transition for
the variously oriented films. Furthermore, the inset of Fig.
2�b� shows � as a function of temperature taken at various
frequencies for a �110� oriented film. These results demon-
strate relaxor ferroelectric characteristics, consistent with the
slip-loop-like P-E response that was nonsquare. The dielec-
tric loss factor is on the level of about 0.1–0.3 at room tem-
perature and notably increased with increasing temperature.
This result confirms prior reports of high dielectric loss in
PFN. It is relevant to note that nearly identical relaxor re-
sponses were found in films of T, O, and R structures, i.e.,
the relaxor state is invariant to changes in apparent phase
stability.

Finally, we measured the in-plane M-H response of
PFN�150 nm� /STO, as given in Fig. 2�c�. The induced mag-
netization was on the order of 30–80 emu/cm3 at a field
level of H�30–40 kOe, consistent with prior reports.6,19

Our M-H data are consistent with an AFM spin order with a
weak ferromagnetism, and furthermore, the value of M’s is
close to that reported for the homogeneous �commensurate�
spin state of BFO.17 In the M-H responses, we noticed that
there was a general trend between the induced magnetization
and the epitaxial mismatch between the film and substrate:
the higher the mismatch, the larger the magnetization.

In summary, we have deposited epitaxial PFN thin layers
on �001�, �110�, and �111� SRO/STO. Our results demon-
strate a relaxor ferroelectric state, whose crystal lattice struc-
ture and lattice parameters are variable to epitaxial mismatch
but whose polarization and dielectric constant are nearly in-

FIG. 2. �Color online� Polarization and weak-field dielectric constant of vario
for nonepitaxial films and bulk ceramics are illustrated by dashed line; �b� c
frequency of 1 kHz for variously oriented films, where the inset shows that
at 5 K.
dependent. Specifically, we find that �i� the structure is de-
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pendent on the substrate orientation, �001�, �110�, and �111�
films are T, O, and R, respectively; �ii� the value of Ps
=70 �C/cm2 is notably larger than that of bulk crystals,
nearly independent of film orientation and lattice structure,
and possesses slim P-E responses; �iii� the dielectric constant
exhibits a diffuse phase transformation and relaxor charac-
teristics, with a Curie temperature of �400 K; and �iv� a
weak ferromagnetic moment, where the moment is seem-
ingly dependent on epitaxial mismatch.

This research work was supported by the Department of
Energy and by Air Force Office of Scientific Research.
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