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Enhanced magnetoelectric effects in laminate composites
of Terfenol-D /Pb(Zr,Ti)O5; under resonant drive

Shuxiang Dong, Jinrong Cheng,® J. F. Li, and D. Viehland®
Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061

(Received 25 August 2003; accepted 10 October 2003

We have found that laminate composites consisting of longitudinally magnetized magnetostrictive
Terfenol-D and longitudinally poled piezoelectric Pb(Zr,Ti)@yers have dramatically enhanced
magnetoelectric effects when driven near resonance. The maximum induced magnetoelectric
voltage at resonance was10 Vp/Oe, which is~10? times higher than previous reports at
subresonant frequencies. 2003 American Institute of Physic§DOI: 10.1063/1.16317596

The magnetoelectritME) effect is a polarizatio® re-  resonance state, maximum ME coupling effects were ob-
sponse to an applied magnetic fi¢h Recently, a number tained. This configuration and operational mode are signifi-
of studies concerning the ME effect in piezoelectric/ cantly different than previous onést
magnetostrictive  laminate  composites have been First, we designed the laminate using an equation of mo-
publishect™** Investigations have focused on subresonantion to couple the piezomagnetic and piezoelectric constitu-
operation conditions, where the ME effect has a flat responstive equations. Because the piezomagnetic and piezoelectric
over a specified bandwidth to the magnitude of an applied afayers are mutually coupled via stra8fz) and stresg(z),
magnetic fieldH,.. Terfenol-D/Pb(Mg/Nb,3) O5-PbTiO;  application ofH along the length direction of the magneto-
(PMN-PT) laminates have a large ME voltage coefficient of strictive layer puts the piezoelectric one into forced oscilla-
~0.11 V/Oe, and a limit of magnetic field sensitivity of tion in the longitudinal axis, generating a voltage between
~10" ' T.*%* However, for laminates driven under sub- the end and middle electrodes. At the first longitudinal reso-
resonant conditions, it has proven difficult to further enhance,gnce frequency, this laminate is a half-waveler(yf) ME
the ME voltage coefficient by an additional, significant mar-resonator. A node line is located at the middle position of the
gin. laminate, where the vibration velocity.e., mechanical cur-

We note that both piezoelectric and magnetostrictivereny is zero. Assuming a symmetric vibration of the lami-
resonators have high coupliglectromechanical and mag- pate, and that the polarization of the piezoelectric layer is
netomechanical, respectivelgffects?® Accordingly, it is symmetric about the node line, the ME voltages,f) in-
obvious to suppose that ME resonators driven near theig,ced across both piezoelements in the layer are equivalent.

resonance frequency should also have a significantly highgh addition the magnetoelastoelectric equivalent circuits are
ME coupling, relative to laminates driven subresonantly.

Here, we report the development of a resonant type of ME

laminate of Terfenol-D and Pb(Zr, Ti){QPZT) piezoceramic — 5
that has a much higher ME voltage coefficient. ! — AR,
Our laminates consisted of two Terfenol-D 4 =M A,
(Tb, _,Dy,Fe,_,) layers magnetized in their lengtor lon- — ‘T =r§ '=,,’ A2
gitudina) directions, and two hard PZT piezoelectric ceramic PZT M| erfenol-D
layers also poled longitudinally. The piezoelectric elements Plate ! plate
had a cross-sectional area half that of the Terfenol-D ones @
The two PZT elements were then laminated as a single laye Mechanical current  Electric current
between the two Terfenol-D layers, where the polarization Applied magnetic — il |—'-__’L—«:
direction of the two piezoelements were arranged in reversef©®d H | ~Co N
orientations within the piezolayer, as shown in Fi¢g)1We — (el S . voltage: V
designate this laminate configuration(aslL). The length of ] T
the laminate was 60 mm and the total cross-sectional area / Magneto-elastic Elastic-electric
was 10< 6 mn?. This long configuration intensifies the prin- coupling: ¢m coupling: @y
cipal vibration along the longitudinal axis. The induced ME ®)

voltage was then measured across the longitudinal axis of ﬂEG. 1. (a) Configuration of our(L-L) mode magnetostrictive/piezoelectric

PZT layer, where the middle electrode separating the tW@yminate composite. Arrows! and P designate the magnetization and po-
reversely poled piezoelements of the layer acted as electric&lkization directions, respectivelfb) Magnetoelastoelectric equivalent cir-

ground. When the laminate was operated in its longitudinafuit_of (L-L) ME laminate resonator, wher&y=mZo/4Qm, Lm

=nZyldws, andC,=1/wil , are the motional mechanical impedance, in-
ductance, and capacitance, respectively:=A; d33m/sg‘3 is the magneto-
dCurrent address, School of Materials Science and Engineering, Shanghelastic coupling factor_¢p:2Alg33Ip/IsgaB33 is the elastoelectric coupling

University, Shanghai, 201800, P. R. China. factor; andCy=2A, /I B33 is the clamped capacitance of the piezoelectric
YElectronic mail: dviehlan@vt.edu layer.
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TABLE |. Material parameters for Terfenol-D and PMN-PT crystals.

daz or dgp, day O dagp styor ... S35 0r S5 ka3 ka1 €337
Terfenol-Ot 1.2x10°8 WbIN —5.8<10"°? Wb/N 125<10 2 m?/N 40x 102 m?/N 0.7
PZT-8 300 pC/N —125 pCIN 11.& 10 2 m?/N 17.4x10 2 m?/N 0.72 0.58 1250

&Cited from Ref. 14.

the same for both parts of the laminate, and can be derived0 kHz. The induced ME voltage of tH&-L) laminate was

by using the piezoelectric and piezomagnetic constitutivdfound to be maximum near a resonance frequency of

equations, applying Newton’s second law of motion to the=19.96 kHz, as shown in Fig.(B). This is consistent with

laminate, and subsequently finding analogous electricahe predictions of Eq(2). The maximum value ofyy,z was

parameters?!3 8.7 V using a drive field oH =1 Oe, a drive frequency of
Figure Ib) shows the magnetoelastoelectric equivalent19.96 kHz, and a magnetic bias &f;.=200 Oe. Corre-

circuit in the region around the resonance frequeagy  spondingly, the ME voltage coefficientyz(ws) at reso-

This circuit is applicable to either section of the laminatenance was 8.7 V/Oe. From the ME voltage versus frequency

about the nodal line. It is useful for understanding the MEdata of Fig. 2b), the 3 dB frequency bandwidth abouwt

coupling of the laminate under resonance drive conditionswas determined adf=f,—f;~0.4 kHz. Accordingly, the

An applied magnetic fieltH acts as a “mechanical voltage” effective mechanical quality factor of the laminate Qg,

(i.e., ¢H) via a coupling factorp,,. This excites a “me- =f;/Af=49.9. Using this value d®,,, the predicted maxi-

chanical current” through the magnetoelastic effect. In turnmum value ofay,e from Eq. (2) agrees well with our mea-

this results in an electrical voltagé across the two ends of

the piezoelectric layer due to electromechanical coupling. A Resonance ME Effect

transformer with a turn-ratio o, can be used to represent f0=20.08 kHz for T-D/PZT-8 laminate

the electromechanical coupling in the circuit. The ME volt- n=067

age coefficientyye(w) as a function of the ac magnetic-field I

frequency for the(L-L) ME laminate resonator can be de-

rived from this equivalent circuit as
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whereR,,, L, andC,, are motional resistance, inductance,
and capacitance of the laminate, respectively, @gds the
clamped capacitance. At a resonance frequencywgf

= (UL Cm) 2 aye(w) reaches a maximum value of
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whereB=<1, is a factor related to applied magnetic field bias
Hgc and at the optimunii 4. it equals 1;Q,, is the effective (a)
mechanical quality factor of the laminate composite includ- 10
ing contributions from the Terfenol-D and piezoelectric lay- H,=1Oe; H, =200 Oe
ers, and the bonding between the layers; Zpds the char- ~a [ Measured Q,: ~49.9
acteristic mechanical impedance of the laminate. Equatior?_, 8
(2) predicts at resonance thaj,e is 8Q,,/ 72 higher than at @
subresonant frequencies. Using the materials parameters fc g
Terfenol-D and PZT-8 given in Table &) was calculated
as a function of the frequency éf,., as shown in Fig. @).
Using the experimental thickness ratio for the Terfenol-D
layers of n=0.67, and assumin@® =50, the maximum
value of a;z was predicted to be 10.96 V/Oe at a resonance
frequency off ;=20.03 kHz (@ =2mf).

The ME voltage induced across the end and midiée, \
ground electrodes of the PZT layer of the laminate was then =— '\_
measured as a function of frequency, using a lock-in ampli- ok t 3 "
. 0 10 20 30 40
fier method. Measurements were performed under a dc mag
netic bias ofH 4= 200 Oe, as the inflection point of the qua- Frequency (kHz)
dratic strain-magnetic-fielde(—-E) response is known to be ®)
maximum near this bias level. A pair of Helmholtz coils was
used to generate a sméll,;, via an input ac currenitcy; . FIG. 2. Induced magnetoelectric voltagg: as a function of frequencys)
The frequency oH . was varied over the bandwidth of 1 to Calculated using Eq2). (b) Measured using a lock-in amplifier method.
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