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In anisotropic superconductors having an arbitrary orientation of the sample surface relative to the crystal
principal axes, the surface critical fiell 5 is less than 1.693., unless the field is situated along one of the
principal crystal planes. Below; in the vicinity of nucleation, the order parameter scales/bis;—H.
Computational studies for infinite cylinders having rectangular cross sections are presented which show that,
due to corners and a finite cross section, the surface superconductivity state persists for fields above the
theoretically predicted value for semi-infinite samples. They also show that vortices exist within the surface
superconductivity sheath above the bulk critical field.
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[. INTRODUCTION of the onset of superconductivity in high fields. These studies
dealt with isotropic materials and mostly focused on deter-
The maximum fieldH ., at which superconductivity first mining the field value at which superconductivity first nucle-
nucleates at the surface of isotropic materials, is found bytes in domains other than the half plane considered by
solving the linearized Ginzburg-LanddGL) equation for  Saint-James and de Gennes. In particular, for samples having
the order parametap, smooth boundaries, it was fouriel.g., see Ref.)&hat super-
conductivity first nucleates at points on the boundary having
— ET1% =y, (1)  maximum curvature and thad 3=1.695H.,/(1—KCp 4,
whereC,, ., denotes the maximum curvature of the boundary
andK is a constant whose value is material dependent. Thus,
the surface nucleation field for samples having smooth
) g boundaries with nonzero curvature is higher than it is for the
vector potential and the flux quantum, respectively. The,yt piane  Starting with Ref. 3, a number of studies were
problem is uniform in they and; directions, an(_ﬂ has- only  gevoted to domains with corners; again, it was found that the
one component/dx. The maximum valuéd s is achieved g itace nucleation field was higher than for the half plane.
when the field is parallel to the surface; thus, we choose thgernans the results that are most relevant to our study are
applied fieldH=Hz. Since f=|y| is infinitesimal at the found in Ref. 12 and in the computational simulations of
nucleation point, the field is uniform, and one can take therefs. 17 and 18, in which it was determined that for isotropic
Landau gauge for the vector potentid;=Hx, A,=A,=0.  material samples with square corners, e.g., the quarter plane,
Looking for a solution to Eq(1) of the form =f(x)exp  H_;/H., has a value between 1.8 and 2. Note that this is

in a half-spacgsay,x>0) with the GL boundary condition
I1,4=0 at the surface an¢f(x—)=0. Here,¢ is the co-
herence length andl=V +2#iAl ¢y with A and ¢, the

(—iky), one obtains higher than 1.695, the value found by Saint-James and de
! ) , Gennes for the half plane.
=07 (x=xo)*f=—1/¢%, ) Previous studies of the surface nucleation field in super-

conductors not only dealt with isotropic superconductors, but
also failed to examine the transition between the vortex state
in type-1l superconductors for lower fields, say belély,,
and the surface superconducting state mé&ar Thus, in this
aper, we first give a theoretical generalization of the Saint-
ames and de Gennes result to the casnigotropicsuper-
conductors. Then, using computational simulations for the
92=1.695£2 3) fully nonlinear Ginzburg-Landau equations, the transition
' between the vortex and surface superconductivity states is
i.e.,H,3=1.69%,. examined for both isotropic and anisotropic superconductors.
Since the work of Saint-James and de Gerlrtegre have The computational simulations are also used to illustrate the
been a number of theoretic@.g., Refs. 2—13 experimental extensions of the Saint-James and de Gennes theory given in
(e.g., Refs. 14—-16and computationgdRefs. 17-2Dstudies  Secs. Il and lIl.

whereq?=2mH/ ¢, andx,=k/g2. The boundary conditions
are f'(0)=0 and f()=0. Therefore, the problem is re-
duced to the determination of a maximum value ddr(the
field) for the given eigenvalué™2; this is achieved by vary-
ing Xy which is still a free parameter. Saint-James and d
Gennes obtained the value
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II. ANISOTROPIC MATERIALS
For anisotropic materials, E@l) is generalized to
— Euy LI = . (4)
Here wi;=my;

ij

defined as &= (&,&,80)°
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) 1.695 (1 szz d ) 13
2= ——| 1- K2 —|.
gz\huxx:“yy ’ Hyy

Straightforward algebra yields thalt= wyu,,— ,u§Z>O SO

1 is the inverse mass tensor. The tensor Ofthat the maximum value af“ is achieved fok,=0. Thus,

“superconducting masseshy; has in general three different
eigenvaluesn,, m,, andm.; these are commonly normal-
ized so thatm,mym.=1. The average coherence distance is

where the actual coherence Recq|l that the bulk upper critical field in the directiaris

1.695%,

He: = 7—.
27762 VMxxtyy

(14)

lengths are, = &/\/m;. The GL boundary condition imposed given by (see Refs. 22 and 23

on the free surface is now given by

mxilljp=0, 5
where thex direction is perpendicular to the surface.

$o  He

Let us introduce the modulus and phase of the order pavhere

rameter,y=fe'X, so thatll y=e'X(Vf+iQf), where
Q=Vx+27Al¢,. (6)

In terms of these variables, E@l) contains the factoe'* on

Hepr= = 1
o, e "

— bo

Hc2=;§2, E=(£apé)™™ (16)

H -1 2
Then, sincem,,= u,, = pxxiyy— tyy (detu;;=1), we ob-

both sides. After canceling this factor and separating the reql;,

and imaginary parts, one obtains

5 J°f
— & Mk m_fQiQk =f, (7)
of J _
ik a_><in+a_><i(fQ") =0. (8)

One easily verifies that Eq@8) coincides with divj=0,

where the current densitye f2u;, Qy (the second GL equa-

tion). Therefore, we have to solve E(f); for f=f(x) and

N L (17
Hc2,z Mxxyy

Equations(14) and(17) are our main results. Equatidti7)
shows that if the directiorx of the normal to the crystal
surface coincides with one of the principal crystal axas
equivalently, the surface is one of the principal crystal
planes, then u,,=0 and Eq.(17) implies that the ratio
H¢s,/Hco is the same as for the isotropic situation. In other
words, in this case the angular dependenceHgf is the

x=—kyy—k,z (in the anisotropic case, currents may have asame as that ofi.,.

component along the field directiaas well as alongy) Eq.
(7) assumes the form

/*LXXf”_Iu“a,BQaQBf:_f/gza (9)
wherea,8=y,z andQ={0,0%x— Ky, —Kz}. This equation is

of the same type as E@R) for the isotropic case since the

coefficient off is a quadratic polynomial im, i.e.,

J7 f(Myyq4X2_ ZqZMyakaX-i— HapKaKp) = — flfz( 0
1

or

f"_m

f d
q*(x—xg)?f=— ( 1-K2g2 —) (1)
xx & pxx = by

with x0=,uy,)lka/,uyyq2 andd=detu,z is the minorxx of

Mij -
The complex-valued boundary conditi¢b) yields

Hxxf =0, Mnyysz: (12)

i.e., bothf’ andj, vanish at the surface, as expected. Equa-

tion (11) differs from its isotropic analog Eq2) only in the

For all other surface orientations, the ratio is less than

1.695. Moreover, if wyuuyy— pe,<1.695 2puyypyy, OF
equivalently,

0.652sxtyy= Migy (18

H¢s,/Hcp,<1 which means thasurface superconductivity
is completely suppressed

As an example, consider the case when the field is applied

in a principal crystal direction, say alorsg (z=a), whereas
the axisb forms an angled with the x axis (see Fig. 1 The
frameabc is rotated relative txyz about the axiz=a:

Z=a

Xx=Dbcosf—csind, .
(19

y=Dbsiné#+c cosd,
This yields
fyx= fbp COS O+ e SIrPH,
Hyy= Mp SirP 0+ . Cos 0,

Mxy= (Mp— tc)SING COSOH.
Then, we have thapuyyuyy= mpmet (up— pc) *cOSOSINFO

values of the constant coefficients, so we can utilize the reand, introducingy?,=m¢/m,= p,/u., we obtain from Eq.

sult (3) to obtain

(18)
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where ¢ is the order parameter at the point of nucleation
y andIl, correspond td 5. For a fieldH slightly belowH .,
we look for a solution to Eq(23) in the form = iy + i
Surface with <. We now writeq? in Eq. (23) as q%— (9%
of —g%)=092%—69?, andII*=II; +ia®, wherea is a correc-
sample X tion to 27rA,/ ¢po. Substituting in Eq(23) and keeping only
Coordinate the first-order terms, one obtains fgy

axes _ _ _
(Mg T — A2+ &%) b= ol ol 262~ 25071
—2ia-Myiy. (25)
The operator at the left-hand side of this inhomogeneous
equation coincides with that of E(R4). Therefore, the right-

hand side of this equation must be orthogonal to the solution
of the homogeneous EqR4), i.e., to . Then,

Crystal axes

: » He—H
FIG. 1. Sample surface, crystal axes, and coordinate axes for J ( 4_o c3 2_ 524 2 dx=0
0 |¢0| ch |¢0| g |¢O| QO

semi-infinite anisotropic sample; tzeanda axes are perpendicular
to theb-c andx-y planes. (26)

1.605 This is the normalization condition fap,. Since|a|o(Hqs
i (20) —H), the square of the order parameter in the surface sheath
should scale with Kl;;—H). In other words, starting from

Heza= H
S8 1+ (Yer— ve) 2co2sies
. - - zero atH .3, the order parameter grows with decreasing field
Now, Eq. (20) yields the critical misalignment angi&, be- a roximc;tel as/ﬁ g 9
tween the normal to the surface and a principal crystal direc- PP y e
tion such that for6,<0<(m/2— 6,), surface superconduc-

tivity is completely suppressed; this critical angle is IV. COMPUTATIONAL STUDY
determined from OF ISOTROPIC MATERIALS

a-

The results given so far for surface nucleation at high
2.737 fields are derived assumingsami-infinitesample, e.g., the
_— (21) ; ' '
| Veb— Yer| surface of the sample is the plare=0. We now study the
effects of anisotropies on surface nucleation at high fields in
infinite cylinders having rectangular cross sections through
the use of computational simulations. We also examine what
happens to the vortex state for fields abéiig (the critical
field for bulk samples a behavior that cannot be modeled by
ll. BEHAVIOR FOR FIELDS BELOW  H, the semi-infinite, one-dimensional situation of the theoretical
developments in Secs. I-lll.
For the computational simulations, we use a finite element

sin 26y=

For example, for(nearly uniaxial Y-Ba-Cu-O with y~7.9,
0o~11.5°, while for NbSg, y~3.1 andf,~44.6°. One can
see that fory<3.064,H.3,>H.,, for all values ofé.

It is of interest to see how the surface state with an infini-
tesimally small order parameter &t.; evolves when the o . S
applied field decreases. One can obtain some insight by enﬁijscrenzatmn of the fully nonlinear GL equation, i.e., Ef)

ploying the method used to investigate bulk superconductiv:°’ the isotropic case of.this section and E@I) for the an-
ity in fields underH, (see, e.g., Ref. 21 isotropic case of Sec. V, details are given in, e.g., Refs. 24

To find the nucleation field, the linear Eq4) or (4) are apd 25. The sizes of the samples used in the computational
solved. These, of course, yield up to a constant factor. To simulations are very small, even smaller than were previ-

determine this factor, one turns to the full nonlinear GLoust usedsee, e.g.,_Refs. 24_2@ fields well b(?IOWH‘EZ'
equation The reason for this is that the grids used for simulations at

fields larger tharH ., need to be much finer than those for
— EM1%y= ¢(1_|¢2|) (22) lower values of the field. As we shall see, our computations
) ) . show that vortices exist within the surface superconductivity
(¢ is normalized on the zero-field value of the order param-peath. They appear in regions in which the order parameter
etej. For our purpose, it is convenient to write H§2) in s aiready very small in magnitude. The need to differentiate
ter+msiof thgz op;ratorﬁ— =I1,=ill, that have the property penveen true zeros of the order parameter and merely small
IT7IT"=1II"+q%; one then obtains values requires very fine grids. In fact, in a previous compu-

T 252 tational study’ of the surface superconductivity state at high
(I ="+ €75 =Yyl €. @3 fields, vortices within the surface sheath were not noticed,
At Hs, probably because only about two grid points per coherence
e length were used. Even so, in our computational simulations,
(I Iy —agz+ &™) =0, (24 it is possible that we have not captured all vortices that are
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- FIG. 2. f=|y| vsH/H, in an
isotropic sample having a %0
X 10¢ square cross section. Solid
8 curve: f at the midsides, dashed
curve: f at the corners, and dot-
dashed curve: average 6fover

. the sample perimeter.

0.8 1 12 14 16 1.8 2

HIH.,

present, especially near the center of the samples where tleal results which show that the minima exhibited in Fig. 3
magnitude of the order parameter is extremely small. correspond to zeros of the order parameter and to phase
The particular finite element method utilized involves achanges of 7, i.e., the minima correspond to vortices. Note
subdivision of the rectangular cross section of a cylindricalthat the vortices occur in regions where the order parameter

sample into a grid consisting of small squares. Typically, wes small in magnitude.
use up ten points per coherence length; i.e., for a sample of In Fig. 4, contour plots of are shown for the steady states
cross-sectional size & 10¢, we would use up to a 100 obtained with the applied magnetic field ranging from
X 100 grid. Each square is subdivided into two triangles by0.7H., to 1.8H.,. The first contour corresponds to a field
introducing a diagonal to effect a triangulation of the crossstrength of 0.A., which is well belowH,,; eight vortices
section. Solutions of the GL equation are then approximatedre seen for this small material sample. At,, there are
by a continuous, piecewise quadratic polynomial with re-eight vortex cores evident near the center of the sample and
spect to the triangulation; thus, the discretization method ishere are four other vortices appearing nearer to the corners.
of third-order accuracy with respect to the grid size. Se€Then, as the field increases further, the order parameter at the
Refs. 24 and 25 for further details. We merely note that themidsides of the boundary and at the center of the sample
combination of the use of at least ten grid points per coherapproaches zero with the corner values lagging behind until
ence length and the use of quadratic polynomial approximathe whole sample becomes normal Hg;~2.0H.,. This
tions results in very accurate computational simulations.  value forH.; agrees with that found in Ref. 17. One sees the
We first examine an isotropic, infinite cylinder having a surface superconductivity state appearing for fields between
square cross section of sizeéb010¢, where¢ is the coher-  H, andH ;. However, note that four vortices persist even at
ence length. The magnetic field in the calculations rangefields betweenH., and H.;. The four vortices coexisting
from a low field of 0.H_, to a field where superconductivity with the surface superconductivity state are important to note
is totally destroyed which, for this sample, is observed tosince they are always present in the steady state of every
occur atH 3~2.0H,. The magnitude of the order parameter isotropic and anisotropic sample we have studied in fields
f=|y| vs the applied field strength is given in Fig. 2. The
solid curve corresponds fat the midsides, the dashed curve
to f at the corners, and the dot-dashed curve to the average ¢
f over the sample perimeter. The curvesffooughly display  os
the square-roottype behavior vsii.;—H) predicted by the .
theory (see Sec. Il As the field approached;, the aver- /
age and the corner values bexceed its value at the mid- %
sides of the sample. This is due to corner effects that rendeo.s
the order parameter bigger in the corners than at the rest Q, ‘
the sample in high applied fields neldy; as discussed in, R
e.g., Refs. 3, 12, 17, and 18. The notch nekrH., is o1 Y S
characteristic of many of our results; its meaning is unclear o_| G ‘
to us at the moment. 19 W
A surface plot off for H=1.6H., is given in Fig. 3. We
can clearly see that the order parameter is larger at the cot
ners of the sample than at the midsides. We also see a
indication thatthe state is not merely a surface superconduc-
tivity state, but that it also has vortices in the interior of the  FIG. 3. Surface plot of =|¢| for an isotropic sample having a
sample This is confirmed by an examination of the numeri- 10£x 10¢ cross section with field strength of HE,.
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H/H

(a) (b)
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FIG. 5. f=|¢| vs H/H, for an anisotropic sample having a
10£X 10¢ cross section and an in-plane mass ratio 3/2. Solid curve:
f at the midsides, dashed curveat the corners, and dot-dashed
curve: average of over the sample perimeter.

nate axes are aligned with the boundary of the sample cross
section. In this case, the mass tensor is diagonal. Specifically,

we choosem,=m,,=3/2, m;=my,, =1, m,,=0, andm,
$ % =m,,=2/3. Note that for this anisotropic sample we have
(d) from Eq. (15) that Hg,,=Hco/ M= 32 H¢, SO that the

FIG. 4. Contour plots of =|¢| for an isotropic sample having a theoretically predicted value of the field at which supercon-

106X 10¢ cross section with different magnetic-field strengths; dUCtivity is completely suppressed in semi-infinite samples
H/H.,= 0.7 (a), 1.0(b), 1.6(c), and 1.8(d). For fields larger than With this anisotropy is obtained from E17) to be Hs,
2.0H,, the order parameter vanishes. =1.69H,,=2.076H,,.

Now we turn to the results of computational simulations
close toH 3. The predicted value dfi; using the theory for ~ for the 1G>< 10¢ sample. The magnitude of the order param-
semi-infinite samplésis 1.69%,. The observed valuel,;  €terf vs the applied fielH is given in Fig. 5. Again, the
~2.0H,, is higher than the predicted value. This is, of Solid curve corresponds tat the midsides, the dashed curve

course, due to the finite size of the sample cross section arf@ f at the comers, and the dot-dashed curve to the average of
the corners. f over the sample perimeter. The midside valueg/aigain
Another series of computations was performed to observ@Pproach zero faster than the corner or average values. As
the effects on the value ®f . resulting from embedding the Predicted in Sec. Ill, the behavior éfagain conforms to a
superconductor within a normal material other than asquare-root-like behavior as the applied field is increased to-
vacuum.(For the calculations reported on so far and for allwards Hcg. [We continue to scaléd with respect toH,
other calculations given in the paper, the whole region exte= ¢o/2mé?, where £=(£,£,&p)", in order to make com-
rior to the superconductor was assumed to be a vaguumparisons between isotropic and anisotropic calculatjdhse
These calculations were performed using the models and ni© the boundedness of the sample used for Fig. 5, we have
merical techniques discussed in Ref. 26; see also Ref. 25. fat superconductivity is actually not completely suppressed
series of calculations was performed on a cylindrical superuntil H~2.4H,.
conductor with a square cross section surrounded by normal Comparing the field values at which superconductivity is
material of different widths. For example, &55¢ super-  suppressed for the isotropic and anisotropic samples, one
conducting sample was surrounded by a normal strip ofinds that their ratio is approximately 2/2=4.833 which is
width 5¢ and a ¥x9¢ sample by a strip of widtké. The  very close to the ratia/m,,= \/2/3=0.817 predicted by the
region exterior to the normal material was assumed to be aemi-infinite sample theory; see Ed45) and (17). Thus,
vacuum. In all cases, for all applied fields abd¥g,, there  although the actual values of the field at which superconduc-
was a total loss of superconductivity throughout the entirdivity is suppressed are affected by the presence of corners
sample. As expected, our calculations supported the theomnd the boundedness of the sample, the percentage change
that H.; is totally suppressed, i.eH.3=H., in supercon- due to anisotropies is seemingly unaffected by these features.
ducting samples surrounded by normal materials. In Fig. 6, contour plots of are shown for the steady states
obtained with the applied magnetic field ranging from
0.5H, to 2.H,,. For fields aboveH ., ,= \3/2 H.,, we see
a combination of vortices and surface superconductivity. Due
to the anisotropy, the vortices are now elliptical with the ratio
The next example is for an anisotropic sample having af major to minor axes equal tdmxxlmyyz J3/2. Likewise,
square cross section of sizeé010¢. The z axis is perpen- the thickness of the superconducting region near the surface
dicular to the sample cross section and the other two coordief the sample is thicker adjacent to the sides parallel tocthe

V. COMPUTATIONAL STUDY OF ANISOTROPIC
SAMPLES
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FIG. 7. Contour plots of =|]| for isotropic (left) and aniso-
tropic (right) samples of cross sectioré % 5¢ with field strengths
of 1.8H., and 3.8,, respectively. The anisotropic sample has an
in-plane mass ratio of 6.

mass ratio, the effects of the anisotropy are now more clearly
pronounced.

By the way, for these two samples, the calculations
showed that superconductivity was completely suppressed
for fields above 2.H ., for the isotropic sample and 31,
for the anisotropic sample. The ratio 2.1/5.0.412 is again
in close agreement with the ratigm,,= \/1/6=0.408 pre-
dicted by the theory for semi-infinite samples in this case for
which we havem,,= 1/6 andm,,=0; see Eqs(15) and(17).

Of course, due to the boundedness of the sample and the
presence of corners, the actual values of these critical fields
are larger than that predicted by the theory for semi-infinite
samples.

2.
A\

VI. COMPUTATIONAL STUDY FOR CRYSTAL AXES
(e) U} OBLIQUE TO THE BOUNDARIES

FIG. 6. Contour plots of=|| for an anisotropic sample hav- We now consider anisotropic samples for which the prin-
ing a 16X 10¢ cross section and mass ratio 3/2 kotH ., = 0.5 (a), cipal axes of the crystal are oblique to the boundaries of the
0.8 (b), 1.6 (c), 1.8 (c), 2.0 (), and 2.2(f); for fields larger than sample. We will examine samples having rectangular cross
2.4H.,, the order parameter vanishes. sections aligned with the coordinate axes so that the crystal
axes will not be parallel to the coordinate axes. We assume
that one of the principal axes of the crystal, saydhexis, is

axis compared to the s@es parallel to ;h.aX'S; this is most aligned with thez-coordinate axis and that the applied field is
easily seen by comparing the separation between contoyp

. : ) i . Iso in this direction. Thé axis of the lattice is assumed to
lines. Again, these thicknesses are roughly in the ratio o

S . o2 . orm an angled with the x-coordinate axis which itself is
V3/2 which is to be expected since this is the ratio of theparajlel to a pair of sides of the rectangular sample. See Fig.

coherence lengths in the directions perpendicular to thg \ye will refer to the case of=0, i.e., the crystal axes are

sides. parallel to the sample boundaries, as déignedcase, and to
Note in Fig. &b) that in the contour plot corresponding to any case for which & < /2 as anunalignedcase.

the field value 0.Bl;,, one can see several vortex cores near We examine a rectangular sample having a cross section

the center of the sample, and the ever present four vorticasf size 3@ X 10¢; the larger length of two of the sides of this

nearer to the corners. As the field increases, the former are mectangle(compared to the previous calculatipnsll allow

longer visible, while the latter persist unti s, is reached.  a reduction of the effects due to corners on at least part of the
The effects of anisotropy on the shape of the vortices andample. The masses are chosen tonipg=m,,=1/2, m,

on the thickness of the surface superconductivity region are=2, andm,=1.

more visible if one increases the mass ratio. In Fig. 7, the InFig. 8, contour plots of are shown for the steady states

contour plot on the left is for an isotropic sample having aobtained with the applied magnetic field ranging from

cross section 5X5¢ at a field strength of 11.,. The one  0.5H, to 2.5H.,. The figures on the left are fo#=0; for

on the right is for an anisotropic sample having a cross seahose on the rightd= 7/4. As expected, the major and minor

tion 5§x5¢ with massesm,,=6, m,,=1, m,,=1/6, and axes of the elliptically shaped vortices align themselves with

m,,=0 with a field strength of 318,. Due to the larger the principalb andc axes of the crystal. The first thing to

094514-6



NUCLEATION OF SUPERCONDUCTIVITY IN FINITE . ..

PHYSICAL REVIEW B 65 094514

® 6 06 6 & 0 o o
6 o 6 6 0 & ¢

@ 2 @ @ 2 @ @ @
2 2 2 0 O

(b)

LA A L LA LR 1 %} 1
e8P @0
*reedeeR®@BPO

FIG. 8. Contour lines of for

two 30£X 10¢ anisotropic samples

with in-plane mass ratio 2. On the
left, the crystal axes are aligned
with the sample boundaries; on
the right, the crystal axes are ro-
tated by 45°. The applied field

2

strengths ardﬁlﬁcz:O.S [(a) and
(b)], 1 [(c) and (d)], 1.5[(e) and

- N

1, 2 [(g) and (h)], and 2.5[(i)
and(j)].

\%

(9) (h)

O

K@

(M M

notice is that the aligned samplé=0) becomes completely for the unaligned case with= 7r/4 and the aligned case with
normal at alower field than does the unaligned sampleé ( #=0 is roughly 0.94 which is in excellent agreement with

=/4), i.e., the calculated value &f.;, for the first sample

the theoretically predicted value 2.260/2.397¥.93. Of

is lower than that for the second. On the other hand, theourse, the samples used here are extremely small, so that the
theory for semi-infinite samples predicts that, for the casegffects of corners are much more pronounced than they

under study here,Hg,=Hco/\Vm,,=v2 He, for both
samples[see EQ.(15 with m,,=1/2], H3,=1.69%H 4
=2.39H,, for the sample having the crystal axes aligned
with the boundariegsee EQ.(20) with #=0], and Hgz,
=0.9428(1.69Bl,,) =1.598H,,=2.26H, for the
sample withd= 7/4 [see Eq.(20) with 6= /4], i.e., super-
conductivity is completely suppressed atigher field for
the aligned sample than for the unaligned one.

An examination of Fig. 8 reveals that superconductivity
persists for higher fields for the unaligned sample at the cor-
ners. At the midsides of the samples we would expect thai
the effects due to the corners are somewhat mitigated. In
deed, there is an indication from that figure that supercon-
ductivity persists for higher fields at the midsides for the
aligned sample; see Fig(e3 and Fig. &f) for the long sides
and Fig. &g) and Fig. &h) for the short sides. This is verifed
in Fig. 9 where the values dfat the middle of the long sides
vs the applied field are given for both samples. It is clear that
superconductivity is suppressed at a lower value of the field
for the unaligned sample. In fact, from Fig. 9, the ratio of the

0 L
0.5 1 16 2 25

HiH.,

FIG. 9. Value off at the middle of the long sides of the aligned

values of the field at which superconductivity is suppressedsolid) and unaligneddashed samples.
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would be for more realistic sample sizes. mined by Saint-James and de Genh&¥e have extended
For the above examplé].;,>H.,, for all anglesd, so  that theory to the case of anisotropic superconductors having
that the surface superconductivity state is present for albne crystal axis parallel to the surface of the superconductor
angles. Calculations were also performed for an anisotropiand the other two crystal axes arbitrarily oriented with re-
sample of a cross section 4810¢ having massesm,  spect to that surface. We have also examined the dependence
=1/10, m,= 10, andm.= 1. If the sample were semi-infinite of the order parameter on the applied field for fields near but
in extent, according to Eq21), the surface superconductiv- pelow the critical field. A number of results of computational
ity state should not be possible for 37.646<52.96°, and  simulations were presented which both illustrate the theoret-
in particular, forf=45°. However, we found that due to the jca| results and the effects of corners and finite-sized samples
effect of comners for this small sample, the surface supercons, the critical field. These studies indicate that, due to the
ductivity state persisted even f@r=45° for fields as large as  fpjte size of the sample cross section and due to corners, the
SH,. Note that in this casél;,=3.16H., and, for the  gyrface superconductivity state persists for fields above the
semi-infinite case, one obtains the theoretical valublgfa  predicted theoretical value for semi-infinite samples. The
=0.9746H,,=3.08H,,. computational studies also show that vortices exist within the

We note that the lack of symmetry in plots such as Fig.gyrface superconductivity sheath for fields above the bulk
8(e) and Fig. &g) is a residual of the fact that for lower critical field.

fields, e.g., see Fig.(8), it is not possible to fit a symmetric
arrangement of vortices into the rectangular sample. Of
course, the lack of alignment between the sample boundaries
and the crystal axes whenewe# 0 induces the lack of sym-

metry seen for the plots in the right-hand column of Fig. 8. ACKNOWLEDGMENTS
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VII. CONCLUDING REMARKS
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