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Thermal fluctuations and randomly distributed defects in superconductors are modeled by stochastic variants
of the time-dependent Ginzburg-Landau equations. Numerical simulations are used to compare the effects of
additive and multiplicative noise models.
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. INTRODUCTION and the magnetic potential having zero normal component
onT’), the resulting simplified leading-order system is a non-
The phenomenological Ginzburg-Landau model for low-linear equation for the leading-ordén terms of 1k2) order
temperature superconductivity has received much attentiOI’parameterl/;, after ignoring the effects of applied currents

However, it is not applicable to physical contexts that do notand assuming that the applied field is of ordet>
take into account factors such as material defects or thermal

fluctuations. Thus, existing studies of the stability, dynamics, o
interactions, and other properties of the vortex state do not E+(iV+A)2¢— Y+ y2p=0 in Q, (h)
necessarily carry over to situations for which these factors

cannot be ignored. . iy B
The effects of defects and thermal fluctuations play a cenf'-ilong with the boundary conditiol#-n=0 onT" and the

tral role in the motion and pinning of vortices in type-I| Initial condition #/(x,0)= ¢(x) in (3. The magentic potential

superconductorsin this Brief Report, we examine the vor- A, a deterministic vector field, is solved for separately from

h i the given applied fieldH, using Maxwell's equations.
tex dynamics in type-Il superconductors based on stochasn&1 Additive noise highe model. With % being a random,

versions of the Ginzburg-Landau model. For simplicity, we olex-valued field in time and space, the additive noise

assume that the underlying material sample possesses a la ; ; L 12
value for the Ginzburg-Landau parameteso that a reduc- gh-x G-L model is of Langevin type and is given by

tion of the Ginz%%rg-Landau equations to their highimit »
can be employe€? In this case, the given applied field pen- L 2, 5 .
etrates the sample completely. We will consider different ot TAVHA Y=yt |yly=n in Q. @
forms for the stochastic perturbations of the higHimit
Ginzburg-Landau model and illustrate, through numericalThe random source termy is assumedsee Ref. 8 to be
experiments, their effect on the dynamics of vortices. noise generated by an infinite dimensional Brownian
motion® If the effects of thermal fluctuations are being
modeled, the variance of 7 is temperature dependent, i.e.,
o=K(T/T)(1-T/T.) 2 (T and T, denote the temperature
Although at each point in the material and at each instan@nd the critical transition temperature, respectiyély some
in time the fluctuations or defects have negligible effect, theemperature independent const&htNote thato—c asT
superposition of many interactions can produce observable- T, so that the effects of thermal fluctuations should be
effects. The fluctuations or defects, being random in magnilarge neaiT..
tude and direction, produce instantaneous changes in the We note that in Eqs(1) and(2) the space variables have
movement of vortices. In Ref. 1, it is argued that thermody-been nondimensionalized with respect to the temperature de-
namic fluctuations are generally quite small, which corre-pendent coherence leng#iT) = £(0)(1—T/T,) Y2 In our
sponds to a small value for the variance. We consider tw@omputational simulations, we will vary the variance of the
approaches of adding random fluctuations or defects to Boise or, equivalently, we will vary the temperature. As a
high-« Ginzburg-Landau model: the cases of additive andesult, because of our nondimensionalization scale, changing
linear multiplicative noise. The comparison of the two caseghe variance implies that we are also changin@his means
in other physically meaningful systems has received muclthat as we change the value of variance the spatial scale used
attention; see, e.g., Ref. 4. for nondimensionalization changes. The relation betwg&en
Let O e RY denote the superconducting sample &hils and o is easily found to be [&(T)/£(0)]?=(1
boundary. The derivation of the highmodel in a determin- + 1+ 40/K)/2 so that for large values af we have that
istic setting starts with the time-dependent Ginzburg-Landaw(T) o4 Thus, for example, doubling the variance in our
(G-L) equations. Then, as the G-L parametar—o (with computational simulations means that, for large variances,
the gauge choice of the electric potentialbeing zero in() we are enlarging the linear dimension of the material sample
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FIG. 1. Time evolution of{| in a 2&X20¢ homogeneous, FIG. 2. Time evolution of | with additive noise of variance 2
isotropic sample with no thermal fluctuations; the bottom right fig-in a 20X 20¢ sample. The bottom right figure corresponds to a
ure is the steady state configuration. snapshot of the quasi-steady-state configuration.

by a factor of 1.19. It should be noted that the scale used foftropic, two-dimensional superconducting material of size
nondlmer_]sm_nallzm_g the_ time is also temperature dep_endengogx 20¢ in a perpendicular magnetic field of magnitude
Multiplicative noise highk model.A multiplicative noise  ( g, (note that all variables have been appropriately nondi-

high-« G-L model is given by replacing Eq1) by mensionalizell The numerical computations are based on a
oy code developed for the steady-state and time-dependent G-L
E+(iv+A)2¢,_ g+ |lPg=ny in Q. (3)  models and several of their variants; see Refs. 2 and 15-18.

In the figures, contour lines for the magnitude of the order

In Eq. (3), the noise termy appears as a coefficient of a term Paramete) are plotted; for clarity, only t.hose corres.pondin'g
that is linear iny; one could more generally introduce other t0 |#//=<0.5 are shown. We refer to the isolated regions with
nonlinear stochastic terms. It is not clear if multiplicative |#1<0.5 near the center of vortices as there regionsof the
noise can model the effect of thermal fluctuations and if the/ortices and the diameters of these regions are referred to as
models satisfy the fluctuation-dissipation theorem; see Refhe core sizeghat are related to the coherence length of the
8. Indeed, one of our goals is to see what is the effect ofnaterial sample.
different noise models on the dynamics of vortices.
However, multiplicative noise of the type used in E8)
has been used to model defects in superconductors; see, e.g.,
Ref. 14. In this case, the nature of the noise depends on the Development of a quasi-steady-state vortex lattibdaen
scale of the inhomogeneities. If these are smaller than a G-k given noise with variance 2 is added to the same material
coherence length, one may assume thatis independentin sample as that considered in Fig. 1, the lattice no longer
space and time. On the other hand, if the inhomegeneities aretates into a steady state lattice. Instead, the vortices vibrate
correlated over distances comparable to a coherence length, the sample until a lattice similar to the lattice in Fig. 1 is
then the coefficienty should have a similar correlation formed; see Fig. 2. A lattice is recognizable in this sample,
length scale. See Ref. 14. but a true steady state as seen in Fig. 1 is not achieved since
Discretization of noiseTo carry out the computational the shapes of the vortices are distorted and the vortices are
simulations, we must discretize the random functions. Foconstantly in motion. However, with this small variance of 2,
the additive noise model, we assume thas independent in  the vortices do try to form a regular, triangular pattern in the
space and time. Thus, we approximatdy a grid function  sample. We refer to the situation in which a persistent lattice
whose nodal values at all grid points and time steps arés recognizable, but a true steady state is not achieved as a
sampled as independent random variables with a Gaussiajuasi-steady-stateonfiguration. Note that due to the pres-
distribution of zero mean and varianee Consequently, if ence of the additive noise the vortices are no longer circular
one refines the grid used for the solution of E2).one also  but that the core sizes are much the same, not only from one
refines the sampling points for the approximationyof vortex to another, but also for the same vortex from one time
In the multiplicative noise case, we have experimentednstant to another.
with discretized noise similar to that used in the additive Since the forcing functior is random, different compu-
noise case, corresponding to noise that is correlated ovéational runs can result not only in different evolutionary
length scales smaller than the coherence length. We hav@stories, but also in different persistent vortex lattice pat-
also experimented with discretized noise sampled on a lattickerns that appear after marching through time. For example,
that is fixed with respect to the grid used to discretize Eqduring the time evolution when the vortices enter the sample,
(3). This models noise that is correlated over length scalethe presence of fluctuations can inhibit some vortices from
comparable to the coherence length. entering. In three other realizations like the one in Fig. 2,
First, recall the formation of a deterministic vortex lattice. three different quasi-steady-states were observed in the sepa-
Vortices nucleate on the sides of the sample and move taate computations; one is similar to that in Fig. 2, but the
ward the center. The vortex lattice then rotates intcAan-  lattice is rotated 90°; the other two lattices have 23 vortices
kosov latticeas seen in Fig. 1, which is for a homogeneous,compared to the 24 vortices in the steady state lattice without
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FIG. 3. Snapshots in time dij| for a 206X 20¢ sample with /G- 5. Level curves ofy] for a 106X 10 sample with space-
additive noise having variances of 3, 6, and 9. All snapshots aréMe independent multiplicative noise having variance 4 at the non-
taken at the same nondimensionalized time instant. dimensional times 5, 20, 120, 240, and 360.

fluctuations. One vortex is inhibited from entering the mate-applied field is 0.&. Contour plots of the magnitude of the
rial during the nucleation process at the boundary of thedrder parameter are given in Figs. 5 and 6 for values of the
sample due to the presence of fluctuations in the model. Theariances equal to 4 and 8, respectively. Again, only contour
two lattices with 23 vortices are similar to each other with acurves corresponding tay|<0.5 are shown. There are no-
relative 90° rotation of the lattice structure. ticeable decreases in core sizes for larger values of the vari-
Effect of increasing the variancedn Fig. 3, snapshots ance while the relative motion of the centers of the vortices
taken at the same instant of time for different values of thds less dramatic than for the additive noise case.
variance are compared for a 2020¢ sample. The plots We next consider multiplicative noise in which the noise
result from a series of calculations with variances equal to 3is sampled on a space-time grid of the scale of a coherence
6, and 9. For low variances, vortices are recognizable and &ngth, i.e., one much coarser than that used to discretize the
vortex lattice is seen. As the variance is increased, the vo/G-L equations. Some interesting phenomena develop as the
tices are no longer recognizable and neither is a vortex latess frequent sampling decreases the variations of the coeffi-
tice. In Fig. 4, we give a similar set of plots for a three- cients in the noise term and thus gives rise to a change of the
dimensional computation. effective coherence length over time and space. One can ob-
The variance parameter controls the level of thermal flucserve that the cores of the vortices undergo constant expan-
tuations (or perhaps defectsthat are added to the time- Sion and shrinkage. For example, consider Fig. 7 in which a
dependent G-L equations. As the variance increases, the vot5¢§X 15§ sample with multiplicative noise sampled over a
tices are more distorted and eventually vortices are nofattice of dimension of a coherence length is considered. In
recognizable. As discussed earlier, different quasi-steadythe top row of Fig. 7, we follow the nucleation of vortices at
states can arise from calculations with the same variancthe boundary of the sample and the subsequent migration of
level due to different realizations of the stochastic proces$he vortices to their quasi-steady-state positions. In the bot-
that models thermal fluctuations. However, although for thdom row, we follow the vortices after the quasi-steady-state
same value of the variance the details of the different realhas been established. We see that not only are the vortex
izations may varyeven the number of vortices may be dif- centers moving significantly, but also the sizes of the vortex
ferend, the level of distortion of the vortices and the vortex cores change dramatically in time. Furthermore, at the same
lattices is very similar, e.g., the level of disorder of the indi- time, different vortices can have widely different core sizes.

vidual vortices and of the lattice are similar.

V. SUMMARY AND CONCLUSIONS

IV. RESULTS FOR MULTIPLICATIVE NOISE _ o
Computationally, the effect of thermal fluctuations is evi-

We first consider noise that is independent in space-timelent in the contour plots of the density of superconducting
so that the discretized noise is essentially sampled on thelectrons since vortices are in constant motion and are dis-
same grid as that used for the discretization of the G-L equaorted and the vortex lattice is also distorted. With small
tions. The size of this grid is much smaller than a coherencgariances and at large times, the vortices seem to be at an
length. The material sample has dimensiog400¢ and the  equilibrium where each vortex is on tleverageat a fixed
position in the sample. When the noise is subsequently
stopped at this quasi-steady-state, the resulting vortex lattice
evolves into a steady state configuration for the sample with
respect to the number of vortices present in the material. It
can be observed from the numerical simulations that, with no
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FIG. 4. Snapshots in time df| for a 15X 15¢X 15¢ sample FIG. 6. Level curves ofy| for a 16¢x 10¢ sample with space-

with additive noise having variances of 0, 2, 5, 8, and 15. All time independent multiplicative noise having variance 8 at the non-
snapshots are taken at the same nondimensionalized time instantdimensional times 5, 20, 120, 240, and 360.
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lattice structures corresponding to different realizations of
the same stochastic process with a given variance, each lat-
tice is a quasi-steady state. Thus, the lattice symmetry and
regularity seen in pure materials without fluctuations or de-
fects are still seen with the addition of noise in our models.
We also observe that, while additive noise tends to make the
positions of vortices vibrate, multiplicative noise tends to
alter the core sizes of the vortices, which is even more ap-
parent when discrete lattice random functions are used.
Theoretically, it can also be showithat as the variance
approaches zero the solution of the stochastic kighme-
dependent G-L equations approaches the solution of the de-
terministic highx time-dependent G-L equations. When the
noise present, the free energy monotonically decreases wariance decreases to zero, the level of the noise introduced
time, while in the presence of noise the random motion ofinto the stochastic time-dependent G-L equation goes to
the vortices results in oscillations in the value of the freezero. Intuitively, as the level of the noise goes to zero, the
energy. In comparison, multiplicative noise produces muctresulting values off at the steady state should approach the
larger oscillations, which are perhaps due to the dramatizalues obtained without fluctuations. Therefore, this theoret-
change of the core sizes. ical result is reflected in the computational studies of quasi-
Although a sample can have several different steady-statsteady-state lattices.

FIG. 7. Level curves ofy| at different times for a 16x 15¢
sample with multiplicative noise having long range order.
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