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Stochastic dynamics of Ginzburg-Landau vortices in superconductors
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Thermal fluctuations and randomly distributed defects in superconductors are modeled by stochastic variants
of the time-dependent Ginzburg-Landau equations. Numerical simulations are used to compare the effects of
additive and multiplicative noise models.

DOI: 10.1103/PhysRevB.64.052506 PACS number~s!: 74.20.De, 74.40.1k, 74.60.Ge, 74.80.2g
w
tio
no
rm
ics
n
or

en
II
r-
s
e

la

n-
n

ca

an
th
ab
n
t
y

re
tw
o
n
e

uc

da

t
n-

ts

l
m

ise

an
g
.,

e

be

e
de-

he
a

ging

used
n

ur
es,
ple
I. INTRODUCTION

The phenomenological Ginzburg-Landau model for lo
temperature superconductivity has received much atten
However, it is not applicable to physical contexts that do
take into account factors such as material defects or the
fluctuations. Thus, existing studies of the stability, dynam
interactions, and other properties of the vortex state do
necessarily carry over to situations for which these fact
cannot be ignored.

The effects of defects and thermal fluctuations play a c
tral role in the motion and pinning of vortices in type-
superconductors.1 In this Brief Report, we examine the vo
tex dynamics in type-II superconductors based on stocha
versions of the Ginzburg-Landau model. For simplicity, w
assume that the underlying material sample possesses a
value for the Ginzburg-Landau parameterk so that a reduc-
tion of the Ginzburg-Landau equations to their high-k limit
can be employed.2,3 In this case, the given applied field pe
etrates the sample completely. We will consider differe
forms for the stochastic perturbations of the high-k limit
Ginzburg-Landau model and illustrate, through numeri
experiments, their effect on the dynamics of vortices.

II. STOCHASTIC HIGH- k GINZBURG-LANDAU MODEL

Although at each point in the material and at each inst
in time the fluctuations or defects have negligible effect,
superposition of many interactions can produce observ
effects. The fluctuations or defects, being random in mag
tude and direction, produce instantaneous changes in
movement of vortices. In Ref. 1, it is argued that thermod
namic fluctuations are generally quite small, which cor
sponds to a small value for the variance. We consider
approaches of adding random fluctuations or defects t
high-k Ginzburg-Landau model: the cases of additive a
linear multiplicative noise. The comparison of the two cas
in other physically meaningful systems has received m
attention; see, e.g., Ref. 4.

Let VPRd denote the superconducting sample andG its
boundary. The derivation of the high-k model in a determin-
istic setting starts with the time-dependent Ginzburg-Lan
~G-L! equations.5 Then, as the G-L parameterk→` ~with
the gauge choice of the electric potentialF being zero inV
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and the magnetic potentialA having zero normal componen
on G), the resulting simplified leading-order system is a no
linear equation for the leading-order~in terms of 1/k2) order
parameterc, after ignoring the effects of applied curren
and assuming that the applied field is of orderk:2,3

]c

]t
1~ i¹1A!2c2c1ucu2c50 in V, ~1!

along with the boundary condition¹c•n50 on G and the
initial condition c(x,0)5w(x) in V. The magentic potentia
A, a deterministic vector field, is solved for separately fro
the given applied fieldH0 using Maxwell’s equations.

Additive noise high-k model. With h being a random,
complex-valued field in time and space, the additive no
high-k G-L model is of Langevin type and is given by6–12

]c

]t
1~ i¹1A!2c2c1ucu2c5h in V. ~2!

The random source termh is assumed~see Ref. 8! to be
noise generated by an infinite dimensional Browni
motion.13 If the effects of thermal fluctuations are bein
modeled, the variances of h is temperature dependent, i.e
s5K(T/Tc)(12T/Tc)

22 (T andTc denote the temperatur
and the critical transition temperature, respectively! for some
temperature independent constantK. Note thats→` as T
→Tc so that the effects of thermal fluctuations should
large nearTc .

We note that in Eqs.~1! and ~2! the space variables hav
been nondimensionalized with respect to the temperature
pendent coherence lengthj(T)5j(0)(12T/Tc)

21/2. In our
computational simulations, we will vary the variance of t
noise or, equivalently, we will vary the temperature. As
result, because of our nondimensionalization scale, chan
the variance implies that we are also changingj. This means
that as we change the value of variance the spatial scale
for nondimensionalization changes. The relation betweej
and s is easily found to be @j(T)/j(0)#25(1
1A114s/K)/2 so that for large values ofs we have that
j(T)}s1/4. Thus, for example, doubling the variance in o
computational simulations means that, for large varianc
we are enlarging the linear dimension of the material sam
©2001 The American Physical Society06-1
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by a factor of 1.19. It should be noted that the scale used
nondimensionalizing the time is also temperature depend

Multiplicative noise high-k model.A multiplicative noise
high-k G-L model is given by replacing Eq.~1! by

]c

]t
1~ i¹1A!2c2c1ucu2c5hc in V. ~3!

In Eq. ~3!, the noise termh appears as a coefficient of a ter
that is linear inc; one could more generally introduce oth
nonlinear stochastic terms. It is not clear if multiplicativ
noise can model the effect of thermal fluctuations and if
models satisfy the fluctuation-dissipation theorem; see R
8. Indeed, one of our goals is to see what is the effec
different noise models on the dynamics of vortices.

However, multiplicative noise of the type used in Eq.~3!
has been used to model defects in superconductors; see
Ref. 14. In this case, the nature of the noise depends on
scale of the inhomogeneities. If these are smaller than a
coherence lengthj, one may assume thath is independent in
space and time. On the other hand, if the inhomegeneities
correlated over distances comparable to a coherence le
then the coefficienth should have a similar correlatio
length scale. See Ref. 14.

Discretization of noise.To carry out the computationa
simulations, we must discretize the random functions.
the additive noise model, we assume thath is independent in
space and time. Thus, we approximateh by a grid function
whose nodal values at all grid points and time steps
sampled as independent random variables with a Gaus
distribution of zero mean and variances. Consequently, if
one refines the grid used for the solution of Eq.~2! one also
refines the sampling points for the approximation ofh.

In the multiplicative noise case, we have experimen
with discretized noise similar to that used in the addit
noise case, corresponding to noise that is correlated
length scales smaller than the coherence length. We h
also experimented with discretized noise sampled on a la
that is fixed with respect to the grid used to discretize E
~3!. This models noise that is correlated over length sca
comparable to the coherence length.

First, recall the formation of a deterministic vortex lattic
Vortices nucleate on the sides of the sample and move
ward the center. The vortex lattice then rotates into anAbri-
kosov latticeas seen in Fig. 1, which is for a homogeneo

FIG. 1. Time evolution ofucu in a 20j320j homogeneous,
isotropic sample with no thermal fluctuations; the bottom right fi
ure is the steady state configuration.
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isotropic, two-dimensional superconducting material of s
20j320j in a perpendicular magnetic field of magnitud
0.5k ~note that all variables have been appropriately non
mensionalized!. The numerical computations are based on
code developed for the steady-state and time-dependent
models and several of their variants; see Refs. 2 and 15
In the figures, contour lines for the magnitude of the ord
parameterc are plotted; for clarity, only those correspondin
to ucu<0.5 are shown. We refer to the isolated regions w
ucu<0.5 near the center of vortices as thecore regionsof the
vortices and the diameters of these regions are referred t
the core sizesthat are related to the coherence length of
material sample.

III. RESULTS FOR ADDITIVE NOISE

Development of a quasi-steady-state vortex lattice.When
a given noise with variance 2 is added to the same mate
sample as that considered in Fig. 1, the lattice no lon
rotates into a steady state lattice. Instead, the vortices vib
in the sample until a lattice similar to the lattice in Fig. 1
formed; see Fig. 2. A lattice is recognizable in this samp
but a true steady state as seen in Fig. 1 is not achieved s
the shapes of the vortices are distorted and the vortices
constantly in motion. However, with this small variance of
the vortices do try to form a regular, triangular pattern in t
sample. We refer to the situation in which a persistent latt
is recognizable, but a true steady state is not achieved
quasi-steady-stateconfiguration. Note that due to the pre
ence of the additive noise the vortices are no longer circu
but that the core sizes are much the same, not only from
vortex to another, but also for the same vortex from one ti
instant to another.

Since the forcing functionh is random, different compu-
tational runs can result not only in different evolutiona
histories, but also in different persistent vortex lattice p
terns that appear after marching through time. For exam
during the time evolution when the vortices enter the sam
the presence of fluctuations can inhibit some vortices fr
entering. In three other realizations like the one in Fig.
three different quasi-steady-states were observed in the s
rate computations; one is similar to that in Fig. 2, but t
lattice is rotated 90°; the other two lattices have 23 vortic
compared to the 24 vortices in the steady state lattice with

-
FIG. 2. Time evolution ofucu with additive noise of variance 2

in a 20j320j sample. The bottom right figure corresponds to
snapshot of the quasi-steady-state configuration.
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BRIEF REPORTS PHYSICAL REVIEW B 64 052506
fluctuations. One vortex is inhibited from entering the ma
rial during the nucleation process at the boundary of
sample due to the presence of fluctuations in the model.
two lattices with 23 vortices are similar to each other with
relative 90° rotation of the lattice structure.

Effect of increasing the variance.In Fig. 3, snapshots
taken at the same instant of time for different values of
variance are compared for a 20j320j sample. The plots
result from a series of calculations with variances equal to
6, and 9. For low variances, vortices are recognizable an
vortex lattice is seen. As the variance is increased, the
tices are no longer recognizable and neither is a vortex
tice. In Fig. 4, we give a similar set of plots for a thre
dimensional computation.

The variance parameter controls the level of thermal fl
tuations ~or perhaps defects! that are added to the time
dependent G-L equations. As the variance increases, the
tices are more distorted and eventually vortices are
recognizable. As discussed earlier, different quasi-stea
states can arise from calculations with the same varia
level due to different realizations of the stochastic proc
that models thermal fluctuations. However, although for
same value of the variance the details of the different re
izations may vary~even the number of vortices may be d
ferent!, the level of distortion of the vortices and the vorte
lattices is very similar, e.g., the level of disorder of the in
vidual vortices and of the lattice are similar.

IV. RESULTS FOR MULTIPLICATIVE NOISE

We first consider noise that is independent in space-t
so that the discretized noise is essentially sampled on
same grid as that used for the discretization of the G-L eq
tions. The size of this grid is much smaller than a cohere
length. The material sample has dimension 10j310j and the

FIG. 3. Snapshots in time ofucu for a 20j320j sample with
additive noise having variances of 3, 6, and 9. All snapshots
taken at the same nondimensionalized time instant.

FIG. 4. Snapshots in time ofucu for a 15j315j315j sample
with additive noise having variances of 0, 2, 5, 8, and 15.
snapshots are taken at the same nondimensionalized time inst
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applied field is 0.5k. Contour plots of the magnitude of th
order parameter are given in Figs. 5 and 6 for values of
variances equal to 4 and 8, respectively. Again, only cont
curves corresponding toucu<0.5 are shown. There are no
ticeable decreases in core sizes for larger values of the v
ance while the relative motion of the centers of the vortic
is less dramatic than for the additive noise case.

We next consider multiplicative noise in which the noi
is sampled on a space-time grid of the scale of a cohere
length, i.e., one much coarser than that used to discretize
G-L equations. Some interesting phenomena develop as
less frequent sampling decreases the variations of the co
cients in the noise term and thus gives rise to a change o
effective coherence length over time and space. One can
serve that the cores of the vortices undergo constant ex
sion and shrinkage. For example, consider Fig. 7 in whic
15j315j sample with multiplicative noise sampled over
lattice of dimension of a coherence length is considered
the top row of Fig. 7, we follow the nucleation of vortices
the boundary of the sample and the subsequent migratio
the vortices to their quasi-steady-state positions. In the b
tom row, we follow the vortices after the quasi-steady-st
has been established. We see that not only are the vo
centers moving significantly, but also the sizes of the vor
cores change dramatically in time. Furthermore, at the sa
time, different vortices can have widely different core siz

V. SUMMARY AND CONCLUSIONS

Computationally, the effect of thermal fluctuations is ev
dent in the contour plots of the density of superconduct
electrons since vortices are in constant motion and are
torted and the vortex lattice is also distorted. With sm
variances and at large times, the vortices seem to be a
equilibrium where each vortex is on theaverageat a fixed
position in the sample. When the noise is subseque
stopped at this quasi-steady-state, the resulting vortex la
evolves into a steady state configuration for the sample w
respect to the number of vortices present in the materia
can be observed from the numerical simulations that, with

re

l
t.

FIG. 5. Level curves ofucu for a 10j310j sample with space-
time independent multiplicative noise having variance 4 at the n
dimensional times 5, 20, 120, 240, and 360.

FIG. 6. Level curves ofucu for a 10j310j sample with space-
time independent multiplicative noise having variance 8 at the n
dimensional times 5, 20, 120, 240, and 360.
6-3
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noise present, the free energy monotonically decrease
time, while in the presence of noise the random motion
the vortices results in oscillations in the value of the fr
energy. In comparison, multiplicative noise produces mu
larger oscillations, which are perhaps due to the dram
change of the core sizes.

Although a sample can have several different steady-s

FIG. 7. Level curves ofucu at different times for a 15j315j
sample with multiplicative noise having long range order.
r

p
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lattice structures corresponding to different realizations
the same stochastic process with a given variance, each
tice is a quasi-steady state. Thus, the lattice symmetry
regularity seen in pure materials without fluctuations or d
fects are still seen with the addition of noise in our mode
We also observe that, while additive noise tends to make
positions of vortices vibrate, multiplicative noise tends
alter the core sizes of the vortices, which is even more
parent when discrete lattice random functions are used.

Theoretically, it can also be shown19 that as the variance
approaches zero the solution of the stochastic high-k time-
dependent G-L equations approaches the solution of the
terministic high-k time-dependent G-L equations. When t
variance decreases to zero, the level of the noise introdu
into the stochastic time-dependent G-L equation goes
zero. Intuitively, as the level of the noise goes to zero,
resulting values ofc at the steady state should approach
values obtained without fluctuations. Therefore, this theo
ical result is reflected in the computational studies of qua
steady-state lattices.
-

ans.
*Current address: Lockheed Martin Mission Systems, 700 No
Frederick Ave., Gaithersburg, MD 20879.

1W. Skocpol and M. Tinkham, Rep. Prog. Phys.38, 1049~1975!.
2J. Chapman, Q. Du, M. Gunzburger, and J. Peterson, Adv. Ap

Math. 5, 193 ~1993!.
3Q. Du and P. Gray, SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.

56, 1060~1996!.
4T. Kamppeter, F. Mertens, E. Moro, A. Sa´nchez, and A. Bishop,

Phys. Rev. B43, 5992~1991!.
5M. Tinkham, Introduction to Superconductivity~McGraw-Hill,

New York, 1975!.
6A. Dorsey, M. Huang, and M. Fisher, Phys. Rev. B45, 523

~1992!.
7A. Filippov, A. Radievsky, and A. Zelster, Phys. Lett. A192, 131

~1994!.
8P. Hohenberg and B. Halperin, Rev. Mod. Phys.49, 435 ~1977!.
9R. Kato, Y. Enomoto, and S. Maekawa, Phys. Rev. B47, 5992

~1993!.
th

l.

10R. Sasik, L. Bettencourt, and S. Habib, Phys. Rev. B62, 1238
~2000!.

11R. Troy and A. Dorsey, Phys. Rev. B47, 2715~1993!.
12S. Ullah and A. Dorsey, Phys. Rev. B44, 262 ~1991!.
13G. Da Prato and J. Zabczyk,Stochastic Equations in Infinite Di

mensions~Cambridge University Press, Cambridge, 1992!.
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