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Instantaneous three-dimensional (3D) measurements have been long desired to resolve the spatial struc-
tures of turbulent flows and flame. Previous efforts have demonstrated tomography as a promising
technique to enable such measurements. To facilitate the practical application, this work investigated
four practical aspects for implementing 3D tomographic under the context of volumetric combustion
diagnostics. Both numerical simulations and controlled experiments were performed to study: (1) the
termination criteria of the inversion algorithm; (2) the effects of regularization and the determination
of the optimal regularization factor; (3) the effects of a number of views; and (4) the impact of the
resolution of the projection measurements. The results obtained have illustrated the effects of these
practical aspects on the accuracy and spatial resolution of volumetric tomography. Furthermore, all these
aspects are related to the complexity and implementing cost (both hardware cost and computational
cost). Therefore, the results obtained in this work are expected to be valuable for the design and
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1. Introduction

Three-dimensional (3D) measurements have been
long desired for the study of many thermal-fluid
topics to resolve the 3D spatial structures inherent
in turbulent flows [1,2]. Furthermore, instantaneous
measurements with proper temporal resolution are
of particular importance due to the dynamic and
transient nature of turbulent flows [1,2]. Possible
options that can potentially meet both the spatial
and temporal requirements seem to be very limited
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and most of the existing efforts can be broadly
divided into two categories [3,4]. The first category
of techniques obtains 3D measurements by rapidly
scanning a planar imaging technique such as Mie
scattering [5] or laser induced incandescence [6].
The second category of techniques obtains 3D
measurements volumetrically by performing a 3D
tomography [7-10]. A comprehensive survey and
comparison of these possible options is beyond the
scope of this current paper, and an independent
review of this topic would be of significant
importance and value for optical diagnosticians. This
current work therefore directly focuses on the tomog-
raphy approach. More specifically, the current work
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examines several practical aspects of implementing
3D tomographic inversions under the context of
combustion measurements based on previous re-
sults. Existing tomography inversion methods are
predominately developed by and for the medical
imaging community [11]. Consequently, direct
application of these methods to flow and combustion
imaging often results in nonoptimal performance due
to both the fundamental and practical differences
between flow/flame and medical imaging. This work
particularly discusses the following four practical
aspects of 3D tomographic inversion under the
context of volumetric combustion measurements.

First, this paper discusses the termination criteria
of inversion methods and their effects on the accu-
racy and efficiency of tomographic reconstruction.
An effective termination criterion is an important
aspect of any inversion method, because it directly
affects the computational cost and the reconstruction
accuracy. An ideal criterion should be one that
guarantees convergence and terminates immedi-
ately when further calculation provides negligible
improvements. Theories are available to analyze
the termination criteria, but practical issues such
as measurement noise and inconsistent projection
data restrict the usefulness of the theories and the
termination criteria often need to be determined em-
pirically [9,11,12]. This work studied the termination
criteria using both simulated and experimental data,
and demonstrated the effective termination of an
inversion method based on the simulated annealing
(SA) algorithm.

Second, this paper discusses the effects of regulari-
zation on the reconstruction of various flames.
Regularization, the incorporation of available a
priori information in the inversion, is an effective
technique to improve the performance of tomogra-
phy, applicable for both medical [13] and combustion
imaging [14,15]. However, after studying various
regularization techniques on various flame patterns,
the results obtained in this work show that the
regularization techniques developed for medical
imaging do not apply effectively for flame measure-
ments due to the structural differences between
medical targets and flames. For example, the former
typically features sharp edges while the latter (espe-
cially a highly turbulent flame) features distributed
and irregular patterns.

Third, this paper discusses the effects of number of
views on reconstruction quality. In contrast to medi-
cal imaging where projection data at many views
(e.g., more than thousands) are available as input
for the inversion, projection data in combustion
applications are often available at a very limited
number of views, both because of the dynamic nature
of flames and the practical difficulty of obtaining
optical access [16-18]. Past works have performed
both computational and theoretical studies on the ef-
fects of the number of views on the spatial resolution
and fidelity of the reconstruction [9,19]. They also
explored possible ways of obtaining more views in

combustion systems using imaging fibers [20]. This
work examined the effects of a number of views for
tomographic 3D combustion imaging combining
computational, theoretical, and experimental
results.

Fourth, this paper discusses the effects of the
resolution of the projections measurements on the
spatial resolution and fidelity of the reconstruction.
Projection data for 3D tomography are recorded (by
CCD cameras for example) with finite spatial resolu-
tion. The projection measurements are often binned
to enhance the signal-to-noise ratio in combustion
applications, and such binning degrades the spatial
resolution of the projection data. This work there-
fore, examined the effects of CCD resolution and bin-
ning on 3D tomographic inversion.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the mathematical formulation
and experimental arrangement used in this work.
Section 3 reports the results obtained in all four
aspects from both numerical simulation and experi-
mental studies. Section 4 summarizes the paper and
discusses our ongoing research.

2. Mathematical Formulation and Experimental
Arrangement

A. Problem Formulation and Inversion Algorithms

The mathematical formulation of 3D tomography
has been previously detailed elsewhere [10,21],
and a brief summary is provided here to facilitate
the discussion. Figure 1 schematically illustrates
the mathematical formulation. As shown, the
volumetric distribution of the target quantity
[denoted as F(x,y,z)] is discretized into voxels. For
example, in this work, the experimental work relied
on the chemiluminescence emission of CH* and
F(x,y,z), hence represents the concentration of
CH* in this case. But as to be seen, the mathematical
formulation is general and applicable to tomography
based on other signal generation processes as well,
including chemiluminescence from other flame
radicals (or emission spectroscopy in general), Mie
scattering, or laser-induced fluorescence (LIF). Thus

CCD Array

Discretized
Object

Fig. 1. Mathematical formulation of the TC problem and example
flames used to validate the TC technique experimentally.
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we expect the results (at least the simulation results)
to be applicable to tomographic imaging based on
other signal generation processes. An image system
collects the signal to be recorded by a CCD array, and
the two-dimensional image formed on the CCD array
is called a projection (P). The projection formed on
the CCD is given by

Nx Ny Nz
P(r.0.4) = ZZZF@%%,Z;’)
- PSF(x;,y;.2::7. 0, ¢), 1)

where r (distance to the origin), ¢ (azimuth angle),
and ¢ (inclination angle) specify the orientation
and location of the projection measurement as shown
in Panel a; i,,i,,i, are the indices of the voxel cen-
tered at (x;,y;.2;); N, N,, and N, are the total num-
ber of grids along the x,y,z direction, respectively;
and PSF represents the point spread function de-
fined as the projection formed by a point source lo-
cated at (x;,y;,2;) with unity intensity. Equation (1)
essentially calculates the projection as a weighted
summation of the PSF across all voxels with the
sought function as the weight. The 3D tomography
problem can now be formulated as:

Given a set of projections (Ps) measured at various
r,0, and ¢, find F(x,y,z).

As mentioned above, this formulation is generally
applicable to signals generated from various mecha-
nisms including chemiluminescence [10], emission
[18], scattering [22,23], and LIF [24]. In the case
where the signal is angle dependent (like Mie
scattering), the PSF can be modified to include the
scattering phase function and then Eq. (1) remains
valid. However, note that Eq. (1) is limited to linear
signals, and is not applicable to problems with
nonlinear effects such as multiple scattering.

Various algorithms have been developed to solve
the tomographic inversion problem as formulated
above [11], and our work has implemented several
of these algorithms including the algebraic
reconstruction technique (ART) as described in [9],
the multiplicative algebraic reconstruction tech-
nique (MART) as described in [25], and the ordered
subset expectation maximization (OSEM) algorithm
as described in [26]. We have also developed a new
algorithm based on the SA technique [27] to solve
the 3D tomography problem, and our new algorithm
tomographic inversion by SA, is code named TISA.
The TISA algorithm formulates the tomography
problem into an optimization problem as shown
below:

minimize D = ) [Pp(r.0.9) ~ Po(r.0. $)I”
r.0.¢

with respect to F(x,y,z2), (2)

where P,, represents the measured projections at
(r,0,¢), P, the projection calculated at (r, 6, ¢) with
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a given distribution according to Eq. (1), and D there-
fore, the overall difference between the measured
and calculated projection. Equation (2) is then mini-
mized by the SA technique. Before comparing the
various algorithms on the four specific aspects afore-
mentioned, we make some general comments based
on our previous results. Combustion imaging
presents a set of unique challenges and also opportu-
nities for the development of inversion algorithms.
We have performed numerical comparisons of these
algorithms on a range of phantoms (i.e., targets F's
that are artificially created) and different signal gen-
erating mechanisms, and the results have suggested
reasonable performance from all algorithms and also
limitations on phantoms featuring highly turbulent
challenge of combustion imaging involves the avail-
ability of projection data at a very limited number
of views, ranging from 2 [15,16] to about 50

medical imaging) have significantly more projections
(thousands and more) available. Therefore, the
desired algorithm should converge under limited
projection data (which are often also noisy). The sec-
ond challenge involves the computational cost
needed for processing and analyzing flow and
combustion measurements. Tomographic inversion
itself is computationally intensive, comparable to
computational fluid dynamics (CFD) in many ways
[32]. The computational cost is further compounded
by the need to take measurements at high speed
(multikilohertz) to resolve the temporal dynamics
of turbulent flows and flames. Therefore, the desired
algorithm should be computationally efficient and
also amiable for large scale parallelization [32-34].
Despite these challenges, flows and flames also
present some unique opportunities for tomographic
imaging, and the ideal algorithm should be able to
incorporate these opportunities. For example, unlike
medical targets, flows and flames follow a set of gov-
erning equations, presenting an opportunity to incor-
porate these governing equations in the inversion
process to improve the reconstruction accuracy
[32,35] and reduce the computational cost [36].

B. Experimental Arrangement

The experimental study in this work was performed
using laboratory flames and multiview arrangement
to conduct 3D tomographic chemiluminescence (TC),
similar to that discussed in [10]. Chemiluminescence
emitted from CH* radicals in the flame from various
view angles was recorded either sequentially by one
camera (if the flame is stable) or simultaneously by
multiple cameras (if the flame is unstable). Then
based on the measured projections, a tomographic
reconstruction was performed to obtain the 3D flame
structure.

Three of the example flames used in the experi-
mental study are shown in Fig. 1: (A) a simple
laminar flame generated by a Bunsen burner,
(B) a patterned flame generated by a customized



McKenna burner, and (C) a v-gutter stabilized flame.
These flames were either designed to have stable and
well-defined spatial features (such as flames A and
B) to quantitatively validate 3D measurements base
on TC, or designed to be turbulent and dynamics
(such as flame C) to demonstrate TC’s temporal
resolution. For example, flame A had a known cone
shape and a flame front thickness of 0.30 mm. Flame
B is a stable and disk-like flame with a diameter of
~61 mm and a thickness of ~1 mm. A honeycomb
was place on the burner to create controlled patterns
on the flames. The honeycomb’s cells are squares
with size of 1.25 x 1.25 mm and certain cells were
blocked to create the desired pattern. Various
patterns have been created and studied in this work.
Flame B shown in Fig. 1 has patterns of a rectangu-
lar region with a size of 8.75 x 10 mm, a column of
cells to form a vertical line with 1.25 mm thickness,
and two rows of cells to form a horizontal line with
and 2.5 mm thickness. After the tomographic
reconstruction, these spatial features (such as the lo-
cation, thickness, and size of the flame front) were
extracted and compared to the known values to
quantify the accuracy of the TC measurements, as
will be detailed in Section 3.

In summary, this section introduces the
mathematical formulation and experimental
approach used in this work. Based on these, the next
section will examine the four specific aspects of 3D
flame imaging quantitatively.

3. Results and Discussion

Both numerical and experimental studies have been
performed for the discussions in this section. The
numerical study wused various phantoms, with
four of them shown in Fig. 2, and the experimental
study was performed as discussed in Section 2.B.
The phantoms were designed with the intention to
simulate the phantoms used in this work, so that

Phantom 1 60 Phantom 2 High
<
40
// i "
10 20 30 20 40 60 ||
Phantom 3 Phantom 4
Low

Fig. 2. Phantoms used for numerical simulations.

the performance of the tomography measurements
can be evaluated both experimentally and numeri-
cally. For example, phantom 1 in Fig. 2 was created
to simulate the patterned McKenna burner flame
generated experimentally, phantom 2 to simulate
the stable Bunsen flame, phantom 3 to simulate a
turbulent jet flame, and phantom 4 to simulate a
turbulent flame stabilized by a v-gutter. Though
Fig. 2 shows one layer of each phantom, all phantoms
were created and used volumetrically in this work.
Also note that the same color scale as used here in
Fig. 2 (red and blue, respectively, correspond to high
and low CH* concentration) is applied throughout
this work.

Before discussing any of the specific aspects, we
first establish that the inversion algorithms are
insensitive to the initial starting condition. Various
initial guesses were used to start the algorithms
tested, including TISA, ART, MART, and OSEM.
All these algorithms were observed to be insensitive
to the initial guess. Figure 3 shows a set of example
results where the TISA algorithm was applied to
phantom 4 with three different initial guesses of
the target F: a 3D Gaussian distribution, a 3D
uniform distribution, and a 3D random distribution.
As Fig. 3 shows, the function value (normalized by
the largest F' observed) changed differently during
iterations with different initial guesses, but the
reconstruction error (e) all converged to the same
value. This work defines the following reconstruction
error to quantify the inversion accuracy:

_ 22 i S - F

lxﬁly;z
e =

bl
i i i il

Lyilysly |

3

where F™° represents the reconstructed distribution
of the target radical. Similar behavior was observed
with all algorithms on both phantoms and experi-
mental measurements.

A. Termination Criterion

An effective termination criterion is important for
any inversion method because it directly affects
the computational cost and also the reconstruction

414
1.0 4 Phantom 4 12
Initial Guess:
08 _ Gaussian 10
w B - Uniform s
g —-—- Random
N 0.6 1 6
= o
g 1 4
G 0o
= Al 2
0
0.2 1 2
" 4
0.0 . Normalized F

T ) T T T T T T
80 120 160 200 240 280 320 360 400

Number of iterations
Fig. 3. Insensitivity to initial guess.
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accuracy. An ideal termination criterion is one that
guarantees convergence while aborting immediately
when further calculation provides negligible im-
provements. Unfortunately, there is no universal cri-
terion, to our knowledge, that works effectively for all
practical applications where empirical criteria are
often used. As an example, the following termination
criterion has been used for the ART algorithms [37]:

N. Ny N, N, N, N,
ZZZFk(xi’yi’Zi)_ZZZFk_l(xi’yivzi)
N, Ny, N,
Sf'ﬂ‘ZZZFk(xi,yi,zi), 4)

[ VR

where F* and F*-1 are the reconstructed F in the kth
and (k& — 1)th iteration, respectively; ¢ is a small pos-
itive number and was empirically suggested to be in
the range of [10-%, 10-3]; and f is the relaxation factor
in the ART algorithm. This criterion essentially ter-
minates the ART algorithm when the overall change
in F during two consecutive iterations is below a
small proportion of the overall magnitude of the re-
constructed F. Figure 4 illustrates the limitation of
this criterion by simultaneously tracking D and e
during ART iterations. Here D refers to the overall
difference between the measured and calculated pro-
jections during the kth iteration, i.e.,

D = |P(r.0.¢) - Pi(r.0.¢)% (5)

r.0,

where P, and PtP,, stand for measured and calcu-
lated projection obtained by the end of the kth
ART iteration. As Fig. 4 shows, D decreases mono-
tonically with %, which increases monotonically with
decreasing ¢ because more iterations are needed to
find F that can better match the calculated projec-
tions to the measured ones. However, e does not
decrease monotonically with increasing % (and conse-
quently not decreasing ¢ either). In the results shown
in Fig. 4, setting ¢ = 1073 terminated the inversion

0.15 0.06
Phantom 1, ART
0.14 ~D
' =l £0.05
0.13 J £=10"3 e=104
Q §§ e F0.04 ©
0.12 3 \% I —
N MM@K*“"‘
N Decreasing £ £0.03
0.11 4
0.10 T T T 0.02
0 50 100 150 200

k

Fig. 4. Evolution of e and normalized residual illustrating issues
with termination criterion in the ART algorithm.
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too early, before the minimal e¢ was reached. In
contrast, setting ¢ = 10~* terminated the inversion
too late, after it passed the minimal e and resulted
in a less accurate reconstruction after almost
4x more computational cost compared to the cri-
terion with ¢ = 1073. The results obtained in Fig. 4
were phantom 1, eight randomly positioned views
and 5% artificial Gaussian noise in projections.
The ART, MART, and OSEM algorithms were tested
on various phantoms with different termination cri-
teria. The results confirmed the difficulty of design-
ing an effective termination criterion. All the
algorithms showed success on some cases, and also
encountered issues like those illustrated in Fig. 4
on other cases.

In comparison, the new TISA algorithms that we
developed can be terminated consistently with a
simple criterion in all the cases we tested. The
TISA algorithm solves Eq. (2) by the SA algorithm
[38]. The SA algorithm is a proven technique for min-
imizing complicated functions. The SA algorithm
seeks the minimum of a function by simulating
the way liquids anneal and crystallize, a natural
process during which a large number of molecules
find the state of minimal total energy [27]. The SA
algorithm minimizes D, defined in Eq. (2) also by
iterations, and the following criterion was found to
be effective:

IDt - D*1| < ¢ - D, (6)

where D* and D*~! are the difference between the si-
mulated and measured projections as defined in
Eq. (2) during the kth and % — 1th iteration, respec-
tively. Similar to Fig. 4, Fig. 5 tracks D (normalized
by D!) and e simultaneously under the same condi-
tions as those used in Fig. 4. The results in Fig. 5
show that, with Eq. (6), both D and e decreased mono-
tonically with decreasing e (i.e., increasing k& and
computation cost) in the TISA algorithm. Results
obtained in other cases with the TISA algorithm
showed the same trend as seen in Fig. 5.

1.0
BT Normalized D - 0.07
N\
3 - 0.06
o L 0.05
° %
N L 0.04
T 0.9 Decreasing € \ \ o
£ L 0.03
o \
=z %
\ +0.02
Phantom 1, TISA S=10-3
—.— Normalized D e L 0.01
——e
0.8 T v T T v 0.00
0 100 200 300 400 500 600

k

Fig. 5. Evolution of e and normalized F illustrating the mono-
tonic decrease of e in the RHybrid algorithm.



B. Regularization

It has been well recognized that a priori information,
if available, can be incorporated in the tomographic
inversion via regularization to improve the inversion
[12,13,27]. Here we studied the regularization of the
ART and TISA algorithms (the regularized algo-
rithms were code named RART and RTISA, respec-
tively). Two types of regularizations were studied:
smoothness and total-variation. The smoothness
regularization considers the degree of smoothness
of the sought F in the inversion, as detailed in
[12,14]. The total variation (TV) regularization of
the target function F is defined as [13]

min f =D +y - Ryy, (8)

where f is the new master function and y the regu-
larization parameter to adjust the relative impor-
tance between the D and Ryy terms. The optimal
selection of y is critical for the application of any
regularization technique, which controls the relative
weights of the a priori information (e.g., smoothness
or TV) and the a posteriori knowledge (i.e., the
measurements) in the tomographic inversion process
[27]. This work found the so-called L-curve method,
developed for solving ill-posed linear equations
[39], to be effective in determining the optimal y
for relatively simple flames.

Rpy(F) = Z \/(Fix,iy,iz _Fix—l,iy,iz)z + (Fix,iy,iz - Fix,iy—l.iz)z + (Fix.iy.iz _Fix,iy.iz—l)Q . (7

Tylyl,

According to Eq. (5), the TV of F' represents the sum-
mation of the gradient magnitude of F’ over all voxels.
Inclusion of Rty in the reconstruction has been
shown to preserve the smoothness or the edges of
the sought F' [10,13]. In the RART algorithm, the
Ry term was minimized at the end of each ART iter-
ation with respect to F, and the updated F' was then
used as the input for the next ART iteration. In the
RTISA algorithm, the Rty term was simply added to
the difference defined in Eq. (2) to form a new master
function to be minimized, i.e.,

Phantom 2

Phantom 4

ART, 5.41% error

ART, 5.62% error

| |

Before detailing the choice of y, Fig. 6 first shows a
set of results to illustrate the usefulness of regulari-
zation (and also its limitations). We applied the ART
algorithms to various phantoms with and without
the TV regularization, and two sets of example
results are shown in Fig. 6. These results were
obtained with phantoms 2 and 4 as shown in Fig. 2.
Eight simulated projections were used in the
simulations, with 5% Gaussian noise artificially
added to the projections to simulate measurement
uncertainty. The upper panel of Fig. 6 shows the

RART, 2.85% error

RART, 5.38% error

Fig. 6. Application of regularization in the TC technique. Projections from eight random views were used with 5% Gaussian noise added

(these same conditions were used in the results in Figs. 7 and 8).
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reconstruction of phantom 2, which as mentioned
earlier, was created to simulate a cone-shaped stable
laminar flame generated by a Bunsen burner. Note
that even though the phantom is axially symmetric,
the tomographic reconstruction did not assume such
a priori knowledge. From left to right is the phantom
itself, the ART reconstruction, and the RART
reconstruction, respectively. As can been seen, the
ART reconstruction had artifacts (e.g., the disconti-
nuities and cavities in the reconstruction) and the
overall error was e = 5.6%. The application of the
TV regularization significantly reduced the overall
error to e =2.8% and eliminated much of the
artifacts seen in the ART reconstruction.

The lower panel of Fig. 6 shows the reconstruction
of phantom 4, which was created to simulate a
turbulent flame stabilized on a v-gutter. Again from
left to right is the phantom itself, the ART
reconstruction, and the RART reconstruction,
respectively. As can be seen, the ART and RART
reconstructions were almost identical to each other.
The overall error of the ART reconstruction was
e =5.6%, and that of the RART reconstruction
is e = 5.4%.

Several observations can be made from the results
shown in Fig. 6, and these observations were valid
when we applied regularization to other algorithms
(e.g., the TISA algorithm) and other phantoms. First,
with a proper choice of y (to be discussed immediately
below), the application of regularization reduced e for
all algorithms on all phantoms tested. Second,
however, the reduction was more pronounced on
smooth (or “laminar”) phantoms than on irregular
(or “turbulent”) phantoms, because the TV regulari-
zation preserves the smoothness and sharp edges. In
the examples shown in Fig. 6, phantom 2 is smooth
and has clear edges and therefore the TV regulariza-
tion is effective, but phantom 4 does not feature any
clear edge or smooth distribution, causing the
ineffectiveness of the TV regularization as reflected
in Fig. 6. It is an important research topic to find a
regularization that can work effectively on turbulent

10°
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Fig. 7. L curve for phantom 2 (a smooth flame).
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Fig. 8. Application of regularization to phantom 4 (a turbulent
flame).

targets, and we are exploring the incorporation of
governing equations as regularization in our ongoing
work.

Figures 7 and 8 provide more insights into results
shown in Fig. 6, and also illustrate the selection of y
using the L-curve method. In practice, the sought F'is
unknown, and therefore e is not available to guide
the selection of y. The L-curve method recognizes this
issue and therefore relies on quantities that can be
practically obtained to determine y: the difference
between the measured and calculated projections
(D) and the regularization term itself (e.g., Rty). In
the L-curve method, the inversion problem is solved
multiple times, each time with a different y, and D
and the regularization term are recorded each time.
Panel (a) of Fig. 7 shows a set of results of D and Rrv
recorded when the TV regularization was applied to
phantom 2 using the RTISA method. The plot had an
approximate L shape, and the L-curve method used
the y corresponding to the corner of the L curve as the
optimal values. This work calculated the maximum
curvature to determine the corner, and the points
near the corner were shown as solid square symbols
in Panel (a) of Fig. 7. Panel (b) of Fig. 7 shows the e
obtained under the ys used (because a known phan-
tom was used here so e can be calculated). The solid
triangle symbols correspond to the ys near the corner
of the L curve shown in Panel (a), illustrating that
the minimal e indeed occurred at the ys determined
by the L-curve method. The L curve exemplified in
Panel (a) of Fig. 7 is essentially a trade-off curve.
When y is negligibly small (i.e., 1.5 x 107%), the inver-
sion was performed only to minimize D without
considering the regularization, resulting in small
D and large Rty. When y is exceedingly large (i.e.,
15), the inversion was performed only based on the
regularization (i.e., to minimize the TV) without con-
sidering the measurements, resulting in large D and
small Rty. The success of the L-curve method in the
case shown in Fig. 7 lies in the existence of a distinct
corner during the transition from small to large y, as



shown in Panel (a). Such a distinct corner represents
an optimal balance between D and R. Any further
increase in y leads to a sharp rise in D, and any
decrease in y results in negligible change in D. There-
fore, the ys near the corner represent a state where
the maximum “amount” of regularization can be
added in the inversion without affecting the role of
the measurements.

In contrast, the data shown in Fig. 8 obtained on a
turbulent phantom do not exhibit such a distinct
corner. As shown in Panel (a), the transition from
small to large y was gradual in this case, resulting
in the failure to identify the optimal y and explaining
the marginal usefulness of regularization observed
in Fig. 6.

Application of the smoothness regularization to
the phantoms showed a similar trend as seen in
Figs. 7 and 8. Both the smoothness and TV regulari-
zation were effective in improving the inversion on
phantoms that are smooth and/or have clear edges,
but not effective on turbulent phantoms. The design
of an effective regularization technique for turbulent
objects is an important research need.

Lastly, the studies describe in Sections A and B
above were also performed using experimental data,
and the same observations were made as those made
with numerical phantoms. The experimental flames
were not as accurately known as the numerical phan-
toms. Therefore, the studies involving experimental
data relied on some characteristic features extracted
from the flames, and such extraction is best
explained in Sections C and D below.

C. Number of Views and Resolution of Projection
Measurements

The number of views and resolution of the projection
measurements are also two important aspects for the

4 views & with 2x2 binning

4 views & without binning

10 20 30 40 50 10 20 30 40 50
b X

8 views & with 2x2 binning 8 views & without binning

10 20 30 40 50
X X

10 20 30 40 50

Fig. 9. Layer 1 of the reconstructions from experimentally mea-
sured projections.

practical implementation of 3D diagnostics. They di-
rectly impact the requirement of optical access and
cost (both hardware cost and computational cost).
Therefore, this section investigates their effects on
the quality of the 3D measurements.

Figure 9 shows the reconstruction using experi-
mental data of a flame generated using the setup dis-
cussed in Section 2.B. To examine the effects of
number of views (IV) and resolution of the projections
measurements, the reconstruction was performed
under four different cases by varying the number
of views (N = 4 and 8) and applying binning to the
projections (2 x 2 binning and no binning). Without
binning, projections measured by the CCD camera
(1376 x 1040 pixels with 6.45 x 6.45 pm pixel size)
were directly used in the inversion. The measure-
ment domain was discretized into 64 x 64 x 16 voxels
(a total of 65,536 voxels). Under these conditions, the
PSD described in Eq. (1) at one view angle was about
8 GB in size when stored in double precision. The size
of the PSD is approximately proportional to the num-
ber of pixels in the projection measurements. There-
fore, with 2 x 2 binning, the size of the PSD reduced
to 2 GB per view angle. Such memory requirement
and computational cost underline the importance
to carefully design the number of views and resolu-
tion of the projections in practice. Figure 9 shows
that (1) eight views resulted in an overall more accu-
rate reconstruction than four views and (2) with a
fixed number of views, reducing the resolution of
the projections via binning does not significantly
deteriorate the overall quality of the reconstruction.
One explanation for the second observation is that
while binning reduced the resolution and thusly re-
duced the number of measurements available as in-
puts for the inversion, it also reduced the uncertainty
in the measurements at the same time.

Figure 10 shows a quantitative analysis of the
results in Fig. 9 by focusing on the vertical column
blocked in the flame. As mentioned in Section 2.B,
the blocked column had a width of 1.25 mm, repre-
senting the smallest spatial feature created in the

Reconstructed width
= No binning
A 2x2 binning

-
[ V]
[

—— Fit to nA/N

-
o
[

R2=0.934
A=13.6

Reconstructed Width (mm)

1 2 3 4 5 6 7 8 9

Fig. 10. Reconstruction of experimental data with and without
binning the measured projections.
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experiments. Based on the reconstructions shown in
Fig. 9, we extracted the width of the column by
calculating the gradient of the reconstruction and
locating the sharpest CH* concentration change.
Figure 10 shows the reconstructed width of the
column under the conditions used in Fig. 9. Note that
the reconstructed width may vary along the column
(i.e., at difference y locations). Therefore, multiple
values were obtained from each layer and Fig. 10
shows the median (the solid symbols) and standard
deviation (the error bars) of these values.

Several observations can be made based on the
results shown in Fig. 10. First, the spatial resolution
of the reconstruction, quantified by the width of the
blocked column, improved with increasing number of
views used. Figure 10 also shows the fit of the results
to the Fourier slice theorem [40,41], which predicts
the spatial resolution of the reconstruction to be
7A/N, where 1 is a characteristic spatial scale. As
seen, the data were accurately captured by the
theorem. Second, different A was determined when
binning was applied to the measured projections,
leading to a different resolving power of the tomo-
graphic inversion. Therefore, even though the results
shown in Fig. 9 suggest that binning did not cause
significant degradation to the overall reconstruction
quality, the quantitative analysis shown in Fig. 10
show that binning does affect the resolving power
of the tomographic inversion. Third, when projection
data from eight views were used without binning, the
tomographic inversion was able to resolve the mini-
mum feature in the flame (1.25 mm), demonstrating
the spatial resolution of the 3D diagnostic technique.

Figures 11 and 12 show numerical results
performed using phantoms to simulate the experi-
ments described above. As can be seen, the same
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Fig. 11.
tions.

Layer 1 of the reconstructions from simulated projec-
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Fig. 12. Reconstruction of experimental data with and without
binning the simulated projections.

observations can be made from these numerical
results as those made from the experimental results.
Finally, we make two notes before leaving these
discussions. First, in the numerical simulations, both
the width of the blocked column and e can be calcu-
lated due to the precisely known phantoms. The
reconstructed width and its fit showed the same
trend as those seen in Fig. 10 from the experimental
data. Therefore, here Fig. 12 shows e from the
numerical simulations rather than the width of
the blocked column. The results in Fig. 12 show that
e can be fitted accurately by the Fourier slice theorem
too, which could be useful for quantifying the inver-
sion accuracy of targets with no distinct spatial
features. Second, the Fourier slice theorem was
developed for the ART algorithm, and results
obtained in this work suggested that it also applies
to the TISA algorithm.

Lastly, in practice, the number of views is an
important parameter in the design of tomographic
combustion diagnostics. These observations made
here illustrate the practical factors that should be
considered in determining the optical number of
views. These factors include fundamental considera-
tions such as the desired spatial resolution and prag-
matic factors such as the computational cost and
optical access. The results shown here should provide
valuable guidance to the holistic consideration of
these factors.

4. Summary and Discussion

This paper investigated four practical aspects for im-
plementing 3D tomographic inversion under the con-
text of volumetric flame imaging. These aspects
include: (1) the termination criteria of the inversion
algorithm; (2) the effects of regularization and the de-
termination of the optimal regularization factor;
(3) the effects of number of views, and (4) the impact
of the resolution of the projection measurements.
Both numerical simulations and controlled experi-
ments were performed to study them. The results ob-
tained have shown the difficulties of designing an
effective termination criterion, and suggested that



the new TISA algorithm can be terminated effec-
tively on all the cases tested. Regularization has
been demonstrated to significantly enhance the
accuracy of inverting smooth flames and/or flames
with clear edges. An L-curve method was found to
be able to determine the optimal regularization
parameter. Increasing the number of views and
the resolution of the projections has been shown to
improve both the accuracy and the resolving power,
which agreed with theoretical predictions. The
results obtained have illustrated the effects of
these practical aspects on the accuracy and spatial
resolution of 3D diagnostics based on tomography
inversion. Furthermore, these aspects, for instance
the number of views and the resolution of the projec-
tion measurements, are all related to the complexity
and implementing cost (both hardware cost and com-
putational cost). Therefore, we expect the results
obtained in this work to facilitate the practical
implementation of 3D combustion diagnostics. For
example, in our ongoing work, we are designing
temporally-resolved 3D diagnostics for practical
combustors, which pose several challenges including
restricted optical access, large measurement volume,
and large data volume. The results discussed in this
work provide key information to many aspects of the
design, which aims at obtaining an optimal balance
of spatial resolution, temporal resolution, hardware
cost, and computational cost.
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